Statistics Toolbox ${ }^{\text {TM }}$

User's Guide

R2013a

MATLAB ${ }^{\circ}$

How to Contact MathWorks

www. mathworks.com
comp.soft-sys.matlab
Web
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com
Product enhancement suggestions
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Statistics Toolbox ${ }^{\text {TM }}$ User's Guide

© COPYRIGHT 1993-2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

September 1993 First printing
March 1996 Second printing
January 1997 Third printing
November 2000 Fourth printing
May $2001 \quad$ Fifth printing
July $2002 \quad$ Sixth printing
February 2003 Online only
June 2004 Seventh printing
October 2004 Online only
March $2005 \quad$ Online only
September 2005 Online only
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009 Online only Online only Eighth printing

September 2009
March 2010
September 2010
April 2011
September 2011 March 2012
September 2012 March 2013

Ninth printing Online only Online only

Version 1.0
Version 2.0
Version 2.11
Revised for Version 3.0 (Release 12)
Minor revisions
Revised for Version 4.0 (Release 13)
Revised for Version 4.1 (Release 13.0.1)
Revised for Version 5.0 (Release 14)
Revised for Version 5.0.1 (Release 14SP1)
Revised for Version 5.0.2 (Release 14SP2)
Revised for Version 5.1 (Release 14SP3)
Revised for Version 5.2 (Release 2006a)
Revised for Version 5.3 (Release 2006b)
Revised for Version 6.0 (Release 2007a)
Revised for Version 6.1 (Release 2007b)
Revised for Version 6.2 (Release 2008a)
Revised for Version 7.0 (Release 2008b)
Revised for Version 7.1 (Release 2009a)
Revised for Version 7.2 (Release 2009b)
Revised for Version 7.3 (Release 2010a)
Revised for Version 7.4 (Release 2010b)
Revised for Version 7.5 (Release 2011a)
Revised for Version 7.6 (Release 2011b)
Revised for Version 8.0 (Release 2012a)
Revised for Version 8.1 (Release 2012b)
Revised for Version 8.2 (Release 2013a)

Getting Started

1

Product Description 1-2
Key Features 1-2
Organizing Data
Create Categorical Arrays 2-3
Create Nominal Arrays 2-3
Create Ordinal Arrays 2-5
Change Category Labels 2-8
Reorder Category Levels 2-10
Reorder Category Levels in Ordinal Arrays 2-10
Reorder Category Levels in Nominal Arrays 2-11
Categorize Numeric Data 2-15
Merge Category Levels 2-18
Add and Drop Category Levels 2-20
Plot Data Grouped by Category 2-24
Test Differences Between Category Means 2-28
Summary Statistics Grouped by Category 2-37
2
Sort Ordinal Arrays 2-39
Categorical Arrays 2-41
What Are Categorical Arrays? 2-41
Categorical Array Conversion 2-41
Advantages of Using Categorical Arrays 2-43
Manipulate Category Levels 2-43
Analysis Using Categorical Arrays 2-43
Reduce Memory Requirements 2-44
Index and Search Using Categorical Arrays 2-46
Grouping Variables 2-51
What Are Grouping Variables? 2-51
Group Definition 2-52
Analysis Using Grouping Variables 2-52
Missing Group Values 2-53
Dummy Indicator Variables 2-55
What Are Dummy Variables? 2-55
Creating Dummy Variables 2-56
Regression with Categorical Covariates 2-59
Create a Dataset Array from Workspace Variables 2-65
Create a Dataset Array from a Numeric Array 2-65
Create Dataset Array from Heterogeneous Workspace Variables 2-68
Create a Dataset Array from a File 2-71
Create a Dataset Array from a Tab-Delimited Text File 2-71
Create a Dataset Array from a Comma-Separated Text File 2-74
Create a Dataset Array from an Excel File 2-77
Add and Delete Observations 2-79
Add and Delete Variables 2-83
Access Data in Dataset Array Variables 2-87
Select Subsets of Observations 2-93
Sort Observations in Dataset Arrays 2-97
Merge Dataset Arrays 2-101
Stack or Unstack Dataset Arrays 2-106
Calculations on Dataset Arrays 2-111
Export Dataset Arrays 2-115
Clean Messy and Missing Data 2-117
Dataset Arrays in the Variables Editor 2-122
Open Dataset Arrays in the Variables Editor 2-122
Modify Variable and Observation Names 2-123
Reorder or Delete Variables 2-125
Add New Data 2-127
Sort Observations 2-129
Select a Subset of Data 2-130
Create Plots 2-133
Dataset Arrays 2-135
What Are Dataset Arrays? 2-135
Dataset Array Conversion 2-135
Dataset Array Properties 2-136
Index and Search Dataset Arrays 2-138
Descriptive Statistics
3
Introduction to Descriptive Statistics 3-2
Measures of Central Tendency 3-3
Measures of Dispersion 3-5
Quantiles and Percentiles 3-7
Exploratory Analysis of Data 3-11
Resampling Statistics 3-16
Bootstrap 3-16
Jackknife 3-19
Parallel Computing Support for Resampling Methods 3-20
Data with Missing Values 3-21
Statistical Visualization
4
Introduction to Statistical Visualization 4-2
Scatter Plots 4-3
Box Plots 4-6
Distribution Plots 4-8
Normal Probability Plots 4-8
Quantile-Quantile Plots 4-10
Cumulative Distribution Plots 4-12
Other Probability Plots 4-14
Using Probability Distributions 5-2
Supported Distributions 5-3
Parametric Distributions 5-4
Nonparametric Distributions 5-9
Working with Distributions Through GUIs 5-10
Exploring Distributions 5-10
Modeling Data Using the Distribution Fitting Tool 5-12
Custom Distributions Using Distribution Fitting Tool 5-49
Visually Exploring Random Number Generation 5-50
Statistics Toolbox Distribution Functions 5-53
Probability Density Functions 5-53
Cumulative Distribution Functions 5-63
Inverse Cumulative Distribution Functions 5-67
Distribution Statistics Functions 5-69
Distribution Fitting Functions 5-71
Negative Log-Likelihood Functions 5-78
Random Number Generators 5-81
Using Probability Distribution Objects 5-85
Using Distribution Objects 5-85
What are Objects? 5-86
Creating Distribution Objects 5-89
Object-Supported Distributions 5-90
Performing Calculations Using Distribution Objects 5-91
Capturing Results Using Distribution Objects 5-98
Probability Distributions Used for Multivariate Modeling 5-100
Gaussian Mixture Models 5-100
Copulas: Generate Correlated Samples 5-108

Random Number Generation

6

Generating Random Data 6-2
Random Number Generation Functions 6-3
Common Generation Methods 6-5
Direct Methods 6-5
Inversion Methods 6-7
Acceptance-Rejection Methods 6-9
Representing Sampling Distributions Using Markov Chain Samplers 6-13
Using the Metropolis-Hastings Algorithm 6-13
Using Slice Sampling 6-14
Generating Quasi-Random Numbers 6-15
Quasi-Random Sequences 6-15
Quasi-Random Point Sets 6-16
Quasi-Random Streams 6-23
Generating Data Using Flexible Families of Distributions 6-25
Pearson and Johnson Systems 6-25
Generating Data Using the Pearson System 6-26
Generating Data Using the Johnson System 6-28
Hypothesis Tests
7
Introduction to Hypothesis Tests 7-2
Hypothesis Test Terminology 7-3
Hypothesis Test Assumptions 7-5
Hypothesis Testing 7-7
Available Hypothesis Tests 7-13
Analysis of Variance
8
Introduction to Analysis of Variance 8-2
ANOVA 8-3
One-Way ANOVA 8-3
Two-Way ANOVA 8-9
N-Way ANOVA 8-12
Other ANOVA Models 8-26
Analysis of Covariance 8-27
Nonparametric Methods 8-35
MANOVA 8-39
Introduction to MANOVA 8-39
ANOVA with Multiple Responses 8-39
Parametric Regression Analysis
9
Parametric Regression Analysis 9-2
What Is Parametric Regression? 9-2
Choose a Regression Function 9-2
Update Legacy Code with New Fitting Methods 9-3
What Are Linear Regression Models? 9-7
Linear Regression 9-11
Prepare Data 9-11
Choose a Fitting Method 9-13
Choose a Model or Range of Models 9-14
Fit Model to Data 9-20
Examine Quality and Adjust the Fitted Model 9-20
Predict or Simulate Responses to New Data 9-39
Share Fitted Models 9-42
Linear Regression Workflow 9-43
Regression Using Dataset Arrays 9-50
Linear Regression with Interaction Effects 9-53
Interpret Linear Regression Results 9-63
Linear Regression Output and Diagnostic Statistics 9-71
Summary of Measures 9-71
Cook's Distance 9-72
Coefficient Confidence Intervals 9-75
Coefficient Covariance 9-77
Coefficient of Determination (R-Squared) 9-78
Delete-1 Change in Covariance (covratio) 9-81
Delete-1 Scaled Difference in Coefficient Estimates (Dfbetas) 9-84
Delete-1 Scaled Change in Fitted Values (Dffits) 9-86
Delete-1 Variance (S2_i) 9-88
Durbin-Watson Test 9-90
F-statistic 9-92
Hat Matrix 9-95
Leverage 9-96
Residuals 9-99
t-statistic 9-107
Stepwise Regression 9-111
Stepwise Regression to Select Appropriate Models 9-111
Compare large and small stepwise models 9-111
Robust Regression - Reduce Outlier Effects 9-116
What Is Robust Regression? 9-116
Robust Regression versus Standard Least-Squares Fit 9-116
Ridge Regression 9-119
Introduction to Ridge Regression 9-119
Ridge Regression 9-119
Lasso and Elastic Net 9-123
What Are Lasso and Elastic Net? 9-123
Lasso Regularization 9-123
Lasso and Elastic Net with Cross Validation 9-126
Wide Data via Lasso and Parallel Computing 9-129
Lasso and Elastic Net Details 9-134
References 9-136
Partial Least Squares 9-137
Introduction to Partial Least Squares 9-137
Partial Least Squares 9-138
Generalized Linear Models 9-143
What Are Generalized Linear Models? 9-143
Prepare Data 9-144
Choose Generalized Linear Model and Link Function 9-146
Choose Fitting Method and Model 9-150
Fit Model to Data 9-155
Examine Quality and Adjust the Fitted Model 9-156
Predict or Simulate Responses to New Data 9-168
Share Fitted Models 9-171
Generalized Linear Model Workflow 9-173
Lasso Regularization of Generalized Linear Models 9-178
What is Generalized Linear Model Lasso Regularization? 9-178
Regularize Poisson Regression 9-178
Regularize Logistic Regression 9-182
Regularize Wide Data in Parallel 9-189
Generalized Linear Model Lasso and Elastic Net 9-195
References 9-197
Nonlinear Regression 9-198
What Are Parametric Nonlinear Regression Models? 9-198
Prepare Data 9-199
Represent the Nonlinear Model 9-200
Choose Initial Vector beta0 9-203
Fit Nonlinear Model to Data 9-203
Examine Quality and Adjust the Fitted Model 9-204
Predict or Simulate Responses to New Data 9-208
Nonlinear Regression Workflow 9-212
Mixed-Effects Models 9-219
Introduction to Mixed-Effects Models 9-219
Mixed-Effects Model Hierarchy 9-220
Specifying Mixed-Effects Models 9-221
Specifying Covariate Models 9-224
Choosing nlmefit or nlmefitsa 9-226
Using Output Functions with Mixed-Effects Models 9-229
Mixed-Effects Models Using nlmefit and nlmefitsa 9-234
Examining Residuals for Model Verification 9-249
Pitfalls in Fitting Nonlinear Models by Transforming to Linearity 9-255
Generalized Linear Models
10
Multinomial Models for Nominal Responses 10-2
Multinomial Models for Ordinal Responses 10-5
Hierarchical Multinomial Models 10-9
Survival Analysis
11
What Is Survival Analysis? 11-2
Introduction 11-2
Censoring 11-2
Data 11-3
Survivor Function 11-5
Hazard Function 11-7
Kaplan-Meier Method 11-11
Hazard and Survivor Functions for Different Groups 11-19
Survivor Functions for Two Groups 11-26
Cox Proportional Hazards Regression 11-31
Cox Proportional Hazards Model for Censored Data 11-34
Multivariate Methods
12
Introduction to Multivariate Methods 12-2
Multivariate Linear Regression 12-3
Multivariate Linear Regression Model 12-3
Solving Multivariate Regression Problems 12-4
Estimation of Multivariate Regression Models 12-6
Least Squares Estimation 12-6
Maximum Likelihood Estimation 12-10
Missing Response Data 12-12
Set Up Multivariate Regression Problems 12-16
Response Matrix 12-16
Design Matrices 12-21
Common Multivariate Regression Problems 12-22
Multivariate General Linear Model 12-30
Fixed Effects Panel Model with Concurrent Correlation 12-35
Longitudinal Analysis 12-43
Multidimensional Scaling 12-50
Introduction to Multidimensional Scaling 12-50
Classical Multidimensional Scaling 12-50
Nonclassical Multidimensional Scaling 12-55
Nonmetric Multidimensional Scaling 12-57
Procrustes Analysis 12-61
Compare Landmark Data 12-61
Data Input 12-61
Preprocess Data for Accurate Results 12-62
Compare Handwritten Shapes 12-63
Feature Selection 12-70
Introduction to Feature Selection 12-70
Sequential Feature Selection 12-70
Feature Transformation 12-75
Introduction to Feature Transformation 12-75
Nonnegative Matrix Factorization 12-75
Principal Component Analysis (PCA) 12-78
Quality of Life in U.S. Cities 12-80
Factor Analysis 12-92
Partial Least Squares Regression and Principal Components Regression 12-102
Cluster Analysis
13
Introduction to Cluster Analysis 13-2
Hierarchical Clustering 13-3
Introduction to Hierarchical Clustering 13-3
Algorithm Description 13-3
Similarity Measures 13-4
Linkages 13-6
Dendrograms 13-8
Verify the Cluster Tree 13-10
Create Clusters 13-16
k-Means Clustering 13-21
Introduction to k-Means Clustering 13-21
Create Clusters and Determine Separation 13-22
Determine the Correct Number of Clusters 13-23
Avoid Local Minima 13-26
Gaussian Mixture Models 13-28
Introduction to Gaussian Mixture Models 13-28
Cluster with Gaussian Mixtures 13-28
Parametric Classification
14
Parametric Classification 14-2
Discriminant Analysis 14-3
What Is Discriminant Analysis? 14-3
Create Discriminant Analysis Classifiers 14-3
Creating a Classifier Using ClassificationDiscriminant.fit 14-4
How the predict Method Classifies 14-6
Create and Visualize a Discriminant Analysis Classifier 14-9
Improve a Discriminant Analysis Classifier 14-14
Regularize a Discriminant Analysis Classifier 14-22
Examine the Gaussian Mixture Assumption 14-29
Bibliography 14-35
Naive Bayes Classification 14-36
Supported Distributions 14-36
Performance Curves 14-39
Introduction to Performance Curves 14-39
What are ROC Curves? 14-39
Evaluate Classifier Performance Using perfcurve 14-39
Supervised Learning (Machine Learning) Workflow and Algorithms 15-2
Steps in Supervised Learning (Machine Learning) 15-2
Characteristics of Algorithms 15-7
Classification Using Nearest Neighbors 15-9
Pairwise Distance 15-9
k-Nearest Neighbor Search and Radius Search 15-12
K-Nearest Neighbor Classification for Supervised Learning 15-25
Construct a KNN Classifier 15-25
Examine the Quality of a KNN Classifier 15-26
Predict Classification Based on a KNN Classifier 15-27
Modify a KNN Classifier 15-27
Classification Trees and Regression Trees 15-30
What Are Classification Trees and Regression Trees? 15-30
Creating a Classification Tree 15-31
Creating a Regression Tree 15-31
Viewing a Tree 15-32
How the Fit Methods Create Trees 15-35
Predicting Responses With Classification and Regression Trees 15-37
Improving Classification Trees and Regression Trees 15-37
Alternative: classregtree 15-47
Splitting Categorical Predictors 15-55
Challenges in Splitting Multilevel Predictors 15-55
Pull Left By Purity 15-56
Principle Component-Based Partitioning 15-56
One Versus All By Class 15-57
Ensemble Methods 15-58
Framework for Ensemble Learning 15-58
Basic Ensemble Examples 15-68
Test Ensemble Quality 15-70
Classification with Imbalanced Data 15-76
Classification: Imbalanced Data or Unequal Misclassification Costs 15-82
Classification with Many Categorical Levels 15-90
Surrogate Splits 15-94
LPBoost and TotalBoost for Small Ensembles 15-97
Ensemble Regularization 15-102
Tuning RobustBoost 15-114
Random Subspace Classification 15-118
TreeBagger Examples 15-124
Ensemble Algorithms 15-145
Support Vector Machines (SVM) 15-161
Understanding Support Vector Machines 15-161
Using Support Vector Machines 15-167
Nonlinear Classifier with Gaussian Kernel 15-169
SVM Classification with Cross Validation 15-173
Bibliography 15-182
Markov Models
16
Introduction to Markov Models 16-2
Markov Chains 16-3
Hidden Markov Models (HMM) 16-5
Introduction to Hidden Markov Models (HMM) 16-5
Analyzing Hidden Markov Models 16-7
Design of Experiments
17
Design of Experiments 17-2
Full Factorial Designs 17-3
Multilevel Designs 17-3
Two-Level Designs 17-4
Fractional Factorial Designs 17-5
Introduction to Fractional Factorial Designs 17-5
Plackett-Burman Designs 17-5
General Fractional Designs 17-6
Response Surface Designs 17-9
Introduction to Response Surface Designs 17-9
Central Composite Designs 17-9
Box-Behnken Designs 17-13
D-Optimal Designs 17-15
Introduction to D-Optimal Designs 17-15
Generate D-Optimal Designs 17-16
Augment D-Optimal Designs 17-19
Specify Fixed Covariate Factors 17-20
Specify Categorical Factors 17-21
Specify Candidate Sets 17-21
Statistical Process Control
18
Introduction to Statistical Process Control 18-2
Control Charts 18-3
Capability Studies 18-6
Quick Start Parallel Computing for Statistics Toolbox 19-2
What Is Parallel Statistics Functionality? 19-2
How To Compute in Parallel 19-3
Parallel Treebagger 19-5
Concepts of Parallel Computing in Statistics Toolbox 19-7
Subtleties in Parallel Computing 19-7
Vocabulary for Parallel Computation 19-7
When to Run Statistical Functions in Parallel 19-8
Why Run in Parallel? 19-8
Factors Affecting Speed 19-8
Factors Affecting Results 19-9
Working with parfor 19-10
How Statistical Functions Use parfor 19-10
Characteristics of parfor 19-11
Reproducibility in Parallel Statistical Computations 19-13
Issues and Considerations in Reproducing Parallel Computations 19-13
Running Reproducible Parallel Computations 19-14
Parallel Statistical Computation Using Random Numbers 19-15
Examples of Parallel Statistical Functions 19-19
Parallel Jackknife 19-19
Parallel Cross Validation 19-20
Parallel Bootstrap 19-21

Functions - Alphabetical List

20

Sample Data Sets

A

Distribution Reference

B
Bernoulli Distribution B-3
Definition of the Bernoulli Distribution B-3
See Also B-3
Beta Distribution B-4
Definition B-4
Background B-4
Parameters B-5
Example B-6
See Also B-6
Binomial Distribution B-7
Definition B-7
Background B-7
Parameters B-8
Example B-9
See Also B-9
Birnbaum-Saunders Distribution B-10
Definition B-10
Background B-10
Parameters B-11
See Also B-11
Burr Type XII Distribution B-12
Definition B-12
Background B-13
Parameters B-14
Fit a Burr Distribution and Draw the cdf B-15
Compare Lognormal and Burr pdfs B-17
Burr pdf for Various Parameters B-19
Survival and Hazard Functions of Burr Distribution B-20
Divergence of Parameter Estimates B-22
See Also B-24
Chi-Square Distribution B-25
Definition B-25
Background B-25
Example B-26
See Also B-26
Copulas B-27
Custom Distributions B-28
Exponential Distribution B-29
Definition B-29
Background B-29
Parameters B-29
Example B-30
See Also B-31
Extreme Value Distribution B-32
Definition B-32
Background B-32
Parameters B-34
Example B-35
See Also B-37
F Distribution B-38
Definition B-38
Background B-38
Example B-39
See Also B-39
Gamma Distribution B-40
Definition B-40
Background B-40
Parameters B-41
Example B-42
See Also B-42
Gaussian Distribution B-43
Gaussian Mixture Distributions B-44
Generalized Extreme Value Distribution B-45
Definition B-45
Background B-45
Parameters B-46
Example B-47
See Also B-49
Generalized Pareto Distribution B-50
Definition B-50
Background B-50
Parameters B-51
Example B-52
See Also B-53
Geometric Distribution B-54
Definition B-54
Background B-54
Example B-54
See Also B-55
Hypergeometric Distribution B-56
Definition B-56
Background B-56
Example B-57
See Also B-57
Inverse Gaussian Distribution B-58
Definition B-58
Background B-58
Parameters B-58
See Also B-58
Inverse Wishart Distribution B-59
Definition B-59
Background B-59
Example B-59
See Also B-60
Johnson System B-61
Logistic Distribution B-62
Definition B-62
Background B-62
Parameters B-62
See Also B-62
Loglogistic Distribution B-63
Definition B-63
Parameters B-63
See Also B-63
Lognormal Distribution B-64
Definition B-64
Background B-64
Example B-65
See Also B-66
Multinomial Distribution B-67
Definition B-67
Background B-67
Example B-67
See Also B-69
Multivariate Gaussian Distribution B-70
Multivariate Normal Distribution B-71
Definition B-71
Background B-71
Example B-72
See Also B-76
Multivariate t Distribution B-77
Definition B-77
Background B-77
Example B-78
See Also B-82
Nakagami Distribution B-83
Definition B-83
Background B-83
Parameters B-83
See Also B-84
Negative Binomial Distribution B-85
Definition B-85
Background B-85
Parameters B-86
Example B-87
See Also B-88
Noncentral Chi-Square Distribution B-89
Definition B-89
Background B-89
Example B-90
See Also B-90
Noncentral F Distribution B-91
Definition B-91
Background B-91
Example B-92
See Also B-92
Noncentral t Distribution B-93
Definition B-93
Background B-93
Example B-94
See Also B-94
Nonparametric Distributions B-95
Normal Distribution B-96
Definition B-96
Background B-96
Parameters B-97
Example B-98
See Also B-98
Pareto Distribution B-99
Pearson System B-100
Piecewise Distributions B-101
Poisson Distribution B-102
Definition B-102
Background B-102
Parameters B-103
Example B-103
See Also B-103
Rayleigh Distribution B-104
Definition B-104
Background B-104
Parameters B-105
Example B-105
See Also B-105
Rician Distribution B-106
Definition B-106
Background B-106
Parameters B-106
See Also B-107
Student's t Distribution B-108
Definition B-108
Background B-108
Example B-109
See Also B-109
t Location-Scale Distribution B-110
Definition B-110
Background B-110
Parameters B-110
See Also B-111
Uniform Distribution (Continuous) B-112
Definition B-112
Background B-112
Parameters B-112
Example B-112
See Also B-113
Uniform Distribution (Discrete) B-114
Definition B-114
Background B-114
Example B-114
See Also B-115
Weibull Distribution B-116
Definition B-116
Background B-116
Parameters B-117
Example B-117
See Also B-118
Wishart Distribution B-119
Definition B-119
Background B-119
Example B-120
See Also B-120
Bibliography
C
Index

Getting Started

Product Description
 Perform statistical modeling and analysis

Statistics Toolbox ${ }^{\mathrm{TM}}$ provides algorithms and tools for organizing, analyzing, and modeling data. You can use regression or classification for predictive modeling, generate random numbers for Monte Carlo simulations, use statistical plots for exploratory data analysis, and perform hypothesis tests.

For analyzing multidimensional data, Statistics Toolbox includes algorithms that let you identify key variables that impact your model with sequential feature selection, transform your data with principal component analysis, apply regularization and shrinkage, or use partial least-squares regression.

Statistics Toolbox includes specialized data types for organizing and accessing heterogeneous data. Dataset arrays store numeric data, text, and metadata in a single data container. Built-in methods enable you to merge datasets using a common key (join), calculate summary statistics on grouped data, and convert between tall and wide data representations. Categorical arrays provide a memory-efficient data container for storing information drawn from a finite, discrete set of categories.

Key Features

- Statistical arrays for storing heterogeneous and categorical data
- Regression techniques, including linear, nonlinear, robust, and ridge, and nonlinear mixed-effects models
- Classification algorithms, including boosted and bagged decision trees, k-Nearest Neighbor, and linear discriminant analysis
- Analysis of variance (ANOVA)
- Probability distributions, including copulas and Gaussian mixtures
- Random number generation
- Hypothesis testing
- Design of experiments and statistical process control

Organizing Data

- "Create Categorical Arrays" on page 2-3
- "Change Category Labels" on page 2-8
- "Reorder Category Levels" on page 2-10
- "Categorize Numeric Data" on page 2-15
- "Merge Category Levels" on page 2-18
- "Add and Drop Category Levels" on page 2-20
- "Plot Data Grouped by Category" on page 2-24
- "Test Differences Between Category Means" on page 2-28
- "Summary Statistics Grouped by Category" on page 2-37
- "Sort Ordinal Arrays" on page 2-39
- "Categorical Arrays" on page 2-41
- "Advantages of Using Categorical Arrays" on page 2-43
- "Index and Search Using Categorical Arrays" on page 2-46
- "Grouping Variables" on page 2-51
- "Dummy Indicator Variables" on page 2-55
- "Regression with Categorical Covariates" on page 2-59
- "Create a Dataset Array from Workspace Variables" on page 2-65
- "Create a Dataset Array from a File" on page 2-71
- "Add and Delete Observations" on page 2-79
- "Add and Delete Variables" on page 2-83
- "Access Data in Dataset Array Variables" on page 2-87
- "Select Subsets of Observations" on page 2-93
- "Sort Observations in Dataset Arrays" on page 2-97
- "Merge Dataset Arrays" on page 2-101
- "Stack or Unstack Dataset Arrays" on page 2-106
- "Calculations on Dataset Arrays" on page 2-111
- "Export Dataset Arrays" on page 2-115
- "Clean Messy and Missing Data" on page 2-117
- "Dataset Arrays in the Variables Editor" on page 2-122
- "Dataset Arrays" on page 2-135
- "Index and Search Dataset Arrays" on page 2-138

Create Categorical Arrays

In this section...
"Create Nominal Arrays" on page 2-3
"Create Ordinal Arrays" on page 2-5

Create Nominal Arrays

This example shows how to create nominal arrays using nominal.

Load sample data.

load('fisheriris')
The variable species is a 150 -by- 1 cell array of strings containing the species name for each observation. The unique species types are setosa, versicolor, and virginica.
unique(species)
ans $=$
'setosa'
'versicolor'
'virginica'

Create a nominal array.

Convert species to a nominal array using the categories occurring in the data.

```
speciesNom = nominal(species);
class(speciesNom)
ans =
```

nominal

The nominal array, speciesNom, has three levels corresponding to the three unique species. The levels of a categorical array are the set of possible values that its elements can take.

```
getlevels(speciesNom)
ans =
    setosa versicolor virginica
```

A categorical array can have more levels than actually appear in the data. For example, a categorical array named AllSizes might have levels small, medium, and large, but you might only have observations that are medium and large in your data. To see which levels of a categorical array are actually present in the data, use unique, for instance, unique(AllSizes).

Each level has a label, which is a string used to name the level. By default, nominal labels the category levels with the values occurring in the data. For speciesNom, these labels are the species types.

```
getlabels(speciesNom)
```

ans $=$
'setosa' 'versicolor' 'virginica'

Specify your own category labels.

You can specify your own labels for each category level. You can specify labels when you create the nominal array, or by using setlabels.
speciesNom2 = nominal(species,\{'seto','vers','virg'\});
getlabels(speciesNom2)
ans =

```
    'seto' 'vers' 'virg'
```

Verify that the new labels correspond to the original labels in speciesNom.
isequal(speciesNom=='setosa',speciesNom2=='seto')
ans =

The logical value 1 indicates that the two labels, 'setosa' and 'seto', correspond to the same observations.

Create Ordinal Arrays

This example shows how to create ordinal arrays using ordinal.

Load sample data.

```
AllSizes = {'medium','large','small','small','medium',...
    'large','medium','small'};
```

The created variable, AllSizes, is a cell array of strings containing size measurements on eight objects.

Create an ordinal array.

Create an ordinal array with category levels and labels corresponding to the values in the cell array (the default levels and labels).

```
sizeOrd = ordinal(AllSizes);
getlevels(sizeOrd)
ans =
    large medium small
getlabels(sizeOrd)
ans =
    'large' 'medium' 'small'
```

By default, ordinal uses the original strings as category labels. The default order of the categories is ascending alphabetical order.

Suppose that you want to include additional levels for the ordinal array, xsmall and xlarge, even though they do not occur in the original data. To specify additional levels, use the third input argument to ordinal.

```
sizeOrd2 = ordinal(AllSizes,{},...
    {'xsmall','small','medium','large','xlarge'});
```

```
getlevels(sizeOrd2)
ans =
    xsmall small medium large xlarge
```

To see which levels are actually present in the data, use unique.

```
unique(sizeOrd2)
ans =
    small medium large
```


Specify the category order.

Convert AllSizes to an ordinal array with categories small < medium < large. Generally, an ordinal array is distinct from a nominal array because there is a natural ordering for levels of an ordinal array. You can use the third input argument to ordinal to specify the ascending order of the levels. Here, the order of the levels is smallest to largest.

```
sizeOrd = ordinal(AllSizes,{},{'small','medium','large'});
getlevels(sizeOrd)
ans =
    small medium large
```

The second input argument for ordinal is a list of labels for the category levels. When you use braces \{\} for the level labels, ordinal uses the labels specified in the third input argument (the labels come from the levels present in the data if only one input argument is used).

Verify that the first object (with size medium) is smaller than the second object (with size large).

```
sizeOrd(1) < sizeOrd(2)
```

ans =

1

The logical value 1 indicates that the inequality holds.

```
See Also nominal | ordinal | getlabels | getlevels | unique | isequal |
Related - "Change Category Labels" on page 2-8
Examples
- "Reorder Category Levels" on page 2-10
- "Merge Category Levels" on page 2-18
- "Index and Search Using Categorical Arrays" on page 2-46
Concepts
- "Categorical Arrays" on page 2-41
- "Advantages of Using Categorical Arrays" on page 2-43
```


Change Category Labels

This example shows how to change the labels for category levels in categorical arrays using setlabels. You also have the option to specify labels when creating a categorical array.

Load sample data.

load('carsmall')
The variable Cylinders contains the number of cylinders in 100 sample cars.

```
unique(Cylinders)
```

ans =

4
6
8

The sample has $4-, 6$-, and 8 -cylinder cars.

Create an ordinal array.

Convert Cylinders to a nominal array with the default category labels (taken from the values in the data).

```
cyl = ordinal(Cylinders);
```

getlabels(cyl)
ans =
'4' '6' '8'
ordinal created labels using the integer values in Cylinders, but you should provide labels for numeric data.

Change category labels.

Relabel the categories in cyl to Four, Six, and Eight.
cyl = setlabels(cyl ,\{'Four','Six','Eight'\});

```
getlabels(cyl)
ans =
    'Four' 'Six' 'Eight'
```

Alternatively, you can specify category labels when you create a categorical array using the second input argument.

```
cyl2 = ordinal(Cylinders,{'Four','Six','Eight'});
getlabels(cyl2)
```

ans =
'Four' 'Six' 'Eight'
See Also ordinal | getlabels | setlabels |
Related - "Reorder Category Levels" on page 2-10Examples

- "Add and Drop Category Levels" on page 2-20
- "Index and Search Using Categorical Arrays" on page 2-46
Concepts- "Categorical Arrays" on page 2-41- "Advantages of Using Categorical Arrays" on page 2-43

Reorder Category Levels

In this section...
"Reorder Category Levels in Ordinal Arrays" on page 2-10
"Reorder Category Levels in Nominal Arrays" on page 2-11

Reorder Category Levels in Ordinal Arrays

This example shows how to reorder the category levels in an ordinal array using reorderlevels.

Load sample data.

```
AllSizes = {'medium','large','small','small','medium',...
    'large','medium','small'};
```

The created variable, AllSizes, is a cell array of strings containing size measurements on eight objects.

Create an ordinal array.

Convert AllSizes to an ordinal array without specifying the order of the category levels.

```
size = ordinal(size);
getlevels(size)
ans =
    large medium small
```

By default, the categories are ordered by their labels in ascending alphabetical order, large < medium < small. For example, check whether or not the first object (which has size medium) is smaller than the second object (which has size large).

```
size(1) < size(2)
```

ans $=$

0

The logical value 0 indicates that the medium object is not smaller than the large object.

Reorder category levels.

Reorder the category levels so that small < medium < large.

```
size = reorderlevels(size,{'small','medium','large'});
getlevels(size)
ans =
    small medium large
```

Verify that the first object is now smaller than the second object.
size(1) < size(2)
ans =

1
The logical value 1 indicates that the expected inequality now holds.

Reorder Category Levels in Nominal Arrays

This example shows how to reorder the category levels in nominal arrays using reorderlevels. By definition, nominal array categories have no natural ordering. However, you might want to change the order of levels for display or analysis purposes. For example, when fitting a regression model with categorical covariates, LinearModel.fit uses the first level of a nominal independent variable as the reference category.

Load sample data.

load('hospital')
The dataset array, hospital, contains variables measured on 100 sample patients. The variable Weight contains the weight of each patient. The
variable Sex is a nominal variable containing the gender, Male or Female, for each patient.
getlevels(hospital.Sex)
ans =

Female
 Male

By default, the order of the nominal categories is in ascending alphabetical order of the labels.

Plot data grouped by category level.
Draw box plots of weight, grouped by gender.
figure()
boxplot(hospital.Weight, hospital.Sex)
title('Weight by Gender')

Weight by Gender

The box plots appear in the same alphabetical order returned by getlevels.

Change the category order.

Change the order of the category levels.

```
hospital.Sex = reorderlevels(hospital.Sex,{'Male','Female'});
getlevels(hospital.Sex)
ans =
    Male Female
```

The levels are in the newly specified order. Draw box plots of weight by gender.

```
figure()
boxplot(hospital.Weight,hospital.Sex)
title('Weight by Gender')
```

Weight by Gender

The order of the box plots corresponds to the new level order.

```
See Also nominal | ordinal | getlevels | LinearModel.fit | reorderlevels |
Related - "Change Category Labels" on page 2-8
Examples
- "Merge Category Levels" on page 2-18
- "Add and Drop Category Levels" on page 2-20
- "Index and Search Using Categorical Arrays" on page 2-46
Concepts
- "Categorical Arrays" on page 2-41
- "Advantages of Using Categorical Arrays" on page 2-43
```


Categorize Numeric Data

This example shows how to categorize numeric data into a categorical ordinal array using ordinal. This is useful for discretizing continuous data.

Load sample data.

load('hospital')
The dataset array, hospital, contains variables measured on a sample of patients. Compute the minimum, median, and maximum of the variable Age.
quantile(hospital.Age, [0,.5,1])
ans =
$25 \quad 39 \quad 50$

The variable Age has the ages of each patient, ranging from 25 to 50 .

Convert a numeric array to an ordinal array.

Group patients into the age categories Under 30, 30-39, Over 40.

```
hospital.AgeCat = ordinal(hospital.Age,{'Under 30','30-39','Over 40'},...
    [],[25,30,40,50]);
getlevels(hospital.AgeCat)
ans =
Under 30 30-39 Over 40
```

The last input argument to ordinal has the endpoints for the categories. The first category begins at age 25 , the second at age 30 , and so on. The last category contains ages 40 and above, so begins at 40 and ends at 50 (the maximum age in the data set). To specify three categories, you must specify four endpoints (the last endpoint is the upper bound of the last category).

Display the age and age category for the second patient.
hospital.Age(2)
hospital.AgeCat(2)
ans =

```
Over 40
```

When you discretize a numeric array into categories, the categorical array loses all information about the actual numeric values. In this example, AgeCat is not numeric, and you cannot recover the raw data values from it.

Categorize a numeric array into quartiles.

The variable Weight has weight measurements for the sample patients. Categorize the patient weights into four categories, by quartile.

```
p = 0:.25:1;
breaks = quantile(hospital.Weight,p);
hospital.WeightQ = ordinal(hospital.Weight,{'Q1','Q2','Q3','Q4'},...
    [],breaks);
getlevels(hospital.WeightQ)
ans =
    Q1 Q2 Q3 Q4
```

Display the weight and weight quartile for the second patient.
hospital.Weight(2)
ans =

163
hospital.WeightQ(2)
ans =

Summary statistics grouped by category levels.

Compute the mean systolic and diastolic blood pressure for each age and weight category.
grpstats(hospital, \{'AgeCat', 'WeightQ'\},'mean', 'DataVars', 'BloodPressure') ans =

	AgeCat	WeightQ	GroupCount	mean_BloodPressure	
Under 30_Q1	Under 30	Q1	6	123.17	79.667
Under 30_Q2	Under 30	Q2	3	120.33	79.667
Under 30_Q3	Under 30	Q3	2	127.5	86.5
Under 30_Q4	Under 30	Q4	4	122	78
30-39_Q1	$30-39$	Q1	12	121.75	81.75
30-39_Q2	$30-39$	Q2	9	119.56	82.556
30-39_Q3	$30-39$	Q3	9	121	83.222
30-39_Q4	30-39	Q4	11	125.55	87.273
Over 40_Q1	Over 40	Q1	7	122.14	84.714
Over 40_Q2	Over 40	Q2	13	123.38	79.385
Over 40_Q3	Over 40	Q3	14	123.07	84.643
Over 40_Q4	Over 40	Q4	10	124.6	85.1

The variable BloodPressure is a matrix with two columns. The first column is systolic blood pressure, and the second column is diastolic blood pressure. The group in the sample with the highest mean diastolic blood pressure, 87.273, is aged 30-39 and in the highest weight quartile, 30-39_Q4.

See Also ordinal | grpstats

Related - "Create Categorical Arrays" on page 2-3

Examples

Concepts

- "Merge Category Levels" on page 2-18
- "Plot Data Grouped by Category" on page 2-24
- "Index and Search Using Categorical Arrays" on page 2-46
- "Categorical Arrays" on page 2-41
- "Advantages of Using Categorical Arrays" on page 2-43

Merge Category Levels

This example shows how to merge categories in a categorical array using mergelevels. This is useful for collapsing categories with few observations.

Load sample data.

load('carsmall')

Create a nominal array.

The variable Origin is a character array containing the country of origin for 100 sample cars. Convert Origin to a nominal array.

```
Origin = nominal(Origin);
```

getlevels(Origin)
ans =

France Germany Italy Japan Sweden USA
There are six unique countries of origin in the data.
tabulate(Origin)

Value	Count	Percent
France	4	4.00%
Germany	9	9.00%
Italy	1	1.00%
Japan	15	15.00%
Sweden	2	2.00%
USA	69	69.00%

There are relatively few observations in each European country.

Merge categories.

Merge the categories France, Germany, Italy, and Sweden into one category called Europe.

```
Origin = mergelevels(Origin,{'France','Germany','Italy','Sweden'},...
    'Europe');
```

```
getlevels(Origin)
ans =
    Japan USA Europe
```

The variable Origin now has only three category levels.
tabulate(Origin)

Value	Count	Percent
Japan	15	15.00%
USA	69	69.00%
Europe	16	16.00%

The category Europe has the 16% of observations that were previously distributed across four countries.

See Also

nominal | mergelevels |

Related
 Examples

Concepts

- "Create Categorical Arrays" on page 2-3
- "Add and Drop Category Levels" on page 2-20
- "Index and Search Using Categorical Arrays" on page 2-46
- "Categorical Arrays" on page 2-41
- "Advantages of Using Categorical Arrays" on page 2-43

Add and Drop Category Levels

This example shows how to add and drop levels from a categorical array.

Load sample data.

load('examgrades')
The array grades contains exam scores from 0 to 100 on five exams for a sample of 120 students.

Create an ordinal array.

Assign letter grades to each student for each test using these categories.

Grade Range	Letter Grade
100	A +
$90-99$	A
$80-89$	B
$70-79$	C
$60-69$	D

```
letter = ordinal(grades,{'D','C','B','A','A+'},[],...
```

 [60,70,80,90, 100, 100]);
 getlevels(letter)
ans =
$\begin{array}{lllll}\text { D } & \text { C } & \text { B } & \text { A } & \text { A+ }\end{array}$

There are five grade categories, in the specified order D $<\mathrm{C}<\mathrm{B}<\mathrm{A}<\mathrm{A}+$.

Check for undefined categories.

Check whether or not there are any exam scores that do not fall into the five letter categories.
any(isundefined(letter))

1	0	1	1	0

Recall that there are five exam scores for each student. The previous command returns a logical value for each of the five exams, indicating whether there are any scores that are <undefined>. There are scores for the first, third, and fourth exams that are <undefined>, that is, missing a category level. You can find the exam scores that do not have a letter grade using the isundefined logical condition.
grades(isundefined(letter))
ans =

55
59
58
59
54
57
56
59
59
50
59
52

The exam scores that are in the 50 s do not have a letter grade.

Add a new category.

Put all scores that are <undefined> into a new category labeled D-.
letter(isundefined(letter)) = 'D-';
Warning: Categorical level 'D-' being added.
> In categorical.subsasgn at 55
getlevels(letter)
$\begin{array}{llllll}\text { D } & \text { C } & \text { B } & \text { A } & \text { A+ }\end{array}$
The ordinal variable, letter, has a new category added to the end. Reorder the categories so that D- L .
letter = reorderlevels(letter,\{'D-','D','C','B','A','A+'\}); getlevels(letter)
ans =
$\begin{array}{clllll}\text { D- D } & \text { C } & \text { B } & \text { A } & \text { A+ }\end{array}$

Now that all exam scores have a letter grade, count how many students received a higher letter grade on the second test than on the first test.

```
sum(letter(:,2) > letter(:,1))
ans =
```

 32
 Thirty-two students improved their letter grade between the first two exams.

Drop a category.

Count the number of A+ scores in each of the five exams.

```
sum(letter=='A+')
ans =
    0 0 0 0 0
```

There are no A+ scores on any of the five exams. Drop the category A+ from the ordinal variable, letter.

```
letter = droplevels(letter,'A+');
```

getlevels(letter)
ans $=$
D- D C

\square
B ACategory A+ is no longer in the ordinal variable, letter.
See Also ordinal | isundefined | reorderlevels | droplevels |
Related - "Create Categorical Arrays" on page 2-3Examples- "Reorder Category Levels" on page 2-10- "Merge Category Levels" on page 2-18- "Index and Search Using Categorical Arrays" on page 2-46
Concepts - "Categorical Arrays" on page 2-41- "Advantages of Using Categorical Arrays" on page 2-43

Plot Data Grouped by Category

This example shows how to plot data grouped by the levels of a categorical variable.

Load sample data.

load('carsmall')
The variable Acceleration contains acceleration measurements on 100 sample cars. The variable Origin is a character array containing the country of origin for each car.

Create a nominal array.

Convert Origin to a nominal array.
Origin = nominal(Origin); getlevels(Origin)
ans =
France Germany Italy Japan Sweden USA

There are six unique countries of origin in the sample. By default, nominal orders the countries in ascending alphabetical order.

Plot data grouped by category.

Draw box plots for Acceleration, grouped by Origin.

```
figure()
boxplot(Acceleration,Origin)
title('Acceleration, Grouped by Country of Origin')
```


The box plots appear in the same order as the categorical levels (use reorderlevels to change the order of the categories).

Few observations have Italy as the country of origin. Tabulate the number of sample cars from each country.
tabulate(Origin)

Value	Count	Percent
France	4	4.00%
Germany	9	9.00%
Italy	1	1.00%
Japan	15	15.00%
Sweden	2	2.00%
USA	69	69.00%

Only one car is made in Italy.
Drop a category.

Delete the Italian car from the sample.

```
Acceleration2 = Acceleration(Origin~='Italy');
Origin2 = Origin(Origin~='Italy');
tabulate(Origin2)
```

This output shows that even though the car from Italy is no longer in the sample, the nominal variable, Origin2, still has the category Italy.

```
getlevels(Origin2)
```

ans =

France Germany Italy Japan Sweden USA
Note that this is intentional-the levels of a categorical array do not necessarily coincide with the values. Use droplevels to remove the Italy category.

```
tabulate(Origin2)
    Value Count Percent
    France 4 4.04%
    Germany 9 9.09%
        Italy 0 0.00%
        Japan 15 15.15%
    Sweden 2 2.02%
        USA 69 69.70%
Origin2 = droplevels(Origin2,'Italy');
tabulate(Origin2)
tabulate(Origin2)
    Value Count Percent
    France 4 4.04%
    Germany 9 9.09%
    Japan 15 15.15%
    Sweden 2 2.02%
        USA 69 69.70%
```

The Italy category is no longer in the nominal array, Origin2.
Draw box plots of Acceleration2, grouped by Origin2.

```
figure()
boxplot(Acceleration2,Origin2)
title('Acceleration, Grouped by Country of Origin')
```

Acceleration, Grouped by Country of Origin

The plot no longer includes the car from Italy.

See Also

droplevels | nominal | reorderlevels | boxplot

Related
 Examples

Concepts

- "Test Differences Between Category Means" on page 2-28
- "Summary Statistics Grouped by Category" on page 2-37
- "Regression with Categorical Covariates" on page 2-59
- "Categorical Arrays" on page 2-41
- "Advantages of Using Categorical Arrays" on page 2-43
- "Grouping Variables" on page 2-51

Test Differences Between Category Means

This example shows how to test for significant differences between category (group) means using a t-test, two-way ANOVA (analysis of variance), and ANOCOVA (analysis of covariance) analysis.

The goal is determining if the expected miles per gallon for a car depends on the decade in which it was manufactured, or the location where it was manufactured.

Load sample data.

load('carsmall')
The variable MPG has miles per gallon measurements on a sample of 100 cars. The variables Model_Year and Origin contain the model year and country of origin for each car.

Create a factor for the decade of manufacture.
The first factor of interest is the decade of manufacture. There are three manufacturing years in the data.
unique(Model_Year)
ans =
70
76
82
Create an ordinal array named Decade. Merge the observations from years 70 and 76 into a category labeled 1970s, and put the observations from 82 into a category labeled 1980s.

Decade = ordinal(Model_Year,\{'1970s','1980s'\},[],[70 77 82]); getlevels(Decade)
ans =

1970s 1980s

Conduct a two-sample t-test for equal group means.

Draw a box plot of miles per gallon, grouped by the decade of manufacture.

```
figure()
boxplot(MPG, Decade)
title('Miles per Gallon, Grouped by Decade of Manufacture')
```

Miles per Gallon, Grouped by Decade of Manufacture

The box plot suggests that miles per gallon is higher in cars manufactured during the 1980s compared to the 1970s. Compute the mean and variance of miles per gallon for each decade.
[xbar,s2,grp] = grpstats(MPG,Decade,\{'mean','var','gname'\})
xbar $=$
19.7857
31.7097
35.1429
29.0796
grp $=$
'1970s'
'1980s'
This output shows that the mean miles per gallon in the 1980s was 31.71 , compared to 19.79 in the 1970s. The variances in the two groups are similar.

Conduct a two-sample t-test, assuming equal variances, to test for a significant difference between the group means. The hypothesis is

```
    H0}:\mp@subsup{\mu}{70}{}=\mp@subsup{\mu}{80}{
    HA}:\mp@subsup{\mu}{70}{}\not=\mp@subsup{\mu}{80}{}
MPG70 = MPG(Decade=='1970s');
MPG80 = MPG(Decade=='1980s');
[h,p] = ttest2(MPG70,MPG80)
h =
    1
p =
    3.4809e-15
```

The logical value 1 indicates the null hypothesis is rejected at the default 0.05 significance level. The p-value for the test is very small. There is sufficient evidence that the mean miles per gallon in the 1980s differs from the mean miles per gallon in the 1970s.

Create a factor for the location of manufacture.

The second factor of interest is the location of manufacture. First, convert Origin to a nominal array.

```
Location = nominal(Origin);
tabulate(Location)
tabulate(Location)
        Value Count Percent
        France 4 4.00%
    Germany 9 9.00%
        Italy 1 1.00%
        Japan 15 15.00%
    Sweden 2 2.00%
        USA 69 69.00%
```

There are six different countries of manufacture. The European countries have relatively few observations. Combine the categories France, Germany, Italy, and Sweden into a new category named Europe.

```
Location = mergelevels(Location,{'France','Germany','Italy','Sweden'},...
```

 Europe');
 tabulate(Location)

Value	Count	Percent
Japan	15	15.00%
USA	69	69.00%
Europe	16	$\mathbf{1 6 . 0 0 \%}$

Compute the mean miles per gallon, grouped by the location of manufacture.

```
[xbar,grp] = grpstats(MPG,Location,{'mean','gname'})
```

xbar $=$
31.8000
21.1328
26.6667
grp =

```
'Japan'
'USA'
'Europe'
```

This result shows that average miles per gallon is lowest for the sample of cars manufactured in the U.S.

Conduct two-way ANOVA.

Conduct a two-way ANOVA to test for differences in expected miles per gallon between factor levels for Decade and Location.

The statistical model is

$$
M P G_{i j}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j}, \quad i=1,2 ; j=1,2,3,
$$

where $M P G_{i j}$ is the response, miles per gallon, for cars made in decade i at location j. The treatment effects for the first factor, decade of manufacture, are the α_{i} terms (constrained to sum to zero). The treatment effects for the second factor, location of manufacture, are the β_{j} terms (constrained to sum to zero). The $\varepsilon_{i j}$ are uncorrelated, normally distributed noise terms.

The hypotheses to test are equality of decade effects,

$$
\begin{aligned}
& H_{0}: \alpha_{1}=\alpha_{2}=0 \\
& H_{A}: \text { at least one } \alpha_{i} \neq 0,
\end{aligned}
$$

and equality of location effects,

$$
\begin{aligned}
& H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=0 \\
& H_{A}: \text { at least one } \beta_{j} \neq 0 .
\end{aligned}
$$

You can conduct a multiple-factor ANOVA using anovan.

```
anovan(MPG,{Decade,Location},'varnames',{'Decade','Location'});
```


This output shows the results of the two-way ANOVA. The p-value for testing the equality of decade effects is $2.88503 e-18$, so the null hypothesis is rejected at the 0.05 significance level. The p-value for testing the equality of location effects is $7.40416 \mathrm{e}-10$, so this null hypothesis is also rejected.

Conduct ANOCOVA analysis.

A potential confounder in this analysis is car weight. Cars with greater weight are expected to have lower gas mileage. Include the variable Weight as a continuous covariate in the ANOVA; that is, conduct an ANOCOVA analysis.

Assuming parallel lines, the statistical model is

$$
M P G_{i j k}=\mu+\alpha_{i}+\beta_{j}+\gamma \text { Weight }_{i j k}+\varepsilon_{i j k}, i=1,2 ; j=1,2,3 ; k=1, \ldots, 100
$$

The difference between this model and the two-way ANOVA model is the inclusion of the continuous predictor, Weight $t_{i j k}$, the weight for the k th car, which was made in the i th decade and in the j th location. The slope parameter is γ.

Add the continuous covariate as a third group in the second anovan input argument. Use the name-value pair argument Continuous to specify that Weight (the third group) is continuous.

```
anovan(MPG,{Decade,Location,Weight},'Continuous',3,...
    'varnames',{'Decade','Location','Weight'});
```

-1) Figure 2: N-Way ANOVA					\square	回	3
File Edit	View Insert	Tools	Desktop	Window			v
Analysis of Variance							
Source	Sum Sq.	d.f.	Mean Sq.	F	Prob		*
Decade	729.63	1	729.63	83.16	0		
Location	40.67	2	20.34	2.32	0.10		
Weight	1131.51	1	1131.51	128.96	0		
Error	780.88	89	8.77				
Total	6005.28	93					\checkmark
Constrained (Type III) sums of squares.							

This output shows that when car weight is considered, there is insufficient evidence of a manufacturing location effect (p-value $=0.1044$).

You can use the interactive aoctool to explore this result.
aoctool(Weight,MPG,Location);
This command opens three dialog boxes. In the ANOCOVA Prediction Plot dialog box, select the Separate Means model.

This output shows that when you do not include Weight in the model, there are fairly large differences in the expected miles per gallon among the three manufacturing locations. Note that here the model does not adjust for the decade of manufacturing.

Now, select the Parallel Lines model.

When you include Weight in the model, the difference in expected miles per gallon among the three manufacturing locations is much smaller.

See Also
 ordinal | nominal | boxplot | grpstats | ttest2 | anovan | aoctool

Relared
Examples

Concepts

- "Plot Data Grouped by Category" on page 2-24
- "Summary Statistics Grouped by Category" on page 2-37
- "Regression with Categorical Covariates" on page 2-59
- "Categorical Arrays" on page 2-41
- "Advantages of Using Categorical Arrays" on page 2-43
- "Grouping Variables" on page 2-51

Summary Statistics Grouped by Category

This example shows how to compute summary statistics grouped by levels of a categorical variable. You can compute group summary statistics for a numeric array or a dataset array using grpstats.

Load sample data.

load('hospital')
The dataset array, hospital, has 7 variables (columns) and 100 observations (rows).

Compute summary statistics by category.

The variable Sex is a nominal array with two levels, Male and Female. Compute the minimum and maximum weights for each gender.

```
stats = grpstats(hospital,'Sex',{'min','max'},'DataVars','Weight')
stats =
Female
    Sex GroupCount
min_Weight
max_Weight
Female
Male Male 47 158 202
1 1 1
147
```

The dataset array, stats, has observations corresponding to the levels of the variable Sex. The variable min_Weight contains the minimum weight for each group, and the variable max_Weight contains the maximum weight for each group.

Compute summary statistics by multiple categories.

The variable Smoker is a logical array with value 1 for smokers and value 0 for nonsmokers. Compute the minimum and maximum weights for each gender and smoking combination.

```
stats = grpstats(hospital,{'Sex','Smoker'},{'min','max'},...
    'DataVars','Weight')
stats =
```

	Sex	Smoker	GroupCount	min_Weight	max_Weight
Female_0	Female	false	40	111	147
Female_1	Female	true	13	115	146
Male_0	Male	false	26	158	194
Male_1	Male	true	21	164	202

The dataset array, stats, has an observation row for each combination of levels of Sex and Smoker in the original data.

See Also

dataset | nominal | grpstats

Related
Examples

Concepts

- "Plot Data Grouped by Category" on page 2-24
- "Test Differences Between Category Means" on page 2-28
- "Calculations on Dataset Arrays" on page 2-111
- "Grouping Variables" on page 2-51
- "Categorical Arrays" on page 2-41
- "Dataset Arrays" on page 2-135

Sort Ordinal Arrays

This example shows how to determine sorting order for ordinal arrays.

Load sample data.

```
AllSizes = {'medium','large','small','small','medium',...
    'large','medium','small'};
```

The created variable, AllSizes, is a cell array of strings containing size measurements on eight objects.

Create an ordinal array.

Convert AllSizes to an ordinal array with levels small < medium < large.

```
AllSizes = ordinal(AllSizes,{},{'small','medium','large'});
getlevels(AllSizes)
ans =
    small medium large
```


Sort the ordinal array.

When you sort ordinal arrays, the sorted observations are in the same order as the category levels.
sizeSort = sort(AllSizes);
sizeSort(:)
ans =
small
small
small
medium
medium
medium
large
large

The sorted ordinal array, sizeSort, contains the observations ordered from small to large.

See Also ordinal | sort |

Related - "Reorder Category Levels" on page 2-10
Examples

- "Add and Drop Category Levels" on page 2-20

Concepts

- "Categorical Arrays" on page 2-41
- "Advantages of Using Categorical Arrays" on page 2-43

Categorical Arrays

In this section...
"What Are Categorical Arrays?" on page 2-41
"Categorical Array Conversion" on page 2-41

What Are Categorical Arrays?

Categorical arrays are Statistics Toolbox data types for storing categorical values. Categorical arrays store data that have a finite set of discrete levels, which might or might not have a natural order. There are two types of categorical arrays:

- ordinal arrays store categorical values with ordered levels. For example, an ordinal variable might have levels \{small, medium, large\}.
- nominal arrays store categorical values with unordered levels. For example, a nominal variable might have levels \{red, blue, green\}.

In experimental design, these variables are often called factors, with ordered or unordered factor levels.

Categorical arrays are convenient and memory efficient containers for storing categorical variables. In addition to storing information about which category each observation belongs to, categorical arrays store descriptive metadata including category labels and order.

Categorical arrays have associated methods that streamline common tasks such as merging categories, adding or dropping levels, and changing level labels.

Categorical Array Conversion

You can easily convert to and from categorical arrays. To create a nominal or ordinal array, use nominal or ordinal, respectively. You can convert these data types to categorical arrays:

- Numeric array
- Logical array
- Character array
- Cell array of strings

See Also ordinal | nominal |

Related
 Examples

Concepts

- "Create Categorical Arrays" on page 2-3
- "Summary Statistics Grouped by Category" on page 2-37
- "Plot Data Grouped by Category" on page 2-24
- "Index and Search Using Categorical Arrays" on page 2-46
- "Advantages of Using Categorical Arrays" on page 2-43
- "Grouping Variables" on page 2-51

Advantages of Using Categorical Arrays

In this section...
"Manipulate Category Levels" on page 2-43
"Analysis Using Categorical Arrays" on page 2-43
"Reduce Memory Requirements" on page 2-44

Manipulate Category Levels

When working with categorical variables and their levels, you'll encounter some typical challenges. This table summarizes the functions you can use with categorical arrays to manipulate category levels. For additional functions, type methods nominal or methods ordinal at the command line, or see the nominal and ordinal reference pages.

Task	Function
Add new category levels	addlevels
Drop category levels	droplevels
Combine category levels	mergelevels
Reorder category levels	reorderlevels
Count the number of observations in each category	levelcounts
Change the label or name of category levels	setlabels
Create an interaction factor	times
Find observations that are not in a defined category	isundefined

Analysis Using Categorical Arrays

You can use categorical arrays in a variety of statistical analyses. For example, you might want to compute descriptive statistics for data grouped by the category levels, conduct statistical tests on differences between category means, or perform regression analysis using categorical predictors.

Statistics Toolbox functions that accept a grouping variable as an input argument accept categorical arrays. This includes descriptive functions such as:

- grpstats
- gscatter
- boxplot
- gplotmatrix

You can also use categorical arrays as input arguments to analysis functions and methods based on models, such as:

- anovan
- LinearModel.fit
- GeneralizedLinearModel.fit
- NonLinearModel.fit

When you use a categorical array as a predictor in these functions, the fitting function automatically recognizes the categorical predictor, and constructs appropriate dummy indicator variables for analysis. Alternatively, you can construct your own dummy indicator variables using dummyvar.

Reduce Memory Requirements

The levels of categorical variables are often defined as text strings, which can be costly to store and manipulate in a cell array of strings or char array. Categorical arrays separately store category membership and category labels, greatly reducing the amount of memory required to store the variable.

For example, load some sample data:
load('fisheriris')
The variable species is a cell array of strings requiring 19,300 bytes of memory.

Convert species to a nominal array:

```
species = nominal(species);
```

Workspac		
Name ${ }^{\text {- }}$	Bytes	Value
\#meas	4800	<150x4 double>
(4) species	790	<150x1 nominal>

There is a 95% reduction in memory required to store the variable.

See Also ordinal | nominal |

Related - "Create Categorical Arrays" on page 2-3

- "Test Differences Between Category Means" on page 2-28
- "Regression with Categorical Covariates" on page 2-59
- "Index and Search Using Categorical Arrays" on page 2-46

Concepts - "Categorical Arrays" on page 2-41

- "Grouping Variables" on page 2-51
- "Dummy Indicator Variables" on page 2-55

Index and Search Using Categorical Arrays

It is often useful to index and search data by its category, or group. If you store categories as string labels inside a cell array of strings or char array, it can be difficult to index and search the categories. When using categorical arrays, you can easily:

- Index elements from particular categories. For both nominal and ordinal arrays, you can use the logical operators $==$ and $\sim=$ to index the observations that are in, or not in, a particular category. For ordinal arrays, which have an encoded order, you can also use inequalities, >, >=, <, and $<=$, to find observations in categories above or below a particular category.
- Search for members of a category. In addition to the logical operator $==$, you can use ismember to find observations in a particular group.
- Find elements that are not in a defined category. Categorical arrays indicate which elements do not belong to a defined category by <undefined>. You can use isundefined to find observations missing a category.
- Delete observations that are in a particular category. You can use logical operators to include or exclude observations from particular categories. Even if you remove all observations from a category, the category level remains defined unless you remove it using droplevels.

The following brief examples illustrate several indexing and searching methods.

Load sample data.

load('carsmall')
Convert the char array, Origin, to a nominal array. This variable contains the country of origin, or manufacture, for each sample car.

Origin = nominal(Origin);

Search for observations in a category.

Determine if there any cars in the sample that were manufactured in Canada.

```
any(Origin=='Canada')
ans =
    0
```

There are no sample cars manufactured in Canada. List the countries that are levels of Origin.

```
getlevels(Origin)
```

ans =
France Germany Italy Japan Sweden USA

Index elements that are in a particular category.

Plot a histogram of the acceleration measurements for cars made in the U.S.

```
figure()
hist(Acceleration(Origin=='USA'))
title('Acceleration of Cars Made in the USA')
```


Delete observations that are in a particular category.

Delete all cars made in Sweden from Origin.

Origin = Origin(Origin~='Sweden'); any(ismember(Origin,'Sweden'))
ans =

0
The cars made in Sweden are deleted from Origin, but Sweden is still a level of Origin.
getlevels(Origin)
ans =

Remove Sweden from the levels of Origin.
Origin = droplevels(Origin,'Sweden');
getlevels(Origin)
ans =
France Germany Italy Japan USA

Check for observations not in a defined category.

Get the indices for the cars made in France.

```
ix = find(Origin=='France')
ix =
```

 11
 27
 39
 61
 There are four cars from France. Remove France from the levels of Origin.

```
Origin = droplevels(Origin,'France');
```

Warning: OLDLEVELS contains categorical levels that were present in the
input array A. As a result, the output array B contains array elements
that have undefined levels.
> In categorical.droplevels at 52

The warning indicates that you are dropping a category level that has elements in it. These observations are no longer in a defined category, indicated by <undefined>.

```
Origin(ix)
ans =
    <undefined>
    <undefined>
    <undefined>
```

```
You can use isundefined to search for observations with an undefined category.
find(isundefined(Origin))
ans =
    1 1
    27
    39
    6 1
```

These indices correspond to the observations that were in category France, before that category was dropped from Origin.
See Also nominal | ordinal | ismember | isundefined | droplevels |
Related- "Create Categorical Arrays" on page 2-3

Concepts

- "Reorder Category Levels" on page 2-10
- "Merge Category Levels" on page 2-18
- "Add and Drop Category Levels" on page 2-20
- "Categorical Arrays" on page 2-41
- "Advantages of Using Categorical Arrays" on page 2-43

Grouping Variables

In this section...
"What Are Grouping Variables?" on page 2-51
"Group Definition" on page 2-52
"Analysis Using Grouping Variables" on page 2-52
"Missing Group Values" on page 2-53

What Are Grouping Variables?

Grouping variables are utility variables used to group, or categorize, observations. Grouping variables are useful for summarizing or visualizing data by group. A grouping variable can be any of these data types:

- Numeric vector
- Logical vector
- String array (also called character arrays)
- Cell array of strings
- Categorical vector

A grouping variable must have the same number of observations (rows) as the dataset array or numeric array you are grouping. Observations that have the same grouping variable value belong to the same group.

For example, the following variables comprise the same groups. Each grouping variable divides five observations into two groups. The first group contains the first and fourth observations. The other three observations are in the second group.

Data Type	Grouping Variable
Numeric vector	$\left[\begin{array}{lllll}1 & 2 & 2 & 1 & 2\end{array}\right]$
Logical vector	$\left[\begin{array}{lllll}0 & 1 & 1 & 0 & 1\end{array}\right]$

Data Type	Grouping Variable
Cell array of strings	\{'Male ', 'Female ', 'Female ' , 'Male ', 'Female ' \}
Categorical vector	Male Female Female Male Female

Grouping variables with string labels give each group a meaningful name. A categorical array is an efficient and flexible choice of grouping variable.

Group Definition

Typically, there are as many groups as unique values in the grouping variable. However, categorical arrays can have levels that are not represented in the data. The groups and the order of the groups depend on the data type of the grouping variable. Suppose G is a grouping variable.

- If G is a numeric or logical vector, then the groups correspond to the distinct values in G, in the sorted order of the unique values.
- If G is a string array or cell array of strings, then the groups correspond to the distinct strings in G, in the order of their first appearance.
- If G is a categorical vector, then the groups correspond to the unique category levels in G, in the order returned by getlevels.

Some functions, such as grpstats, accept multiple grouping variables specified as a cell array of grouping variables, for example, $\{G 1, G 2, G 3\}$. In this case, the groups are defined by the unique combinations of values in the grouping variables. The order is decided first by the order of the first grouping variable, then by the order of the second grouping variable, and so on.

Analysis Using Grouping Variables

This table lists common tasks you might want to perform using grouping variables.

Grouping Task	Function Accepting Grouping Variable
Draw side-by-side boxplots for data in different groups.	boxplot
Draw a scatter plot with markers colored by group.	gscatter
Draw a scatter plot matrix with markers colored by group.	gplotmatrix
Compute summary statistics by group.	grpstats
Test for differences between group means.	anovan
Create an index vector from a grouping variable.	grp2idx

Missing Group Values

Grouping variables can have missing values provided you include a valid indicator.

Grouping Variable Data Type	Missing Value Indicator
Numeric vector	NaN
Logical vector	(Cannot be missing)
String array	Row of spaces
Cell array of strings	' '
Categorical vector	<undefined>

See Also
categorical | ordinal | nominal |
Related

- "Plot Data Grouped by Category" on page 2-24

Examples

- "Summary Statistics Grouped by Category" on page 2-37

Concepts

- "Categorical Arrays" on page 2-41
- "Advantages of Using Categorical Arrays" on page 2-43

Dummy Indicator Variables

In this section...
"What Are Dummy Variables?" on page 2-55
"Creating Dummy Variables" on page 2-56

What Are Dummy Variables?

When performing regression analysis, it is common to include both continuous and categorical (quantitative and qualitative) predictor variables. When including a categorical independent variable, it is important not to input the variable as a numeric array. Numeric arrays have both order and magnitude. A categorical variable might have order (for example, an ordinal variable), but it does not have magnitude. Using a numeric array implies a known "distance" between the categories.

The appropriate way to include categorical predictors is as dummy indicator variables. An indicator variable has values 0 and 1. A categorical variable with c categories can be represented by $c-1$ indicator variables.

For example, suppose you have a categorical variable with levels \{Small, Medium, Large\}. You can represent this variable using two dummy variables, as shown in this figure.

	X_{1}	X_{2}
Small	0	0
Medium	1	0
Reference		
Large	0	1

In this example, X_{1} is a dummy variable that has value 1 for the Medium group, and 0 otherwise. X_{2} is a dummy variable that has value 1 for the Large group, and 0 otherwise. Together, these two variables represent the three categories. Observations in the Small group have 0s for both dummy variables.

The category represented by all 0 s is the reference group. When you include the dummy variables in a regression model, the coefficients of the dummy variables are interpreted with respect to the reference group.

Creating Dummy Variables

Automatic Creation of Dummy Variables

The regression fitting functions, LinearModel.fit, GeneralizedLinearModel.fit, and NonLinearModel.fit, recognize categorical array inputs as categorical predictors. That is, if you input your categorical predictor as a nominal or ordinal array, the fitting function automatically creates the required dummy variables. The first level returned by getlevels is the reference group. To use a different reference group, use reorderlevels to change the level order.

If there are c unique levels in the categorical array, then the fitting function estimates $c-1$ regression coefficients for the categorical predictor.

Note The fitting functions use every level of the categorical array returned by getlevels, even if there are levels with no observations. To remove levels from the categorical array, use droplevels.

Manual Creation of Dummy Variables

If you prefer to create your own dummy variable design matrix, use dummyvar. This function accepts a numeric or categorical column vector, and returns a matrix of indicator variables. The dummy variable design matrix has a column for every group, and a row for every observation.

For example,

```
gender = nominal({'Male';'Female';'Female';'Male';'Female'});
```

```
dv = dummyvar(gender)
dv =
\begin{tabular}{ll}
0 & 1 \\
1 & 0 \\
1 & 0 \\
0 & 1 \\
1 & 0
\end{tabular}
```

There are five rows corresponding to the number of rows in gender, and two columns for the unique groups, Female and Male. Column order corresponds to the order of the levels in gender. For nominal arrays, the default order is ascending alphabetical.

To use these dummy variables in a regression model, you must either delete a column (to create a reference group), or fit a regression model with no intercept term. For the gender example, only one dummy variable is needed to represent two genders. Notice what happens if you add an intercept term to the complete design matrix, dv .

```
X = [ones(5,1) dv]
X =
    1 0 1
    1 1 0
    1 1 0
    1 0 1
    1 1 0
rank(X)
ans =
    2
```

The design matrix with an intercept term is not of full rank, and is not invertible. Because of this linear dependence, use only $c-1$ indicator variables to represent a categorical variable with c categories in a regression model with an intercept term.

| See Also | nominal \| ordinal | LinearModel.fit | GeneralizedLinearModel.fit
 \| NonLinearModel.fit | dummyvar |
| :--- | :--- |
| Related | - "Regression with Categorical Covariates" on page 2-59 |
| Examples | - "Test Differences Between Category Means" on page 2-28 |

Regression with Categorical Covariates

This example shows how to perform a regression with categorical covariates using categorical arrays and LinearModel.fit.

Load sample data.

load('carsmall')

The variable MPG contains measurements on the miles per gallon of 100 sample cars. The model year of each car is in the variable Model_Year, and Weight contains the weight of each car.

Plot grouped data.
Draw a scatter plot of MPG against Weight, grouped by model year.
figure()
gscatter (Weight, MPG, Model_Year, 'bgr', 'x.o')
title('MPG vs. Weight, Grouped by Model Year')

The grouping variable, Model_Year, has three unique values, 70, 76, and 82, corresponding to model years 1970, 1976, and 1982.

Create dataset and nominal arrays.

Create a dataset array that contains the variables MPG, Weight, and Model_Year.
cars = dataset(MPG,Weight,Model_Year);
Convert the variable Model_Year to a nominal array.
cars.Model_Year = nominal(cars.Model_Year);

Fit a regression model.

Fit a regression model using LinearModel.fit with MPG as the dependent variable, and Weight and Model_Year as the independent variables. Because Model_Year is a categorical covariate with three levels, it should enter the model as two indicator variables.

The scatter plot suggests that the slope of MPG against Weight might differ for each model year. To assess this, include weight-year interaction terms.

The proposed model is

$$
E(M P G)=\beta_{0}+\beta_{1} \text { Weight }+\beta_{2} I[1976]+\beta_{3} I[1982]+\beta_{4} \text { Weight } \times I[1976]+\beta_{5} \text { Weight } \times I[198
$$

where $I[1976]$ and $I[1982]$ indicate the model years 1976 and 1982, respectively. In this model, 1970 is the reference year.

```
fit = LinearModel.fit(cars,'MPG~Weight*Model_Year')
fit =
```

Linear regression model:
MPG ~ 1 + Weight*Model_Year
Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	37.399	2.1466	17.423	2.8607
Weight	-0.0058437	0.00061765	-9.4612	4.6077
Model_Year_76	4.6903	2.8538	1.6435	0.1
Model_Year_82	21.051	4.157	5.0641	2.2364
Weight:Model_Year_76	-0.00082009	0.00085468	-0.95953	0.3
Weight:Model_Year_82	-0.0050551	0.0015636	-3.2329	0.001

```
Number of observations: 94, Error degrees of freedom: 88
Root Mean Squared Error: 2.79
R-squared: 0.886, Adjusted R-Squared 0.88
F-statistic vs. constant model: 137, p-value = 5.79e-40
```

The regression output shows:

- LinearModel.fit recognizes Model_Year as a nominal variable, and constructs the required indicator (dummy) variables. By default, the first level, 70, is the reference group (use reorderlevels to change the reference group).
- The model specification, MPG~Weight*Model_Year, specifies the first-order terms for Weight and Model_Year, and all interactions.
- The model $R^{2}=0.886$, meaning the variation in miles per gallon is reduced by 88.6% when you consider weight, model year, and their interactions.
- The fitted model is

$$
M \hat{P} G=37.4-0.006 \text { Weight }+4.7 I[1976]+21.1 I[1982]-0.0008 \text { Weight } \times I[1976]-0.005
$$

Thus, the estimated regression equations for the model years are as follows.

Model Year	Predicted MPG Against Weight
1970	$M \hat{P} G=37.4-0.006$ Weight
1976	$M \hat{P} G=(37.4+4.7)-(0.006+0.0008)$ Weight
1982	$M \hat{P} G=(37.4+21.1)-(0.006+0.005)$ Weight

The relationship between MPG and Weight has an increasingly negative slope as the model year increases.

Plot fitted regression lines.

Plot the data and fitted regression lines.

```
w = linspace(min(Weight),max(Weight));
figure()
gscatter(Weight,MPG,Model_Year,'bgr','x.o')
line(w,feval(fit,w,'70'),'Color','b','LineWidth',2)
line(w,feval(fit,w,'76'),'Color','g','LineWidth',2)
line(w,feval(fit,w,'82'),'Color','r','LineWidth',2)
title('Fitted Regression Lines by Model Year')
```


Test for different slopes.

Test for significant differences between the slopes. This is equivalent to testing the hypothesis

```
    H0}:\mp@subsup{\beta}{4}{}=\mp@subsup{\beta}{5}{}=
    HA:\beta
anova(fit)
ans =
```

	SumSq	DF	MeanSq	F	pValue
Weight	2050.2	1	2050.2	263.87	$3.2055 \mathrm{e}-28$
Model_Year	807.69	2	403.84	51.976	$1.2494 \mathrm{e}-15$
Weight: Model_Year	81.219	2	40.609	5.2266	0.0071637
Error	683.74	88	7.7698		

This output shows that the p-value for the test is 0.0072 (from the interaction row, Weight:Model_Year), so the null hypothesis is rejected at the 0.05 significance level. The value of the test statistic is 5.2266 . The numerator degrees of freedom for the test is 2 , which is the number of coefficients in the null hypothesis.

There is sufficient evidence that the slopes are not equal for all three model years.

See Also LinearModel.fit | dataset | nominal | reorderlevels |

Related
 Examples

Concepts

- "Plot Data Grouped by Category" on page 2-24
- "Test Differences Between Category Means" on page 2-28
- "Summary Statistics Grouped by Category" on page 2-37
- "Advantages of Using Categorical Arrays" on page 2-43
- "Grouping Variables" on page 2-51
- "Dummy Indicator Variables" on page 2-55

Create a Dataset Array from Workspace Variables

```
In this section...
"Create a Dataset Array from a Numeric Array" on page 2-65
"Create Dataset Array from Heterogeneous Workspace Variables" on page
2-68
```


Create a Dataset Array from a Numeric Array

This example shows how to create a dataset array from a numeric array existing in the MATLAB ${ }^{\circledR}$ workspace.

Load sample data.

load('fisheriris')

Two variables load into the workspace: meas, a 150-by-4 numeric array, and species, a 150-by- 1 cell array of strings containing species labels.

Create a dataset array.

Use mat2dataset to convert the numeric array, meas, into a dataset array.

```
ds = mat2dataset(meas);
ds(1:10,:)
ans =
\begin{tabular}{llll} 
meas1 & meas2 & meas3 & meas4 \\
5.1 & 3.5 & 1.4 & 0.2 \\
4.9 & 3 & 1.4 & 0.2 \\
4.7 & 3.2 & 1.3 & 0.2 \\
4.6 & 3.1 & 1.5 & 0.2 \\
5 & 3.6 & 1.4 & 0.2 \\
5.4 & 3.9 & 1.7 & 0.4 \\
4.6 & 3.4 & 1.4 & 0.3 \\
5 & 3.4 & 1.5 & 0.2 \\
4.4 & 2.9 & 1.4 & 0.2 \\
4.9 & 3.1 & 1.5 & 0.1
\end{tabular}
```

The array, meas, has four columns, so the dataset array, ds, has four variables. The default variable names are the array name, meas, with column numbers appended.

You can specify your own variable or observation names using the name-value pair arguments VarNames and ObsNames, respectively.

If you use dataset to convert a numeric array to a dataset array, by default, the resulting dataset array has one variable that is an array instead of separate variables for each column.

Examine the dataset array.

Return the size of the dataset array, ds.

```
size(ds)
ans =
    150 4
```

The dataset array, ds, is the same size as the numeric array, meas. Variable names and observation names do not factor into the size of a dataset array.

Return the metadata properties of the dataset array, ds.

```
ds.Properties
ans =
    Description: '
    VarDescription: {}
        Units: {}
        DimNames: {'Observations' 'Variables'}
        UserData: []
        ObsNames: {}
        VarNames: {'meas1' 'meas2' 'meas3' 'meas4'}
```

You can also access the properties individually. For example, you can retrieve the variable names and store them in a new variable, names.

```
names = ds.Properties.VarNames
names =
    'meas1' 'meas2' 'meas3' 'meas4'
```


Access data in a dataset array variable.

You can use variable names with dot indexing to access the data in a dataset array. For example, find the minimum value in the first variable, meas1.
min(ds.meas1)
ans $=$
4.3000

Modify the dataset array.

The four variables in ds are actually measurements of sepal length, sepal width, petal length, and petal width. Modify the variable names to be more descriptive.

```
ds.Properties.VarNames = {'SLength','SWidth','PLength','PWidth'};
```

Additionally, you can add a description for the dataset array.

```
ds.Properties.Description = 'Fisher iris data';
ds.Properties
ans =
    Description: 'Fisher iris data'
    VarDescription: {}
        Units: {}
        DimNames: {'Observations' 'Variables'}
        UserData: []
        ObsNames: {}
        VarNames: {'SLength' 'SWidth' 'PLength' 'PWidth'}
```

The dataset array properties are updated with the new variable names and description.

Add a variable to the dataset array.

The variable species is a cell array of strings containing species labels. Add species to the dataset array, ds, as a nominal array named Species. Display the first five observations in the dataset array.

```
ds.Species = nominal(species);
ds(1:5,:)
ans =
\begin{tabular}{lllll} 
SLength & SWidth & PLength & PWidth & Species \\
5.1 & 3.5 & 1.4 & 0.2 & setosa \\
4.9 & 3 & 1.4 & 0.2 & setosa \\
4.7 & 3.2 & 1.3 & 0.2 & setosa \\
4.6 & 3.1 & 1.5 & 0.2 & setosa \\
5 & 3.6 & 1.4 & 0.2 & setosa
\end{tabular}
```

The dataset array, ds, now has the fifth variable, Species.

Create Dataset Array from Heterogeneous Workspace Variables

This example shows how to create a dataset array from heterogeneous variables existing in the MATLAB workspace.

Load sample data.

load('carsmall')

Create a dataset array.

Create a dataset array from a subset of the workspace variables.

```
ds = dataset(Origin,Acceleration,Cylinders,MPG);
ds.Properties.VarNames(:)
ans =
    'Origin'
    'Acceleration'
```

```
Cylinders'
'MPG '
```

When creating the dataset array, you do not need to enter variable names. dataset automatically uses the name of each workspace variable.

Notice that the dataset array, ds, contains a collection of variables with heterogeneous data types. Origin is a character array, and the other variables are numeric.

Examine a dataset array.

Display the first five observations in the dataset array.

ds $(1: 5,:)$			
ans $=$			
Origin	Acceleration	Cylinders	MPG
USA	12	8	18
USA	11.5	8	15
USA	11	8	18
USA	12	8	16
USA	10.5	8	17

You can use datasetfun to return the data type of each variable in ds.

```
varclass = datasetfun(@class,ds,'UniformOutput',false);
varclass(:)
ans =
    'char'
    'double'
    'double'
    'double'
```

You can get additional information about the variables using summary (ds).

Modify a dataset array.

Cylinders is a numeric variable that has values 4, 6, and 8 for the number of cylinders. Convert Cylinders to a nominal array with levels four, six, and eight.
ds.Cylinders = nominal(ds.Cylinders,\{'four','six','eight'\});

Display the country of origin and number of cylinders for the first 15 cars.

```
ds(1:15,{'Origin','Cylinders'})
ans =
\begin{tabular}{ll} 
Origin & Cylinders \\
USA & eight \\
France & four \\
USA & eight \\
USA & eight \\
USA & eight \\
USA & eight
\end{tabular}
```

The variable Cylinders has a new data type.

See Also

dataset | datasetfun | mat2datasetnominal |

Related
 Examples

Concepts

- "Create a Dataset Array from a File" on page 2-71
- "Export Dataset Arrays" on page 2-115
- "Dataset Arrays in the Variables Editor" on page 2-122
- "Index and Search Dataset Arrays" on page 2-138
- "Dataset Arrays" on page 2-135

Create a Dataset Array from a File

In this section...
"Create a Dataset Array from a Tab-Delimited Text File" on page 2-71
"Create a Dataset Array from a Comma-Separated Text File" on page 2-74
"Create a Dataset Array from an Excel File" on page 2-77

Create a Dataset Array from a Tab-Delimited Text File

This example shows how to create a dataset array from the contents of a tab-delimited text file.

Create a dataset array using default settings.

Navigate to the folder containing sample data.

```
cd(matlabroot)
cd('help/toolbox/stats/examples')
```

Import the text file hospitalSmall.txt as a dataset array using the default settings.

```
ds = dataset('File','hospitalSmall.txt')
ds =
```

name	sex	age	wgt	smoke
'SMITH'	'm'	38	176	1
'JOHNSON'	'm'	43	163	0
'WILLIAMS'	' f '	38	131	0
'JONES'	' f '	40	133	0
'BROWN'	'f'	49	119	0
'DAVIS'	'f'	46	142	0
'MILLER'	'f'	33	142	1
'WILSON'	'm'	40	180	0
'MOORE'	'm'	28	183	0
'TAYLOR'	'f'	31	132	0
'ANDERSON'	'f'	45	128	0
'THOMAS'	'f'	42	137	0

'JACKSON '	'm'	25	174	0
'WHITE'	$' m{ }^{\prime}$	39	202	1

By default, dataset uses the first row of the text file for variable names. If the first row does not contain variable names, you can specify the optional name-value pair argument 'ReadVarNames', false to change the default behavior.

The dataset array contains heterogeneous variables. The variables id, name, and sex are cell arrays of strings, and the other variables are numeric. You can see the data type and other descriptive statistics for each variable by using summary to summarize the dataset array.

```
summary(ds)
```

name: [14x1 cell string]
sex: [14x1 cell string]
age: [14x1 double]

min	1 st quartile	median	3rd quartile	max
25	33	39.5	43	49

wgt: [14x1 double]

min	1st quartile	median	3rd quartile	max
119	132	142	176	202

smoke: [14x1 double]

min	1st quartile	median	3rd quartile	max
0	0	0	0	1

Import observation names.

Import the text file again, this time specifying that the first column contains observation names.

```
ds = dataset('File','hospitalSmall.txt','ReadObsNames',true)
```

ds =

	sex	age	wgt	smoke
SMITH	'm'	38	176	1
JOHNSON	'm'	43	163	0
WILLIAMS	'f'	38	131	0
JONES	'f'	40	133	0
BROWN	'f'	49	119	0
DAVIS	'f'	46	142	0
MILLER	'f'	33	142	1
WILSON	'm'	40	180	0
MOORE	'm'	28	183	0
TAYLOR	'f'	31	132	0
ANDERSON	'f'	45	128	0
THOMAS	'f'	42	137	0
JACKSON	'm'	25	174	0
WHITE	'm'	39	202	1

The elements of the first column in the text file, last names, are now observation names. Observation names and row names are dataset array properties.

```
ds.Properties
```

ans =
Description: ''
VarDescription: \{\}
Units: \{\}
DimNames: \{'name' 'Variables'\}
UserData: []
ObsNames: \{14x1 cell\}
VarNames: \{'sex' 'age' 'wgt' 'smoke'\}

You can always add or change the observation names of an existing dataset array by modifying the property ObsNames.

Notice that the DimNames property has name as the descriptor of the observation (row) dimension. dataset got this name from the first row of the first column in the text file.

```
Change the first element of DimNames to LastName.
ds.Properties.DimNames{1} = 'LastName';
ds.Properties
ans =
    Description:
    VarDescription: {}
            Units: {}
        DimNames: {'LastName' 'Variables'}
        UserData: []
        ObsNames: {14x1 cell}
        VarNames: {'sex' 'age' 'wgt' 'smoke'}
```

You can use observation names to index into a dataset array. For example, return the data for the patient with last name BROWN.
ds('BROWN',:)
ans =

	sex	age	wgt	smoke
BROWN	'f'	49	119	0

Observation names must be unique.

Create a Dataset Array from a Comma-Separated Text File

This example shows how to create a dataset array from the contents of a comma-separated text file.

Create a dataset array.

Navigate to the folder containing sample data.

```
cd(matlabroot)
cd('help/toolbox/stats/examples')
```

Import the file hospitalSmall.csv as a dataset array, specifying the comma-delimited format.

```
ds = dataset('File','hospitalSmall.csv','Delimiter',',')
ds =
```

id	name	sex	age	wgt	smoke
'YPL-320'	'SMITH'	'm'	38	176	1
'GLI-532'	'JOHNSON'	'm'	43	163	0
'PNI-258'	'WILLIAMS'	'f'	38	131	0
'MIJ-579'	'JONES'	'f'	40	133	0
'XLK-030'	'BROWN'	'f'	49	119	0
'TFP-518'	'DAVIS'	'f'	46	142	0
'LPD-746'	'MILLER'	'f'	33	142	1
'ATA-945'	'WILSON'	'm'	40	180	0
'VNL-702'	'MOORE'	'm'	28	183	0
'LQW-768'	'TAYLOR'	'f'	31	132	0
'QFY-472'	'ANDERSON'	'f'	45	128	0
'UJG-627'	'THOMAS'	'f'	42	137	0
'XUE-826'	'JACKSON'	'm'	25	174	0
'TRW-072'	'WHITE'	'm'	39	202	1

By default, dataset uses the first row in the text file as variable names.

Add observation names.

Use the unique identifiers in the variable id as observation names. Then, delete the variable id from the dataset array.

```
ds.Properties.ObsNames = ds.id;
ds.id = []
ds =
```

	name	sex	age	wgt	smoke
YPL-320	'SMITH'	'm'	38	176	1
GLI-532	'JOHNSON'	'm'	43	163	0
PNI-258	'WILLIAMS'	'f'	38	131	0
MIJ-579	'JONES'	'f'	40	133	0
XLK-030	'BROWN'	'f'	49	119	0

TFP-518	'DAVIS'	'f'	46	142	0
LPD-746	'MILLER'	'f'	33	142	1
ATA-945	'WILSON'	'm'	40	180	0
VNL-702	'MOORE'	'm'	28	183	0
LQW-768	'TAYLOR'	'f'	31	132	0
QFY-472	'ANDERSON'	'f'	45	128	0
UJG-627	'THOMAS'	'f'	42	137	0
XUE-826	'JACKSON'	'm'	25	174	0
TRW-072	'WHITE'	'm'	39	202	1

Delete observations.

Delete any patients with the last name BROWN. You can use strcmp to match the string 'BROWN ' with the elements of the variable containing last names, name.

```
toDelete = strcmp(ds.name,'BROWN');
```

ds(toDelete,:) = []
ds =

	name	sex	age	wgt	smoke
YPL-320	'SMITH'	'm'	38	176	1
GLI-532	'JOHNSON'	'm'	43	163	0
PNI-258	'WILLIAMS'	'f'	38	131	0
MIJ-579	'JONES'	' f '	40	133	0
TFP-518	'DAVIS'	$' \mathrm{f} '$	46	142	0
LPD-746	'MILLER'	'f'	33	142	1
ATA-945	'WILSON'	'm'	40	180	0
VNL-702	'MOORE'	'm'	28	183	0
LQW-768	'TAYLOR'	'f'	31	132	0
QFY-472	'ANDERSON'	'f'	45	128	0
UJG-627	'THOMAS'	'f'	42	137	0
XUE-826	'JACKSON'	'm'	25	174	0
TRW-072	'WHITE'	'm'	39	202	1

One patient having last name BROWN is deleted from the dataset array. The array now has 13 observations:

```
size(ds)
```

135
Note that the row and column corresponding to variable and observation names, respectively, are not included in the size of a dataset array.

Create a Dataset Array from an Excel File

This example shows how to create a dataset array from the contents of an Excel ${ }^{\circledR}$ spreadsheet file.

Create a dataset array.

Navigate to the folder containing sample data.

```
cd(matlabroot)
cd('help/toolbox/stats/examples')
```

Import the data from the first worksheet in the file hospitalSmall.xlsx, specifying that the data file is an Excel spreadsheet.

```
ds = dataset('XLSFile','hospitalSmall.xlsx')
```

ds =

id	name	sex	age	wgt	smoke
'YPL-320'	'SMITH '	'm'	38	176	1
'GLI-532'	'JOHNSON '	'm'	43	163	0
'PNI-258'	'WILLIAMS'	'f'	38	131	0
'MIJ-579'	'JONES'	'f'	40	133	0
'XLK-030'	'BROWN'	'f'	49	119	0
'TFP-518'	'DAVIS'	'f'	46	142	0
'LPD-746'	'MILLER '	'f'	33	142	1
'ATA-945'	'WILSON '	'm'	40	180	0
'VNL-702'	'MOORE'	'm'	28	183	0
' LQW-768'	'TAYLOR '	'f'	31	132	0
'QFY-472'	' ANDERSON ${ }^{\prime}$	'f'	45	128	0
'UJG-627'	'THOMAS '	'f'	42	137	0
'XUE-826'	'JACKSON '	'm'	25	174	0
' TRW-072'	'WHITE'	'm'	39	202	1

By default, dataset creates variable names using the contents of the first row in the spreadsheet.

Specify which worksheet to import.

Import the data from the second worksheet into a new dataset array.
ds2 = dataset('XLSFile','hospitalSmall.xlsx','Sheet',2)
ds2 =

id	name	sex	age	wgt	smoke
'TRW-072'	'WHITE'	'm'	39	202	1
'ELG-976'	'HARRIS'	'f'	36	129	0
'KOQ-996'	'MARTIN'	'm'	48	181	1
'YUZ-646'	'THOMPSON'	'm'	32	191	1
'XBR-291'	'GARCIA'	'f'	27	131	1
'KPW-846'	'MARTINEZ'	'm'	37	179	0
'XBA-581'	'ROBINSON'	'm'	50	172	0
'BKD-785'	'CLARK'	'f'	48	133	0

See Also dataset I summary I

Related - "Create a Dataset Array from Workspace Variables" on page 2-65
Examples

- "Clean Messy and Missing Data" on page 2-117
- "Export Dataset Arrays" on page 2-115
- "Dataset Arrays in the Variables Editor" on page 2-122
- "Index and Search Dataset Arrays" on page 2-138

Concepts

- "Dataset Arrays" on page 2-135

Add and Delete Observations

This example shows how to add and delete observations in a dataset array. You can also edit dataset arrays using the Variables editor.

Load sample data.

Navigate to the folder containing sample data.

```
cd(matlabroot)
cd('help/toolbox/stats/examples')
```

Import the data from the first worksheet in hospitalSmall.xlsx into a dataset array.

```
ds = dataset('XLSFile','hospitalSmall.xlsx');
size(ds)
ans =
    14 6
```

The dataset array, ds, has 14 observations (rows) and 6 variables (columns).

Add observations by concatenation.

The second worksheet in hospitalSmall.xlsx has additional patient data. Append the observations in this spreadsheet to the end of ds.

```
ds2 = dataset('XLSFile','hospitalSmall.xlsx','Sheet',2);
dsNew = [ds;ds2];
size(dsNew)
ans =
    22 6
```

The dataset array dsNew has 22 observations. In order to vertically concatenate two dataset arrays, both arrays must have the same number of variables, with the same variable names.

Add observations from a cell array.

If you want to append new observations stored in a cell array, first convert the cell array to a dataset array, and then concatenate the dataset arrays.

```
cellObs = {'id','name','sex','age','wgt','smoke';
    'YQR-965','BAKER','M',36,160,0;
    'LFG-497','WALL' ,'F',28,125,1;
    'KSD-003','REED' ,'M',32,187,0};
dsNew = [dsNew;cell2dataset(cellObs)];
size(dsNew)
ans =
    25 6
```


Add observations from a structure.

You can also append new observations stored in a structure. Convert the structure to a dataset array, and then concatenate the dataset arrays.

```
structObs(1,1).id = 'GHK-842';
structObs(1,1).name = 'GEORGE';
structObs(1,1).sex = 'M';
structObs(1,1).age = 45;
structObs(1,1).wgt = 182;
structObs(1,1).smoke = 1;
structObs(2,1).id = 'QRH-308';
structObs(2,1).name = 'BAILEY';
structObs(2,1).sex = 'F';
structObs(2,1).age = 29;
structObs(2,1).wgt = 120;
structObs(2,1).smoke = 0;
dsNew = [dsNew;struct2dataset(structObs)];
size(dsNew)
ans =
    27 6
```


Delete duplicate observations.

Use unique to delete any observations in a dataset array that are duplicated.

```
dsNew = unique(dsNew);
```

size(dsNew)
ans =
216
One duplicated observation is deleted.

Delete observations by observation number.

Delete observations 18, 20, and 21 from the dataset array.

```
dsNew([18,20,21],:) = [];
```

size(dsNew)
ans =

186
The dataset array has only 18 observations now.

Delete observations by observation name.

First, specify the variable of identifiers, id, as observation names. Then, delete the variable id from dsNew. You can use the observation name to index observations.

```
dsNew.Properties.ObsNames = dsNew.id;
dsNew.id = [];
dsNew('KOQ-996',:) = [];
size(dsNew)
ans =
    17 5
```

The dataset array now has one less observation and one less variable.

Search for observations to delete.

You can also search for observations in the dataset array. For example, delete observations for any patients with the last name WILLIAMS.

```
toDelete = strcmp(dsNew.name,'WILLIAMS');
dsNew(toDelete,:) = [];
size(dsNew)
ans =
16 5
```

The dataset array now has one less observation.

See Also

dataset | cell2dataset | struct2dataset

Related
 Examples

- "Add and Delete Variables" on page 2-83
- "Select Subsets of Observations" on page 2-93
- "Dataset Arrays in the Variables Editor" on page 2-122
- "Index and Search Dataset Arrays" on page 2-138

Concepts - "Dataset Arrays" on page 2-135

Add and Delete Variables

This example shows how to add and delete variables in a dataset array. You can also edit dataset arrays using the Variables editor.

Load sample data.

Navigate to the folder containing sample data.

```
cd(matlabroot)
cd('help/toolbox/stats/examples')
```

Import the data from the first worksheet in hospitalSmall.xlsx into a dataset array.

```
ds = dataset('XLSFile','hospitalSmall.xlsx');
size(ds)
ans =
    14 6
```

The dataset array, ds, has 14 observations (rows) and 6 variables (columns).

Add variables by concatenating dataset arrays.

The worksheet Heights in hospitalSmall.xlsx has heights for the patients on the first worksheet. Concatenate the data in this spreadsheet with ds.

```
ds2 = dataset('XLSFile','hospitalSmall.xlsx','Sheet','Heights');
ds = [ds ds2];
size(ds)
ans =
    14 7
```

The dataset array now has seven variables. You can only horizontally concatenate dataset arrays with observations in the same position, or with the same observation names.
ds.Properties.VarNames \{end\}
hgt
The name of the last variable in ds is hgt, which dataset read from the first row of the imported spreadsheet.

Delete variables by variable name.

First, specify the unique identifiers in the variable id as observation names. Then, delete the variable id from the dataset array.

```
ds.Properties.ObsNames = ds.id;
ds.id = [];
size(ds)
ans =
    14 6
```

The dataset array now has six variables. List the variable names.

```
ds.Properties.VarNames(:)
ans =
    'name'
    'sex'
    'age'
    'wgt'
    'smoke'
    'hgt'
```

There is no longer a variable called id.

Add a new variable by name.

Add a new variable, bmi-which contains the body mass index (BMI) for each patient-to the dataset array. BMI is a function of height and weight. Display the last name, gender, and BMI for each patient.
ds.bmi $=$ ds.wgt*703./ds.hgt.^2;

```
ds(:,{'name','sex','bmi'})
ans =
\begin{tabular}{|c|c|c|c|}
\hline & name & sex & bmi \\
\hline YPL-320 & 'SMITH' & 'm' & 24.544 \\
\hline GLI-532 & 'JOHNSON' & 'm' & 24.068 \\
\hline PNI-258 & 'WILLIAMS' & 'f' & 23.958 \\
\hline MIJ - 579 & JONES' & 'f' & 25.127 \\
\hline XLK-030 & BROWN ' & 'f' & 21.078 \\
\hline TFP-518 & DAVIS' & 'f' & 27.729 \\
\hline LPD-746 & 'MILLER' & 'f' & 26.828 \\
\hline ATA-945 & 'WILSON' & 'm' & 24.41 \\
\hline VNL-702 & 'MOORE' & 'm' & 27.822 \\
\hline LQW-768 & TAYLOR ' & 'f' & 22.655 \\
\hline QFY - 472 & 'ANDERSON' & 'f' & 23.409 \\
\hline UJG-627 & THOMAS' & 'f' & 25.883 \\
\hline XUE-826 & 'JACKSON' & 'm' & 24.265 \\
\hline TRW-072 & 'WHITE' & 'm' & 29.827 \\
\hline
\end{tabular}
```

The operators ./ and .^ in the calculation of BMI indicate element-wise division and exponentiation, respectively.

Delete variables by variable number.

Delete the variable wgt, the fourth variable in the dataset array.

```
ds(:,4) = [];
ds.Properties.VarNames(:)
ans =
    'name'
    'sex'
    'age'
    'smoke'
    'hgt'
    'bmi'
```

The variable wgt is deleted from the dataset array.

See Also dataset I
Related - "Add and Delete Observations" on page 2-79
Examples

- "Merge Dataset Arrays" on page 2-101
- "Calculations on Dataset Arrays" on page 2-111
- "Dataset Arrays in the Variables Editor" on page 2-122
- "Index and Search Dataset Arrays" on page 2-138

Concepts • "Dataset Arrays" on page 2-135

Access Data in Dataset Array Variables

This example shows how to work with dataset array variables and their data.

Access variables by name.

You can access variable data, or select a subset of variables, by using variable (column) names and dot indexing. Load a sample dataset array.
load('hospital')
The dataset array has 7 variables (columns) and 100 observations (rows). You can double-click hospital in the Workspace window to view the dataset array in the Variables editor.

Display the names of the variables in hospital.
hospital.Properties.VarNames(:)
ans =
'LastName'
'Sex'
'Age'
'Weight'
'Smoker'
'BloodPressure'
'Trials'

Plot a histogram of the data in the variable Weight.
figure()
hist(hospital.Weight)

The histogram shows that the weight distribution is bimodal. Draw box plots of Weight grouped by the values in Sex (Male and Female). That is, use the variable Sex as a grouping variable.

```
figure()
boxplot(hospital.Weight,hospital.Sex)
```


The box plot suggests that gender accounts for the bimodality in weight.

Select a subset of variables.

Create a new dataset array with only the variables LastName, Sex, and Weight. You can access the variables by name or column number.

```
ds1 = hospital(:,{'LastName','Sex','Weight'});
ds2 = hospital(:,[1,2,4]);
```

The dataset arrays ds1 and ds2 are equivalent. Use parentheses () when indexing dataset arrays to preserve the data type; that is, to create a dataset array from a subset of a dataset array. You can also use the Variables editor to create a new dataset array from a subset of variables and observations.

Convert the variable data type.

Convert the data type of the variable Smoker from logical to nominal with labels No and Yes.

```
class(hospital.Smoker)
ans =
logical
hospital.Smoker = nominal(hospital.Smoker,{'No','Yes'});
class(hospital.Smoker)
ans =
nominal
Display the first }10\mathrm{ elements of Smoker.
hospital.Smoker(1:10)
ans =
    Yes
No
No
No
No
No
    Yes
    No
    No
    No
```

If you want to change the level labels in a nominal array, use setlabels.

Add variables.

The variable BloodPressure is a 100-by-2 array. The first column corresponds to systolic blood pressure, and the second column to diastolic blood pressure. Separate this array into two new variables, SysPressure and DiaPressure.

```
size(hospital.BloodPressure)
```

ans =

```
hospital.SysPressure = hospital.BloodPressure(:,1);
hospital.DiaPressure = hospital.BloodPressure(:,2);
hospital.Properties.VarNames(:)
ans =
    'LastName'
    'Sex'
    'Age'
    'Weight'
    'Smoker'
    'BloodPressure'
    'Trials'
    'SysPressure'
    'DiaPressure'
```

The dataset array, hospital, has two new variables.

Search for variables by name.

Use regexp to find variables in hospital with the string 'Pressure ' in their name. Create a new dataset array containing only these variables.

```
bp = regexp(hospital.Properties.VarNames,'Pressure');
bpIdx = cellfun(@isempty,bp);
bpData = hospital(:,~bpIdx);
bpData.Properties.VarNames(:)
ans =
    'BloodPressure'
    'SysPressure'
    'DiaPressure'
```

The new dataset array, bpData, contains only the blood pressure variables.

Delete variables.

Delete the variable BloodPressure from the dataset array, hospital.

```
hospital.BloodPressure = [];
hospital.Properties.VarNames(:)
ans =
    'LastName
            'Sex'
            'Age'
            'Weight'
            'Smoker'
            'Trials'
                    SysPressure'
                    DiaPressure'
```

The variable BloodPressure is no longer in the dataset array.

See Also dataset

Related

- "Add and Delete Variables" on page 2-83
Examples
- "Calculations on Dataset Arrays" on page 2-111
- "Dataset Arrays in the Variables Editor" on page 2-122
- "Index and Search Dataset Arrays" on page 2-138
Concepts
- "Dataset Arrays" on page 2-135
- "Grouping Variables" on page 2-51

Select Subsets of Observations

This example shows how to select an observation or subset of observations from a dataset array.

Index observations by name.

Load the sample dataset array, hospital. Dataset arrays can have observation (row) names. This array has observation names corresponding to unique patient identifiers.

```
load('hospital')
hospital.Properties.ObsNames(1:10)
ans =
    'YPL-320'
    'GLI-532'
    'PNI - 258'
    'MIJ-579'
    'XLK-030'
    'TFP-518'
    'LPD-746'
    'ATA-945'
    'VNL - 702'
    ' LQW-768'
```

These are the first 10 observation names. You can use them to index into the dataset array. For example, extract the last name, sex, and age for the patient with identifier XLK-030.
hospital('XLK-030', \{'LastName','Sex','Age'\})
ans $=$

	LastName	Sex	Age
XLK-030	'BROWN'	Female	49

Index a subset of observations by number.

Create a new dataset array containing the first 50 patients.

```
ds50 = hospital(1:50,:);
size(ds50)
ans =
    50 7
```


Search observations using a logical condition.

Create a new dataset array containing only male patients. To find the male patients, use a logical condition to search the variable containing gender information.

```
dsMale = hospital(hospital.Sex=='Male',:);
dsMale(1:10,{'LastName','Sex'})
ans =
\begin{tabular}{lll} 
& LastName & Sex \\
YPL-320 & 'SMITH' & Male \\
GLI-532 & 'JOHNSON' & Male \\
ATA-945 & 'WILSON' & Male \\
VNL-702 & 'MOORE' & Male \\
XUE-826 & 'JACKSON' & Male \\
TRW-072 & 'WHITE' & Male \\
KOQ-996 & 'MARTIN' & Male \\
YUZ-646 & 'THOMPSON' & Male \\
KPW-846 & 'MARTINEZ' & Male \\
XBA-581 & 'ROBINSON' & Male
\end{tabular}
```

You can use multiple conditions to search the dataset array. For example, create a new dataset array containing only female patients older than 40.

```
dsFemale = hospital(hospital.Sex=='Female' & hospital.Age > 40,:);
dsFemale(1:10,{'LastName','Sex','Age'})
ans =
\begin{tabular}{llll} 
& LastName & Sex & Age \\
XLK-030 & 'BROWN' & Female & 49 \\
TFP-518 & 'DAVIS' & Female & 46
\end{tabular}
```

QFY-472	'ANDERSON '	Female	45
UJG-627	'THOMAS'	Female	42
BKD-785	'CLARK'	Female	48
VWL-936	'LEWIS'	Female	41
AAX-056	'LEE'	Female	44
AFK-336	'WRIGHT'	Female	45
KKL-155	'ADAMS'	Female	48
RBA-579	'SANCHEZ'	Female	44

Select a random subset of observations.

Create a new dataset array containing a random subset of 20 patients from the dataset array hospital.

```
rng('default') % For reproducibility
dsRandom = hospital(randsample(length(hospital), 20),:);
dsRandom.Properties.ObsNames
```

```
ans =
```

 'DAU-529'
 'AGR-528'
 ' RB0-332 '
 'Q00-305 '
 ' RVS-253'
 'QEQ-082'
 'EHE-616'
 'HVR-372'
 'KOQ-996'
 'REV-997'
 'PUE-347'
 ' LQW-768'
 'YLN-495'
 'HJQ-495'
 'ELG-976 '
 ' XUE-826'
 'MEZ-469'
 'UDS-151'
 'MIJ-579'
 'DGC-290'

Delete observations by name.

Delete the data for the patient with observation name HVR-372.
hospital('HVR-372',:) = []; size(hospital)
ans =
$99 \quad 7$

The dataset array has one less observation.
See Also dataset I
Related - "Add and Delete Observations" on page 2-79
Examples

- "Clean Messy and Missing Data" on page 2-117
- "Dataset Arrays in the Variables Editor" on page 2-122
- "Sort Observations in Dataset Arrays" on page 2-97
- "Index and Search Dataset Arrays" on page 2-138

Concepts - "Dataset Arrays" on page 2-135

Sort Observations in Dataset Arrays

This example shows how to sort observations (rows) in a dataset array using the command line. You can also sort rows using the Variables editor.

Sort observations by the values of a single variable.

Load the sample dataset array, hospital. Sort the observations by the values in Age, in ascending order.

```
load('hospital')
dsAgeUp = sortrows(hospital,'Age');
dsAgeUp(1:10,{'LastName','Age'})
ans =
LastName Age
XUE-826 'JACKSON' 25
FZR-250 'HALL' 25
PUE-347 'YOUNG' 25
LIM-480 'HILL' 25
SCQ-914 'JAMES' 25
REV-997 'ALEXANDER' 25
XBR-291 'GARCIA' 27
VNL-702 'MOORE' 28
DTT-578 'WALKER' 28
XAX-646 'COOPER' 28
```

The youngest patients are age 25 .
Sort the observations by Age in descending order.

```
dsAgeDown = sortrows(hospital,'Age','descend');
dsAgeDown(1:10,{'LastName','Age'})
ans =
\begin{tabular}{lll} 
& LastName & Age \\
XBA-581 & 'ROBINSON' & 50 \\
DAU-529 & 'REED' & 50 \\
XLK-030 & 'BROWN' & 49
\end{tabular}
```

FLJ-908	'STEWART'	49
GGU-691	'HUGHES'	49
MEZ-469	'GRIFFIN '	49
KOQ-996	'MARTIN'	48
BKD-785	'CLARK'	48
KKL-155	'ADAMS'	48
NSK-403	'RAMIREZ'	48

The oldest patients are age 50.

Sort observations by the values of two variables.

Sort the observations in hospital by Age, and then by LastName.

```
dsName = sortrows(hospital,{'Age','LastName'});
dsName(1:10,{'LastName','Age'})
ans =
```

	LastName	Age
REV-997	'ALEXANDER'	25
FZR-250	'HALL'	25
LIM-480	'HILL'	25
XUE-826	'JACKSON'	25
SCQ-914	'JAMES'	25
PUE-347	'YOUNG'	25
XBR-291	'GARCIA'	27
XAX-646	'COOPER'	28
QEQ-082	'COX'	28
NSU-424	'JENKINS'	28

Now the names are sorted alphabetically within increasing age groups.

Sort the observations in hospital by Age in an increasing order, and then by Weight in a decreasing order.

```
dsWeight = sortrows(hospital,{'Age','Weight'},{'ascend','descend'});
```

dsWeight(1:10, \{'LastName', 'Age', 'Weight'\})
ans =

	LastName	Age	Weight
FZR-250	'HALL'	25	189
SCQ-914	'JAMES'	25	186
XUE-826	'JACKSON'	25	174
REV-997	'ALEXANDER'	25	171
LIM-480	'HILL'	25	138
PUE-347	'YOUNG'	25	114
XBR-291	'GARCIA'	27	131
NSU-424	'JENKINS'	28	189
VNL-702	'MOORE'	28	183
XAX-646	'COOPER'	28	127

This shows that the maximum weight among patients that are age 25 is 189 lbs.

Sort observations by observation name.

Sort the observations in hospital by the observation names.

```
dsObs = sortrows(hospital,'obsnames');
dsObs(1:10,{'LastName','Age'})
ans =
```

	LastName	Age
AAX-056	'LEE'	44
AFB-271	'PEREZ'	44
AFK-336	'WRIGHT'	45
AGR-528	'SIMMONS'	45
ATA-945	'WILSON'	40
BEZ-311	'DIAZ'	45
BKD-785	'CLARK'	48
DAU-529	'REED'	50
DGC-290	'BUTLER'	38
DTT-578	'WALKER'	28

The observations are sorted by observation name in ascending alphabetical order.
Related Examples

- "Select Subsets of Observations" on page 2-93
- "Stack or Unstack Dataset Arrays" on page 2-106
- "Dataset Arrays in the Variables Editor" on page 2-122
- "Index and Search Dataset Arrays" on page 2-138
Concepts - "Dataset Arrays" on page 2-135

Merge Dataset Arrays

This example shows how to merge dataset arrays using join.

Load sample data.

Navigate to a folder containing sample data.

```
cd(matlabroot)
cd('help/toolbox/stats/examples')
```

Import the data from the first worksheet in hospitalSmall.xlsx into a dataset array, then keep only a few of the variables.

```
ds1 = dataset('XLSFile','hospitalSmall.xlsx');
ds1 = ds1(:,{'id','name','sex','age'})
ds1 =
id
    'YPL-320'
    'GLI -532'
'PNI-258'
    'MIJ-579'
    'XLK-030' 'BROWN' 'f' 49
    'TFP-518' 'DAVIS' 'f' 46
    'LPD-746' 'MILLER' 'f' 33
    'ATA-945' 'WILSON' 'm' 40
    'VNL-702' 'MOORE' 'm' 28
    'LQW-768' 'TAYLOR' 'f' 31
    'QFY-472' 'ANDERSON' 'f' 45
    'UJG-627' 'THOMAS' 'f' 42
    'XUE-826' 'JACKSON' 'm' 
    'TRW-072' 'WHITE' 'm' 39
        name
sex age
'SMITH' 'm'
38
    'JOHNSON '
'm'
    'WILLIAMS
```


The dataset array, ds1, has 14 observations (rows) and 4 variables (columns).
Import the data from the worksheet Heights2 in hospitalSmall.xlsx.
ds2 = dataset('XLSFile','hospitalSmall.xlsx','Sheet','Heights2')
ds2 =

```
id hgt
'LPD-746' 61
'PNI-258' 62
'XUE-826' 71
'ATA-945' 72
'XLK-030' 63
```

ds2 has height measurements for a subset of five individuals from the first dataset array, ds1.

Merge only the matching subset of observations.

Use join to merge the two dataset arrays, ds1 and ds2, keeping only the subset of observations that are in ds2.

JoinSmall = join(ds2,ds1)

JoinSmall =

id	hgt	name	sex	age
'LPD-746'	61	'MILLER'	'f'	33
'PNI-258'	62	'WILLIAMS'	'f'	38
'XUE-826'	71	'JACKSON'	'm'	25
'ATA-945'	72	'WILSON'	'm'	40
'XLK-030'	63	'BROWN'	'f'	49

In JoinSmall, the variable id only appears once. This is because it is the key variable-the variable that links observations between the two dataset arrays-and has the same variable name in both ds1 and ds2.

Include incomplete observations in the merge.

Merge ds1 and ds2 keeping all observations in the larger ds1.

```
joinAll = join(ds2,ds1,'type','rightouter','mergekeys',true)
joinAll =
```

id hgt name sex age

'ATA-945'	72	'WILSON '	'm'	40
'GLI-532'	NaN	'JOHNSON '	'm'	43
'LPD-746'	61	'MILLER '	'f'	33
'LQW-768'	NaN	'TAYLOR '	'f'	31
'MIJ-579'	NaN	'JONES'	'f'	40
'PNI-258'	62	'WILLIAMS'	'f'	38
'QFY-472'	NaN	'ANDERSON ${ }^{\prime}$	'f'	45
'TFP-518'	NaN	'DAVIS'	'f'	46
'TRW-072'	NaN	'WHITE'	'm'	39
' UJG-627'	NaN	'THOMAS '	'f'	42
'VNL-702'	NaN	'MOORE '	'm'	28
'XLK-030'	63	'BROWN '	'f'	49
' XUE-826'	71	'JACKSON '	'm'	25
'YPL-320'	NaN	'SMITH'	'm'	38

Each observation in ds1 without corresponding height measurements in ds2 has height value NaN. Also, because there is no id value in ds2 for each observation in ds1, you need to merge the keys using the option 'MergeKeys', true. This merges the key variable, id.

Merge dataset arrays with different key variable names.

When using join, it is not necessary for the key variable to have the same name in the dataset arrays to be merged. Import the data from the worksheet named Heights3 in hospitalSmall.xlsx.

```
ds3 = dataset('XLSFile','hospitalSmall.xlsx','Sheet','Heights3')
ds3 =
```

identifier hgt
'GLI-532' 69
'QFY-472' 62
'MIJ-579' 61
'VNL-702' 68
'XLK-030' 63
'LPD-746' 61
'TFP-518' 60
'YPL-320' 71
'ATA-945' 72
'LQW-768' 64

```
'PNI-258'62
```

' UJG-627' 61
' XUE-826' 71
TRW-072' 69
ds3 has height measurements for each observation in ds1. This dataset array has the same patient identifiers as ds1, but they are under the variable name identifier, instead of id (and in a different order).

You can easily change the variable name of the key variable in ds3 by setting d3. Properties.VarNames or using the Variables editor, but it is not required to perform a merge. Instead, you can specify the name of the key variable in each dataset array using LeftKeys and RightKeys.

```
joinDiff = join(ds3,ds1,'LeftKeys','identifier','RightKeys','id')
```

joinDiff =

identifier	hgt	name	sex	age
'GLI-532'	69	'JOHNSON '	'm'	43
'QFY-472'	62	'ANDERSON '	'f'	45
'MIJ-579'	61	'JONES'	'f'	40
'VNL-702'	68	'MOORE '	'm'	28
'XLK-030'	63	'BROWN '	'f'	49
'LPD-746'	61	'MILLER '	'f'	33
'TFP-518'	60	'DAVIS'	'f'	46
'YPL-320'	71	'SMITH'	'm'	38
'ATA-945'	72	'WILSON'	'm'	40
'LQW-768'	64	'TAYLOR'	'f'	31
'PNI-258'	62	'WILLIAMS'	'f'	38
'UJG-627'	61	' THOMAS ${ }^{\prime}$	'f'	42
'XUE-826'	71	'JACKSON'	'm'	25
'TRW-072'	69	'WHITE'	'm'	39

The merged dataset array, joinDiff, has the same key variable order and name as the first dataset array input to join, ds3.

See Also
 dataset | join |

Related
Examples

- "Add and Delete Variables" on page 2-83
- "Stack or Unstack Dataset Arrays" on page 2-106
- "Dataset Arrays in the Variables Editor" on page 2-122
- "Index and Search Dataset Arrays" on page 2-138

Concepts - "Dataset Arrays" on page 2-135

Stack or Unstack Dataset Arrays

This example shows how to reformat dataset arrays between wide and tall (or long) format using stack and unstack.

Load sample data.

Navigate to the folder containing sample data.

```
cd(matlabroot)
cd('help/toolbox/stats/examples')
```

Import the data from the comma-separated text file testScores.csv.

```
ds = dataset('File','testScores.csv','Delimiter',',')
ds =
```

LastName	Sex	Test1	Test2	Test3	Test4
'HOWARD'	'male'	90	87	93	92
'WARD'	'male'	87	85	83	90
'TORRES'	'male'	86	85	88	86
'PETERSON'	'female'	75	80	72	77
'GRAY'	'female'	89	86	87	90
'RAMIREZ'	'female'	96	92	98	95
'JAMES'	'male'	78	75	77	77
'WATSON'	'female'	91	94	92	90
'BROOKS'	'female'	86	83	85	89
'KELLY'	'male'	79	76	82	80

Each of the 10 students has 4 test scores, displayed here in wide format.
With the data in this format, you can, for example, calculate the average test score for each student. The test scores are in columns 3 to 6 .

```
ds.TestAve = mean(double(ds(:,3:6)),2);
ds(:,{'LastName','Sex','TestAve'})
ans =
LastName
    Sex
    TestAve
```

'HOWARD'	'male'	90.5
'WARD'	'male'	86.25
'TORRES'	'male'	86.25
'PETERSON'	'female'	76
'GRAY'	'female'	88
'RAMIREZ'	'female'	95.25
'JAMES'	'male'	76.75
'WATSON'	'female'	91.75
'BROOKS'	'female'	85.75
'KELLY'	'male'	79.25

A new variable with average test scores is added to the dataset array, ds.

Reformat the dataset array into tall format.

Stack the test score variables into a new variable, Scores.

```
dsTall = stack(ds,{'Test1','Test2','Test3','Test4'},...
    'newDataVarName','Scores')
dsTall =
```

LastName	Sex	TestAve	Scores_Indicator	Scores
'HOWARD'	'male'	90.5	Test1	90
'HOWARD'	'male'	90.5	Test2	87
'HOWARD'	'male'	90.5	Test3	93
'HOWARD'	'male'	90.5	Test4	92
'WARD'	'male'	86.25	Test1	87
'WARD'	'male'	86.25	Test2	85
'WARD'	'male'	86.25	Test3	83
'WARD'	'male'	86.25	Test4	90
'TORRES'	'male'	86.25	Test1	86
'TORRES'	'male'	86.25	Test2	85
'TORRES'	'male'	86.25	Test3	88
'TORRES'	'male'	86.25	Test4	86
'PETERSON'	'female'	76	Test1	75
'PETERSON'	'female'	76	Test2	80
'PETERSON'	'female'	76	Test3	72
'PETERSON'	'female'	76	Test4	77
'GRAY'	'female'	88	Test1	89
'GRAY'	'female'	88	Test2	86

'GRAY'	'female'	88	Test3	87
'GRAY'	'female'	88	Test4	90
'RAMIREZ'	'female'	95.25	Test1	96
'RAMIREZ'	'female'	95.25	Test2	92
'RAMIREZ'	'female'	95.25	Test3	98
'RAMIREZ'	'female'	95.25	Test4	95
'JAMES'	'male'	76.75	Test1	78
'JAMES'	'male'	76.75	Test2	75
'JAMES'	'male'	76.75	Test3	77
'JAMES'	'male'	76.75	Test4	77
'WATSON'	'female'	91.75	Test1	91
'WATSON'	'female'	91.75	Test2	94
'WATSON'	'female'	91.75	Test3	92
'WATSON'	'female'	91.75	Test4	90
'BROOKS'	'female'	85.75	Test1	86
'BROOKS'	'female'	85.75	Test2	83
'BROOKS'	'female'	85.75	Test3	85
'BROOKS'	'female'	85.75	Test4	89
'KELLY'	'male'	79.25	Test1	79
'KELLY'	'male'	79.25	Test2	76
'KELLY'	'male'	79.25	Test3	82
'KELLY'	'male'	79.25	Test4	80

The original test variable names, Test1, Test2, Test3, and Test4, appear as levels in the combined test scores indicator variable, Scores_Indicator.

With the data in this format, you can use Scores_Indicator as a grouping variable, and draw box plots of test scores grouped by test.
figure()
boxplot(dsTall.Scores,dsTall.Scores_Indicator)

Reformat the dataset array into wide format.

Reformat dsTall back into its original wide format.

```
dsWide = unstack(dsTall,'Scores','Scores_Indicator');
dsWide(:,{'LastName','Test1','Test2','Test3','Test4'})
```

ans =

LastName	Test1	Test2	Test3	Test4
'HOWARD'	90	87	93	92
'WARD'	87	85	83	90
'TORRES'	86	85	88	86
' PETERSON ' $^{\text {'GRAY' }}$	75	80	72	77
' RAMIREZ' $^{\text {'JAMES' }}$	89	86	87	90
'WATSON '	96	92	98	95

'BROOKS'	86	83	85	89
'KELLY'	79	76	82	80

The dataset array is back in wide format. unstack reassigns the levels of the indicator variable, Scores_Indicator, as variable names in the unstacked dataset array.

See Also dataset | double | stack | unstack |

Related - "Access Data in Dataset Array Variables" on page 2-87
Examples

- "Calculations on Dataset Arrays" on page 2-111
- "Index and Search Dataset Arrays" on page 2-138
Concepts - "Dataset Arrays" on page 2-135
- "Grouping Variables" on page 2-51

Calculations on Dataset Arrays

This example shows how to perform calculations on dataset arrays.

Load sample data.

Navigate to the folder containing sample data.

```
cd(matlabroot)
cd('help/toolbox/stats/examples')
```

Import the data from the comma-separated text file testScores.csv.

```
ds = dataset('File','testScores.csv','Delimiter',',')
ds =
```

LastName	Sex	Test1	Test2	Test3	Test4
'HOWARD'	'male'	90	87	93	92
'WARD'	'male'	87	85	83	90
'TORRES'	'male'	86	85	88	86
'PETERSON'	'female'	75	80	72	77
'GRAY'	'female'	89	86	87	90
'RAMIREZ'	'female'	96	92	98	95
'JAMES'	'male'	78	75	77	77
'WATSON'	'female'	91	94	92	90
'BROOKS'	'female'	86	83	85	89
'KELLY'	'male'	79	76	82	80

There are 4 test scores for each of 10 students, in wide format.

Average dataset array variables.

Compute the average (mean) test score for each student in the dataset array, and store it in a new variable, TestAvg. Test scores are in columns 3 to 6.

Use double to convert the specified dataset array variables into a numeric array. Then, calculate the mean across the second dimension (across columns) to get the test average for each student.

```
ds.TestAvg = mean(double(ds(:,3:6)),2);
```

```
ds(:,{'LastName','TestAvg'})
ans =
\begin{tabular}{lr} 
LastName & TestAvg \\
'HOWARD' & 90.5 \\
'WARD' & 86.25 \\
'TORRES' & 86.25 \\
' \(^{\prime}\) PETERSON ' & 76 \\
'GRAY' & 88 \\
'RAMIREZ' & 95.25 \\
'JAMES' & 76.75 \\
'WATSON ' & 91.75 \\
'BROOKS' & 85.75 \\
'KELLY' & 79.25
\end{tabular}
```


Summarize the dataset array using a grouping variable.

Compute the mean and maximum average test scores for each gender.

```
stats = grpstats(ds,'Sex',{'mean','max'},'DataVars','TestAvg')
stats =
\begin{tabular}{lllcc} 
& Sex & GroupCount & mean_TestAvg & max_TestAvg \\
male & 'male' & 5 & 83.8 & 90.5 \\
female & 'female' & 5 & 87.35 & 95.25
\end{tabular}
```

This returns a new dataset array containing the specified summary statistics for each level of the grouping variable, Sex.

Replace data values.

The denominator for each test score is 100. Convert the test score denominator to 25 .

```
scores = double(ds(:,3:6));
newScores = scores*25/100;
ds = replacedata(ds,newScores,3:6)
ds =
```

LastName	Sex	Test1	Test2	Test3	Test4
'HOWARD'	'male'	22.5	21.75	23.25	23
'WARD'	'male'	21.75	21.25	20.75	22.5
'TORRES'	'male'	21.5	21.25	22	21.5
'PETERSON'	'female'	18.75	20	18	19.25
'GRAY'	'female'	22.25	21.5	21.75	22.5
'RAMIREZ'	'female'	24	23	24.5	23.75
'JAMES'	'male'	19.5	18.75	19.25	19.25
'WATSON'	'female'	22.75	23.5	23	22.5
'BROOKS'	'female'	21.5	20.75	21.25	22.25
'KELLY'	'male'	19.75	19	20.5	20

The first two lines of code extract the test data and perform the desired calculation. Then, replacedata inserts the new test scores back into the dataset array.

The variable of test score averages, TestAvg, is now the final score for each student. Change the variable name to Final.

```
ds.Properties.VarNames{end} = 'Final';
ds
ds =
```

LastName	Sex	Test1	Test2	Test3	Test4
'HOWARD'	'male'	22.5	21.75	23.25	23
'WARD'	'male'	21.75	21.25	20.75	22.5
'TORRES'	'male'	21.5	21.25	22	21.5
'PETERSON'	'female'	18.75	20	18	19.25
'GRAY'	'female'	22.25	21.5	21.75	22.5
'RAMIREZ'	'female'	24	23	24.5	23.75
'JAMES'	'male'	19.5	18.75	19.25	19.25
'WATSON'	'female'	22.75	23.5	23	22.5
'BROOKS'	'female'	21.5	20.75	21.25	22.25
'KELLY'	'male'	19.75	19	20.5	20

[^0]Related Examples

- "Stack or Unstack Dataset Arrays" on page 2-106
- "Access Data in Dataset Array Variables" on page 2-87
- "Select Subsets of Observations" on page 2-93
- "Index and Search Dataset Arrays" on page 2-138
Concepts • "Dataset Arrays" on page 2-135

Export Dataset Arrays

This example shows how to export a dataset array from the MATLAB workspace to a text or spreadsheet file.

Load sample data.

load('hospital')
The dataset array has 100 observations and 7 variables.

Export to a text file.

Export the dataset array, hospital, to a text file named hospital.txt. By default, export writes to a tab-delimited text file with the same name as the dataset array, appended by .txt.

```
export(hospital)
```

This creates the file hospital.txt in the current working folder, if it does not previously exist. If the file already exists in the current working folder, export overwrites the existing file.

By default, variable names are in the first line of the text file. Observation names, if present, are in the first column.

Now, export hospital with variable names suppressed to a text file named NoLabels.txt.
export(hospital,'File','NoLabels.txt','WriteVarNames',false)
There are no variable names in the first line of the created text file, NoLabels.txt.

Export to a comma-delimited format.

Export hospital to a comma-delimited text file, hospital.csv.
export(hospital,'File','hospital.csv','Delimiter',',')

Export to an Excel spreadsheet.

Export hospital to an Excel spreadsheet named hospital.xlsx.
export(hospital,'XLSFile','hospital.xlsx')

By default, the first row of hospital.xlsx has variable names, and the first column has observation names.

See Also

dataset | export |

Related
 Examples

- "Create a Dataset Array from Workspace Variables" on page 2-65
- "Create a Dataset Array from a File" on page 2-71

Concepts - "Dataset Arrays" on page 2-135

Clean Messy and Missing Data

This example shows how to find, clean, and delete observations with missing data in a dataset array.

Load sample data.

Navigate to the folder containing sample data.

```
cd(matlabroot)
cd('help/toolbox/stats/examples')
```

Import the data from the spreadsheet messy.xlsx.

```
messyData = dataset('XLSFile','messy.xlsx')
messyData =
```

var1	var2	var3	var4	var5
'afe1'	'3'	'yes'	'3'	3
'egh3'	'.'	'no'	'7'	7
'wth4'	'3'	'yes'	'3'	3
'atn2'	'23'	'no'	'23'	23
'arg1'	'5'	'yes'	'5'	5
'jre3'	'34.6'	'yes'	'34.6'	34.6
'wen9'	'234'	'yes'	'234'	234
'ple2'	'2'	'no'	'2'	2
'dbo8'	'5'	'no'	'5'	5
'oii4'	'5'	'yes'	'5'	5
'wnk3'	'245'	'yes'	'245'	245
'abk6'	'563'	11	'563'	563
'pnj5'	'463'	' $\mathrm{no}{ }^{\prime}$	'463'	463
'wnn3'	'6'	'no'	'6'	6
'oks9'	'23'	'yes'	'23'	23
'wba3'	'1	'yes'	' $\mathrm{NaN}{ }^{\prime}$	14
'pkn4 ${ }^{\prime}$	'2'	' $\mathrm{no}{ }^{\prime}$	'2'	2
' adw3'	'22'	'no'	'22'	22
'poj2'	'-99'	'yes'	'-99'	-99
'bas8'	'23'	'no'	'23'	23
'gry5'	'NA'	'yes'	'NaN '	21

When you import data from a spreadsheet, dataset reads any variables with nonnumeric elements as a cell array of strings. This is why the variable var2 is a cell array of strings. When importing data from a text file, you have more flexibility to specify which nonnumeric expressions to treat as missing using the option TreatAsEmpty.

There are many different missing data indicators in messy.xlsx, such as:

- Empty cells
- A period (.)
- NA
- NaN
- -99

Find observations with missing values.

Display the subset of observations that have at least one missing value using ismissing.

```
ix = ismissing(messyData,'NumericTreatAsMissing',-99,...
```

 'StringTreatAsMissing', \{'NaN','.', 'NA'\});
 messyData(any(ix, 2),:)
ans =

var1	var2	var3	var4	var5
'egh3'	'.'	'no'	'7'	7
'abk6'	'563'	$' 1$	'563'	563
'wba3'	''	'yes'	'NaN'	14
'poj2'	'-99'	'yes'	'-99'	-99
'gry5'	'NA'	'yes'	'NaN'	21

By default, ismissing recognizes the following missing value indicators:

- NaN for numeric arrays
- ' ' for string arrays
- <undefined> for categorical arrays

Use the NumericTreatAsMissing and StringTreatAsMissing options to specify other values to treat as missing.

Convert string arrays to double arrays.

You can convert the string variables that should be numeric using str2double.
messyData.var2 = str2double(messyData.var2); messyData.var4 = str2double(messyData.var4)

```
messyData =
```

var1	var2	var3	var4	var5
'afe1'	3	'yes'	3	3
'egh3'	NaN	'no'	7	7
'wth4'	3	'yes'	3	3
'atn2'	23	'no'	23	23
'arg1'	5	'yes'	5	5
'jre3'	34.6	'yes'	34.6	34.6
'wen9'	234	'yes'	234	234
'ple2'	2	'no'	2	2
'dbo8'	5	'no'	5	5
'oii4'	5	'yes'	5	5
'wnk3'	245	'yes'	245	245
'abk6'	563	''	563	563
'pnj5'	463	'no'	463	463
'wnn3'	6	'no'	6	6
'oks9'	23	'yes'	23	23
'wba3'	NaN	'yes'	NaN	14
'pkn4'	2	'no'	2	2
'adw3'	22	'no'	22	22
'poj2'	-99	'yes'	-99	-99
'bas8'	23	'no'	23	23
'gry5'	NaN	'yes'	NaN	21

Now, var2 and var4 are numeric arrays. During the conversion, str2double replaces the nonnumeric elements of the variables var2 and var4 with the value NaN. However, there are no changes to the numeric missing value indicator, -99.

When applying the same function to many dataset array variables, it can sometimes be more convenient to use datasetfun. For example, to convert both var2 and var4 to numeric arrays simultaneously, you can use:

```
messyData(:,[2,4]) = datasetfun(@str2double,messyData,'DataVars',[2,4],...
    'DatasetOutput',true);
```


Replace missing value indicators.

Clean the data so that the missing values indicated by the code -99 have the standard MATLAB numeric missing value indicator, NaN .

```
messyData = replaceWithMissing(messyData,'NumericValues',-99)
```

messyData $=$				
var1	var2	var3	var4	var5
'afe1'	3	'yes'	3	3
'egh3'	NaN	'no'	7	7
'wth4'	3	'yes'	3	3
'atn2'	23	'no'	23	23
'arg1'	5	'yes'	5	5
'jre3'	34.6	'yes'	34.6	34.6
'wen9'	234	'yes'	234	234
'ple2'	2	'no'	2	2
'dbo8'	5	'no'	5	5
'oii4'	5	'yes'	5	5
'wnk3'	245	'yes'	245	245
'abk6'	563	''	563	563
'pnj5'	463	'no'	463	463
'wnn3'	6	'no'	6	6
'oks9'	23	'yes'	23	23
'wba3'	NaN	'yes'	NaN	14
'pkn4'	2	'no'	2	2
'adw3'	22	'no'	22	22
'poj2'	NaN	'yes'	NaN	NaN
'bas8'	23	'no'	23	23
'gry5'	NaN	'yes'	NaN	21

Create a dataset array with complete observations.

Create a new dataset array that contains only the complete observations-those without missing data.

```
ix = ismissing(messyData);
completeData = messyData(~any(ix,2),:)
completeData =
```

var1	var2	var3	var4	var5
'afe1'	3	'yes'	3	3
'wth4'	3	'yes'	3	3
'atn2'	23	'no'	23	23
'arg1'	5	'yes'	5	5
'jre3'	34.6	'yes'	34.6	34.6
'wen9'	234	'yes'	234	234
'ple2'	2	'no'	2	2
'dbo8'	5	'no'	5	5
'oii4'	5	'yes'	5	5
'wnk3'	245	'yes'	245	245
'pnj5'	463	'no'	463	463
'wnn3'	6	'no'	6	6
'oks9'	23	'yes'	23	23
'pkn4'	2	'no'	2	2
'adw3'	22	'no'	22	22
'bas8'	23	'no'	23	23

See Also dataset | ismissing | replaceWithMissing |

Related
Examples

Concepts

- "Select Subsets of Observations" on page 2-93
- "Calculations on Dataset Arrays" on page 2-111
- "Index and Search Dataset Arrays" on page 2-138
- "Dataset Arrays" on page 2-135

Dataset Arrays in the Variables Editor

In this section...

"Open Dataset Arrays in the Variables Editor" on page 2-122
"Modify Variable and Observation Names" on page 2-123
"Reorder or Delete Variables" on page 2-125
"Add New Data" on page 2-127
"Sort Observations" on page 2-129
"Select a Subset of Data" on page 2-130
"Create Plots" on page 2-133

Open Dataset Arrays in the Variables Editor

The MATLAB Variables editor provides a convenient interface for viewing, modifying, and plotting dataset arrays.

First, load the sample data set, hospital.
load('hospital')
The dataset array, hospital, is created in the MATLAB workspace.

Workspace			
Name $_$	Value		
atc	Description		'Simulated hospital data'
:---			
<100x7 dataset>			

The dataset array has 100 observations and 7 variables.
To open hospital in the Variables editor, click Open Variable, and select hospital.

The Variables editor opens, displaying the contents of the dataset array (only the first 10 observations are shown here).

囲 hospital < 100×7 dataset>							
	$\begin{gathered} 1 \\ \text { LastName } \end{gathered}$	$\begin{gathered} 2 \\ \operatorname{Sex} \end{gathered}$	$\begin{gathered} 3 \\ \text { Age } \end{gathered}$	$\begin{gathered} 4 \\ \text { Weight } \end{gathered}$	$\begin{gathered} 5 \\ \text { Smoker } \end{gathered}$	BloodP	
1 YPL-320	'SMITH'	Male	38	176	1	124	9318
2 GLI-532	'JOHNSON'	Male	43	163	0	109	77 [11,
3 PNI-258	'WILLIAMS'	Female	38	131	0	125	83 []
4 MU-579	'JONES'	Female	40	133	0	117	$75[6,1$
5 XLK-030	'BROWN'	Female	49	119	0	122	80 [14,
6 TFP-518	'DAVIS'	Female	46	142	0	121	7019
7 LPD-746	'MILLER'	Female	33	142	1	130	8813
8 ATA-945	'WILSON'	Male	40	180	0	115	82 []
9 VNL-702	'MOORE'	Male	28	183	0	115	782
10 LQW-768	'TAYLOR'	Female	31	132	0	118	8611

In the Variables editor, you can see the names of the seven variables along the top row, and the observations names down the first column.

Modify Variable and Observation Names

You can modify variable and observation names by double-clicking a name, and then typing new text.

	1	2
	LastName	Gender
1 YPL-320	'SMITH'	Male
2 GLI-532	'JOHNSON'	Male
3 PNI-258	'WILLIAMS'	Female
4 MU-579	'JONES'	Female
5 XLK-030	'BROWN'	Female

All changes made in the Variables editor are also sent to the command line.

```
Command Window
    >> hospital.Properties.VarNames{2} = 'Gender';
fx >>
```

The sixth variable in the data set, BloodPressure, is a numeric array with two columns. The first column shows systolic blood pressure, and the second column shows diastolic blood pressure. Click the arrow that appears on the right side of the variable name cell to see the units and description of the variable. You can type directly in the units and description fields to modify the text. The variable data type and size are shown under the variable description.

6	- 78	9
BloodPressure	Trials	
124	foll Ascending	
109	a	
125	UNITS	
117	mm Hg	
122	DESCRIPTION	
121	Systolic/Diastolic	
130	,	
115	<100×2 double>	:
115	70%	

Reorder or Delete Variables

You can reorder variables in a dataset array using the Variables editor. Hover over the left side of a variable name cell until a four-headed arrow appears.

After the arrow appears, click and drag the variable column to a new location.

The command for the variable reordering appears in the command line.

```
Command Window
    >> hospital = hospital(:,[1:4 6 5 end]);
fx >>
```

You can delete a variable in the Variables editor by selecting the variable column, right-clicking, and selecting Delete Column Variable(s).

The command for the variable deletion appears in the command line.

Command Window

```
    >> hospital(:,'Weight') = [];
fx >>
```


Add New Data

You can enter new data values directly into the Variables editor. For example, you can add a new patient observation to the hospital data set. To enter a new last name, add a string to the end of the variable LastName.

| 100 ZZB-405 | 'HAYES' | Male | 48 | 114 | 86 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 101 | 'JONES' | | | | |
| 102 | hs | | | | |

The variable Gender is a nominal array. The levels of the categorical variable appear in a drop-down list when you double-click a cell in the Gender column.

You can choose one of the levels previously used, or create a new level by selecting New Item.

| 100 ZZB-405 | 'HAYES' | Male | |
| :--- | :--- | :--- | :--- | :--- |
| 101 Obs101 | 'JONES' | Female | |
| 102 | | Female | |
| 103 | | Male | |
| 104 | | New item | |
| 105 | | | |

You can continue to add data for the remaining variables.
To change the observation name, click the observation name and type the new name.

100 ZZB-405	'HAYES'	Male	48
101 Obsi01 I	JONES'	Female	45
102			

The commands for entering the new data appear at the command line.

```
Command Window
    >> hospital.LastName{101} = 'JONES';
    Warning: Observations with default values added to dataset
    variables.
    > In dataset.subsasgn at 584
    >> hospital.Sex(101) = 'Female';
    >> hospital.Age(101) = 45;
    >> hospital.BloodPressure(101,2) = 85;
    >> hospital.BloodPressure(101,1) = 120;
    >> hospital.Properties.ObsNames{101} = 'QPO-187';
fx >>
```

Notice the warning that appears after the first assignment. When you enter the first piece of data in the new observation row-here, the last name-default values are assigned to all other variables. Default assignments are:

- 0 for numeric variables
- <undefined> for categorical variables
- [] for cell arrays

You can also copy and paste data from one dataset array to another using the Variables editor.

Sort Observations

You can use the Variables editor to sort dataset array observations by the values of one or more variables. To sort by gender, for example, select the variable Gender. Then click Sort, and choose to sort rows by ascending or descending values of the selected variable.

When sorting by variables that are cell arrays of strings or of nominal data type, observations are sorted alphabetically. For ordinal variables, rows are sorted by the ordering of the levels. For example, when the observations of hospital are sorted by the values in Gender, the females are grouped together, followed by the males.

\# hospital < 100×6 dataset>			
	1 LastName	2 Gender	$\begin{gathered} 3 \\ \text { Age } \end{gathered}$
1 PNI-258	'WILLIAMS'	Female	38
2 ML-579	'JONES'	Female	40
3 XLK-030	'BROWN'	Female	49
4 TFP-518	'DAVIS'	Female	46
5 LPD-746	'MILLER'	Female	33
6 LQW-768	'TAYLOR'	Female	31
7 QFY-472	'ANDERSON'	Female	45
8 UJG-627	'THOMAS'	Female	42
9 ELG-976	'HARRIS'	Female	36
10 XBR-291	'GARCIA'	Female	27

To sort by the values of multiple variables, press Ctrl while you select multiple variables.

When you use the Variables editor to sort rows, it is the same as calling sortrows. You can see this at the command line after executing the sorting.

Command Window

```
    >> hospital = sortrows(hospital,'Gender','ascend');
fx
```


Select a Subset of Data

You can select a subset of data from a dataset array in the Variables editor, and create a new dataset array from the selection. For example, to create a dataset array containing only the variables LastName and Age:

1 Hold Ctrl while you click the variables LastName and Age.
2 Right-click, and select New Variable from Selection > New Dataset Array.

\＃hospital＜ 100×6 dataset＞										
	$\begin{gathered} 1 \\ \text { LastName } \end{gathered}$	$\begin{gathered} 2 \\ \text { Gender } \end{gathered}$	$\begin{gathered} 3 \\ \text { Age } \end{gathered}$	4BloodPressure			$\begin{gathered} 6 \\ \text { Trials } \end{gathered}$			
						Smoker				
1 PNI－258	＇WILLIAMS＇	Female		Cut			Ctrl + X			
$2 \mathrm{ML}-579$	＇JONES＇	Female		Copy			Ctrl + C			
3 XLK－030	＇BROWN＇	Female		Paste			Ctrl＋V			
4 TFP－518	＇DAVIS＇	Female		膭 Paste as New Column Variable（s）to the left 膭 Paste as New Column Variable（s）to the right						
5 LPD－746	＇MILLER＇	Female								
6 LQW－768	＇TAYLOR＇	Female								
7 QFY－472	＇ANDERSON＇	Female		賏 Delete Column Variable（s）				4］		
8 UJG－627	＇THOMAS＇	Female		Sort Ascending						
9 ELG－976	＇HARRIS＇	Female								
10 XBR－291	＇GARCIA＇	Female		Sort Descending						
11 BKD－785	＇CLARK＇	Female		New Variable from Selection						
12 JHV－416	＇RODRIGUEZ＇	Female	ग	123	19		011			
13 VWL－936	＇LEWIS＇	Female	41	114	88		08			
14 AAX－056	＇LEE＇	Female	44	128	90		1 ［］			
15 DTT－578	＇WALKER＇	Female	28	129	96		17			

The new dataset array appears in the Workspace window with the name LastName．The Command Window shows the commands that execute the selection．

You can use the same steps to select any subset of data．To select observations according to some logical condition，you can use a combination of sorting and selecting．For example，to create a new dataset array containing only males aged 45 and older：

1 Sort the observations of hospital by the values in Gender and Age， descending．

2 Select the male observations with age 45 and older．

囲 hospital < 100×6 dataset>							
	$\begin{gathered} 1 \\ \text { LastName } \end{gathered}$	$\begin{gathered} 2 \\ \text { Gender } \end{gathered}$	$\begin{gathered} 3 \\ \text { Age } \end{gathered}$	$\begin{gathered} 4 \\ \text { BloodPressure } \end{gathered}$		5 Smoker	$\begin{gathered} 6 \\ \text { Trials } \end{gathered}$
1 XBA-581	'ROBINSON'	Male	50	125	76		[20,26,30]
2 DAU-529	'REED'	Male	50	129	89		122
3 FL-908	'STEWART'	Male	49	129	95		115
4 MEZ-469	'GRIFFIN'	Male	49	119	74		09
5 KOQ-996	'MARTIN'	Male	48	130	92		1 [13,15,21,27]
6 FCD-425	'GONZALES'	Male	48	123	79		[]
7 ZZB-405	'HAYES'	Male	48	114	86		028
8 YYV-570	'SCOTT'	Male	47	127	84		08
9 VDZ-577	'PHILLIPS'	Male	45	117	89		0 [10,15,17,19]
10 WCJ-997	'BELL'	Male	45	138	82		17
11 AGR-528	'SIMMONS'	Male	45	124	77		[8,18,25]
12 BEZ-311	'DIAZ'	Male	45	136	93		1 []
13 MSL-692	'GREEN'	Male	44	121	92		[]

3 Right-click, and select New Variables from Selection > New Dataset Array. The new dataset array, LastName1, is created in the Workspace window.

Workspace	(1)	Command Window
Name -	Value	>> hospital = sortrows (hospital, \{'Gender',
abc Description	'Simulated hospital data'	>> LastName1 $=$ hospital (1:12,1:6);
H LastName	<100x2 dataset>	$f_{\text {x }} \times>$
\# LastNamel	<12x6 dataset>	
\# hospital	<100x6 dataset>	

4 You can rename the dataset array in the Workspace window.

Workspace	
Name \triangle	Value
abc	Description

Create Plots

You can plot data from a dataset array using plotting options in the Variables editor. Available plot choices depend on the data types of variables to be plotted.

For example, if you select the variable Age, you can see in the Plots tab some plotting options that are appropriate for a univariate, numeric variable.

Sometimes, there are plot options for multiple variables, depending on their data types. For example, if you select both Age and Gender, you can draw box plots of age, grouped by gender.

See Also

Related
Examples
dataset | sortrows |

- "Add and Delete Observations" on page 2-79
- "Add and Delete Variables" on page 2-83
- "Access Data in Dataset Array Variables" on page 2-87
- "Select Subsets of Observations" on page 2-93
- "Sort Observations in Dataset Arrays" on page 2-97

Concepts

- "Dataset Arrays" on page 2-135

Dataset Arrays

In this section...
"What Are Dataset Arrays?" on page 2-135
"Dataset Array Conversion" on page 2-135
"Dataset Array Properties" on page 2-136

What Are Dataset Arrays?

Statistics Toolbox has dataset arrays for storing variables with heterogeneous data types. For example, you can combine numeric data, logical data, cell arrays of strings, and categorical arrays in one dataset array variable.

Within a dataset array, each variable (column) must be one homogeneous data type, but the different variables can be of heterogeneous data types. A dataset array is usually interpreted as a set of variables measured on many units of observation. That is, each row in a dataset array corresponds to an observation, and each column to a variable. In this sense, a dataset array organizes data like a typical spreadsheet.

Dataset arrays are a unique data type, with a corresponding set of valid operations. Even if a dataset array contains only numeric variables, you cannot operate on the dataset array like a numeric variable. The valid operations for dataset arrays are the methods of the dataset class.

Dataset Array Conversion

You can create a dataset array by combining variables that exist in the MATLAB workspace, or directly importing data from a file, such as a text file or spreadsheet. This table summarizes the functions you can use to create dataset arrays.

Data Source	Conversion to Dataset Array
Data from a file	dataset
Heterogeneous collection of workspace variables	dataset

Data Source	Conversion to Dataset Array
Numeric array	mat2dataset
Cell array	cell2dataset
Structure array	struct2dataset

You can export dataset arrays to text or spreadsheet files using export. To convert a dataset array to a cell array or structure array, use dataset2cell or dataset2struct.

Dataset Array Properties

In addition to storing data in a dataset array, you can store metadata such as:

- Variable and observation names
- Data descriptions
- Units of measurement
- Variable descriptions

This information is stored as dataset array properties. For a dataset array named ds, you can view the dataset array metadata by entering ds. Properties at the command line. You can access a specific property, such as variable names-property VarNames-using ds.Properties.VarNames. You can both retrieve and modify property values using this syntax.

Variable and observation names are included in the display of a dataset array. Variable names display across the top row, and observation names, if present, appear in the first column. Note that variable and observation names do not affect the size of a dataset array.

```
See Also dataset | export | dataset2cell | dataset2struct | mat2dataset | cell2dataset | struct2dataset
```


Related Examples

- "Create a Dataset Array from Workspace Variables" on page 2-65
- "Create a Dataset Array from a File" on page 2-71
- "Export Dataset Arrays" on page 2-115
- "Dataset Arrays in the Variables Editor" on page 2-122
- "Index and Search Dataset Arrays" on page 2-138

Index and Search Dataset Arrays

There are many ways to index into dataset arrays. For example, for a dataset array, ds, you can:

- Use () to create a new dataset array from a subset of ds. For example, ds1 $=\mathrm{ds}(1: 5,:)$ creates a new dataset array, ds1, consisting of the first five rows of ds. Metadata, including variable and observation names, transfers to the new dataset array.
- Use variable names with dot notation to index individual variables in a dataset array. For example, ds. Height indexes the variable named Height.
- Use observation names to index individual observations in a dataset array. For example, ds('Obs1',:) gives data for the observation named Obs1.
- Use observation or variable numbers. For example, ds (: , [1, 3,5]) gives the data in the first, third, and fifth variables (columns) of ds.
- Use logical indexing to search for observations in ds that satisfy a logical condition. For example, ds(ds.Gender=='Male', :) gives the observations in ds where the variable named Gender, a nominal array, has the value Male.
- Use ismissing to find missing data in the dataset array.

The following brief examples illustrate several indexing and searching methods.

Load sample data.

```
load('hospital')
```

size(hospital)
ans =
$100 \quad 7$

The dataset array has 100 observations and 7 variables.

Index the variable by name.

Return the minimum age in the dataset array.

```
min(hospital.Age)
ans =
    25
Delete the variable Trials.
hospital.Trials = [];
size(hospital)
ans =
    100 6
Index the observation by name.
```

Display measurements on the first five variables for the observation named PUE-347.
hospital('PUE-347',1:5)
ans =

```
PUE-347 'YOUNG'
```

Sex	Age Weight	
Female	25	114

Smoker
false

Index variables by number.

Create a new dataset array containing the first four variables of hospital.

```
dsNew = hospital(:,1:4);
```

dsNew.Properties.VarNames(:)
ans $=$
'LastName'
'Sex'
'Age'
'Weight'
Index observations by number.

```
Delete the last 10 observations.
hospital(end-9:end,:) = [];
size(hospital)
ans =
    90 7
```


Search for observations by logical condition.

Create a new dataset array containing only females who smoke.

```
dsFS = hospital(hospital.Sex=='Female' & hospital.Smoker==true,:);
dsFS(:,{'LastName','Sex','Smoker'})
ans =
```

Related - "Access Data in Dataset Array Variables" on page 2-87
Examples

- "Select Subsets of Observations" on page 2-93

Concepts - "Dataset Arrays" on page 2-135

Descriptive Statistics

- "Introduction to Descriptive Statistics" on page 3-2
- "Measures of Central Tendency" on page 3-3
- "Measures of Dispersion" on page 3-5
- "Quantiles and Percentiles" on page 3-7
- "Exploratory Analysis of Data" on page 3-11
- "Resampling Statistics" on page 3-16
- "Data with Missing Values" on page 3-21

Introduction to Descriptive Statistics

You may need to summarize large, complex data sets-both numerically and visually-to convey their essence to the data analyst and to allow for further processing.

Measures of Central Tendency

Measures of central tendency locate a distribution of data along an appropriate scale.

The following table lists the functions that calculate the measures of central tendency.

Function Name	Description
geomean	Geometric mean
harmmean	Harmonic mean
mean	Arithmetic average
median	50 th percentile
mode	Most frequent value
trimmean	Trimmed mean

The average is a simple and popular estimate of location. If the data sample comes from a normal distribution, then the sample mean is also optimal (minimum variance unbiased estimator (MVUE) of μ).

Unfortunately, outliers, data entry errors, or glitches exist in almost all real data. The sample mean is sensitive to these problems. One bad data value can move the average away from the center of the rest of the data by an arbitrarily large distance.

The median and trimmed mean are two measures that are resistant (robust) to outliers. The median is the 50th percentile of the sample, which will only change slightly if you add a large perturbation to any value. The idea behind the trimmed mean is to ignore a small percentage of the highest and lowest values of a sample when determining the center of the sample.

The geometric mean and harmonic mean, like the average, are not robust to outliers. They are useful when the sample is distributed lognormal or heavily skewed.

The following example shows the behavior of the measures of location for a sample with one outlier.

```
x = [ones(1,6) 100]
x =
    1
locate = [geomean(x) harmmean(x) mean(x) median(x)...
    trimmean(x,25)]
locate =
    1.9307 1.1647 15.1429 1.0000 1.0000
```

You can see that the mean is far from any data value because of the influence of the outlier. The median and trimmed mean ignore the outlying value and describe the location of the rest of the data values.

Measures of Dispersion

The purpose of measures of dispersion is to find out how spread out the data values are on the number line. Another term for these statistics is measures of spread.

The table gives the function names and descriptions.

Function Name	Description
iqr	Interquartile range
mad	Mean absolute deviation
moment	Central moment of all orders
range	Range
std	Standard deviation
var	Variance

The range (the difference between the maximum and minimum values) is the simplest measure of spread. But if there is an outlier in the data, it will be the minimum or maximum value. Thus, the range is not robust to outliers.

The standard deviation and the variance are popular measures of spread that are optimal for normally distributed samples. The sample variance is the minimum variance unbiased estimator (MVUE) of the normal parameter σ^{2}. The standard deviation is the square root of the variance and has the desirable property of being in the same units as the data. That is, if the data is in meters, the standard deviation is in meters as well. The variance is in meters ${ }^{2}$, which is more difficult to interpret.

Neither the standard deviation nor the variance is robust to outliers. A data value that is separate from the body of the data can increase the value of the statistics by an arbitrarily large amount.

The mean absolute deviation (MAD) is also sensitive to outliers. But the MAD does not move quite as much as the standard deviation or variance in response to bad data.

The interquartile range (IQR) is the difference between the 75th and 25th percentile of the data. Since only the middle 50% of the data affects this measure, it is robust to outliers.

The following example shows the behavior of the measures of dispersion for a sample with one outlier.

```
x = [ones(1,6) 100]
x =
    1
stats = [iqr(x) mad(x) range(x) std(x)]
stats =
    0 24.2449 99.0000 37.4185
```


Quantiles and Percentiles

This section explains how the Statistics Toolbox functions quantile and prctile compute quantiles and percentiles.

The prctile function calculates the percentiles in a similar way as quantile calculates quantiles. The following steps in the computation of quantiles are also true for percentiles, given the fact that, for the same data sample, the quantile at the value Q is the same as the percentile at the value $\mathrm{P}=100^{*} \mathrm{Q}$.

1 quantile initially assigns the sorted values in X to the $(0.5 / n),(1.5 / n), \ldots$, ($n-0.5] / n$) quantiles. For example:

- For a data vector of six elements such as $\{6,3,2,10,8,1\}$, the sorted elements $\{1,2,3,6,8,10\}$ respectively correspond to the (0.5/6), (1.5/6), (2.5/6), (3.5/6), (4.5/6), and (5.5/6) quantiles.
- For a data vector of five elements such as $\{2,10,5,9,13\}$, the sorted elements $\{2,5,9,10,13\}$ respectively correspond to the $0.1,0.3,0.5$, 0.7 , and 0.9 quantiles.

The following figure illustrates this approach for data vector $X=\{2,10,5$, $9,13\}$. The first observation corresponds to the cumulative probability $1 / 5=$ 0.2 , the second observation corresponds to the cumulative probability $2 / 5$ $=0.4$, and so on. The step function in this figure shows these cumulative probabilities. quantile instead places the observations in midpoints, such that the first corresponds to $0.5 / 5=0.1$, the second corresponds to $1.5 / 5=$ 0.3 , and so on, and then connects these midpoints. The red lines in the following figure connect the midpoints.

Assigning Observations to Quantiles

By wwitching the axes, as the next figure, you can see the values of the variable X that correspond to the p quantiles.

Quantiles of \boldsymbol{X}

2 quantile finds any quantiles between the data values using linear interpolation.

Linear interpolation uses linear polynomials to approximate a function $\mathrm{f}(x)$ and construct new data points within the range of a known set of data points. Algebraically, given the data points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, where $y_{1}=$ $\mathrm{f}\left(x_{1}\right)$ and $y_{2}=\mathrm{f}\left(x_{2}\right)$, linear interpolation finds $y=\mathrm{f}(x)$ for a given x between x_{1} and x_{2} as follows:

$$
y=f(x)=y_{1}+\frac{\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)}\left(y_{2}-y_{1}\right) .
$$

Similarly, if the $1.5 / n$ quantile is $y_{1.5 / n}$ and the $2.5 / n$ quantile is $y_{2.5 / n}$, then linear interpolation finds the $2.3 / n$ quantile $y_{2.3 / n}$ as

$$
y_{\frac{2.3}{n}}=y_{\frac{1.5}{n}}+\frac{\left(\frac{2.3}{n}-\frac{1.5}{n}\right)}{\left(\frac{2.5}{n}-\frac{1.5}{n}\right)}\left(y_{\frac{2.5}{n}}-y_{\frac{1.5}{n}}\right)
$$

3 quantile assigns the first and last values of X to the quantiles for probabilities less than ($0.5 / n$) and greater than ($[n-0.5] / n$), respectively.

See Also

quantile | prctile | median

Exploratory Analysis of Data

This example shows how to explore the distribution of data using descriptive statistics.

Generate sample data.

rng('default') \% for reproducibility
$x=[$ normrnd $(4,1,1,100)$ normrnd $(6,0.5,1,200)]$;
Create a histogram of data with normal density fit.
histfit(x)

The distribution of the data seems left skewed and normal distribution does not look like a good fit to this distribution.

Obtain a normal probability plot.

probplot('normal', x)

Probability plot for Normal distribution

This probability plot also clearly shows the deviation of data from normality.

Compute quantiles of data.

```
p = 0:0.25:1;
y = quantile(x,p);
```

$z=[p ; y]$
z =

0	0.2500	0.5000	0.7500	1.0000
1.0557	4.7375	5.6872	6.1526	7.5784

Plot a box plot.
A box plot helps to visualize the statistics.
boxplot(x)

You can also see the $0.25,0.5$, and 0.75 quantiles in the box plot. The long lower tail and plus signs also show the lack of symmetry in the sample values.

Compute the mean and median of data.

```
y = [mean(x) median(x)]
y =
```

The mean and median values seem close to each other, but a mean smaller than the median usually flags left skewness of the data.

Compute the skewness and kurtosis of data.

```
y = [skewness(x) kurtosis(x)]
```

$y=$

$$
-1.0417 \quad 3.5895
$$

A negative skewness value means the data is left skewed. The data has a larger peakedness than a normal distribution because the kurtosis value is greater than 3.

Check for outliers.

Compute the z-scores.
Z = zscore(x);
Find the z -scores that are greater than 3 or less than -3 .
find(abs(Z)>3);
ans $=$
335

The 3rd and 35th observations might be outliers.

Resampling Statistics

In this section...
"Bootstrap" on page 3-16
"Jackknife" on page 3-19
"Parallel Computing Support for Resampling Methods" on page 3-20

Bootstrap

The bootstrap procedure involves choosing random samples with replacement from a data set and analyzing each sample the same way. Sampling with replacement means that each observation is selected separately at random from the original dataset. So a particular data point from the original data set could appear multiple times in a given bootstrap sample. The number of elements in each bootstrap sample equals the number of elements in the original data set. The range of sample estimates you obtain enables you to establish the uncertainty of the quantity you are estimating.

This example from Efron and Tibshirani [33] compares Law School Admission Test (LSAT) scores and subsequent law school grade point average (GPA) for a sample of 15 law schools.
load lawdata
plot(lsat,gpa,'+')
lsline

The least-squares fit line indicates that higher LSAT scores go with higher law school GPAs. But how certain is this conclusion? The plot provides some intuition, but nothing quantitative.

You can calculate the correlation coefficient of the variables using the corr function.

```
rhohat = corr(lsat,gpa)
rhohat =
    0.7764
```

Now you have a number describing the positive connection between LSAT and GPA; though it may seem large, you still do not know if it is statistically significant.

Using the bootstrp function you can resample the lsat and gpa vectors as many times as you like and consider the variation in the resulting correlation coefficients.

Here is an example.

```
rhos1000 = bootstrp(1000,'corr',lsat,gpa);
```

This command resamples the lsat and gpa vectors 1000 times and computes the corr function on each sample. Here is a histogram of the result.

```
hist(rhos1000,30)
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
```


Nearly all the estimates lie on the interval [0.4 1.0].

It is often desirable to construct a confidence interval for a parameter estimate in statistical inferences. Using the bootci function, you can use bootstrapping to obtain a confidence interval. The confidence interval for the lsat and gpa data is computed as:
ci $=$ bootci(5000,@corr,lsat,gpa)
ci $=$
0.3313
0.9427

Therefore, a 95% confidence interval for the correlation coefficient between LSAT and GPA is [0.33 0.94]. This is strong quantitative evidence that LSAT and subsequent GPA are positively correlated. Moreover, this evidence does not require any strong assumptions about the probability distribution of the correlation coefficient.

Although the bootci function computes the Bias Corrected and accelerated (BCa) interval as the default type, it is also able to compute various other types of bootstrap confidence intervals, such as the studentized bootstrap confidence interval.

Jackknife

Similar to the bootstrap is the jackknife, which uses resampling to estimate the bias of a sample statistic. Sometimes it is also used to estimate standard error of the sample statistic. The jackknife is implemented by the Statistics Toolbox function jackknife.

The jackknife resamples systematically, rather than at random as the bootstrap does. For a sample with n points, the jackknife computes sample statistics on n separate samples of size $n-1$. Each sample is the original data with a single observation omitted.

In the previous bootstrap example you measured the uncertainty in estimating the correlation coefficient. You can use the jackknife to estimate the bias, which is the tendency of the sample correlation to over-estimate or under-estimate the true, unknown correlation. First compute the sample correlation on the data:

load lawdata

```
rhohat = corr(lsat,gpa)
rhohat =
    0.7764
```

Next compute the correlations for jackknife samples, and compute their mean:

```
jackrho = jackknife(@corr,lsat,gpa);
meanrho = mean(jackrho)
meanrho =
    0.7759
```

Now compute an estimate of the bias:

```
n = length(lsat);
biasrho = (n-1) * (meanrho-rhohat)
biasrho =
    -0.0065
```

The sample correlation probably underestimates the true correlation by about this amount.

Parallel Computing Support for Resampling Methods

For information on computing resampling statistics in parallel, see Parallel Computing Toolbox ${ }^{\mathrm{TM}}$.

Data with Missing Values

Many data sets have one or more missing values. It is convenient to code missing values as NaN (Not a Number) to preserve the structure of data sets across multiple variables and observations.

For example:

```
X = magic(3);
X([1 5]) = [NaN NaN]
X =
    NaN 1 6
    3 NaN 7
    4 9 2
```

Normal MATLAB arithmetic operations yield NaN values when operands are NaN :

```
s1 = sum(X)
s1 =
    NaN NaN 15
```

Removing the NaN values would destroy the matrix structure. Removing the rows containing the NaN values would discard data. Statistics Toolbox functions in the following table remove NaN values only for the purposes of computation.

Function	Description
nancov	Covariance matrix, ignoring NaN values
nanmax	Maximum, ignoring NaN values
nanmean	Mean, ignoring NaN values
nanmedian	Median, ignoring NaN values
nanmin	Minimum, ignoring NaN values
nanstd	Standard deviation, ignoring NaN values
nansum	Sum, ignoring NaN values
nanvar	Variance, ignoring NaN values

```
For example:
s2 = nansum(X)
s2 =
    7 10
1 5
```

Other Statistics Toolbox functions also ignore NaN values. These include iqr, kurtosis, mad, prctile, range, skewness, and trimmean.

Statistical Visualization

- "Introduction to Statistical Visualization" on page 4-2
- "Scatter Plots" on page 4-3
- "Box Plots" on page 4-6
- "Distribution Plots" on page 4-8

Introduction to Statistical Visualization

Statistics Toolbox data visualization functions add to the extensive graphics capabilities already in MATLAB.

- Scatter plots are a basic visualization tool for multivariate data. They are used to identify relationships among variables. Grouped versions of these plots use different plotting symbols to indicate group membership. The gname function is used to label points on these plots with a text label or an observation number.
- Box plots display a five-number summary of a set of data: the median, the two ends of the interquartile range (the box), and two extreme values (the whiskers) above and below the box. Because they show less detail than histograms, box plots are most useful for side-by-side comparisons of two distributions.
- Distribution plots help you identify an appropriate distribution family for your data. They include normal and Weibull probability plots, quantile-quantile plots, and empirical cumulative distribution plots.

Advanced Statistics Toolbox visualization functions are available for specialized statistical analyses.

Scatter Plots

A scatter plot is a simple plot of one variable against another. The MATLAB functions plot and scatter produce scatter plots. The MATLAB function plotmatrix can produce a matrix of such plots showing the relationship between several pairs of variables.

Statistics Toolbox functions gscatter and gplotmatrix produce grouped versions of these plots. These are useful for determining whether the values of two variables or the relationship between those variables is the same in each group.

Suppose you want to examine the weight and mileage of cars from three different model years.
load carsmall
gscatter(Weight, MPG, Model_Year, '', 'xos')

This shows that not only is there a strong relationship between the weight of a car and its mileage, but also that newer cars tend to be lighter and have better gas mileage than older cars.

The default arguments for gscatter produce a scatter plot with the different groups shown with the same symbol but different colors. The last two arguments above request that all groups be shown in default colors and with different symbols.

The carsmall data set contains other variables that describe different aspects of cars. You can examine several of them in a single display by creating a grouped plot matrix.

```
xvars = [Weight Displacement Horsepower];
yvars = [MPG Acceleration];
```


The upper right subplot displays MPG against Horsepower, and shows that over the years the horsepower of the cars has decreased but the gas mileage has improved.

The gplotmatrix function can also graph all pairs from a single list of variables, along with histograms for each variable. See "MANOVA" on page 8-39.

Box Plots

The graph below, created with the boxplot command, compares petal lengths in samples from two species of iris.

```
load fisheriris
s1 = meas(51:100,3);
s2 = meas(101:150,3);
boxplot([s1 s2],'notch','on',...
    'labels',{'versicolor','virginica'})
```


This plot has the following features:

- The tops and bottoms of each "box" are the 25 th and 75 th percentiles of the samples, respectively. The distances between the tops and bottoms are the interquartile ranges.
- The line in the middle of each box is the sample median. If the median is not centered in the box, it shows sample skewness.
- The whiskers are lines extending above and below each box. Whiskers are drawn from the ends of the interquartile ranges to the furthest observations within the whisker length (the adjacent values).
- Observations beyond the whisker length are marked as outliers. By default, an outlier is a value that is more than 1.5 times the interquartile range away from the top or bottom of the box, but this value can be adjusted with additional input arguments. Outliers are displayed with a red + sign.
- Notches display the variability of the median between samples. The width of a notch is computed so that box plots whose notches do not overlap (as above) have different medians at the 5% significance level. The significance level is based on a normal distribution assumption, but comparisons of medians are reasonably robust for other distributions. Comparing box-plot medians is like a visual hypothesis test, analogous to the t test used for means.

Distribution Plots

In this section...
"Normal Probability Plots" on page 4-8
"Quantile-Quantile Plots" on page 4-10
"Cumulative Distribution Plots" on page 4-12
"Other Probability Plots" on page 4-14

Normal Probability Plots

Normal probability plots are used to assess whether data comes from a normal distribution. Many statistical procedures make the assumption that an underlying distribution is normal, so normal probability plots can provide some assurance that the assumption is justified, or else provide a warning of problems with the assumption. An analysis of normality typically combines normal probability plots with hypothesis tests for normality.

The following example shows a normal probability plot created with the normplot function.
$\mathrm{x}=\operatorname{normrnd}(10,1,25,1)$;
normplot(x)

The plus signs plot the empirical probability versus the data value for each point in the data. A solid line connects the 25 th and 75 th percentiles in the data, and a dashed line extends it to the ends of the data. The y-axis values are probabilities from zero to one, but the scale is not linear. The distance between tick marks on the y-axis matches the distance between the quantiles of a normal distribution. The quantiles are close together near the median (probability $=0.5$) and stretch out symmetrically as you move away from the median.

In a normal probability plot, if all the data points fall near the line, an assumption of normality is reasonable. Otherwise, the points will curve away from the line, and an assumption of normality is not justified.

For example:
$x=\operatorname{exprnd}(10,100,1)$;
normplot(x)

The plot is strong evidence that the underlying distribution is not normal.

Quantile-Quantile Plots

Quantile-quantile plots are used to determine whether two samples come from the same distribution family. They are scatter plots of quantiles computed from each sample, with a line drawn between the first and third quartiles. If the data falls near the line, it is reasonable to assume that the two samples come from the same distribution. The method is robust with respect to changes in the location and scale of either distribution.

To create a quantile-quantile plot, use the qqplot function.

The following example shows a quantile-quantile plot of two samples from Poisson distributions.

```
x = poissrnd(10,50,1);
y = poissrnd(5,100,1);
qqplot(x,y);
```


Even though the parameters and sample sizes are different, the approximate linear relationship suggests that the two samples may come from the same distribution family. As with normal probability plots, hypothesis tests can provide additional justification for such an assumption. For statistical procedures that depend on the two samples coming from the same distribution, however, a linear quantile-quantile plot is often sufficient.

The following example shows what happens when the underlying distributions are not the same.

```
x = normrnd(5,1,100,1);
y = wblrnd(2,0.5,100,1);
qqplot(x,y);
```


These samples clearly are not from the same distribution family.

Cumulative Distribution Plots

An empirical cumulative distribution function (cdf) plot shows the proportion of data less than each x value, as a function of x. The scale on the y-axis is linear; in particular, it is not scaled to any particular distribution. Empirical cdf plots are used to compare data cdfs to cdfs for particular distributions.

To create an empirical cdf plot, use the cdfplot function (or ecdf and stairs).
The following example compares the empirical cdf for a sample from an extreme value distribution with a plot of the cdf for the sampling distribution. In practice, the sampling distribution would be unknown, and would be chosen to match the empirical cdf.

```
y = evrnd(0,3,100,1);
cdfplot(y)
hold on
x = -20:0.1:10;
f = evcdf(x,0,3);
plot(x,f,'m')
legend('Empirical','Theoretical','Location','NW')
```


Other Probability Plots

A probability plot, like the normal probability plot, is just an empirical cdf plot scaled to a particular distribution. The y-axis values are probabilities from zero to one, but the scale is not linear. The distance between tick marks is the distance between quantiles of the distribution. In the plot, a line is drawn between the first and third quartiles in the data. If the data falls near the line, it is reasonable to choose the distribution as a model for the data.

To create probability plots for different distributions, use the probplot function.

For example, the following plot assesses two samples, one from a Weibull distribution and one from a Rayleigh distribution, to see if they may have come from a Weibull population.

```
x1 = wblrnd(3,3,100,1);
x2 = raylrnd(3,100,1);
probplot('weibull',[x1 x2])
legend('Weibull Sample','Rayleigh Sample','Location','NW')
```


The plot gives justification for modeling the first sample with a Weibull distribution; much less so for the second sample.

A distribution analysis typically combines probability plots with hypothesis tests for a particular distribution.

Probability Distributions

- "Using Probability Distributions" on page 5-2
- "Supported Distributions" on page 5-3
- "Working with Distributions Through GUIs" on page 5-10
- "Statistics Toolbox Distribution Functions" on page 5-53
- "Using Probability Distribution Objects" on page 5-85
- "Probability Distributions Used for Multivariate Modeling" on page 5-100

Using Probability Distributions

Probability distributions are theoretical distributions based on assumptions about a source population. They assign probability to the event that a random variable takes on a specific, discrete value, or falls within a specified range of continuous values. There are two main types of models:

- Parametric Models-Choose a model based on a parametric family of probability distributions and then adjust the parameters to fit the data. For information on supported parametric distributions, see "Parametric Distributions" on page 5-4.
- Nonparametric Models-When data or statistics do not follow any standard probability distribution, nonparametric models may be appropriate. For information on supported nonparametric distributions, see "Nonparametric Distributions" on page 5-9.

The Statistics Toolbox provides several ways of working with both parametric and nonparametric probability distributions:

- Graphic User Interfaces (GUIs)—Interact with the distributions to visualize distributions, fit a distribution to your data, or generate random data using a specific distribution. For more information, see "Working with Distributions Through GUIs" on page 5-10.
- Command Line Functions-Use command-line functions to further explore the distributions, fit relevant models to your data, or generate random data. For more information on using functions, see "Statistics Toolbox Distribution Functions" on page 5-53.
- Distribution Objects-Use objects to explore and fit your data to a distribution, save the results to a single entity, and generate random data from the resulting parameters. For more information, see "Using Probability Distribution Objects" on page 5-85.

Supported Distributions

In this section...
"Parametric Distributions" on page 5-4
"Nonparametric Distributions" on page 5-9

Probability distributions supported by the Statistics Toolbox are cross-referenced with their supporting functions and GUIs in the following tables. The tables use the following abbreviations for distribution functions:

- pdf - Probability density functions
- cdf - Cumulative distribution functions
- inv - Inverse cumulative distribution functions
- stat - Distribution statistics functions
- fit - Distribution fitting functions
- like - Negative log-likelihood functions
- rnd - Random number generators

For more detailed explanations of each supported distribution, see Appendix B, "Distribution Reference".

Parametric Distributions

Continuous Distributions (Data)

Name	pdf	cdf	inv	stat	fit	like	rnd
Beta	betapdf, pdf	betacdf, cdf	betainv, icdf	betastat	betafit, fitdist, mle, dfittool	betalikebetarnd, random, randtool	
BirnbaumSaunders	pdf	cdf	icdf		mle, fitdist, dfittool		random
Burr Type XII	pdf	cdf	icdf		mle, fitdist, dfittool		random, randtool
Exponential	exppdf, pdf	expcdf, cdf	$\begin{aligned} & \text { expinv, } \\ & \text { icdf } \end{aligned}$	expstat	expfit, mle, fitdist, dfittool	explike	exprnd, random, randtool
Extreme value	evpdf, pdf	evcdf, cdf	evinv, icdf	evstat	evfit, mle, fitdist, dfittool	evlike	evrnd, random, randtool
Gamma	gampdf, pdf	gamcdf, cdf	```gaminv, icdf```	gamstat	gamfit, mle, fitdist, dfittool	gamlike	gamrnd, randg, random, randtool
Generalized extreme value	gevpdf, pdf	gevcdf, cdf	```gevinv, icdf```	gevstat	```gevfit, mle, fitdist, dfittool```	gevlike	gevrnd, random, randtool
Generalized Pareto	gppdf, pdf	gpcdf, cdf	gpinv, icdf	gpstat	```gpfit, mle, fitdist, dfittool```	gplike	gprnd, random, randtool

Name	pdf	cdf	inv	stat	fit	like	rnd
Inverse Gaussian	pdf	cdf	icdf		mle, fitdist, dfittool		random
Johnson system					johnsrnd		johnsrnd
Logistic	pdf	cdf	icdf		mle, fitdist, dfittool		random
Loglogistic	pdf	cdf	icdf		mle, fitdist, dfittool		random
Lognormal	lognpdf, pdf	$\begin{aligned} & \text { logncdf, } \\ & c d f \end{aligned}$	$\begin{aligned} & \text { logninv, } \\ & \text { icdf } \end{aligned}$	lognstat	```lognfit, mle, fitdist, dfittool```	$\operatorname{logn} 1$	elognrnd, random, randtool
Nakagami	pdf	cdf	icdf		mle, fitdist, dfittool		random
Normal (Gaussian)	normpdf, pdf	normcdf, cdf	$\begin{aligned} & \text { norminv, } \\ & \text { icdf } \end{aligned}$	normstat	```normfit, mle, fitdist, dfittool```	norml	enormrnd, randn, random, randtool
Pearson system					pearsrnd		pearsrnd
Piecewise	pdf	cdf	icdf		paretotai	s	random
Rayleigh	raylpdf, pdf	raylcdf, cdf	$\begin{aligned} & \text { raylinv, } \\ & \text { icdf } \end{aligned}$	raylstat	raylfit, mle, fitdist, dfittool		raylrnd, random, randtool
Rician	pdf	cdf	icdf		mle, fitdist, dfittool		random

\(\left.$$
\begin{array}{l|l|l|l|l|l|l|l}\hline \text { Name } & \text { pdf } & \text { cdf } & \text { inv } & \text { stat } & \text { fit } & \text { like } & \text { rnd } \\
\hline \begin{array}{l}\text { Uniform } \\
\text { (continuous) }\end{array} & \begin{array}{l}\text { unifpdf, } \\
\text { pdf }\end{array} & \begin{array}{l}\text { unifcdf, } \\
\text { cdf }\end{array} & \begin{array}{l}\text { unifinv, } \\
\text { icdf }\end{array}
$$ \& unifstat unifit,

mle\end{array}\right]\)| unifrnd, |
| :--- |
| rand, |
| random |,

Continuous Distributions (Statistics)

Name	pdf	cdf	inv	stat	fit	like	rnd
Chi-square	chi2pdf, pdf	chi2cdf, cdf	chi2inv, icdf	chi2stat			chi2rnd, random, randtool
F	fpdf, pdf	fcdf, cdff	finv, icdf	fstat			frnd, random, randtool
Noncentral chi-square	ncx2pdf, pdf	ncx2cdf, cdf	ncx2inv, icdf	ncx2stat		ncx2rnd, random, randtool	
Noncentral F	ncfpdf, pdf	ncfcdf, cdf	ncfinv, icdf	ncfstat			ncfrnd, random, randtool
Noncentral t	nctpdf, pdf	nctcdf, cdf	nctinv, icdf	nctstat		nctrnd, random, randtool	
Student's t	tpdf, pdf	tcdf, cdf	tinv, icdf	tstat		trnd, random, randtool	
t location- scale	pdf	cdf	icdf		mle, fitdist, dfittool		random

Discrete Distributions

Name	pdf	cdf	inv	stat	fit	like	rnd
Binomial	binopdf, pdf	binocdf, cdf	binoinv, icdf	binostat	$\begin{aligned} & \text { binofit, } \\ & \text { mle, } \\ & \text { fitdist, } \\ & \text { dfittool } \end{aligned}$		binornd, random, randtool
Bernoulli					mle		
Geometric	geopdf, pdf	geocdf, cdf	geoinv, icdf	geostat	mle		geornd, random, randtool
Hypergeomet	r九ygepdf, pdf	hygecdf, cdf	hygeinv, icdf	hygestat			hygernd, random
Multinomial	mnpdf						mnrnd
Negative binomial	nbinpdf, pdf	nbincdf, cdf	$\begin{aligned} & \text { nbininv, } \\ & \text { icdf } \end{aligned}$	nbinstat	nbinfit, mle, fitdist, dfittool		nbinrnd, random, randtool
Poisson	poisspdf, pdf	poisscdf, cdf	$\begin{aligned} & \text { poissinv, } \\ & \text { icdf } \end{aligned}$	poisstat	```poissfit, mle, fitdist, dfittool```		poissrnd, random, randtool
Uniform (discrete)	unidpdf, pdf	unidcdf, cdf	unidinv, icdf	unidstat	mle		unidrnd, random, randtool

Multivariate Distributions

Name	pdf	cdf	inv	stat	fit	like	rnd
Gaussian copula	copulapdf	copulacdf		copulastat	copulafit		copularnd
Gaussian mixture	pdf	cdf			fit		random
t copula	copulapdf	copulacdf		copulastat	copulafit		copularnd
Clayton copula	copulapdf	copulacdf		copulastat	copulafit		copularnd
Frank copula	copulapdf	copulacdf		copulastat	copulafit		copularnd
Gumbel copula	copulapdf	copulacdf		copulastat	copulafit		copularnd
Inverse Wishart					iwishrnd		
Multivariate normal	mvnpdf	mvncdf				mvnrnd	
Multivariate t	mvtpdf	mvtcdf				mvtrnd	
Wishart						wishrnd	

Nonparametric Distributions							
Name	pdf	cdf	inv	stat	fit	like	rnd
Nonparametric	ksdensity	ksdensity	ksdensity		ksdensity, fitdist, dfittool		

Working with Distributions Through GUIs

In this section...
"Exploring Distributions" on page 5-10
"Modeling Data Using the Distribution Fitting Tool" on page 5-12
"Custom Distributions Using Distribution Fitting Tool" on page 5-49
"Visually Exploring Random Number Generation" on page 5-50

This section describes Statistics Toolbox GUIs that provide convenient, interactive access to the distribution functions described in "Statistics Toolbox Distribution Functions" on page 5-53.

Exploring Distributions

To interactively see the influence of parameter changes on the shapes of the pdfs and cdfs of supported Statistics Toolbox distributions, use the Probability Distribution Function Tool.

Run the tool by typing disttool at the command line.

Start by selecting a distribution. Then choose the function type: probability density function (pdf) or cumulative distribution function (cdf).

After the plot appears, you can

- Calculate a new function value by
- Typing a new x value in the text box on the x-axis
- Dragging the vertical reference line.
- Clicking in the figure where you want the line to be.

The new function value appears in the text box to the left of the plot.

- For cdf plots, find critical values corresponding to a specific probability by typing the desired probability in the text box on the y-axis or by dragging the horizontal reference line.
- Use the controls at the bottom of the window to set parameter values for the distribution and to change their upper and lower bounds.

Modeling Data Using the Distribution Fitting Tool

The Distribution Fitting Tool is a GUI for fitting univariate distributions to data. This section describes how to use the Distribution Fitting Tool this tool and covers the following topics:

- "Opening the Distribution Fitting Tool" on page 5-13
- "Creating and Managing Data Sets" on page 5-15
- "Creating a New Fit" on page 5-20
- "Displaying Results" on page 5-26
- "Managing Fits" on page 5-27
- "Evaluating Fits" on page 5-29
- "Excluding Data" on page 5-33
- "Saving and Loading Sessions" on page 5-39
- "Example: Fitting a Distribution" on page 5-40
- "Generating a File to Fit and Plot Distributions" on page 5-47
- "Additional Distributions Available in the Distribution Fitting Tool" on page 5-49

Opening the Distribution Fitting Tool

To open the Distribution Fitting Tool, enter the command
dfittool

Adjusting the Plot. Buttons at the top of the tool allow you to adjust the plot displayed in this window:

- \boxed{H}_{-}— Toggle the legend on (default) or off.
- \#\# $^{\#}$ — Toggle grid lines on or off (default).
- - Restore default axes limits.

Displaying the Data. The Display type field specifies the type of plot displayed in the main window. Each type corresponds to a probability function, for example, a probability density function. The following display types are available:

- Density (PDF) — Display a probability density function (PDF) plot for the fitted distribution.
- Cumulative probability (CDF) - Display a cumulative probability plot of the data.
- Quantile (inverse CDF) - Display a quantile (inverse CDF) plot.
- Probability plot - Display a probability plot.
- Survivor function - Display a survivor function plot of the data.
- Cumulative hazard - Display a cumulative hazard plot of the data.

Inputting and Fitting Data. The task buttons enable you to perform the tasks necessary to fit distributions to data. Each button opens a new dialog box in which you perform the task. The buttons include:

- Data - Import and manage data sets. See "Creating and Managing Data Sets" on page 5-15.
- New Fit - Create new fits. See "Creating a New Fit" on page 5-20.
- Manage Fits - Manage existing fits. See "Managing Fits" on page 5-27.
- Evaluate - Evaluate fits at any points you choose. See "Evaluating Fits" on page 5-29.
- Exclude - Create rules specifying which values to exclude when fitting a distribution. See "Excluding Data" on page 5-33.

The display pane displays plots of the data sets and fits you create. Whenever you make changes in one of the dialog boxes, the results in the display pane update.

Saving and Customizing Distributions. The Distribution Fitting Tool menus contain items that enable you to do the following:

- Save and load sessions. See "Saving and Loading Sessions" on page 5-39.
- Generate a file with which you can fit distributions to data and plot the results independently of the Distribution Fitting Tool. See "Generating a File to Fit and Plot Distributions" on page 5-47.
- Define and import custom distributions. See "Custom Distributions Using Distribution Fitting Tool" on page 5-49.

Creating and Managing Data Sets

This section describes how to create and manage data sets.
To begin, click the Data button in the Distribution Fitting Tool to open the Data dialog box shown in the following figure.

Importing Data. The Import workspace vectors pane enables you to create a data set by importing a vector from the MATLAB workspace. The following sections describe the fields in this pane and give appropriate values for vectors imported from the MATLAB workspace:

- Data - The drop-down list in the Data field contains the names of all matrices and vectors, other than 1-by-1 matrices (scalars) in the MATLAB workspace. Select the array containing the data you want to fit. The actual data you import must be a vector. If you select a matrix in the Data field, the first column of the matrix is imported by default. To select a different column or row of the matrix, click Select Column or Row. This displays the matrix in the Variables editor, where you can select a row or column by highlighting it with the mouse.

Alternatively, you can enter any valid MATLAB expression in the Data field.

When you select a vector in the Data field, a histogram of the data appears in the Data preview pane.

- Censoring - If some of the points in the data set are censored, enter a Boolean vector, of the same size as the data vector, specifying the censored entries of the data. A 1 in the censoring vector specifies that the corresponding entry of the data vector is censored, while a 0 specifies that the entry is not censored. If you enter a matrix, you can select a column or row by clicking Select Column or Row. If you do not want to censor any data, leave the Censoring field blank.
- Frequency - Enter a vector of positive integers of the same size as the data vector to specify the frequency of the corresponding entries of the data vector. For example, a value of 7 in the 15 th entry of frequency vector specifies that there are 7 data points corresponding to the value in the 15 th entry of the data vector. If all entries of the data vector have frequency 1 , leave the Frequency field blank.
- Data set name - Enter a name for the data set you import from the workspace, such as My data.

After you have entered the information in the preceding fields, click Create Data Set to create the data set My data.

Managing Data Sets. The Manage data sets pane enables you to view and manage the data sets you create. When you create a data set, its name appears in the Data sets list. The following figure shows the Manage data sets pane after creating the data set My data.

Plot	Conf bounds	Data set	
∇	\square	My data	
		View	Set Bin Rules
		Rename	Delete

For each data set in the Data sets list, you can:

- Select the Plot check box to display a plot of the data in the main Distribution Fitting Tool window. When you create a new data set, Plot is selected by default. Clearing the Plot check box removes the data from the plot in the main window. You can specify the type of plot displayed in the Display type field in the main window.
- If Plot is selected, you can also select Bounds to display confidence interval bounds for the plot in the main window. These bounds are pointwise confidence bounds around the empirical estimates of these functions. The bounds are only displayed when you set Display Type in the main window to one of the following:
- Cumulative probability (CDF)
- Survivor function
- Cumulative hazard

The Distribution Fitting Tool cannot display confidence bounds on density (PDF), quantile (inverse CDF), or probability plots. Clearing the Bounds check box removes the confidence bounds from the plot in the main window.

When you select a data set from the list, the following buttons are enabled:

- View - Display the data in a table in a new window.
- Set Bin Rules - Defines the histogram bins used in a density (PDF) plot.
- Rename - Rename the data set.
- Delete - Delete the data set.

Setting Bin Rules. To set bin rules for the histogram of a data set, click Set Bin Rules. This opens the Set Bin Width Rules dialog box.

You can select from the following rules:

- Freedman-Diaconis rule - Algorithm that chooses bin widths and locations automatically, based on the sample size and the spread of the data. This rule, which is the default, is suitable for many kinds of data.
- Scott rule - Algorithm intended for data that are approximately normal. The algorithm chooses bin widths and locations automatically.
- Number of bins - Enter the number of bins. All bins have equal widths.
- Bins centered on integers - Specifies bins centered on integers.
- Bin width - Enter the width of each bin. If you select this option, you can also select:
- Automatic bin placement - Place the edges of the bins at integer multiples of the Bin width.
- Bin boundary at - Enter a scalar to specify the boundaries of the bins. The boundary of each bin is equal to this scalar plus an integer multiple of the Bin width.

The Set Bin Width Rules dialog box also provides the following options:

- Apply to all existing data sets - Apply the rule to all data sets. Otherwise, the rule is only applied to the data set currently selected in the Data dialog box.
- Save as default - Apply the current rule to any new data sets that you create. You can also set default bin width rules by selecting Set Default Bin Rules from the Tools menu in the main window.

Creating a New Fit

This section describes how to create a new fit. To begin, click the New Fit button at the top of the main window to open the New Fit dialog box. If you created the data set My data, it appears in the Data field.

Field Name	Description
Fit Name	Enter a name for the fit in the Fit Name field.
Data	The Data field contains a drop-down list of the data sets you have created. Select the data set to which you want to fit a distribution.
Distribution	Select the type of distribution to fit from the Distribution drop-down list. See "Available Distributions" on page 5-23 for a list of distributions supported by the Distribution Fitting Tool. Only the distributions that apply to the values of the selected data set appear in the Distribution field. For example, positive distributions are not displayed when the data include values that are zero or negative. You can specify either a parametric or a nonparametric distribution. When you select a parametric distribution from the drop-down list, a description of its parameters appears in the Normal pane. The Distribution Fitting Tool estimates these parameters to fit the distribution to the data set. When you select Nonparametric fit, options for the fit appear in the pane, as described in "Further Options for Nonparametric Fits" on page 5-24.
Exclusion rule	Specify a rule to exclude some data in the Exclusion rule field. Create an exclusion rule by clicking Exclude in the Distribution Fitting Tool. For more information, see "Excluding Data" on page 5-33.

Apply the New Fit. Click Apply to fit the distribution. For a parametric fit, the Results pane displays the values of the estimated parameters. For a nonparametric fit, the Results pane displays information about the fit.

When you click Apply, the Distribution Fitting Tool displays a plot of the distribution, along with the corresponding data.

Note When you click Apply, the title of the dialog box changes to Edit Fit. You can now make changes to the fit you just created and click Apply again to save them. After closing the Edit Fit dialog box, you can reopen it from the Fit Manager dialog box at any time to edit the fit.

After applying the fit, you can save the information to the workspace using probability distribution objects by clicking Save to workspace. See "Using Probability Distribution Objects" on page 5-85 for more information.

Available Distributions. This section lists the distributions available in the Distribution Fitting Tool.

Most, but not all, of the distributions available in the Distribution Fitting Tool are supported elsewhere in Statistics Toolbox software (see "Supported Distributions" on page 5-3), and have dedicated distribution fitting functions. These functions compute the majority of the fits in the Distribution Fitting Tool, and are referenced in the list below.

Other fits are computed using functions internal to the Distribution Fitting Tool. Distributions that do not have corresponding Statistics Toolbox fitting functions are described in "Additional Distributions Available in the Distribution Fitting Tool" on page 5-49.

Not all of the distributions listed below are available for all data sets. The Distribution Fitting Tool determines the extent of the data (nonnegative, unit interval, etc.) and displays appropriate distributions in the Distribution drop-down list. Distribution data ranges are given parenthetically in the list below.

- Beta (unit interval values) distribution, fit using the function betafit.
- Binomial (nonnegative values) distribution, fit using the function binopdf.
- Birnbaum-Saunders (positive values) distribution.
- Burr Type XII (positive values) distribution.
- Exponential (nonnegative values) distribution, fit using the function expfit.
- Extreme value (all values) distribution, fit using the function evfit.
- Gamma (positive values) distribution, fit using the function gamfit.
- Generalized extreme value (all values) distribution, fit using the function gevfit.
- Generalized Pareto (all values) distribution, fit using the function gpfit.
- Inverse Gaussian (positive values) distribution.
- Logistic (all values) distribution.
- Loglogistic (positive values) distribution.
- Lognormal (positive values) distribution, fit using the function lognfit.
- Nakagami (positive values) distribution.
- Negative binomial (nonnegative values) distribution, fit using the function nbinpdf.
- Nonparametric (all values) distribution, fit using the function ksdensity. See "Further Options for Nonparametric Fits" on page 5-24 for a description of available options.
- Normal (all values) distribution, fit using the function normfit.
- Poisson (nonnegative integer values) distribution, fit using the function poisspdf.
- Rayleigh (positive values) distribution using the function raylfit.
- Rician (positive values) distribution.
- t location-scale (all values) distribution.
- Weibull (positive values) distribution using the function wblfit.

Further Options for Nonparametric Fits. When you select Non-parametric in the Distribution field, a set of options appears in the Non-parametric pane, as shown in the following figure.

The options for nonparametric distributions are:

- Kernel - Type of kernel function to use.
- Normal
- Box
- Triangle
- Epanechnikov
- Bandwidth - The bandwidth of the kernel smoothing window. Select Auto for a default value that is optimal for estimating normal densities. This value appears in the Fit results pane after you click Apply. Select Specify and enter a smaller value to reveal features such as multiple modes or a larger value to make the fit smoother.
- Domain - The allowed x-values for the density.
- Unbounded - The density extends over the whole real line.
- Positive - The density is restricted to positive values.
- Specify - Enter lower and upper bounds for the domain of the density.

When you select Positive or Specify, the nonparametric fit has zero probability outside the specified domain.

Displaying Results

This section explains the different ways to display results in the Distribution Fitting Tool window. This window displays plots of:

- The data sets for which you select Plot in the Data dialog box
- The fits for which you select Plot in the Fit Manager dialog box
- Confidence bounds for:
- Data sets for which you select Bounds in the Data dialog box
- Fits for which you select Bounds in the Fit Manager dialog box

The following fields are available.
Display Type. The Display Type field in the main window specifies the type of plot displayed. Each type corresponds to a probability function, for example, a probability density function. The following display types are available:

- Density (PDF) - Display a probability density function (PDF) plot for the fitted distribution. The main window displays data sets using a probability histogram, in which the height of each rectangle is the fraction of data points that lie in the bin divided by the width of the bin. This makes the sum of the areas of the rectangles equal to 1 .
- Cumulative probability (CDF) - Display a cumulative probability plot of the data. The main window displays data sets using a cumulative probability step function. The height of each step is the cumulative sum of the heights of the rectangles in the probability histogram.
- Quantile (inverse CDF) - Display a quantile (inverse CDF) plot.
- Probability plot - Display a probability plot of the data. You can specify the type of distribution used to construct the probability plot in the Distribution field, which is only available when you select Probability plot. The choices for the distribution are:
- Exponential
- Extreme value
- Logistic
- Log-Logistic
- Lognormal
- Normal
- Rayleigh
- Weibull

In addition to these choices, you can create a probability plot against a parametric fit that you create in the New Fit pane. These fits are added at the bottom of the Distribution drop-down list when you create them.

- Survivor function - Display survivor function plot of the data.
- Cumulative hazard - Display cumulative hazard plot of the data.

Note Some distributions are unavailable if the plotted data includes 0 or negative values.

Confidence Bounds. You can display confidence bounds for data sets and fits when you set Display Type to Cumulative probability (CDF), Survivor function, Cumulative hazard, or, for fits only, Quantile (inverse CDF).

- To display bounds for a data set, select Bounds next to the data set in the Data sets pane of the Data dialog box.
- To display bounds for a fit, select Bounds next to the fit in the Fit Manager dialog box. Confidence bounds are not available for all fit types.

To set the confidence level for the bounds, select Confidence Level from the View menu in the main window and choose from the options.

Managing Fits

This section describes how to manage fits that you have created. To begin, click the Manage Fits button in the Distribution Fitting Tool. This opens the Fit Manager dialog box as shown in the following figure.

The Table of fits displays a list of the fits you create, with the following options:

- Plot - Select Plot to display a plot of the fit in the main window of the Distribution Fitting Tool. When you create a new fit, Plot is selected by default. Clearing the Plot check box removes the fit from the plot in the main window.
- Bounds - If Plot is selected, you can also select Bounds to display confidence bounds in the plot. The bounds are displayed when you set Display Type in the main window to one of the following:
- Cumulative probability (CDF)
- Quantile (inverse CDF)
- Survivor function
- Cumulative hazard

The Distribution Fitting Tool cannot display confidence bounds on density (PDF) or probability plots. In addition, bounds are not supported for nonparametric fits and some parametric fits.

Clearing the Bounds check box removes the confidence intervals from the plot in the main window.

When you select a fit in the Table of fits, the following buttons are enabled below the table:

- New Fit - Open a New Fit window.
- Copy - Create a copy of the selected fit.
- Edit - Open an Edit Fit dialog box, where you can edit the fit.

Note You can only edit the currently selected fit in the Edit Fit dialog box. To edit a different fit, select it in the Table of fits and click Edit to open another Edit Fit dialog box.

- Save to workspace - Save the selected fit as a distribution object. See "Using Probability Distribution Objects" on page 5-85 for more information.
- Delete - Delete the selected fit.

Evaluating Fits

The Evaluate dialog box enables you to evaluate any fit at whatever points you choose. To open the dialog box, click the Evaluate button in the Distribution Fitting Tool. The following figure shows the Evaluate dialog box.

The Evaluate dialog box contains the following items:

- Fit pane - Display the names of existing fits. Select one or more fits that you want to evaluate. Using your platform specific functionality, you can select multiple fits.
- Function - Select the type of probability function you want to evaluate for the fit. The available functions are
- Density (PDF) - Computes a probability density function.
- Cumulative probability (CDF) - Computes a cumulative probability function.
- Quantile (inverse CDF) - Computes a quantile (inverse CDF) function.
- Survivor function - Computes a survivor function.
- Cumulative hazard - Computes a cumulative hazard function.
- Hazard rate - Computes the hazard rate.
- At $\mathbf{x}=-$ Enter a vector of points or the name of a workspace variable containing a vector of points at which you want to evaluate the distribution function. If you change Function to Quantile (inverse CDF), the field name changes to At $\mathbf{p}=$ and you enter a vector of probability values.
- Compute confidence bounds - Select this box to compute confidence bounds for the selected fits. The check box is only enabled if you set Function to one of the following:
- Cumulative probability (CDF)
- Quantile (inverse CDF)
- Survivor function
- Cumulative hazard

The Distribution Fitting Tool cannot compute confidence bounds for nonparametric fits and for some parametric fits. In these cases, the tool returns NaN for the bounds.

- Level - Set the level for the confidence bounds.
- Plot function - Select this box to display a plot of the distribution function, evaluated at the points you enter in the At $\mathbf{x}=$ field, in a new window.

Note The settings for Compute confidence bounds, Level, and Plot function do not affect the plots that are displayed in the main window of the Distribution Fitting Tool. The settings only apply to plots you create by clicking Plot function in the Evaluate window.

Click Apply to apply these settings to the selected fit. The following figure shows the results of evaluating the cumulative density function for the fit My fit, created in "Example: Fitting a Distribution" on page 5-40, at the points in the vector $-4: 1: 6$.

The window displays the following values in the columns of the table to the right of the Fit pane:

- X - The entries of the vector you enter in At $\mathbf{x}=$ field
- $\mathrm{F}(\mathrm{X})$ - The corresponding values of the CDF at the entries of X
- LB - The lower bounds for the confidence interval, if you select Compute confidence bounds
- UB - The upper bounds for the confidence interval, if you select Compute confidence bounds

To save the data displayed in the Evaluate window, click Export to Workspace. This saves the values in the table to a matrix in the MATLAB workspace.

Excluding Data

To exclude values from fit, click the Exclude button in the main window of the Distribution Fitting Tool. This opens the Exclude window, in which you can create rules for excluding specified values. You can use these rules to exclude data when you create a new fit in the New Fit window. The following figure shows the Exclude window.

To create an exclusion rule:
1 Exclusion Rule Name-Enter a name for the exclusion rule in the Exclusion rule name field.

2 Exclude Sections-In the Exclude sections pane, you can specify bounds for the excluded data:

- In the Lower limit: exclude \mathbf{Y} drop-down list, select <= or < from the drop-down list and enter a scalar in the field to the right. This excludes values that are either less than or equal to or less than that scalar, respectively.
- In the Upper limit: exclude \mathbf{Y} drop-down list, select >= or > from the drop-down list and enter a scalar in the field to the right to exclude values that are either greater than or equal to or greater than the scalar, respectively.

OR

Exclude Graphically-The Exclude Graphically button enables you to define the exclusion rule by displaying a plot of the values in a data set and selecting the bounds for the excluded data with the mouse. For example, if you created the data set My data, described in "Creating and Managing Data Sets" on page $5-15$, select it from the drop-down list next to Exclude graphically and then click the Exclude graphically button. This displays the values in My data in a new window as shown in the following figure.

To set a lower limit for the boundary of the excluded region, click Add Lower Limit. This displays a vertical line on the left side of the plot window. Move the line with the mouse to the point you where you want the lower limit, as shown in the following figure.

Moving the vertical line changes the value displayed in the Lower limit: exclude data field in the Exclude window, as shown in the following figure.

The value displayed corresponds to the x-coordinate of the vertical line.
Similarly, you can set the upper limit for the boundary of the excluded region by clicking Add Upper Limit and moving the vertical line that
appears at the right side of the plot window. After setting the lower and upper limits, click Close and return to the Exclude window.

3 Create Exclusion Rule-Once you have set the lower and upper limits for the boundary of the excluded data, click Create Exclusion Rule to create the new rule. The name of the new rule now appears in the Existing exclusion rules pane.

When you select an exclusion rule in the Existing exclusion rules pane, the following buttons are enabled:

- Copy - Creates a copy of the rule, which you can then modify. To save the modified rule under a different name, click Create Exclusion Rule.
- View - Opens a new window in which you can see which data points are excluded by the rule. The following figure shows a typical example.

4 View Exclusion Rule	- 易 \times				
Exclusion rule: My rule	Index	Data	Censoring	Frequen...	
Data: My data	1	1.11273			*
	2	2.92744			
	3	-2.80239			三
-	4	1.56704			
	5	0.80627			
	6	-1.47076			
	7	-0.24703			
	8	0.83967			
eemmonoceot +	9	5.36976			
	10	4.23721			
	11	-1.52984			
	12	4.60889			
	13	1.37557			
	14	0.27172			
	15	1.36064			
Excluded sections:	16	0.07305			
	17	0.1862			
Exclude data <= -2.5	18	2.44558			
Exclude data > $=4$	19	2.33265			
	20	2.34407			-
				Close	

The shaded areas in the plot graphically display which data points are excluded. The table to the right lists all data points. The shaded rows indicate excluded points:

- Rename - Renames the rule
- Delete - Deletes the rule

Once you define an exclusion rule, you can use it when you fit a distribution to your data. The rule does not exclude points from the display of the data set.

Saving and Loading Sessions

This section explains how to save your work in the current Distribution Fitting Tool session and then load it in a subsequent session, so that you can continue working where you left off.

Saving a Session. To save the current session, select Save Session from the File menu in the main window. This opens a dialog box that prompts you to enter a filename, such as my_session.dfit, for the session. Clicking Save saves the following items created in the current session:

- Data sets
- Fits
- Exclusion rules
- Plot settings
- Bin width rules

Loading a Session. To load a previously saved session, select Load Session from the File menu in the main window and enter the name of a previously saved session. Clicking Open restores the information from the saved session to the current session of the Distribution Fitting Tool.

Example: Fitting a Distribution

This section presents an example that illustrates how to use the Distribution Fitting Tool. The example involves the following steps:

- "Step 1: Generate Random Data" on page 5-40
- "Step 2: Import Data" on page 5-40
- "Step 3: Create a New Fit" on page 5-43

Step 1: Generate Random Data. To try the example, first generate some random data to which you will fit a distribution. The following command generates a vector data, of length 100, whose entries are random numbers from a normal distribution with mean. 36 and standard deviation 1.4.

```
rng('default')
data = normrnd(.36, 1.4, 100, 1);
```

Step 2: Import Data. Open the distribution fitting tool:

```
dfittool
```

To import the vector data into the Distribution Fitting Tool, click the Data button in main window. This opens the window shown in the following figure.

The Data field displays all numeric arrays in the MATLAB workspace. Select data from the drop-down list, as shown in the following figure.

Data:	\|none)
Censoring:	(none)
data	

This displays a histogram of the data in the Data preview pane.
In the Data set name field, type a name for the data set, such as My data, and click Create Data Set to create the data set. The main window of the Distribution Fitting Tool now displays a larger version of the histogram in the Data preview pane, as shown in the following figure.

Note Because the example uses random data, you might see a slightly different histogram if you try this example for yourself.

Step 3: Create a New Fit. To fit a distribution to the data, click New Fit in the main window of the Distribution Fitting Tool. This opens the window shown in the following figure.

To fit a normal distribution, the default entry of the Distribution field, to My data:

1 Enter a name for the fit, such as My fit, in the Fit name field.
2 Select My data from the drop-down list in the Data field.

3 Click Apply.

The Results pane displays the mean and standard deviation of the normal distribution that best fits My data, as shown in the following figure.

The main window of the Distribution Fitting Tool displays a plot of the normal distribution with this mean and standard deviation, as shown in the following figure.

Generating a File to Fit and Plot Distributions

The Generate Code option in the File menu enables you to create a file that

- Fits the distributions used in the current session to any data vector in the MATLAB workspace.
- Plots the data and the fits.

After you end the current session, you can use the file to create plots in a standard MATLAB figure window, without having to reopen the Distribution Fitting Tool.

As an example, assuming you created the fit described in "Creating a New Fit" on page $5-20$, do the following steps:

1 Select Generate Code from the File menu.
2 Choose File > Save as in the MATLAB Editor window. Save the file as normal_fit.m in a folder on the MATLAB path.

You can then apply the function normal_fit to any vector of data in the MATLAB workspace. For example, the following commands

```
new_data = normrnd(4.1, 12.5, 100, 1);
newfit = normal_fit(new_data)
legend('New Data', 'My fit')
```

generate newfit, a fitted normal distribution of the data, and generates a plot of the data and the fit.

```
newfit =
normal distribution
    mu = 3.19148
    sigma = 12.5631
```


Note By default, the file labels the data in the legend using the same name as the data set in the Distribution Fitting Tool. You can change the label using the legend command, as illustrated by the preceding example.

Additional Distributions Available in the Distribution Fitting Tool

The following distributions are available in the Distribution Fitting Tool, but do not have dedicated distribution functions as described in "Statistics Toolbox Distribution Functions" on page 5-53. The distributions can be used with the functions pdf, cdf, icdf, and mle in a limited capacity. See the reference pages for these functions for details on the limitations.

- "Birnbaum-Saunders Distribution" on page B-10
- "Burr Type XII Distribution" on page B-12
- "Inverse Gaussian Distribution" on page B-58
- "Loglogistic Distribution" on page B-63
- "Logistic Distribution" on page B-62
- "Nakagami Distribution" on page B-83
- "Rician Distribution" on page B-106
- "t Location-Scale Distribution" on page B-110

For a complete list of the distributions available for use with the Distribution Fitting Tool, see "Supported Distributions" on page 5-3. Distributions listing dfittool in the fit column of the tables in that section can be used with the Distribution Fitting Tool.

Custom Distributions Using Distribution Fitting Tool

This section explains how to use custom distributions with the Distribution Fitting Tool.

Defining Custom Distributions

To define a custom distribution, select Define Custom Distribution from the File menu. This opens a file template in the MATLAB editor. You then edit this file so that it computes the distribution you want.

The template includes example code that computes the Laplace distribution, beginning at the lines

```
%
% Remove the following return statement to define the
% Laplace distributon
%
return
```

To use this example, simply delete the command return and save the file. If you save the template in a folder on the MATLAB path, under its default name dfittooldists.m, the Distribution Fitting Tool reads it in automatically when you start the tool. You can also save the template under a different name, such as laplace.m, and then import the custom distribution as described in the following section.

Importing Custom Distributions

To import a custom distribution, select Import Custom Distributions from the File menu. This opens a dialog box in which you can select the file that defines the distribution. For example, if you created the file laplace.m, as described in the preceding section, you can enter laplace.m and select Open in the dialog box. The Distribution field of the New Fit window now contains the option Laplace.

Visually Exploring Random Number Generation

The Random Number Generation Tool is a graphical user interface that generates random samples from specified probability distributions and displays the samples as histograms. Use the tool to explore the effects of changing parameters and sample size on the distributions.

Run the tool by typing randtool at the command line.

Start by selecting a distribution, then enter the desired sample size.

You can also

- Use the controls at the bottom of the window to set parameter values for the distribution and to change their upper and lower bounds.
- Draw another sample from the same distribution, with the same size and parameters.
- Export the current sample to your workspace. A dialog box enables you to provide a name for the sample.

Statistics Toolbox Distribution Functions

In this section...
"Probability Density Functions" on page 5-53
"Cumulative Distribution Functions" on page 5-63
"Inverse Cumulative Distribution Functions" on page 5-67
"Distribution Statistics Functions" on page 5-69
"Distribution Fitting Functions" on page 5-71
"Negative Log-Likelihood Functions" on page 5-78
"Random Number Generators" on page 5-81

For each distribution supported by Statistics Toolbox software, a selection of the distribution functions described in this section is available for statistical programming. This section gives a general overview of the use of each type of function, independent of the particular distribution. For specific functions available for specific distributions, see "Supported Distributions" on page 5-3.

Probability Density Functions

- "Estimating PDFs with Parameters" on page 5-53
- "Estimating PDFs without Parameters" on page 5-56

Estimating PDFs with Parameters

Probability density functions (pdfs) for supported Statistics Toolbox distributions all end with pdf, as in binopdf or exppdf. For more information on specific function names for specific distributions see "Supported Distributions" on page 5-3.

Each function represents a parametric family of distributions. Input arguments are arrays of outcomes followed by a list of parameter values specifying a particular member of the distribution family.

For discrete distributions, the pdf assigns a probability to each outcome. In this context, the pdf is often called a probability mass function (pmf).

For example, the discrete binomial pdf

$$
f(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

assigns probability to the event of k successes in n trials of a Bernoulli process (such as coin flipping) with probability p of success at each trial. Each of the integers $k=0,1,2, \ldots, n$ is assigned a positive probability, with the sum of the probabilities equal to 1 . Compute the probabilities with the binopdf function:

```
p = 0.2; % Probability of success for each trial
n = 10; % Number of trials
k = 0:n; % Outcomes
m = binopdf(k,n,p); % Probability mass vector
bar(k,m) % Visualize the probability distribution
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
grid on
```


For continuous distributions, the pdf assigns a probability density to each outcome. The probability of any single outcome is zero. The pdf must be integrated over a set of outcomes to compute the probability that an outcome falls within that set. The integral over the entire set of outcomes is 1 .

For example, the continuous exponential pdf

$$
f(t)=\lambda e^{-\lambda t}
$$

is used to model the probability that a process with constant failure rate λ will have a failure within time t. Each time $t>0$ is assigned a positive probability density. Densities are computed with the exppdf function:

```
lambda = 2; % Failure rate
t = 0:0.01:3; % Outcomes
f = exppdf(t,1/lambda); % Probability density vector
plot(t,f) % Visualize the probability distribution
grid on
```


Probabilities for continuous pdfs can be computed with the integral function. In the example above, the probability of failure in the time interval $[0,1]$ is computed as follows:

```
f_lambda = @(t)exppdf(t,1/lambda); % Pdf with fixed lambda
P = integral(f_lambda,0,1) % Integrate from 0 to 1
P =
    0.8647
```

Alternatively, the cumulative distribution function (cdf) for the exponential function, expcdf, can be used:

```
P = expcdf(1,1/lambda) % Cumulative probability from 0 to 1
P =
    0.8647
```


Estimating PDFs without Parameters

A distribution of data can be described graphically with a histogram:

```
cars = load('carsmall','MPG','Origin');
MPG = cars.MPG;
hist(MPG)
set(get(gca,'Children'),'FaceColor',[.8 . 8 1])
```


You can also describe a data distribution by estimating its density.
The ksdensity function does this using a kernel smoothing method. A nonparametric density estimate of the previous data, using the default kernel and bandwidth, is given by:

```
[f,x] = ksdensity(MPG);
plot(x,f);
title('Density estimate for MPG')
```

Density estimate for MPG

Controlling Probability Density Curve Smoothness. The choice of kernel bandwidth controls the smoothness of the probability density curve. The following graph shows the density estimate for the same mileage data using different bandwidths. The default bandwidth is in blue and looks like the preceding graph. Estimates for smaller and larger bandwidths are in red and green.

The first call to ksdensity returns the default bandwidth, u, of the kernel smoothing function. Subsequent calls modify this bandwidth.

```
[f,x,u] = ksdensity(MPG);
plot(x,f)
title('Density estimate for MPG')
hold on
```

```
[f,x] = ksdensity(MPG,'width',u/3);
plot(x,f,'r');
[f,x] = ksdensity(MPG,'width',u*3);
plot(x,f,'g');
legend('default width','1/3 default','3*default')
hold off
```

Density estimate for MPG

The default bandwidth seems to be doing a good job-reasonably smooth, but not so smooth as to obscure features of the data. This bandwidth is the one that is theoretically optimal for estimating densities for the normal distribution.

The green curve shows a density with the kernel bandwidth set too high. This curve smooths out the data so much that the end result looks just like the kernel function. The red curve has a smaller bandwidth and is rougher looking than the blue curve. It may be too rough, but it does provide an indication that there might be two major peaks rather than the single peak of the blue curve. A reasonable choice of width might lead to a curve that is intermediate between the red and blue curves.

Specifying Kernel Smoothing Functions. You can also specify a kernel function by supplying either the function name or a function handle. The four preselected functions, 'normal', 'epanechnikov', 'box', and 'triangle', are all scaled to have standard deviation equal to 1 , so they perform a comparable degree of smoothing.

Using default bandwidths, you can now plot the same mileage data, using each of the available kernel functions.

```
hname = {'normal' 'epanechnikov' 'box' 'triangle'};
colors = {'r' 'b' 'g' 'm'};
for j=1:4
    [f,x] = ksdensity(MPG,'kernel',hname{j});
    plot(x,f,colors{j});
    hold on;
end
legend(hname{:});
hold off
```


The density estimates are roughly comparable, but the box kernel produces a density that is rougher than the others.

Comparing Density Estimates. While it is difficult to overlay two histograms to compare them, you can easily overlay smooth density estimates. For example, the following graph shows the MPG distributions for cars from different countries of origin:

```
Origin = cellstr(cars.Origin);
I = strcmp('USA',Origin);
J = strcmp('Japan',Origin);
K = ~(I|J);
MPG_USA = MPG(I);
MPG_Japan = MPG(J);
MPG_Europe = MPG(K);
```

```
[fI,xI] = ksdensity(MPG_USA);
plot(xI,fI,'b')
hold on
[fJ,xJ] = ksdensity(MPG_Japan);
plot(xJ,fJ,'r')
[fK,xK] = ksdensity(MPG_Europe);
plot(xK,fK,'g')
legend('USA','Japan','Europe')
hold off
```


For piecewise probability density estimation, using kernel smoothing in the center of the distribution and Pareto distributions in the tails, see "Fitting Piecewise Distributions" on page 5-73.

Cumulative Distribution Functions

- "Estimating Parametric CDFs" on page 5-63
- "Estimating Empirical CDFs" on page 5-64

Estimating Parametric CDFs

Cumulative distribution functions (cdfs) for supported Statistics Toolbox distributions all end with cdf, as in binocdf or expcdf. Specific function names for specific distributions can be found in "Supported Distributions" on page 5-3.

Each function represents a parametric family of distributions. Input arguments are arrays of outcomes followed by a list of parameter values specifying a particular member of the distribution family.

For discrete distributions, the $\operatorname{cdf} F$ is related to the $\operatorname{pdf} f$ by

$$
F(x)=\sum_{y \leq x} f(y)
$$

For continuous distributions, the $\operatorname{cdf} F$ is related to the $\operatorname{pdf} f$ by

$$
F(x)=\int_{-\infty}^{x} f(y) d y
$$

Cdfs are used to compute probabilities of events. In particular, if F is a cdf and x and y are outcomes, then

- $P(y \leq x)=F(x)$
- $P(y>x)=1-F(x)$
- $P\left(x_{1}<y \leq x_{2}\right)=F\left(x_{2}\right)-F\left(x_{1}\right)$

For example, the t-statistic

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{n}}
$$

follows a Student's t distribution with $n-1$ degrees of freedom when computed from repeated random samples from a normal population with mean μ. Here \bar{x} is the sample mean, s is the sample standard deviation, and n is the sample size. The probability of observing a t-statistic greater than or equal to the value computed from a sample can be found with the tcdf function:

```
mu = 1; % Population mean
sigma = 2; % Population standard deviation
n = 100; % Sample size
x = normrnd(mu,sigma,n,1); % Random sample from population
xbar = mean(x); % Sample mean
s = std(x); % Sample standard deviation
t = (xbar-mu)/(s/sqrt(n)) % t-statistic
t =
    0.2489
p = 1-tcdf(t,n-1) % Probability of larger t-statistic
p =
    0.4020
```

This probability is the same as the p value returned by a t-test of the null hypothesis that the sample comes from a normal population with mean μ :

```
[h,ptest] = ttest(x,mu,0.05,'right')
h =
    0
ptest =
    0.4020
```


Estimating Empirical CDFs

The ksdensity function produces an empirical version of a probability density function (pdf). That is, instead of selecting a density with a particular parametric form and estimating the parameters, it produces a nonparametric density estimate that adapts itself to the data.

Similarly, it is possible to produce an empirical version of the cumulative distribution function (cdf). The ecdf function computes this empirical cdf. It
returns the values of a function F such that $F(x)$ represents the proportion of observations in a sample less than or equal to x.

The idea behind the empirical cdf is simple. It is a function that assigns probability $1 / n$ to each of n observations in a sample. Its graph has a stair-step appearance. If a sample comes from a distribution in a parametric family (such as a normal distribution), its empirical cdf is likely to resemble the parametric distribution. If not, its empirical distribution still gives an estimate of the cdf for the distribution that generated the data.

The following example generates 20 observations from a normal distribution with mean 10 and standard deviation 2 . You can use ecdf to calculate the empirical cdf and stairs to plot it. Then you overlay the normal distribution curve on the empirical function.

```
x = normrnd(10,2,20,1);
[f,xf] = ecdf(x);
stairs(xf,f)
hold on
xx=linspace(5,15,100);
yy = normcdf(xx,10,2);
plot(xx,yy,'r:')
hold off
legend('Empirical cdf','Normal cdf',2)
```


The empirical cdf is especially useful in survival analysis applications. In such applications the data may be censored, that is, not observed exactly. Some individuals may fail during a study, and you can observe their failure time exactly. Other individuals may drop out of the study, or may not fail until after the study is complete. The ecdf function has arguments for dealing with censored data. In addition, you can use the coxphfit function with individuals that have predictors that are not the same.

For piecewise probability density estimation, using the empirical cdf in the center of the distribution and Pareto distributions in the tails, see "Fitting Piecewise Distributions" on page 5-73.

Inverse Cumulative Distribution Functions

Inverse cumulative distribution functions for supported Statistics Toolbox distributions all end with inv, as in binoinv or expinv. Specific function names for specific distributions can be found in "Supported Distributions" on page 5-3.

Each function represents a parametric family of distributions. Input arguments are arrays of cumulative probabilities from 0 to 1 followed by a list of parameter values specifying a particular member of the distribution family.

For continuous distributions, the inverse cdf returns the unique outcome whose cdf value is the input cumulative probability.

For example, the expinv function can be used to compute inverses of exponential cumulative probabilities:

```
x = 0.5:0.2:1.5 % Outcomes
x =
    0.5000}00.7000 0.9000 1.1000 1.3000 1.5000
p = expcdf(x,1) % Cumulative probabilities
p =
    0.3935 0.5034 0.5934 0.6671 0.7275 0.7769
expinv(p,1) % Return original outcomes
ans =
    0.5000
```

For discrete distributions, there may be no outcome whose cdf value is the input cumulative probability. In these cases, the inverse cdf returns the first outcome whose cdf value equals or exceeds the input cumulative probability.

For example, the binoinv function can be used to compute inverses of binomial cumulative probabilities:

```
x = 0:5 % Some possible outcomes
p = binocdf(x,10,0.2) % Their cumulative probabilities
p =
    0.1074 0.3758 0.6778
q = [.1 .2 .3 .4] % New trial probabilities
```

```
q =
    0.1000 0.2000 0.3000 0.4000
binoinv(q,10,0.2) % Their corresponding outcomes
ans =
    0
```

The inverse cdf is useful in hypothesis testing, where critical outcomes of a test statistic are computed from cumulative significance probabilities. For example, norminv can be used to compute a 95% confidence interval under the assumption of normal variability:

```
p = [0.025 0.975]; % Interval containing 95% of [0,1]
x = norminv(p,0,1) % Assume standard normal variability
x =
    -1.9600 1.9600 % 95% confidence interval
n = 20; % Sample size
y = normrnd(8,1,n,1); % Random sample (assume mean is unknown)
ybar = mean(y);
ci = ybar + (1/sqrt(n))*x % Confidence interval for mean
ci =
    7.6779 8.5544
```


Distribution Statistics Functions

Distribution statistics functions for supported Statistics Toolbox distributions all end with stat, as in binostat or expstat. Specific function names for specific distributions can be found in "Supported Distributions" on page 5-3.

Each function represents a parametric family of distributions. Input arguments are lists of parameter values specifying a particular member of the distribution family. Functions return the mean and variance of the distribution, as a function of the parameters.

For example, the wblstat function can be used to visualize the mean of the Weibull distribution as a function of its two distribution parameters:

```
a = 0.5:0.1:3;
b = 0.5:0.1:3;
[A,B] = meshgrid(a,b);
M = wblstat(A,B);
surfc(A,B,M)
```


Distribution Fitting Functions

- "Fitting Regular Distributions" on page 5-71
- "Fitting Piecewise Distributions" on page 5-73

Fitting Regular Distributions

Distribution fitting functions for supported Statistics Toolbox distributions all end with fit, as in binofit or expfit. Specific function names for specific distributions can be found in "Supported Distributions" on page 5-3.

Each function represents a parametric family of distributions. Input arguments are arrays of data, presumed to be samples from some member of the selected distribution family. Functions return maximum likelihood estimates (MLEs) of distribution parameters, that is, parameters for the distribution family member with the maximum likelihood of producing the data as a random sample.

The Statistics Toolbox function mle is a convenient front end to the individual distribution fitting functions, and more. The function computes MLEs for distributions beyond those for which Statistics Toolbox software provides specific pdf functions.

For some pdfs, MLEs can be given in closed form and computed directly. For other pdfs, a search for the maximum likelihood must be employed. The search can be controlled with an options input argument, created using the statset function. For efficient searches, it is important to choose a reasonable distribution model and set appropriate convergence tolerances.

MLEs can be heavily biased, especially for small samples. As sample size increases, however, MLEs become unbiased minimum variance estimators with approximate normal distributions. This is used to compute confidence bounds for the estimates.

For example, consider the following distribution of means from repeated random samples of an exponential distribution:

```
mu = 1; % Population parameter
n = 1e3; % Sample size
ns = 1e4; % Number of samples
```

```
samples = exprnd(mu,n,ns); % Population samples
means = mean(samples); % Sample means
```

The Central Limit Theorem says that the means will be approximately normally distributed, regardless of the distribution of the data in the samples. The normfit function can be used to find the normal distribution that best fits the means:

```
[muhat,sigmahat,muci,sigmaci] = normfit(means)
muhat =
    1.0003
sigmahat =
    0.0319
muci =
    0.9997
    1.0010
sigmaci =
    0.0314
    0.0323
```

The function returns MLEs for the mean and standard deviation and their 95% confidence intervals.

To visualize the distribution of sample means together with the fitted normal distribution, you must scale the fitted pdf, with area $=1$, to the area of the histogram being used to display the means:

```
numbins = 50;
hist(means,numbins)
set(get(gca,'Children'),'FaceColor',[.8 . 8 1])
hold on
[bincounts,binpositions] = hist(means,numbins);
binwidth = binpositions(2) - binpositions(1);
histarea = binwidth*sum(bincounts);
x = binpositions(1):0.001:binpositions(end);
y = normpdf(x,muhat,sigmahat);
plot(x,histarea*y,'r','LineWidth',2)
```


Fitting Piecewise Distributions

The parametric methods discussed in "Fitting Regular Distributions" on page 5-71 fit data samples with smooth distributions that have a relatively low-dimensional set of parameters controlling their shape. These methods work well in many cases, but there is no guarantee that a given sample will be described accurately by any of the supported Statistics Toolbox distributions.

The empirical distributions computed by ecdf and discussed in "Estimating Empirical CDFs" on page 5-64 assign equal probability to each observation in a sample, providing an exact match of the sample distribution. However, the distributions are not smooth, especially in the tails where data may be sparse.

The paretotails function fits a distribution by piecing together the empirical distribution in the center of the sample with smooth generalized Pareto distributions (GPDs) in the tails. The output is an object of the paretotails class, with associated methods to evaluate the cdf, inverse cdf, and other functions of the fitted distribution.

As an example, consider the following data, with about 20% outliers:

```
left_tail = -exprnd(1,10,1);
right_tail = exprnd(5,10,1);
center = randn(80,1);
data = [left_tail;center;right_tail];
```

Neither a normal distribution nor a t distribution fits the tails very well:

```
probplot(data);
p = fitdist(data,'tlocationscale');
h = probplot(gca,p);
set(h,'color','r','linestyle','-')
title('{\bf Probability Plot}')
legend('Normal','Data','t','Location','NW')
```


On the other hand, the empirical distribution provides a perfect fit, but the outliers make the tails very discrete:

```
ecdf(data)
```


Random samples generated from this distribution by inversion might include, for example, values around 4.33 and 9.25 , but nothing in-between.

The paretotails function provides a single, well-fit model for the entire sample. The following uses generalized Pareto distributions (GPDs) for the lower and upper 10% of the data:

```
pfit = paretotails(data,0.1,0.9)
pfit =
Piecewise distribution with 3 segments
    -Inf < x < -1.30726 (0 < p < 0.1)
        lower tail, GPD(-1.10167,1.12395)
    -1.30726 < x < 1.27213 (0.1< p < 0.9)
        interpolated empirical cdf
    1.27213 < x < Inf (0.9 < p < 1)
```

```
upper tail, GPD(1.03844,0.726038)
```

$x=-4: 0.01: 10 ;$
$\operatorname{plot}(x, \operatorname{cdf}($ pfit,$x))$

Access information about the fit using the methods of the paretotails class. Options allow for nonparametric estimation of the center of the cdf.

Negative Log-Likelihood Functions

Negative log-likelihood functions for supported Statistics Toolbox distributions all end with like, as in explike. Specific function names for specific distributions can be found in "Supported Distributions" on page 5-3.

Each function represents a parametric family of distributions. Input arguments are lists of parameter values specifying a particular member of the distribution family followed by an array of data. Functions return the negative log-likelihood of the parameters, given the data.

Negative log-likelihood functions are used as objective functions in search algorithms such as the one implemented by the MATLAB function fminsearch. Additional search algorithms are implemented by Optimization Toolbox ${ }^{\text {TM }}$ functions and Global Optimization Toolbox functions.

When used to compute maximum likelihood estimates (MLEs), negative log-likelihood functions allow you to choose a search algorithm and exercise low-level control over algorithm execution. By contrast, the functions discussed in "Distribution Fitting Functions" on page 5-71 use preset algorithms with options limited to those set by the statset function.

Likelihoods are conditional probability densities. A parametric family of distributions is specified by its $\operatorname{pdf} f(x, a)$, where x and a represent the variables and parameters, respectively. When a is fixed, the pdf is used to compute the density at $x, f(x \mid a)$. When x is fixed, the pdf is used to compute the likelihood of the parameters $a, f(a \mid x)$. The joint likelihood of the parameters over an independent random sample X is

$$
L(a)=\prod_{x \in X} f(a \mid x)
$$

Given X, MLEs maximize $L(a)$ over all possible a.
In numerical algorithms, the log-likelihood function, $\log (L(a))$, is (equivalently) optimized. The logarithm transforms the product of potentially small likelihoods into a sum of logs, which is easier to distinguish from 0 in computation. For convenience, Statistics Toolbox negative log-likelihood functions return the negative of this sum, since the optimization algorithms to which the values are passed typically search for minima rather than maxima.

For example, use gamrnd to generate a random sample from a specific gamma distribution:

```
a = [1,2];
X = gamrnd(a(1),a(2),1e3,1);
```

Given X, the gamlike function can be used to visualize the likelihood surface in the neighborhood of a:

```
mesh = 50;
delta = 0.5;
a1 = linspace(a(1)-delta,a(1)+delta,mesh);
a2 = linspace(a(2)-delta,a(2)+delta,mesh);
logL = zeros(mesh); % Preallocate memory
for i = 1:mesh
    for j = 1:mesh
        logL(i,j) = gamlike([a1(i),a2(j)],X);
    end
end
[A1,A2] = meshgrid(a1,a2);
surfc(A1,A2,logL)
```


The MATLAB function fminsearch is used to search for the minimum of the likelihood surface:

```
LL = @(u)gamlike([u(1),u(2)],X); % Likelihood given X
MLES = fminsearch(LL,[1,2])
MLES =
    1.0231 1.9729
```

These can be compared to the MLEs returned by the gamfit function, which uses a combination search and solve algorithm:

```
ahat = gamfit(X)
ahat =
    1.0231 1.9728
```

The MLEs can be added to the surface plot (rotated to show the minimum):
hold on
plot3(MLES(1), MLES(2), LL(MLES), ...
'ro','MarkerSize',5,...
'MarkerFaceColor', 'r')

Random Number Generators

The Statistics Toolbox supports the generation of random numbers from various distributions. Each RNG represents a parametric family of distributions. RNGs return random numbers from the specified distribution in an array of the specified dimensions. Specific RNG names for specific distributions are in "Supported Distributions" on page 5-3.

Other random number generation functions which do not support specific distributions include:

- cvpartition
- datasample
- hmmgenerate
- lhsdesign
- lhsnorm
- mhsample
- random
- randsample
- slicesample

RNGs in Statistics Toolbox software depend on MATLAB's default random number stream via the rand and randn functions, each RNG uses one of the techniques discussed in "Common Generation Methods" on page 6-5 to generate random numbers from a given distribution.

By controlling the default random number stream and its state, you can control how the RNGs in Statistics Toolbox software generate random values. For example, to reproduce the same sequence of values from an RNG, you can save and restore the default stream's state, or reset the default stream. For details on managing the default random number stream, see "Managing the Global Stream".

MATLAB initializes the default random number stream to the same state each time it starts up. Thus, RNGs in Statistics Toolbox software will generate the same sequence of values for each MATLAB session unless you
modify that state at startup. One simple way to do that is to add commands to startup.m such as
rng('shuffle');
that initialize MATLAB's default random number stream to a different state for each session.

Dependencies of the Random Number Generators

The following table lists the dependencies of Statistics Toolbox RNGs on the MATLAB base RNGs rand, randi, and/or randn.

RNG	MATLAB Base RNG
betarnd	rand, randn
binornd	rand
chi2rnd	rand, randn
evrnd	rand
exprnd	rand
datasample	rand, randi, randperm
frnd	rand, randn
gamrnd	rand, randn
geornd	rand
gevrnd	rand
gprnd	rand
hygernd	rand
iwishrnd	rand, randn
johnsrnd	randn
lhsdesign	rand
lhsnorm	rand
lognrnd	randn
mhsample	rand or randn, depending on the RNG given for the proposal distribution
mvnrnd	randn
mvtrnd	rand, randn

RNG	MATLAB Base RNG
nbinrnd	rand, randn
ncfrnd	rand, randn
nctrnd	rand, randn
ncx2rnd	randn
normrnd	randn
pearsrnd	rand or randn, depending on the distribution type
poissrnd	rand, randn
random	rand or randn, depending on the specified distribution
randsample	rand
raylrnd	randn
slicesample	rand
trnd	rand, randn
unidrnd	rand
unifrnd	rand
wblrnd	rand, randn
wishrnd	

Using Probability Distribution Objects

In this section...
"Using Distribution Objects" on page 5-85
"What are Objects?" on page 5-86
"Creating Distribution Objects" on page 5-89
"Object-Supported Distributions" on page 5-90
"Performing Calculations Using Distribution Objects" on page 5-91
"Capturing Results Using Distribution Objects" on page 5-98

Using Distribution Objects

For many distributions supported by Statistics Toolbox software, objects are available for statistical analysis. This section gives a general overview of the uses of distribution objects, including sample work flows. For information on objects available for specific distributions, see "Object-Supported Distributions" on page 5-90.

Probability distribution objects allow you to easily fit, access, and store distribution information for a given data set. The following operations are easier to perform using distribution objects:

- Grouping a single dataset in a number of different ways using group names, and then fit a distribution to each group. For an example of how to fit distributions to grouped data, see "Example: Fitting Distributions to Grouped Data Within a Single Dataset" on page 5-92.
- Fitting different distributions to the same set of data. For an example of how objects make fitting multiple distribution types easier, see "Example: Fitting Multiple Distribution Types to a Single Dataset" on page 5-96.
- Sharing fitted distributions across workspaces. For an example of sharing information using probability distribution objects, see "Example: Saving and Sharing Distribution Fit Data" on page 5-98.

Deciding to Use Distribution Objects

If you know the type of distribution you would like to use, objects provide a less complex interface than functions and a more efficient functionality than the dfittool GUI.

If you are a novice statistician who would like to explore how various distributions look without having to manipulate data, see "Working with Distributions Through GUIs" on page 5-10.

If you have no data to fit, but want to calculate a pdf, cdf, etc for various parameters, see "Statistics Toolbox Distribution Functions" on page 5-53.

What are Objects?

Objects are, in short, a convenient way of storing data. They allow you to set rules for the types of data to store, while maintaining some flexibility for the actual values of the data. For example, in statistics groups of distributions have some general things in common:

- All distributions have a name (ex, Normal).
- Parametric distributions have parameters.
- Nonparametric distributions have kernel-smoothing functions.

Objects store all this information within properties. Classes of related objects (for example, all univariate parametric distributions) have the same properties with values and types relevant to a specified distribution. In addition to storing information within objects, you can perform certain actions (called methods) on objects.

Subclasses (for example, ProbDistParametric is a subclass of ProbDist) contain the same properties and methods as the original class, in addition to other properties relevant to that subclass. This concept is called inheritance. Inheritance means that subclasses of a class have all of its properties and methods. For example, parametric distributions, which are a subset (subclass) of probability distributions, have input data and a distribution name. The following diagram illustrates this point:

The left side of this diagram shows the inheritance line from all probability distributions down to univariate parametric probability distributions. The right side shows the lineage down to univariate kernel distributions. Here is how to interpret univariate parametric distribution lineage:

- ProbDist is a class of objects that includes all probability distributions. All probability distribution objects have at least these properties:
- DistName - the name of the distribution (for example Normal or Weibull)
- InputData - the data fit to the distribution

In addition, you can perform the following actions on these objects, using the following methods:

- cdf - Return the cumulative distribution function for a specified distribution.
- pdf - Return the probability density function for a specified distribution.
- random - Generate random numbers based on a specified distribution.
- ProbDistParametric is a class of objects that includes all parametric probability distributions. All parametric probability distribution objects have the properties and methods of a ProbDist object, in addition to at least the following properties:
- NLogL - Negative log likelihood for input data
- NumParams - Number of parameters for that distribution
- ParamCov - Covariance matrix of parameter estimates
- ParamDescription - Descriptions of parameters
- ParamNames - Names of parameters
- Params - Values of parameters

No additional unique methods apply to ProbDistParametric objects.

- ProbDistUnivParam is a class of objects that includes only univariate parametric probability distributions. In addition to the properties and methods of ProbDist and ProbDistParametric objects, these objects also have at least the following methods:
- icdf - Return the inverse cumulative distribution function for a specified distribution based on a given set of data.
- iqr - Return the interquartile range for a specified distribution based on a given set of data.
- mean - Return the mean for a specified distribution based on a given set of data.
- median - Return the median for a specified distribution based on a given set of data.
- paramci - Return the parameter confidence intervals for a specified distribution based on a given set of data.
- std - Return the standard deviation for a specified distribution based on a given set of data.
- var - Return the variance for a specified distribution based on a given set of data.
No additional unique properties apply to ProbDistUnivParam objects.

The univariate nonparametric lineage reads in a similar manner, with different properties and methods. For more information on nonparametric objects and their methods and properties, see ProbDistKernel and ProbDistUnivKernel.

Creating Distribution Objects

There are two ways to create distribution objects:

- Use the fitdist function. See "Creating Distribution Objects Using fitdist" on page 5-89.
- Use the object constructor. See "Creating Distribution Objects Using Constructors" on page 5-89.

Creating Distribution Objects Using fitdist

Using the fitdist function is the simplest way of creating distribution objects. Like the *fit functions, fitdist fits your data to a specified distribution and returns relevant distribution information. fitdist creates an object relevant to the type of distribution you specify: if you specify a parametric distribution, it returns a ProbDistUnivParam object. For examples of how to use fitdist to fit your data, see "Performing Calculations Using Distribution Objects" on page 5-91.

Creating Distribution Objects Using Constructors

If you know the distribution you would like to use and would like to create a univariate parametric distribution with known parameters, you can use the ProbDistUnivParam constructor. For example, create a normal distribution with mean 100 and standard deviation 10 :

```
pd = ProbDistUnivParam('normal',[100 10])
```

For nonparametric distributions, you must have a dataset. Using fitdist is a simpler way to fit nonparametric data, but you can use the ProbDistUnivKernel constructor as well. For example, create a nonparametric distribution of the MPG data from carsmall.mat:
load carsmall
pd = ProbDistUnivKernel(MPG)

Object-Supported Distributions

Object-oriented programming in the Statistics Toolbox supports the following distributions.

Parametric Distributions

Use the following distribution to create ProbDistUnivParam objects using fitdist. For more information on the cumulative distribution function (cdf) and probability density function (pdf) methods, as well as other available methods, see the ProbDistUnivParam class reference page.

Supported Distribution	Input to fitdist
"Beta Distribution" on page B-4	'beta'
"Binomial Distribution" on page B-7	'binomial'
"Birnbaum-Saunders Distribution" on page B-10	'birnbaumsaunders '
"Burr Type XII Distribution" on page B-12	'burr'
"Exponential Distribution" on page B-29	'exponential'
"Extreme Value Distribution" on page B-32	'extreme value ' or 'ev'
"Gamma Distribution" on page B-40	'gamma'
"Generalized Extreme Value Distribution" on page B-45	'generalized extreme value' or
'gev'	
"Generalized Pareto Distribution" on page B-50	'generalized pareto' or 'gp'
"Inverse Gaussian Distribution" on page B-58	'inversegaussian'
"Logistic Distribution" on page B-62	'logistic'
"Loglogistic Distribution" on page B-63	'loglogistic'

Supported Distribution	Input to fitdist
"Lognormal Distribution" on page B-64	'lognormal'
"Nakagami Distribution" on page B-83	'nakagami'
"Negative Binomial Distribution" on page B-85	'negative binomial' or 'nbin'
"Normal Distribution" on page B-96	'normal'
"Poisson Distribution" on page B-102	'poisson'
"Rayleigh Distribution" on page B-104	'rayleigh'
"Rician Distribution" on page B-106	'rician'
"t Location-Scale Distribution" on page B-110	'tlocationscale '
"Weibull Distribution" on page B-116	'weibull' or 'wbl'

Nonparametric Distributions

Use the following distributions to create ProbDistUnivKernel objects. For more information on the cumulative distribution function (cdf) and probability density function (pdf) methods, as well as other available methods, see the ProbDistUnivKernel class reference page.

Supported Distribution	Input to fitdist
"Nonparametric Distributions" on page B-95	'kernel'

Performing Calculations Using Distribution Objects

Distribution objects make it easier for you to perform calculations on complex datasets. The following sample workflows show some of the functionality of these objects.

- "Example: Fitting a Single Distribution to a Single Dataset" on page 5-92
- "Example: Fitting Distributions to Grouped Data Within a Single Dataset" on page 5-92
- "Example: Fitting Multiple Distribution Types to a Single Dataset" on page 5-96

Example: Fitting a Single Distribution to a Single Dataset

Fit a single Normal distribution to a dataset using fitdist:
load carsmall
NormDist = fitdist(MPG, 'normal')
NormDist =
normal distribution

```
    mu = 23.7181
    sigma = 8.03573
```

The output MATLAB returns is a ProbDistUnivParam object with a DistName property of 'normal distribution'. The ParamNames property contains the strings mu and sigma, while the Params property contains the parameter values.

Example: Fitting Distributions to Grouped Data Within a Single Dataset

Often, datasets are collections of data you can group in different ways. Using fitdist and the data from carsmall.mat, group the MPG data by country of origin, then fit a Weibull distribution each group:

```
load carsmall
[WeiByOrig, Country] = fitdist(MPG,'weibull','by',Origin)
Warning: Error while fitting group 'Italy':
Not enough data in X to fit this distribution.
> In fitdist at 171
WeiByOrig =
```

```
Columns 1 through 4
    [1x1 ProbDistUnivParam] [1x1 ProbDistUnivParam] ...
    [1x1 ProbDistUnivParam] [1x1 ProbDistUnivParam]
Columns 5 through 6
    [1x1 ProbDistUnivParam] []
Country =
    'USA'
    'France'
    'Japan'
    'Germany'
    'Sweden'
    'Italy'
```

A warning appears informing you that, since the data only represents one Italian car, fitdist cannot fit a Weibull distribution to that group. Each one of the five other groups now has a distribution object associated with it, represented in the cell array wd. Each object contains properties that hold information about the data, the distribution, and the parameters. For more information on what properties exist and what information they contain, see ProbDistUnivParam or ProbDistUnivKernel.

Now access two of the objects and their properties:

```
% Get USA fit
distusa = WeiByOrig{1};
% Use the InputData property of ProbDistUnivParam objects to see
% the actual data used to fit the distribution:
dusa = distusa.InputData.data;
% Get Japan fit and data
distjapan = WeiByOrig{3};
djapan = distjapan.InputData.data;
```

Now you can easily compare PDFs using the pdf method of the ProbDistUnivParam class:

```
time = linspace(0,45);
pdfjapan = pdf(distjapan,time);
pdfusa = pdf(distusa,time);
hold on
plot(time,[pdfjapan;pdfusa])
l = legend('Japan','USA')
set(l,'Location','Best')
xlabel('MPG')
ylabel('Probability Density')
```


You could then further group the data and compare, for example, MPG by year for American cars:

```
load carsmall
[WeiByYearOrig, Names] = fitdist(MPG,'weibull','by',...
    {Origin Model_Year});
USA7O = WeiByYearOrig{1};
USA76 = WeiByYearOrig{2};
USA82 = WeiByYearOrig{3};
time = linspace(0,45);
pdf70 = pdf(USA70,time);
pdf76 = pdf(USA76,time);
pdf82 = pdf(USA82,time);
line(t,[pdf70;pdf76;pdf82])
l = legend('1970','1976','1982')
set(l,'Location','Best')
title('USA Car MPG by Year')
xlabel('MPG')
ylabel('Probability Density')
```


Example: Fitting Multiple Distribution Types to a Single Dataset

Distribution objects make it easy to fit multiple distributions to the same dataset, while minimizing workspace clutter. For example, use fitdist to group the MPG data by country of origin, then fit Weibull, Normal, Logistic, and nonparametric distributions for each group:
load carsmall;
[WeiByOrig, Country] = fitdist(MPG,'weibull','by',Origin);
[NormByOrig, Country] = fitdist(MPG,'normal','by',Origin);
[LogByOrig, Country] = fitdist(MPG,'logistic','by',Origin);
[KerByOrig, Country] = fitdist(MPG,'kernel','by',Origin);

Extract the fits for American cars and compare the fits visually against a histogram of the original data:

```
WeiUSA = WeiByOrig{1};
NormUSA = NormByOrig{1};
LogUSA = LogByOrig{1};
KerUSA = KerByOrig{1};
% Since all three distributions use the same set of data,
% you can extract the data from any of them:
data = WeiUSA.InputData.data;
% Create a histogram of the data:
[n,y] = hist(data,10);
b = bar(y,n,'hist');
set(b,'FaceColor',[1,0.8,0])
% Scale the density by the histogram area, for easier display:
area = sum(n) * (y(2)-y(1));
time = linspace(0,45);
pdfWei = pdf(WeiUSA,time);
pdfNorm = pdf(NormUSA,time);
pdfLog = pdf(LogUSA,time);
pdfKer = pdf(KerUSA,time);
allpdf = [pdfWei;pdfNorm;pdfLog;pdfKer];
line(t,area * allpdf)
l = legend('Data','Weibull','Normal','Logistic','Kernel')
set(l,'Location','Best')
title('USA Car')
xlabel('MPG')
```


You can see that only the nonparametric kernel distribution, KerUSA, comes close to revealing the two modes in the data.

Capturing Results Using Distribution Objects

Distribution objects allow you to share both your dataset and your analysis results simply by saving the information to a .mat file.

Example: Saving and Sharing Distribution Fit Data

Using the premise from the previous set of examples, group the MPG data in carsmall.mat by country of origin and fit four different distributions to each of the six sets of data:

```
load carsmall;
[WeiByOrig, Country] = fitdist(MPG,'weibull','by',Origin);
[NormByOrig, Country] = fitdist(MPG,'normal','by',Origin);
[LogByOrig, Country] = fitdist(MPG,'logistic','by',Origin);
[KerByOrig, Country] = fitdist(MPG,'kernel','by',Origin);
```

Combine all four fits and the country labels into a single cell array, including "headers" to indicate which distributions correspond to which objects. Then, save the array to a .mat file:

```
AllFits = cell(['Country' Country'; 'Weibull' WeiByOrig;...
    'Normal' NormByOrig; 'Logistic' LogByOrig; 'Kernel',...
    KerByOrig]);
save('CarSmallFits.mat','AllFits');
```

To show that the data is both safely saved and easily restored, clear your workspace of relevant variables. This command clears only those variables associated with this example:

```
clear('Weight','Acceleration','AllFits','Country',...
'Cylinders','Displacement','Horsepower','KerByOrig',...
'LogByOrig','MPG','Model','Model_Year','NormByOrig',....
'Origin','WeiByOrig')
```

Now, load the data:
load CarSmallFits
AllFits

You can now access the distributions objects as in the previous examples.

Probability Distributions Used for Multivariate Modeling

In this section...
"Gaussian Mixture Models" on page 5-100
"Copulas: Generate Correlated Samples" on page 5-108

Gaussian Mixture Models

- "Creating Gaussian Mixture Models" on page 5-100
- "Simulating Gaussian Mixtures" on page 5-106

Gaussian mixture models are formed by combining multivariate normal density components. For information on individual multivariate normal densities, see "Multivariate Normal Distribution" on page B-71 and related distribution functions listed under "Multivariate Distributions" on page 5-9.

In Statistics Toolbox software, use the gmdistribution class to fit data using an expectation maximization (EM) algorithm, which assigns posterior probabilities to each component density with respect to each observation. The fitting method uses an iterative algorithm that converges to a local optimum. Clustering using Gaussian mixture models is sometimes considered a soft clustering method. The posterior probabilities for each point indicate that each data point has some probability of belonging to each cluster.

For more information on clustering with Gaussian mixture models, see "Gaussian Mixture Models" on page 13-28. This section describes their creation.

Creating Gaussian Mixture Models

- "Specifying a Model" on page 5-101
- "Fitting a Model to Data" on page 5-103

Specifying a Model. Use the gmdistribution constructor to create Gaussian mixture models with specified means, covariances, and mixture proportions. The following creates an object of the gmdistribution class defining a two-component mixture of bivariate Gaussian distributions:

```
MU = [1 2;-3 -5]; % Means
SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]); % Covariances
p = ones(1,2)/2; % Mixing proportions
obj = gmdistribution(MU,SIGMA,p);
```

Display properties of the object with the MATLAB function fieldnames:

```
properties = fieldnames(obj)
properties =
    'NDimensions'
    'DistName'
    'NComponents'
    'PComponents'
    'mu'
    'Sigma'
    'NlogL'
    'AIC'
    'BIC'
    'Converged'
    'Iters'
    'SharedCov'
    'CovType'
    'RegV'
```

The gmdistribution reference page describes these properties. To access the value of a property, use dot indexing:

```
dimension = obj.NDimensions
dimension =
    2
name = obj.DistName
name =
gaussian mixture distribution
```

Use the methods pdf and cdf to compute values and visualize the object:
ezsurf(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])


```
ezsurf(@(x,y)cdf(obj,[x y]),[-10 10],[-10 10])
```


Fitting a Model to Data. You can also create Gaussian mixture models by fitting a parametric model with a specified number of components to data. The fit method of the gmdistribution class uses the syntax obj $=$ gmdistribution.fit (X, k), where X is a data matrix and k is the specified number of components. Choosing a suitable number of components k is essential for creating a useful model of the data-too few components fails to model the data accurately; too many components leads to an over-fit model with singular covariance matrices.

The following example illustrates this approach.
First, create some data from a mixture of two bivariate Gaussian distributions using the mvnrnd function:

```
MU1 = [1 2];
SIGMA1 = [2 0; 0 .5];
```

```
MU2 = [-3 -5];
SIGMA2 = [1 0; 0 1];
X = [mvnrnd(MU1,SIGMA1,1000);
mvnrnd(MU2,SIGMA2,1000)];
scatter(X(:,1),X(:,2),10,'.')
```


Next, fit a two-component Gaussian mixture model:

```
options = statset('Display','final');
obj = gmdistribution.fit(X,2,'Options',options);
hold on
h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);
hold off
```


Among the properties of the fit are the parameter estimates:

```
ComponentMeans = obj.mu
ComponentMeans =
    0.9391 2.0322
    -2.9823 -4.9737
ComponentCovariances = obj.Sigma
ComponentCovariances(:,:,1) =
    1.7786 -0.0528
    -0.0528 0.5312
ComponentCovariances(:,:,2) =
    1.0491 -0.0150
```

```
    -0.0150 0.9816
MixtureProportions = obj.PComponents
MixtureProportions =
    0.5000 0.5000
```

The two-component model minimizes the Akaike information:

```
AIC = zeros(1,4);
obj = cell(1,4);
for k = 1:4
    obj{k} = gmdistribution.fit(X,k);
    AIC(k)= obj{k}.AIC;
end
[minAIC,numComponents] = min(AIC);
numComponents
numComponents =
    2
model = obj{2}
model =
Gaussian mixture distribution
with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean: 0.9391 2.0322
Component 2:
Mixing proportion: 0.500000
Mean: -2.9823 -4.9737
```

Both the Akaike and Bayes information are negative log-likelihoods for the data with penalty terms for the number of estimated parameters. You can use them to determine an appropriate number of components for a model when the number of components is unspecified.

Simulating Gaussian Mixtures

Use the method random of the gmdistribution class to generate random data from a Gaussian mixture model created with gmdistribution or fit.

For example, the following specifies a gmdistribution object consisting of a two-component mixture of bivariate Gaussian distributions:

```
MU = [1 2;-3 -5];
SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]);
p = ones(1,2)/2;
obj = gmdistribution(MU,SIGMA,p);
ezcontour(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])
hold on
```


Use random (gmdistribution) to generate 1000 random values:

```
Y = random(obj,1000);
scatter(Y(:,1),Y(:,2),10,'.')
```


Copulas: Generate Correlated Samples

- "Determining Dependence Between Simulation Inputs" on page 5-109
- "Constructing Dependent Bivariate Distributions" on page 5-113
- "Using Rank Correlation Coefficients" on page 5-117
- "Using Bivariate Copulas" on page 5-120
- "Higher Dimension Copulas" on page 5-127
- "Archimedean Copulas" on page 5-129
- "Simulating Dependent Multivariate Data Using Copulas" on page 5-131
- "Example: Fitting Copulas to Data" on page 5-136

Copulas are functions that describe dependencies among variables, and provide a way to create distributions that model correlated multivariate data. Using a copula, you can construct a multivariate distribution by specifying marginal univariate distributions, and then choose a copula to provide a correlation structure between variables. Bivariate distributions, as well as distributions in higher dimensions, are possible.

Determining Dependence Between Simulation Inputs

One of the design decisions for a Monte Carlo simulation is a choice of probability distributions for the random inputs. Selecting a distribution for each individual variable is often straightforward, but deciding what dependencies should exist between the inputs may not be. Ideally, input data to a simulation should reflect what you know about dependence among the real quantities you are modeling. However, there may be little or no information on which to base any dependence in the simulation. In such cases, it is useful to experiment with different possibilities in order to determine the model's sensitivity.

It can be difficult to generate random inputs with dependence when they have distributions that are not from a standard multivariate distribution. Further, some of the standard multivariate distributions can model only limited types of dependence. It is always possible to make the inputs independent, and while that is a simple choice, it is not always sensible and can lead to the wrong conclusions.

For example, a Monte-Carlo simulation of financial risk could have two random inputs that represent different sources of insurance losses. You could model these inputs as lognormal random variables. A reasonable question to ask is how dependence between these two inputs affects the results of the simulation. Indeed, you might know from real data that the same random conditions affect both sources; ignoring that in the simulation could lead to the wrong conclusions.

Example: Generate and Exponentiate Normal Random Variables.

The lognrnd function simulates independent lognormal random variables. In the following example, the mvnrnd function generates n pairs of independent normal random variables, and then exponentiates them. Notice that the covariance matrix used here is diagonal:

```
n = 1000;
sigma = .5;
SigmaInd = sigma.^2 .* [1 0; 0 1]
SigmaInd =
    0.25 0
    0 0.25
ZInd = mvnrnd([0 0],SigmaInd,n);
XInd = exp(ZInd);
plot(XInd(:, 1),XInd(:,2),'.')
axis([0
axis equal
xlabel('X1')
ylabel('X2')
```


Dependent bivariate lognormal random variables are also easy to generate using a covariance matrix with nonzero off-diagonal terms:

```
rho = .7;
```

SigmaDep = sigma.^2 .* [1 rho; rho 1]
SigmaDep =
0.25
0.175
0.175
0.25

```
ZDep = mvnrnd([0 0],SigmaDep,n);
```

XDep $=\exp (Z D e p) ;$

A second scatter plot demonstrates the difference between these two bivariate distributions:

```
plot(XDep(:,1),XDep(:,2),'.')
axis([0 5 0 5])
axis equal
xlabel('X1')
ylabel('X2')
```


It is clear that there is a tendency in the second data set for large values of X1 to be associated with large values of X2, and similarly for small values. The correlation parameter, ρ, of the underlying bivariate normal determines this dependence. The conclusions drawn from the simulation could well depend on whether you generate X1 and X2 with dependence. The bivariate lognormal distribution is a simple solution in this case; it easily generalizes to higher dimensions in cases where the marginal distributions are different lognormals.

Other multivariate distributions also exist. For example, the multivariate t and the Dirichlet distributions simulate dependent t and beta random variables, respectively. But the list of simple multivariate distributions is not long, and they only apply in cases where the marginals are all in the same family (or even the exact same distributions). This can be a serious limitation in many situations.

Constructing Dependent Bivariate Distributions

Although the construction discussed in the previous section creates a bivariate lognormal that is simple, it serves to illustrate a method that is more generally applicable.

1 Generate pairs of values from a bivariate normal distribution. There is statistical dependence between these two variables, and each has a normal marginal distribution.

2 Apply a transformation (the exponential function) separately to each variable, changing the marginal distributions into lognormals. The transformed variables still have a statistical dependence.

If a suitable transformation can be found, this method can be generalized to create dependent bivariate random vectors with other marginal distributions. In fact, a general method of constructing such a transformation does exist, although it is not as simple as exponentiation alone.

By definition, applying the normal cumulative distribution function (cdf), denoted here by Φ, to a standard normal random variable results in a random variable that is uniform on the interval $[0,1]$. To see this, if Z has a standard normal distribution, then the cdf of $U=\Phi(Z)$ is

$$
\operatorname{Pr}\{U \leq u\}=\operatorname{Pr}\{\Phi(Z) \leq u\}=\operatorname{Pr}\left(Z \leq \Phi^{-1}(u)\right\}=u
$$

and that is the cdf of a $\operatorname{Unif}(0,1)$ random variable. Histograms of some simulated normal and transformed values demonstrate that fact:

```
n = 1000;
z = normrnd(0,1,n,1);
hist(z, -3.75:.5:3.75)
xlim([-4 4])
title('1000 Simulated N(0,1) Random Values')
xlabel('Z')
ylabel('Frequency')
set(get(gca,'Children'),'FaceColor',[.8 . 8 1])
```


Borrowing from the theory of univariate random number generation, applying the inverse cdf of any distribution, F, to a $\operatorname{Unif}(0,1)$ random variable results in a random variable whose distribution is exactly F (see "Inversion Methods" on page 6-7). The proof is essentially the opposite of the preceding proof for the forward case. Another histogram illustrates the transformation to a gamma distribution:

```
x = gaminv(u,2,1);
hist(x,.25:.5:9.75)
title('1000 Simulated N(0,1) Values Transformed to Gamma(2,1)')
xlabel('X')
ylabel('Frequency')
set(get(gca,'Children'),'FaceColor',[.8 . 8 1])
```


You can apply this two-step transformation to each variable of a standard bivariate normal, creating dependent random variables with arbitrary marginal distributions. Because the transformation works on each component separately, the two resulting random variables need not even have the same marginal distributions. The transformation is defined as:

$$
\begin{aligned}
& Z=\left[Z_{1}, Z_{2}\right] \square N\left([0,0],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]\right) \\
& U=\left[\Phi\left(Z_{1}\right), \Phi\left(Z_{2}\right)\right] \\
& X=\left[G_{1}\left(U_{1}\right), G_{2}\left(U_{2}\right)\right]
\end{aligned}
$$

where G_{1} and G_{2} are inverse cdfs of two possibly different distributions. For example, the following generates random vectors from a bivariate distribution with t_{5} and $\operatorname{Gamma}(2,1)$ marginals:
$\mathrm{n}=1000$; rho = .7;
Z = mvnrnd([0 0],[1 rho; rho 1],n);
U = normcdf(Z);
$X=[g a m i n v(U(:, 1), 2,1) \operatorname{tinv(U(:,2),5)];~}$
scatterhist(X(:,1),X(:,2),'Direction','out')

This plot has histograms alongside a scatter plot to show both the marginal distributions, and the dependence.

Using Rank Correlation Coefficients

The correlation parameter, ρ, of the underlying bivariate normal determines the dependence between X1 and X2 in this construction. However, the linear correlation of X1 and X2 is not ρ. For example, in the original lognormal case, a closed form for that correlation is:

$$
\operatorname{cor}(X 1, X 2)=\frac{e^{\rho \sigma^{2}}-1}{e^{\sigma^{2}}-1}
$$

which is strictly less than ρ, unless ρ is exactly 1 . In more general cases such as the Gamma/t construction, the linear correlation between X1 and X2 is difficult or impossible to express in terms of ρ, but simulations show that the same effect happens.

That is because the linear correlation coefficient expresses the linear dependence between random variables, and when nonlinear transformations are applied to those random variables, linear correlation is not preserved. Instead, a rank correlation coefficient, such as Kendall's τ or Spearman's ρ, is more appropriate.

Roughly speaking, these rank correlations measure the degree to which large or small values of one random variable associate with large or small values of another. However, unlike the linear correlation coefficient, they measure the association only in terms of ranks. As a consequence, the rank correlation is preserved under any monotonic transformation. In particular, the transformation method just described preserves the rank correlation. Therefore, knowing the rank correlation of the bivariate normal Z exactly determines the rank correlation of the final transformed random variables, X. While the linear correlation coefficient, ρ, is still needed to parameterize the underlying bivariate normal, Kendall's τ or Spearman's ρ are more useful in describing the dependence between random variables, because they are invariant to the choice of marginal distribution.

For the bivariate normal, there is a simple one-to-one mapping between Kendall's τ or Spearman's ρ, and the linear correlation coefficient ρ :

$$
\begin{aligned}
& \tau=\frac{2}{\pi} \arcsin (\rho) \quad \text { or } \quad \rho=\sin \left(\tau \frac{\pi}{2}\right) \\
& \rho_{\mathrm{s}}=\frac{6}{\pi} \arcsin \left(\frac{\rho}{2}\right) \text { or } \quad \rho=2 \sin \left(\rho_{\mathrm{s}} \frac{\pi}{6}\right)
\end{aligned}
$$

The following plot shows the relationship:

```
rho = -1:.01:1;
```

```
tau = 2.*asin(rho)./pi;
rho_s = 6.*asin(rho./2)./pi;
plot(rho,tau,'b-','LineWidth',2)
hold on
plot(rho,rho_s,'g-','LineWidth', 2)
plot([-1 1],[-1 1],'k:','LineWidth',2)
axis([[-1 1 -1 1])
xlabel('rho')
ylabel('Rank correlation coefficient')
legend('Kendall''s {\it\tau}', ...
    'Spearman''s {\it\rho_s}', ...
    'location','NW')
```


Thus, it is easy to create the desired rank correlation between X1 and X2, regardless of their marginal distributions, by choosing the correct ρ parameter value for the linear correlation between Z1 and Z2.

For the multivariate normal distribution, Spearman's rank correlation is almost identical to the linear correlation. However, this is not true once you transform to the final random variables.

Using Bivariate Copulas

The first step of the construction described in the previous section defines what is known as a bivariate Gaussian copula. A copula is a multivariate probability distribution, where each random variable has a uniform marginal distribution on the unit interval $[0,1]$. These variables may be completely independent, deterministically related (e.g., U2 = U1), or anything in between. Because of the possibility for dependence among variables, you can use a copula to construct a new multivariate distribution for dependent variables. By transforming each of the variables in the copula separately using the inversion method, possibly using different cdfs, the resulting distribution can have arbitrary marginal distributions. Such multivariate distributions are often useful in simulations, when you know that the different random inputs are not independent of each other.

Statistics Toolbox functions compute:

- Probability density functions (copulapdf) and the cumulative distribution functions (copulacdf) for Gaussian copulas
- Rank correlations from linear correlations (copulastat) and vice versa (copulaparam)
- Random vectors (copularnd)
- Parameters for copulas fit to data (copulafit)

For example, use the copularnd function to create scatter plots of random values from a bivariate Gaussian copula for various levels of ρ, to illustrate the range of different dependence structures. The family of bivariate Gaussian copulas is parameterized by the linear correlation matrix:

$$
\mathrm{P}=\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)
$$

U1 and U2 approach linear dependence as ρ approaches ± 1, and approach complete independence as ρ approaches zero:

```
n = 500;
U = copularnd('Gaussian',[1 .8; . 8 1],n);
subplot(2,2,1)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = 0.8')
xlabel('U1')
ylabel('U2')
U = copularnd('Gaussian',[1 .1; .1 1],n);
subplot(2,2,2)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = 0.1')
xlabel('U1')
ylabel('U2')
U = copularnd('Gaussian',[1 -.1; -.1 1],n);
subplot(2,2,3)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = -0.1')
xlabel('U1')
ylabel('U2')
U = copularnd('Gaussian',[1 -.8; -.8 1],n);
subplot(2,2,4)
plot(U(:,1),U(:,2),'.')
title('{\it\rho} = -0.8')
xlabel('U1')
ylabel('U2')
```


The dependence between U 1 and U 2 is completely separate from the marginal distributions of $X 1=G(U 1)$ and $X 2=G(U 2) . X 1$ and $X 2$ can be given any marginal distributions, and still have the same rank correlation. This is one of the main appeals of copulas-they allow this separate specification of dependence and marginal distribution. You can also compute the pdf (copulapdf) and the cdf (copulacdf) for a copula. For example, these plots show the pdf and cdf for $\rho=.8$:

```
u1 = linspace(1e-3,1-1e-3,50);
u2 = linspace(1e-3,1-1e-3,50);
[U1,U2] = meshgrid(u1,u2);
Rho = [1 .8; . 8 1];
f = copulapdf('t',[U1(:) U2(:)],Rho,5);
f = reshape(f,size(U1));
surf(u1,u2,log(f),'FaceColor','interp','EdgeColor','none')
```

```
view([-15,20])
xlabel('U1')
ylabel('U2')
zlabel('Probability Density')
```



```
u1 = linspace(1e-3,1-1e-3,50);
```

u1 = linspace(1e-3,1-1e-3,50);
u2 = linspace(1e-3,1-1e-3,50);
u2 = linspace(1e-3,1-1e-3,50);
[U1,U2] = meshgrid(u1,u2);
[U1,U2] = meshgrid(u1,u2);
F = copulacdf('t',[U1(:) U2(:)],Rho,5);
F = copulacdf('t',[U1(:) U2(:)],Rho,5);
F = reshape(F,size(U1));
F = reshape(F,size(U1));
surf(u1,u2,F,'FaceColor','interp','EdgeColor','none')
surf(u1,u2,F,'FaceColor','interp','EdgeColor','none')
view([-15,20])
view([-15,20])
xlabel('U1')
xlabel('U1')
ylabel('U2')
ylabel('U2')
zlabel('Cumulative Probability')

```
zlabel('Cumulative Probability')
```


A different family of copulas can be constructed by starting from a bivariate t distribution and transforming using the corresponding t cdf. The bivariate t distribution is parameterized with P, the linear correlation matrix, and v, the degrees of freedom. Thus, for example, you can speak of a t_{1} or a t_{5} copula, based on the multivariate t with one and five degrees of freedom, respectively.

Just as for Gaussian copulas, Statistics Toolbox functions for t copulas compute:

- Probability density functions (copulapdf) and the cumulative distribution functions (copulacdf) for Gaussian copulas
- Rank correlations from linear correlations (copulastat) and vice versa (copulaparam)
- Random vectors (copularnd)
- Parameters for copulas fit to data (copulafit)

For example, use the copularnd function to create scatter plots of random values from a bivariate t_{1} copula for various levels of ρ, to illustrate the range of different dependence structures:
n = 500;
nu = 1;
U = copularnd('t',[1 .8; . 8 1],nu,n);
subplot (2,2,1)
plot(U(:,1),U(:,2),'.')
title('\{\it\rho\} = 0.8')
xlabel('U1')
ylabel('U2')
U = copularnd('t',[1 .1; .1 1],nu,n); subplot (2,2,2)
plot(U(:,1),U(:,2),'.')
title('\{\it\rho\} = 0.1')
xlabel('U1')
ylabel('U2')
U = copularnd('t',[1-.1; -.1 1],nu,n);
subplot (2,2,3)
plot(U(:,1),U(:,2),'.')
title('\{\it\rho\} = -0.1')
xlabel('U1')
ylabel('U2')
U = copularnd('t',[1-.8; -. 8 1],nu, n);
subplot (2,2,4)
plot(U(:,1),U(:,2),'.')
title('\{\it\rho\} = -0.8')
xlabel('U1')
ylabel('U2')

A t copula has uniform marginal distributions for U1 and U2, just as a Gaussian copula does. The rank correlation τ or ρ_{s} between components in a t copula is also the same function of ρ as for a Gaussian. However, as these plots demonstrate, a t_{1} copula differs quite a bit from a Gaussian copula, even when their components have the same rank correlation. The difference is in their dependence structure. Not surprisingly, as the degrees of freedom parameter v is made larger, a t_{v} copula approaches the corresponding Gaussian copula.

As with a Gaussian copula, any marginal distributions can be imposed over a t copula. For example, using a t copula with 1 degree of freedom, you can again generate random vectors from a bivariate distribution with $\operatorname{Gamma}(2,1)$ and t_{5} marginals using copularnd:

```
n = 1000;
rho = .7;
nu = 1;
```

```
U = copularnd('t',[1 rho; rho 1],nu,n);
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];
scatterhist(X(:,1),X(:,2),'Direction','out')
```


Compared to the bivariate Gamma/t distribution constructed earlier, which was based on a Gaussian copula, the distribution constructed here, based on a t_{1} copula, has the same marginal distributions and the same rank correlation between variables but a very different dependence structure. This illustrates the fact that multivariate distributions are not uniquely defined by their marginal distributions, or by their correlations. The choice of a particular copula in an application may be based on actual observed data, or different copulas may be used as a way of determining the sensitivity of simulation results to the input distribution.

Higher Dimension Copulas

The Gaussian and t copulas are known as elliptical copulas. It is easy to generalize elliptical copulas to a higher number of dimensions. For example, simulate data from a trivariate distribution with $\operatorname{Gamma}(2,1)$, $\operatorname{Beta}(2,2)$, and t_{5} marginals using a Gaussian copula and copularnd, as follows:

```
n = 1000;
Rho = [1 .4 .2; . 4 1 -. 8; .2 -. 8 1];
U = copularnd('Gaussian',Rho,n);
X = [gaminv(U(:,1),2,1) betainv(U(:,2),2,2) tinv(U(:, 3),5)];
subplot(1,1,1)
plot3(X(:, 1),X(:,2),X(:,3),'.')
grid on
view([-55, 15])
xlabel('X1')
ylabel('X2')
zlabel('X3')
```


Notice that the relationship between the linear correlation parameter ρ and, for example, Kendall's τ, holds for each entry in the correlation matrix P used here. You can verify that the sample rank correlations of the data are approximately equal to the theoretical values:

```
tauTheoretical = 2.*asin(Rho)./pi
tauTheoretical =
```

```
\begin{tabular}{rrr}
1 & 0.26198 & 0.12819 \\
0.26198 & 1 & -0.59033 \\
0.12819 & -0.59033 & 1
\end{tabular}
tauSample = corr(X,'type','Kendall')
tauSample =
\begin{tabular}{rrr}
1 & 0.27254 & 0.12701 \\
0.27254 & 1 & -0.58182 \\
0.12701 & -0.58182 & 1
\end{tabular}
```


Archimedean Copulas

Statistics Toolbox functions are available for three bivariate Archimedean copula families:

- Clayton copulas
- Frank copulas
- Gumbel copulas

These are one-parameter families that are defined directly in terms of their cdfs, rather than being defined constructively using a standard multivariate distribution.

To compare these three Archimedean copulas to the Gaussian and t bivariate copulas, first use the copulastat function to find the rank correlation for a Gaussian or t copula with linear correlation parameter of 0.8 , and then use the copulaparam function to find the Clayton copula parameter that corresponds to that rank correlation:

```
tau = copulastat('Gaussian',.8 ,'type','kendall')
tau =
    0.59033
alpha = copulaparam('Clayton',tau,'type','kendall')
alpha =
    2.882
```

Finally, plot a random sample from the Clayton copula with copularnd. Repeat the same procedure for the Frank and Gumbel copulas:

```
n = 500;
U = copularnd('Clayton',alpha,n);
subplot(3,1,1)
plot(U(:,1),U(:,2),'.');
title(['Clayton Copula, {\it\alpha} = ',sprintf('%0.2f',alpha)])
xlabel('U1')
ylabel('U2')
alpha = copulaparam('Frank',tau,'type','kendall');
U = copularnd('Frank',alpha,n);
subplot(3,1,2)
plot(U(:,1),U(:,2),'.')
title(['Frank Copula, {\it\alpha} = ',sprintf('%0.2f',alpha)])
xlabel('U1')
ylabel('U2')
alpha = copulaparam('Gumbel',tau,'type','kendall');
U = copularnd('Gumbel',alpha,n);
subplot(3,1,3)
plot(U(:,1),U(:,2),'.')
title(['Gumbel Copula, {\it\alpha} = ',sprintf('%0.2f',alpha)])
xlabel('U1')
ylabel('U2')
```


Simulating Dependent Multivariate Data Using Copulas

To simulate dependent multivariate data using a copula, you must specify each of the following:

- The copula family (and any shape parameters)
- The rank correlations among variables
- Marginal distributions for each variable

Suppose you have return data for two stocks and want to run a Monte Carlo simulation with inputs that follow the same distributions as the data:

```
load stockreturns
nobs = size(stocks,1);
subplot(2,1,1)
hist(stocks(:,1),10)
xlim([-3.5 3.5])
xlabel('X1')
ylabel('Frequency')
set(get(gca,'Children'),'FaceColor',[.8 . 8 1])
subplot(2,1,2)
hist(stocks(:,2),10)
xlim([-3.5 3.5])
xlabel('X2')
ylabel('Frequency')
set(get(gca,'Children'),'FaceColor',[.8 . 8 1])
```


You could fit a parametric model separately to each dataset, and use those estimates as the marginal distributions. However, a parametric model may not be sufficiently flexible. Instead, you can use a nonparametric model to transform to the marginal distributions. All that is needed is a way to compute the inverse cdf for the nonparametric model.

The simplest nonparametric model is the empirical cdf, as computed by the ecdf function. For a discrete marginal distribution, this is appropriate. However, for a continuous distribution, use a model that is smoother than the step function computed by ecdf. One way to do that is to estimate the empirical cdf and interpolate between the midpoints of the steps with a piecewise linear function. Another way is to use kernel smoothing with ksdensity. For example, compare the empirical cdf to a kernel smoothed cdf estimate for the first variable:

```
[Fi,xi] = ecdf(stocks(:,1));
stairs(xi,Fi,'b','LineWidth',2)
hold on
Fi_sm = ksdensity(stocks(:,1),xi,'function','cdf','width',.15);
plot(xi,Fi_sm,'r-','LineWidth',1.5)
xlabel('X1')
ylabel('Cumulative Probability')
legend('Empirical','Smoothed','Location','NW')
grid on
```


For the simulation, experiment with different copulas and correlations. Here, you will use a bivariate t copula with a fairly small degrees of freedom
parameter. For the correlation parameter, you can compute the rank correlation of the data, and then find the corresponding linear correlation parameter for the t copula using copulaparam:

```
nu = 5;
tau = corr(stocks(:,1),stocks(:,2),'type','kendall')
tau =
    0.51798
rho = copulaparam('t', tau, nu, 'type','kendall')
rho =
    0.72679
```

Next, use copularnd to generate random values from the t copula and transform using the nonparametric inverse cdfs. The ksdensity function allows you to make a kernel estimate of distribution and evaluate the inverse cdf at the copula points all in one step:

```
n = 1000;
U = copularnd('t',[1 rho; rho 1],nu,n);
X1 = ksdensity(stocks(:,1),U(:,1),...
    'function','icdf','width',.15);
X2 = ksdensity(stocks(:,2),U(:,2),\ldots.
    'function','icdf','width',.15);
```

Alternatively, when you have a large amount of data or need to simulate more than one set of values, it may be more efficient to compute the inverse cdf over a grid of values in the interval $(0,1)$ and use interpolation to evaluate it at the copula points:
$\mathrm{p}=$ linspace(0.00001,0.99999,1000);
G1 = ksdensity(stocks(:, 1), p,'function','icdf','width', 0.15);
$\mathrm{X} 1=$ interp1($\mathrm{p}, \mathrm{G} 1, \mathrm{U}(:, 1)$, 'spline');
G2 = ksdensity(stocks(:,2), p,'function','icdf','width', 0.15);
X2 = interp1(p,G2,U(:,2),'spline');
scatterhist(X1,X2,'Direction','out')

The marginal histograms of the simulated data are a smoothed version of the histograms for the original data. The amount of smoothing is controlled by the bandwidth input to ksdensity.

Example: Fitting Copulas to Data

The copulafit function is used to calibrate copulas with data. To generate data Xsim with a distribution "just like" (in terms of marginal distributions and correlations) the distribution of data in the matrix X :

1 Fit marginal distributions to the columns of X.
2 Use appropriate cdf functions to transform X to U, so that U has values between 0 and 1 .

3 Use copulafit to fit a copula to U.
4 Generate new data Usim from the copula.

5 Use appropriate inverse cdf functions to transform Usim to Xsim.
The following example illustrates the procedure.
Load and plot simulated stock return data:
load stockreturns
x = stocks(:,1);
y = stocks(:,2);
scatterhist(x,y,'Direction','out')

Transform the data to the copula scale (unit square) using a kernel estimator of the cumulative distribution function:

```
u = ksdensity(x,x,'function','cdf');
v = ksdensity(y,y,'function','cdf');
```

```
scatterhist(u,v,'Direction','out')
xlabel('u')
ylabel('v')
```


Fit a t copula:

```
[Rho,nu] = copulafit('t',[u v],'Method','ApproximateML')
Rho =
    1.0000 0.7220
    0.7220 1.0000
nu =
    3.2017e+006
```

Generate a random sample from the t copula:

```
r = copularnd('t',Rho,nu,1000);
u1 = r(:,1);
v1 = r(:,2);
```

```
scatterhist(u1,v1,'Direction','out')
xlabel('u')
ylabel('v')
set(get(gca,'children'),'marker','.')
```


Transform the random sample back to the original scale of the data:

```
x1 = ksdensity(x,u1,'function','icdf');
y1 = ksdensity(y,v1,'function','icdf');
scatterhist(x1,y1,'Direction','out')
set(get(gca,'children'),'marker','.')
```


As the example illustrates, copulas integrate naturally with other distribution fitting functions.

Random Number Generation

- "Generating Random Data" on page 6-2
- "Random Number Generation Functions" on page 6-3
- "Common Generation Methods" on page 6-5
- "Representing Sampling Distributions Using Markov Chain Samplers" on page 6-13
- "Generating Quasi-Random Numbers" on page 6-15
- "Generating Data Using Flexible Families of Distributions" on page 6-25

Generating Random Data

Pseudorandom numbers are generated by deterministic algorithms. They are "random" in the sense that, on average, they pass statistical tests regarding their distribution and correlation. They differ from true random numbers in that they are generated by an algorithm, rather than a truly random process.

Random number generators (RNGs) like those in MATLAB are algorithms for generating pseudorandom numbers with a specified distribution.

For more information on random number generators for supported distributions, see "Random Number Generators" on page 5-81.

For more information on the GUI for generating random numbers from supported distributions, see "Visually Exploring Random Number Generation" on page 5-50.

Random Number Generation Functions

The following table lists the supported distributions and their respective random number generation functions. For more information on other functions for each distribution, see "Supported Distributions" on page 5-3. For more information on random number generators, see "Random Number Generators" on page 5-81.

Distribution	Random Number Generation Function
Beta	betarnd, random, randtool
Binomial	binornd, random, randtool
Chi-square	chi2rnd, random, randtool
Clayton copula	copularnd
Exponential	exprnd, random, randtool
Extreme value	evrnd, random, randtool
F	frnd, random, randtool
Frank copula	copularnd
Gamma	gamrnd, randg, random, randtool
Gaussian copula	copularnd
Gaussian mixture	random
Generalized extreme value	gevrnd, random, randtool
Generalized Pareto	gprnd, random, randtool
Geometric	geornd, random, randtool
Gumbel copula	copularnd
Hypergeometric	hygernd, random
Inverse Wishart	iwishrnd
Johnson system	johnsrnd
Lognormal	lognrnd, random, randtool
Multinomial	mnrnd

Distribution	Random Number Generation Function
Multivariate normal	mvnrnd
Multivariate t	mvtrnd
Negative binomial	nbinrnd, random, randtool
Noncentral chi-square	ncx2rnd, random, randtool
Noncentral F	ncfrnd, random, randtool
Noncentral t	nctrnd, random, randtool
Normal (Gaussian)	normrnd, randn, random, randtool
Pearson system	pearsrnd
Piecewise	random
Poisson	poissrnd, random, randtool
Rayleigh	raylrnd, random, randtool
Student's t	trnd, random, randtool
t copula	copularnd
Uniform (continuous)	unifrnd, rand, random
Uniform (discrete)	unidrnd, random, randtool
Weibull	wblrnd, random
Wishart	wishrnd

Common Generation Methods

```
In this section...
"Direct Methods" on page 6-5
"Inversion Methods" on page 6-7
"Acceptance-Rejection Methods" on page 6-9
```

Methods for generating pseudorandom numbers usually start with uniform random numbers, like the MATLAB rand function produces. The methods described in this section detail how to produce random numbers from other distributions.

Direct Methods

Direct methods directly use the definition of the distribution.
For example, consider binomial random numbers. A binomial random number is the number of heads in N tosses of a coin with probability p of a heads on any single toss. If you generate N uniform random numbers on the interval $(0,1)$ and count the number less than p, then the count is a binomial random number with parameters N and p.

This function is a simple implementation of a binomial RNG using the direct approach:

```
function X = directbinornd(N,p,m,n)
X = zeros(m,n); % Preallocate memory
for i = 1:m*n
    u = rand(N,1);
    X(i) = sum(u < p);
end
For example:
X = directbinornd(100,0.3,1e4,1);
hist(X,101)
set(get(gca,'Children'),'FaceColor',[.8 . 8 1])
```


The Statistics Toolbox function binornd uses a modified direct method, based on the definition of a binomial random variable as the sum of Bernoulli random variables.

You can easily convert the previous method to a random number generator for the Poisson distribution with parameter λ. The Poisson distribution is the limiting case of the binomial distribution as N approaches infinity, p approaches zero, and $N p$ is held fixed at λ. To generate Poisson random numbers, create a version of the previous generator that inputs λ rather than N and p, and internally sets N to some large number and p to λ / N.

The Statistics Toolbox function poissrnd actually uses two direct methods:

- A waiting time method for small values of λ
- A method due to Ahrens and Dieter for larger values of λ

Inversion Methods

Inversion methods are based on the observation that continuous cumulative distribution functions (cdfs) range uniformly over the interval (0,1). If u is a uniform random number on (0,1), then using $X=F^{-1}(U)$ generates a random number X from a continuous distribution with specified cdf F.

For example, the following code generates random numbers from a specific exponential distribution using the inverse cdf and the MATLAB uniform random number generator rand:

```
mu = 1;
X = expinv(rand(1e4,1),mu);
```

Compare the distribution of the generated random numbers to the pdf of the specified exponential by scaling the pdf to the area of the histogram used to display the distribution:

```
numbins = 50;
hist(X, numbins)
set(get(gca,'Children'),'FaceColor',[.8 . 8 1])
hold on
[bincounts,binpositions] = hist(X,numbins);
binwidth = binpositions(2) - binpositions(1);
histarea = binwidth*sum(bincounts);
x = binpositions(1):0.001:binpositions(end);
y = exppdf(x,mu);
plot(x,histarea*y,'r','LineWidth',2)
```


Inversion methods also work for discrete distributions. To generate a random number X from a discrete distribution with probability mass vector $P\left(X=x_{i}\right)=$ p_{i} where $x_{0}<x_{1}<x_{2}<\ldots$, generate a uniform random number u on $(0,1)$ and then set $X=x_{i}$ if $F\left(x_{i-1}\right)<u<F\left(x_{i}\right)$.

For example, the following function implements an inversion method for a discrete distribution with probability mass vector p :

```
function X = discreteinvrnd(p,m,n)
X = zeros(m,n); % Preallocate memory
for i = 1:m*n
    u = rand;
    I = find(u < cumsum(p));
    X(i) = min(I);
end
```

Use the function to generate random numbers from any discrete distribution:

```
p = [0.1 0.2 0.3 0.2 0.1 0.1]; % Probability mass vector
X = discreteinvrnd(p,1e4,1);
[n,x] = hist(X,length(p));
bar(1:length(p),n)
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
```


Acceptance-Rejection Methods

The functional form of some distributions makes it difficult or time-consuming to generate random numbers using direct or inversion methods.
Acceptance-rejection methods provide an alternative in these cases.
Acceptance-rejection methods begin with uniform random numbers, but require an additional random number generator. If your goal is to generate a random number from a continuous distribution with $\operatorname{pdf} f$, acceptance-rejection methods first generate a random number from a continuous distribution with pdf g satisfying $f(x) \leq \operatorname{cg}(x)$ for some c and all x.

A continuous acceptance-rejection RNG proceeds as follows:
1 Chooses a density g.
2 Finds a constant c such that $f(x) / g(x) \leq c$ for all x.
3 Generates a uniform random number u.
4 Generates a random number v from g.
5 If $c u \leq f(v) / g(v)$, accepts and returns v.
6 Otherwise, rejects v and goes to step 3 .
For efficiency, a "cheap" method is necessary for generating random numbers from g, and the scalar c should be small. The expected number of iterations to produce a single random number is c.

The following function implements an acceptance-rejection method for generating random numbers from $\operatorname{pdf} f$, given f, g, the RNG grnd for g, and the constant c :

```
function X = accrejrnd(f,g,grnd,c,m,n)
X = zeros(m,n); % Preallocate memory
for i = 1:m*n
    accept = false;
    while accept == false
        u = rand();
        v = grnd();
        if c*u <= f(v)/g(v)
            X(i) = v;
            accept = true;
        end
    end
end
```

For example, the function $f(x)=x \mathrm{e}^{-x_{2} / 2}$ satisfies the conditions for a pdf on $[0, \infty)$ (nonnegative and integrates to 1). The exponential pdf with mean $1, f(x)=\mathrm{e}^{-x}$, dominates g for c greater than about 2.2. Thus, you can use rand and exprnd to generate random numbers from f :

```
f = @(x)x.*exp(-(x.^2)/2);
g = @(x)exp(-x);
grnd = @()exprnd(1);
X = accrejrnd(f,g,grnd,2.2,1e4,1);
```

The $\operatorname{pdf} f$ is actually a Rayleigh distribution with shape parameter 1 . This example compares the distribution of random numbers generated by the acceptance-rejection method with those generated by raylrnd:

```
Y = raylrnd(1,1e4,1);
hist([X Y])
h = get(gca,'Children');
set(h(1),'FaceColor',[.8 . 8 1])
legend('A-R RNG','Rayleigh RNG')
```


The Statistics Toolbox function raylrnd uses a transformation method, expressing a Rayleigh random variable in terms of a chi-square random variable, which you compute using randn.

Acceptance-rejection methods also work for discrete distributions. In this case, the goal is to generate random numbers from a distribution with probability mass $P_{p}(X=i)=p_{i}$, assuming that you have a method for generating random numbers from a distribution with probability mass $P_{q}(X=i)=q_{i}$. The RNG proceeds as follows:

1 Chooses a density P_{q}.
2 Finds a constant c such that $p_{i} / q_{i} \leq c$ for all i.
3 Generates a uniform random number u.
4 Generates a random number v from P_{q}.
5 If $c u \leq p_{v} / q_{v}$, accepts and returns v.
6 Otherwise, rejects v and goes to step 3 .

Representing Sampling Distributions Using Markov Chain Samplers

In this section...
"Using the Metropolis-Hastings Algorithm" on page 6-13
"Using Slice Sampling" on page 6-14

The methods in "Common Generation Methods" on page 6-5 might be inadequate when sampling distributions are difficult to represent in computations. Such distributions arise, for example, in Bayesian data analysis and in the large combinatorial problems of Markov chain Monte Carlo (MCMC) simulations. An alternative is to construct a Markov chain with a stationary distribution equal to the target sampling distribution, using the states of the chain to generate random numbers after an initial burn-in period in which the state distribution converges to the target.

Using the Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm draws samples from a distribution that is only known up to a constant. Random numbers are generated from a distribution with a probability density function that is equal to or proportional to a proposal function.

To generate random numbers:
1 Assume an initial value $x(t)$.
2 Draw a sample, $y(t)$, from a proposal distribution $q(y \mid x(t))$.
3 Accept $y(t)$ as the next sample $x(t+1)$ with probability $r(x(t), y(t))$, and keep $x(t)$ as the next sample $x(t+1)$ with probability $1-r(x(t), y(t))$, where:

$$
r(x, y)=\min \left\{\frac{f(y)}{f(x)} \frac{q(x \mid y)}{q(y \mid x)}, 1\right\}
$$

4 Increment $t \rightarrow t+1$, and repeat steps 2 and 3 until you get the desired number of samples.

Generate random numbers using the Metropolis-Hastings method with the mhsample function. To produce quality samples efficiently with the Metropolis-Hastings algorithm, it is crucial to select a good proposal distribution. If it is difficult to find an efficient proposal distribution, use the slice sampling algorithm (slicesample) without explicitly specifying a proposal distribution.

Using Slice Sampling

In instances where it is difficult to find an efficient Metropolis-Hastings proposal distribution, the slice sampling algorithm does not require an explicit specification. The slice sampling algorithm draws samples from the region under the density function using a sequence of vertical and horizontal steps. First, it selects a height at random from 0 to the density function $f(x)$. Then, it selects a new x value at random by sampling from the horizontal "slice" of the density above the selected height. A similar slice sampling algorithm is used for a multivariate distribution.

If a function $f(x)$ proportional to the density function is given, then do the following to generate random numbers:

1 Assume an initial value $x(t)$ within the domain of $f(x)$.
2 Draw a real value y uniformly from $(0, f(x(t))$), thereby defining a horizontal "slice" as $S=\{x: y<f(x)\}$.

3 Find an interval $I=(L, R)$ around $x(t)$ that contains all, or much of the "slice" S.

4 Draw the new point $x(t+1)$ within this interval.
5 Increment $t \rightarrow t+1$ and repeat steps 2 through 4 until you get the desired number of samples.

Slice sampling can generate random numbers from a distribution with an arbitrary form of the density function, provided that an efficient numerical procedure is available to find the interval $I=(L, R)$, which is the "slice" of the density.

Generate random numbers using the slice sampling method with the slicesample function.

Generating Quasi-Random Numbers

In this section...
"Quasi-Random Sequences" on page 6-15
"Quasi-Random Point Sets" on page 6-16
"Quasi-Random Streams" on page 6-23

Quasi-Random Sequences

Quasi-random number generators (QRNGs) produce highly uniform samples of the unit hypercube. QRNGs minimize the discrepancy between the distribution of generated points and a distribution with equal proportions of points in each sub-cube of a uniform partition of the hypercube. As a result, QRNGs systematically fill the "holes" in any initial segment of the generated quasi-random sequence.

Unlike the pseudorandom sequences described in "Common Generation Methods" on page 6-5, quasi-random sequences fail many statistical tests for randomness. Approximating true randomness, however, is not their goal. Quasi-random sequences seek to fill space uniformly, and to do so in such a way that initial segments approximate this behavior up to a specified density.

QRNG applications include:

- Quasi-Monte Carlo (QMC) integration. Monte Carlo techniques are often used to evaluate difficult, multi-dimensional integrals without a closed-form solution. QMC uses quasi-random sequences to improve the convergence properties of these techniques.
- Space-filling experimental designs. In many experimental settings, taking measurements at every factor setting is expensive or infeasible. Quasi-random sequences provide efficient, uniform sampling of the design space.
- Global optimization. Optimization algorithms typically find a local optimum in the neighborhood of an initial value. By using a quasi-random sequence of initial values, searches for global optima uniformly sample the basins of attraction of all local minima.

Example: Using Scramble, Leap, and Skip

Imagine a simple 1-D sequence that produces the integers from 1 to 10 . This is the basic sequence and the first three points are [1,2,3]:

12345678910

Now look at how Scramble, Leap, and Skip work together:

- Scramble - Scrambling shuffles the points in one of several different ways. In this example, assume a scramble turns the sequence into $1,3,5,7,9,2,4,6,8,10$. The first three points are now [1,3,5]:

13579246810

- Skip - A Skip value specifies the number of initial points to ignore. In this example, set the Skip value to 2 . The sequence is now $5,7,9,2,4,6,8,10$ and the first three points are [5,7,9]:
$13 \lcm{579246810}$
- Leap - A Leap value specifies the number of points to ignore for each one you take. Continuing the example with the Skip set to 2 , if you set the Leap to 1 , the sequence uses every other point. In this example, the sequence is now $5,9,4,8$ and the first three points are [5,9,4]:

Quasi-Random Point Sets

Statistics Toolbox functions support these quasi-random sequences:

- Halton sequences. Produced by the haltonset function. These sequences use different prime bases to form successively finer uniform partitions of the unit interval in each dimension.
- Sobol sequences. Produced by the sobolset function. These sequences use a base of 2 to form successively finer uniform partitions of the unit interval, and then reorder the coordinates in each dimension.
- Latin hypercube sequences. Produced by the lhsdesign function. Though not quasi-random in the sense of minimizing discrepancy, these sequences nevertheless produce sparse uniform samples useful in experimental designs.

Quasi-random sequences are functions from the positive integers to the unit hypercube. To be useful in application, an initial point set of a sequence must be generated. Point sets are matrices of size n-by- d, where n is the number of points and d is the dimension of the hypercube being sampled. The functions haltonset and sobolset construct point sets with properties of a specified quasi-random sequence. Initial segments of the point sets are generated by the net method of the qrandset class (parent class of the haltonset class and sobolset class), but points can be generated and accessed more generally using parenthesis indexing.

Because of the way in which quasi-random sequences are generated, they may contain undesirable correlations, especially in their initial segments, and especially in higher dimensions. To address this issue, quasi-random point sets often skip, leap over, or scramble values in a sequence. The haltonset and sobolset functions allow you to specify both a Skip and a Leap property of a quasi-random sequence, and the scramble method of the qrandset class allows you apply a variety of scrambling techniques. Scrambling reduces correlations while also improving uniformity.

Example: Generate a Quasi-Random Point Set

This example uses haltonset to construct a 2-D Halton point set-an object, p, of the haltonset class-that skips the first 1000 values of the sequence and then retains every 101st point:

```
p = haltonset(2,'Skip',1e3,'Leap',1e2)
p =
    Halton point set in 2 dimensions (8.918019e+013 points)
    Properties:
                            Skip : 1000
            Leap : 100
    ScrambleMethod : none
```

The object p encapsulates properties of the specified quasi-random sequence. The point set is finite, with a length determined by the Skip and Leap properties and by limits on the size of point set indices (maximum value of 2^{53}).

Use scramble to apply reverse-radix scrambling:

```
p = scramble(p,'RR2')
p =
    Halton point set in 2 dimensions (8.918019e+013 points)
    Properties:
            Skip : }100
            Leap : }10
    ScrambleMethod : RR2
```

Use net to generate the first 500 points:
$x 0=\operatorname{net}(p, 500) ;$
This is equivalent to:
$X 0=p(1: 500,:) ;$
Values of the point set X0 are not generated and stored in memory until you access p using net or parenthesis indexing.

To appreciate the nature of quasi-random numbers, create a scatter of the two dimensions in XO :

```
scatter(XO(:,1),X0(:,2),5,'r')
axis square
title('{\bf Quasi-Random Scatter}')
```


Quasi-Random Scatter

Compare this to a scatter of uniform pseudorandom numbers generated by the MATLAB rand function:

```
X = rand(500,2);
scatter(X(:,1),X(:,2),5,'b')
axis square
title('{\bf Uniform Random Scatter}')
```


The quasi-random scatter appears more uniform, avoiding the clumping in the pseudorandom scatter.

In a statistical sense, quasi-random numbers are too uniform to pass traditional tests of randomness. For example, a Kolmogorov-Smirnov test, performed by kstest, is used to assess whether or not a point set has a uniform random distribution. When performed repeatedly on uniform pseudorandom samples, such as those generated by rand, the test produces a uniform distribution of p-values:

```
nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests
    x = rand(sampSize,1);
    [h,pval] = kstest(x,[x,x]);
```

```
    PVALS(test) = pval;
end
hist(PVALS,100)
set(get(gca,'Children'),'FaceColor',[.8 . 8 1])
xlabel('{\it p}-values')
ylabel('Number of Tests')
```


The results are quite different when the test is performed repeatedly on uniform quasi-random samples:

```
p = haltonset(1,'Skip',1e3,'Leap',1e2);
p = scramble(p,'RR2');
nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests
```

```
    x = p(test:test+(sampSize-1),:);
    [h,pval] = kstest(x,[x,x]);
    PVALS(test) = pval;
end
hist(PVALS,100)
set(get(gca,'Children'),'FaceColor',[.8 . 8 1])
xlabel('{\it p}-values')
ylabel('Number of Tests')
```


Small p-values call into question the null hypothesis that the data are uniformly distributed. If the hypothesis is true, about 5% of the p-values are expected to fall below 0.05 . The results are remarkably consistent in their failure to challenge the hypothesis.

Quasi-Random Streams

Quasi-random streams, produced by the qrandstream function, are used to generate sequential quasi-random outputs, rather than point sets of a specific size. Streams are used like pseudoRNGS, such as rand, when client applications require a source of quasi-random numbers of indefinite size that can be accessed intermittently. Properties of a quasi-random stream, such as its type (Halton or Sobol), dimension, skip, leap, and scramble, are set when the stream is constructed.

In implementation, quasi-random streams are essentially very large quasi-random point sets, though they are accessed differently. The state of a quasi-random stream is the scalar index of the next point to be taken from the stream. Use the qrand method of the qrandstream class to generate points from the stream, starting from the current state. Use the reset method to reset the state to 1 . Unlike point sets, streams do not support parenthesis indexing.

Example: Generate a Quasi-Random Stream

For example, the following code, taken from the example at the end of "Quasi-Random Point Sets" on page 6-16, uses haltonset to create a quasi-random point set p, and then repeatedly increments the index into the point set, test, to generate different samples:

```
p = haltonset(1,'Skip',1e3,'Leap',1e2);
p = scramble(p,'RR2');
nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests
    x = p(test:test+(sampSize-1),:);
    [h,pval] = kstest(x,[x,x]);
    PVALS(test) = pval;
end
```

The same results are obtained by using qrandstream to construct a quasi-random stream q based on the point set p and letting the stream take care of increments to the index:

```
p = haltonset(1,'Skip',1e3,'Leap',1e2);
p = scramble(p,'RR2');
q = qrandstream(p)
nTests = 1e5;
sampSize = 50;
PVALS = zeros(nTests,1);
for test = 1:nTests
    X = qrand(q,sampSize);
    [h,pval] = kstest(X,[X,X]);
    PVALS(test) = pval;
end
```


Generating Data Using Flexible Families of Distributions

In this section...
"Pearson and Johnson Systems" on page 6-25
"Generating Data Using the Pearson System" on page 6-26
"Generating Data Using the Johnson System" on page 6-28

Pearson and Johnson Systems

As described in "Using Probability Distributions" on page 5-2, choosing an appropriate parametric family of distributions to model your data can be based on a priori or a posteriori knowledge of the data-producing process, but the choice is often difficult. The Pearson and Johnson systems can make such a choice unnecessary. Each system is a flexible parametric family of distributions that includes a wide range of distribution shapes, and it is often possible to find a distribution within one of these two systems that provides a good match to your data.

Data Input

The following parameters define each member of the Pearson and Johnson systems

- Mean - Estimated by mean
- Standard deviation - Estimated by std
- Skewness - Estimated by skewness
- Kurtosis - Estimated by kurtosis

These statistics can also be computed with the moment function. The Johnson system, while based on these four parameters, is more naturally described using quantiles, estimated by the quantile function.

The Statistics Toolbox functions pearsrnd and johnsrnd take input arguments defining a distribution (parameters or quantiles, respectively) and return the type and the coefficients of the distribution in the corresponding system. Both functions also generate random numbers from the specified distribution.

As an example, load the data in carbig.mat, which includes a variable MPG containing measurements of the gas mileage for each car.

```
load carbig
MPG = MPG(~isnan(MPG));
[n,x] = hist(MPG,15);
bar(x,n)
set(get(gca,'Children'),'FaceColor',[.8 . 8 1])
```


The following two sections model the distribution with members of the Pearson and Johnson systems, respectively.

Generating Data Using the Pearson System

The statistician Karl Pearson devised a system, or family, of distributions that includes a unique distribution corresponding to every valid combination of mean, standard deviation, skewness, and kurtosis. If you compute sample
values for each of these moments from data, it is easy to find the distribution in the Pearson system that matches these four moments and to generate a random sample.

The Pearson system embeds seven basic types of distribution together in a single parametric framework. It includes common distributions such as the normal and t distributions, simple transformations of standard distributions such as a shifted and scaled beta distribution and the inverse gamma distribution, and one distribution-the Type IV-that is not a simple transformation of any standard distribution.

For a given set of moments, there are distributions that are not in the system that also have those same first four moments, and the distribution in the Pearson system may not be a good match to your data, particularly if the data are multimodal. But the system does cover a wide range of distribution shapes, including both symmetric and skewed distributions.

To generate a sample from the Pearson distribution that closely matches the MPG data, simply compute the four sample moments and treat those as distribution parameters.

```
moments = {mean(MPG),std(MPG),skewness(MPG),kurtosis(MPG)};
[r,type] = pearsrnd(moments{:},10000,1);
```

The optional second output from pearsrnd indicates which type of distribution within the Pearson system matches the combination of moments.

```
type
type =
1
```

In this case, pearsrnd has determined that the data are best described with a Type I Pearson distribution, which is a shifted, scaled beta distribution.

Verify that the sample resembles the original data by overlaying the empirical cumulative distribution functions.

```
ecdf(MPG);
[Fi,xi] = ecdf(r);
hold on, stairs(xi,Fi,'r'); hold off
```


Generating Data Using the Johnson System

Statistician Norman Johnson devised a different system of distributions that also includes a unique distribution for every valid combination of mean, standard deviation, skewness, and kurtosis. However, since it is more natural to describe distributions in the Johnson system using quantiles, working with this system is different than working with the Pearson system.

The Johnson system is based on three possible transformations of a normal random variable, plus the identity transformation. The three nontrivial cases are known as SL, SU, and SB, corresponding to exponential, logistic, and hyperbolic sine transformations. All three can be written as

$$
\mathrm{X}=\gamma+\delta \cdot \Gamma\left(\frac{(\mathrm{Z}-\xi)}{\lambda}\right)
$$

where Z is a standard normal random variable, Γ is the transformation, and γ, δ, ξ, and λ are scale and location parameters. The fourth case, SN , is the identity transformation.

To generate a sample from the Johnson distribution that matches the MPG data, first define the four quantiles to which the four evenly spaced standard normal quantiles of $-1.5,-0.5,0.5$, and 1.5 should be transformed. That is, you compute the sample quantiles of the data for the cumulative probabilities of $0.067,0.309,0.691$, and 0.933 .

```
probs = normcdf([-1.5 -0.5 0.5 1.5])
probs =
    0.066807 0.30854 0.69146 0.93319
```

quantiles = quantile(MPG, probs)
quantiles =
$13.0000 \quad 18.0000 \quad 27.2000 \quad 36.0000$

Then treat those quantiles as distribution parameters.

```
[r1,type] = johnsrnd(quantiles,10000,1);
```

The optional second output from johnsrnd indicates which type of distribution within the Johnson system matches the quantiles.

```
type
type =
SB
```

You can verify that the sample resembles the original data by overlaying the empirical cumulative distribution functions.

```
ecdf(MPG);
[Fi,xi] = ecdf(r1);
hold on, stairs(xi,Fi,'r'); hold off
```


In some applications, it may be important to match the quantiles better in some regions of the data than in others. To do that, specify four evenly spaced standard normal quantiles at which you want to match the data, instead of the default $-1.5,-0.5,0.5$, and 1.5 . For example, you might care more about matching the data in the right tail than in the left, and so you specify standard normal quantiles that emphasizes the right tail.

```
qnorm = [-.5 .25 1 1.75];
probs = normcdf(qnorm);
qemp = quantile(MPG,probs);
r2 = johnsrnd([qnorm; qemp],10000,1);
```

However, while the new sample matches the original data better in the right tail, it matches much worse in the left tail.

```
[Fj,xj] = ecdf(r2);
hold on, stairs(xj,Fj,'g'); hold off
```


Hypothesis Tests

- "Introduction to Hypothesis Tests" on page 7-2
- "Hypothesis Test Terminology" on page 7-3
- "Hypothesis Test Assumptions" on page 7-5
- "Hypothesis Testing" on page 7-7
- "Available Hypothesis Tests" on page 7-13

Introduction to Hypothesis Tests

Hypothesis testing is a common method of drawing inferences about a population based on statistical evidence from a sample.

As an example, suppose someone says that at a certain time in the state of Massachusetts the average price of a gallon of regular unleaded gas was $\$ 1.15$. How could you determine the truth of the statement? You could try to find prices at every gas station in the state at the time. That approach would be definitive, but it could be time-consuming, costly, or even impossible.

A simpler approach would be to find prices at a small number of randomly selected gas stations around the state, and then compute the sample average.

Sample averages differ from one another due to chance variability in the selection process. Suppose your sample average comes out to be $\$ 1.18$. Is the $\$ 0.03$ difference an artifact of random sampling or significant evidence that the average price of a gallon of gas was in fact greater than $\$ 1.15$? Hypothesis testing is a statistical method for making such decisions.

Hypothesis Test Terminology

All hypothesis tests share the same basic terminology and structure.

- A null hypothesis is an assertion about a population that you would like to test. It is "null" in the sense that it often represents a status quo belief, such as the absence of a characteristic or the lack of an effect. It may be formalized by asserting that a population parameter, or a combination of population parameters, has a certain value. In the example given in the "Introduction to Hypothesis Tests" on page 7-2, the null hypothesis would be that the average price of gas across the state was $\$ 1.15$. This is written $H_{0}: \mu=1.15$.
- An alternative hypothesis is a contrasting assertion about the population that can be tested against the null hypothesis. In the example given in the "Introduction to Hypothesis Tests" on page 7-2, possible alternative hypotheses are:
$H_{1}: \mu \neq 1.15$ - State average was different from $\$ 1.15$ (two-tailed test)
$H_{1}: \mu>1.15$ - State average was greater than $\$ 1.15$ (right-tail test)
$H_{1}: \mu<1.15$ - State average was less than $\$ 1.15$ (left-tail test)
- To conduct a hypothesis test, a random sample from the population is collected and a relevant test statistic is computed to summarize the sample. This statistic varies with the type of test, but its distribution under the null hypothesis must be known (or assumed).
- The p value of a test is the probability, under the null hypothesis, of obtaining a value of the test statistic as extreme or more extreme than the value computed from the sample.
- The significance level of a test is a threshold of probability a agreed to before the test is conducted. A typical value of α is 0.05 . If the p value of a test is less than a, the test rejects the null hypothesis. If the p value is greater than a, there is insufficient evidence to reject the null hypothesis. Note that lack of evidence for rejecting the null hypothesis is not evidence for accepting the null hypothesis. Also note that substantive "significance" of an alternative cannot be inferred from the statistical significance of a test.
- The significance level α can be interpreted as the probability of rejecting the null hypothesis when it is actually true-a type I error. The distribution of the test statistic under the null hypothesis determines the probability
α of a type I error. Even if the null hypothesis is not rejected, it may still be false-a type II error. The distribution of the test statistic under the alternative hypothesis determines the probability β of a type II error. Type II errors are often due to small sample sizes. The power of a test, $1-\beta$, is the probability of correctly rejecting a false null hypothesis.
- Results of hypothesis tests are often communicated with a confidence interval. A confidence interval is an estimated range of values with a specified probability of containing the true population value of a parameter. Upper and lower bounds for confidence intervals are computed from the sample estimate of the parameter and the known (or assumed) sampling distribution of the estimator. A typical assumption is that estimates will be normally distributed with repeated sampling (as dictated by the Central Limit Theorem). Wider confidence intervals correspond to poor estimates (smaller samples); narrow intervals correspond to better estimates (larger samples). If the null hypothesis asserts the value of a population parameter, the test rejects the null hypothesis when the hypothesized value lies outside the computed confidence interval for the parameter.

Hypothesis Test Assumptions

Different hypothesis tests make different assumptions about the distribution of the random variable being sampled in the data. These assumptions must be considered when choosing a test and when interpreting the results.

For example, the z-test (ztest) and the t-test (ttest) both assume that the data are independently sampled from a normal distribution. Statistics Toolbox functions are available for testing this assumption, such as chi2gof, jbtest, lillietest, and normplot.

Both the z-test and the t-test are relatively robust with respect to departures from this assumption, so long as the sample size n is large enough. Both tests compute a sample mean \bar{x}, which, by the Central Limit Theorem, has an approximately normal sampling distribution with mean equal to the population mean μ, regardless of the population distribution being sampled.

The difference between the z-test and the t-test is in the assumption of the standard deviation σ of the underlying normal distribution. A z-test assumes that σ is known; a t-test does not. As a result, a t-test must compute an estimate s of the standard deviation from the sample.

Test statistics for the z-test and the t-test are, respectively,

$$
\begin{aligned}
& z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \\
& t=\frac{\bar{x}-\mu}{s / \sqrt{n}}
\end{aligned}
$$

Under the null hypothesis that the population is distributed with mean μ, the z-statistic has a standard normal distribution, $N(0,1)$. Under the same null hypothesis, the t-statistic has Student's t distribution with $n-1$ degrees of freedom. For small sample sizes, Student's t distribution is flatter and wider than $N(0,1)$, compensating for the decreased confidence in the estimate s. As sample size increases, however, Student's t distribution approaches the standard normal distribution, and the two tests become essentially equivalent.

Knowing the distribution of the test statistic under the null hypothesis allows for accurate calculation of p-values. Interpreting p-values in the context of the test assumptions allows for critical analysis of test results.

Assumptions underlying Statistics Toolbox hypothesis tests are given in the reference pages for implementing functions.

Hypothesis Testing

This example uses the gas price data in the file gas.mat. The file contains two random samples of prices for a gallon of gas around the state of Massachusetts in 1993. The first sample, price1, contains 20 random observations around the state on a single day in January. The second sample, price2, contains 20 random observations around the state one month later.

```
load gas
prices = [price1 price2];
```

As a first step, you might want to test the assumption that the samples come from normal distributions.

A normal probability plot gives a quick idea.
normplot(prices)

Both scatters approximately follow straight lines through the first and third quartiles of the samples, indicating approximate normal distributions. The February sample (the right-hand line) shows a slight departure from normality in the lower tail. A shift in the mean from January to February is evident.

A hypothesis test is used to quantify the test of normality. Since each sample is relatively small, a Lilliefors test is recommended.

```
lillietest(price1)
ans =
    0
lillietest(price2)
ans =
    0
```

The default significance level of lillietest is 5%. The logical 0 returned by each test indicates a failure to reject the null hypothesis that the samples are normally distributed. This failure may reflect normality in the population or it may reflect a lack of strong evidence against the null hypothesis due to the small sample size.

Now compute the sample means:

```
sample_means = mean(prices)
sample_means =
    115.1500 118.5000
```

You might want to test the null hypothesis that the mean price across the state on the day of the January sample was $\$ 1.15$. If you know that the standard deviation in prices across the state has historically, and consistently, been $\$ 0.04$, then a z-test is appropriate.

```
[h,pvalue,ci] = ztest(price1/100,1.15,0.04)
h =
    0
pvalue =
    0.8668
ci =
    1.1340
    1.1690
```

The logical output $\mathrm{h}=0$ indicates a failure to reject the null hypothesis at the default significance level of 5%. This is a consequence of the high probability under the null hypothesis, indicated by the p value, of observing a value as extreme or more extreme of the z-statistic computed from the sample. The 95% confidence interval on the mean [1.1340 1.1690] includes the hypothesized population mean of $\$ 1.15$.

Does the later sample offer stronger evidence for rejecting a null hypothesis of a state-wide average price of $\$ 1.15$ in February? The shift shown in the probability plot and the difference in the computed sample means suggest this. The shift might indicate a significant fluctuation in the market, raising questions about the validity of using the historical standard deviation. If a known standard deviation cannot be assumed, a t-test is more appropriate.

```
[h,pvalue,ci] = ttest(price2/100,1.15)
h =
    1
pvalue =
    4.9517e-004
ci =
    1.1675
    1.2025
```

The logical output $\mathrm{h}=1$ indicates a rejection of the null hypothesis at the default significance level of 5%. In this case, the 95% confidence interval on the mean does not include the hypothesized population mean of $\$ 1.15$.

You might want to investigate the shift in prices a little more closely. The function ttest2 tests if two independent samples come from normal distributions with equal but unknown standard deviations and the same mean, against the alternative that the means are unequal.

```
[h,sig,ci] = ttest2(price1,price2)
\(\mathrm{h}=\)
    1
sig =
    0.0083
Ci \(=\)
    -5.7845
    -0.9155
```

The null hypothesis is rejected at the default 5% significance level, and the confidence interval on the difference of means does not include the hypothesized value of 0 .

A notched box plot is another way to visualize the shift.

```
boxplot(prices,1)
set(gca,'XTick',[1 2])
set(gca,'XtickLabel',{'January','February'})
xlabel('Month')
ylabel('Prices ($0.01)')
```


The plot displays the distribution of the samples around their medians. The heights of the notches in each box are computed so that the side-by-side boxes have nonoverlapping notches when their medians are different at a default 5% significance level. The computation is based on an assumption of normality in the data, but the comparison is reasonably robust for other distributions. The side-by-side plots provide a kind of visual hypothesis test, comparing medians rather than means. The plot above appears to barely reject the null hypothesis of equal medians.

The nonparametric Wilcoxon rank sum test, implemented by the function ranksum, can be used to quantify the test of equal medians. It tests if two independent samples come from identical continuous (not necessarily normal) distributions with equal medians, against the alternative that they do not have equal medians.

```
[p,h] = ranksum(price1,price2)
p =
    0.0095
h =
    1
```

The test rejects the null hypothesis of equal medians at the default 5% significance level.

Available Hypothesis Tests

Function	Description
ansaribradley	Ansari-Bradley test. Tests if two independent samples come from the same distribution, against the alternative that they come from distributions that have the same median and shape but different variances.
barttest	Bartlett's test. Tests if the variances of the data values along each principal component are equal, against the alternative that the variances are not all equal.
chi2gof	Chi-square goodness-of-fit test. Tests if a sample comes from a specified distribution, against the alternative that it does not come from that distribution.
dwtest	Durbin-Watson test. Tests if the residuals from a linear regression are uncorrelated, against the alternative that there is autocorrelation among them.
friedman	Friedman's test. Tests if the column effects in a two-way layout are all the same, against the alternative that the column effects are not all the same.
jbtest	Jarque-Bera test. Tests if a sample comes from a normal distribution with unknown mean and variance, against the alternative that it does not come from a normal distribution.
kruskalwallis	Kruskal-Wallis test. Tests if multiple samples are all drawn from the same populations (or equivalently, from different populations with the same distribution), against the alternative that they are not all drawn from the same population.
kstest	One-sample Kolmogorov-Smirnov test. Tests if a sample comes from a continuous distribution with specified parameters, against the alternative that it does not come from that distribution.

Function	Description
kstest2	Two-sample Kolmogorov-Smirnov test. Tests if two samples come from the same continuous distribution, against the alternative that they do not come from the same distribution.
lillietest	Lilliefors test. Tests if a sample comes from a distribution in the normal family, against the alternative that it does not come from a normal distribution.
linhyptest	Linear hypothesis test. Tests if $\mathrm{H} * \mathrm{~b}=\mathrm{c}$ f for parameter estimates b with estimated covariance H and specified c, against the alternative that $\mathrm{H} * \mathrm{~b}$ c.
ranksum	Wilcoxon rank sum test. Tests if two independent samples come from identical continuous distributions with equal medians, against the alternative that they do not have equal medians.
runstest	Runs test. Tests if a sequence of values comes in random order, is not randinst the alternative that the ordering
signrank	One-sample or paired-sample Wilcoxon signed rank test. Tests if a sample comes from a continuous distribution
symmetric about a specified median, against the alternative that it does not have that median.	
signtest	One-sample or paired-sample sign test. Tests if a sample comes from an arbitrary continuous distribution with a specified median, against the alternative that it does not have that median.
ttest	One-sample or paired-sample t-test. Tests if a sample comes from a normal distribution with unknown variance and a specified mean, against the alternative that it does not have that mean.

Function	Description
ttest2	Two-sample t-test. Tests if two independent samples come from normal distributions with unknown but equal (or, optionally, unequal) variances and the same mean, against the alternative that the means are unequal.
vartest	One-sample chi-square variance test. Tests if a sample comes from a normal distribution with specified variance, against the alternative that it comes from a normal distribution with a different variance.
vartest2	Two-sample F-test for equal variances. Tests if two independent samples come from normal distributions with the same variance, against the alternative that they come from normal distributions with different variances.
vartestn	Bartlett multiple-sample test for equal variances. Tests if multiple samples come from normal distributions with the same variance, against the alternative that they come from normal distributions with different variances.
ztest	One-sample z-test. Tests if a sample comes from a normal distribution with known variance and specified mean, against the alternative that it does not have that mean.

Note In addition to the previous functions, Statistics Toolbox functions are available for analysis of variance (ANOVA), which perform hypothesis tests in the context of linear modeling.

Analysis of Variance

- "Introduction to Analysis of Variance" on page 8-2
- "ANOVA" on page 8-3
- "MANOVA" on page 8-39

Introduction to Analysis of Variance

Analysis of variance (ANOVA) is a procedure for assigning sample variance to different sources and deciding whether the variation arises within or among different population groups. Samples are described in terms of variation around group means and variation of group means around an overall mean. If variations within groups are small relative to variations between groups, a difference in group means may be inferred. Hypothesis tests are used to quantify decisions.

ANOVA

In this section...

"One-Way ANOVA" on page 8-3
"Two-Way ANOVA" on page 8-9
"N-Way ANOVA" on page 8-12
"Other ANOVA Models" on page 8-26
"Analysis of Covariance" on page 8-27
"Nonparametric Methods" on page 8-35

One-Way ANOVA

- "Introduction to One-Way ANOVA" on page 8-3
- "Example: One-Way ANOVA" on page 8-4
- "Multiple Comparisons" on page 8-6
- "Example: Multiple Comparisons" on page 8-7

Introduction to One-Way ANOVA

The purpose of one-way ANOVA is to find out whether data from several groups have a common mean. That is, to determine whether the groups are actually different in the measured characteristic.

One-way ANOVA is a simple special case of the linear model. The one-way ANOVA form of the model is

$$
y_{i j}=\alpha_{. j}+\varepsilon_{i j}
$$

where:

- $y_{i j}$ is a matrix of observations in which each column represents a different group.
- $\alpha_{. j}$ is a matrix whose columns are the group means. (The "dot j " notation means that α applies to all rows of column j. That is, the value $\alpha_{i j}$ is the same for all i.)
- $\varepsilon_{i j}$ is a matrix of random disturbances.

The model assumes that the columns of y are a constant plus a random disturbance. You want to know if the constants are all the same.

Example: One-Way ANOVA

The data below comes from a study by Hogg and Ledolter [48] of bacteria counts in shipments of milk. The columns of the matrix hogg represent different shipments. The rows are bacteria counts from cartons of milk chosen randomly from each shipment. Do some shipments have higher counts than others?

```
load hogg
hogg
hogg =
\begin{tabular}{rrrrr}
24 & 14 & 11 & 7 & 19 \\
15 & 7 & 9 & 7 & 24 \\
21 & 12 & 7 & 4 & 19 \\
27 & 17 & 13 & 7 & 15 \\
33 & 14 & 12 & 12 & 10 \\
23 & 16 & 18 & 18 & 20
\end{tabular}
[p,tbl,stats] = anova1(hogg);
p
p =
    1.1971e-04
```

The standard ANOVA table has columns for the sums of squares, degrees of freedom, mean squares (SS/df), F statistic, and p value.

You can use the F statistic to do a hypothesis test to find out if the bacteria counts are the same. anova1 returns the p value from this hypothesis test.

In this case the p value is about 0.0001 , a very small value. This is a strong indication that the bacteria counts from the different shipments are not the same. An F statistic as extreme as the observed F would occur by chance only once in 10,000 times if the counts were truly equal.

The p value returned by anova1 depends on assumptions about the random disturbances $\varepsilon_{i j}$ in the model equation. For the p value to be correct, these disturbances need to be independent, normally distributed, and have constant variance.

You can get some graphical assurance that the means are different by looking at the box plots in the second figure window displayed by anova1. Note, however, that the notches are used for a comparison of medians, not a comparison of means. For more information on this display, see "Box Plots" on page 4-6.

Multiple Comparisons

Sometimes you need to determine not just whether there are any differences among the means, but specifically which pairs of means are significantly different. It is tempting to perform a series of t tests, one for each pair of means, but this procedure has a pitfall.

In a t test, you compute a t statistic and compare it to a critical value. The critical value is chosen so that when the means are really the same (any apparent difference is due to random chance), the probability that the t statistic will exceed the critical value is small, say 5%. When the means are different, the probability that the statistic will exceed the critical value is larger.

In this example there are five means, so there are 10 pairs of means to compare. It stands to reason that if all the means are the same, and if there is a 5% chance of incorrectly concluding that there is a difference in one pair,
then the probability of making at least one incorrect conclusion among all 10 pairs is much larger than 5%.

Fortunately, there are procedures known as multiple comparison procedures that are designed to compensate for multiple tests.

Example: Multiple Comparisons

You can perform a multiple comparison test using the multcompare function and supplying it with the stats output from anova1.

```
load hogg
[p,tbl,stats] = anova1(hogg);
[c,m] = multcompare(stats)
c =
\begin{tabular}{rrrrr}
1.0000 & 2.0000 & 2.4953 & 10.5000 & 18.5047 \\
1.0000 & 3.0000 & 4.1619 & 12.1667 & 20.1714 \\
1.0000 & 4.0000 & 6.6619 & 14.6667 & 22.6714 \\
1.0000 & 5.0000 & -2.0047 & 6.0000 & 14.0047 \\
2.0000 & 3.0000 & -6.3381 & 1.6667 & 9.6714 \\
2.0000 & 4.0000 & -3.8381 & 4.1667 & 12.1714 \\
2.0000 & 5.0000 & -12.5047 & -4.5000 & 3.5047 \\
3.0000 & 4.0000 & -5.5047 & 2.5000 & 10.5047 \\
3.0000 & 5.0000 & -14.1714 & -6.1667 & 1.8381 \\
4.0000 & 5.0000 & -16.6714 & -8.6667 & -0.6619
\end{tabular}
m =
    23.8333 1.9273
    13.3333 1.9273
    11.6667 1.9273
    9.1667 1.9273
    17.8333 1.9273
```

The first output from multcompare has one row for each pair of groups, with an estimate of the difference in group means and a confidence interval for that group. For example, the second row has the values

```
1.0000
    3.0000
    4.1619
12.1667
20.1714
```

indicating that the mean of group 1 minus the mean of group 3 is estimated to be 12.1667, and a 95% confidence interval for this difference is
[4.1619, 20.1714]. This interval does not contain 0 , so you can conclude that the means of groups 1 and 3 are different.

The second output contains the mean and its standard error for each group.
It is easier to visualize the difference between group means by looking at the graph that multcompare produces.

There are five groups. The graph instructs you to Click on the group you want to test. Three groups have slopes significantly different from group one.

Click on the group you want to test

The graph shows that group 1 is significantly different from groups 2,3 , and 4. By using the mouse to select group 4, you can determine that it is also significantly different from group 5. Other pairs are not significantly different.

Two-Way ANOVA

- "Introduction to Two-Way ANOVA" on page 8-9
- "Example: Two-Way ANOVA" on page 8-10

Introduction to Two-Way ANOVA

The purpose of two-way ANOVA is to find out whether data from several groups have a common mean. One-way ANOVA and two-way ANOVA differ in that the groups in two-way ANOVA have two categories of defining characteristics instead of one.

Suppose an automobile company has two factories, and each factory makes the same three models of car. It is reasonable to ask if the gas mileage in the cars varies from factory to factory as well as from model to model. There are two predictors, factory and model, to explain differences in mileage.

There could be an overall difference in mileage due to a difference in the production methods between factories. There is probably a difference in the mileage of the different models (irrespective of the factory) due to differences in design specifications. These effects are called additive.

Finally, a factory might make high mileage cars in one model (perhaps because of a superior production line), but not be different from the other factory for other models. This effect is called an interaction. It is impossible to detect an interaction unless there are duplicate observations for some combination of factory and car model.

Two-way ANOVA is a special case of the linear model. The two-way ANOVA form of the model is

$$
y_{i j k}=\mu+\alpha_{. j}+\beta_{i .}+\gamma_{i j}+\varepsilon_{i j k}
$$

where, with respect to the automobile example above:

- $y_{i j k}$ is a matrix of gas mileage observations (with row index i, column index j, and repetition index k).
- μ is a constant matrix of the overall mean gas mileage.
- α_{j} is a matrix whose columns are the deviations of each car's gas mileage (from the mean gas mileage μ) that are attributable to the car's model. All values in a given column of $\alpha_{. j}$ are identical, and the values in each row of $a_{. j}$ sum to 0 .
- $\beta_{i .}$ is a matrix whose rows are the deviations of each car's gas mileage (from the mean gas mileage μ) that are attributable to the car's factory. All values in a given row of β_{i} are identical, and the values in each column of β_{i}. sum to 0 .
- $\gamma_{i j}$ is a matrix of interactions. The values in each row of $\gamma_{i j}$ sum to 0 , and the values in each column of $y_{i j}$ sum to 0 .
- $\varepsilon_{i j k}$ is a matrix of random disturbances.

Example: Two-Way ANOVA

The purpose of the example is to determine the effect of car model and factory on the mileage rating of cars.

```
load mileage
mileage
mileage =
    33.3000 34.5000 37.4000
    33.4000 34.8000 36.8000
    32.9000 33.8000 37.6000
    32.6000 33.4000 36.6000
    32.5000 33.7000 37.0000
    33.0000 33.9000 36.7000
cars = 3;
[p,tbl,stats] = anova2(mileage,cars);
p
p =
    0.0000 0.0039 0.8411
```

There are three models of cars (columns) and two factories (rows). The reason there are six rows in mileage instead of two is that each factory provides
three cars of each model for the study. The data from the first factory is in the first three rows, and the data from the second factory is in the last three rows.

The standard ANOVA table has columns for the sums of squares, degrees-of-freedom, mean squares (SS/df), F statistics, and p-values.

- Figure No. 1: Two-way ANOVA				- $\square_{\text {a }}$	
File Edit Iools Window Help					
ANOVA Table					
Source	55	df	MS	F	Prob>F \triangle
Columns	53.3511	2	26.6756	234.22	0
Rows	1.445	1	1.445	12.69	0.0039
Interaction	0.04	2	0.02	0.18	0.8411
Error	1.3667	12	0.1139		
Total	56.2028	17			\square

You can use the F statistics to do hypotheses tests to find out if the mileage is the same across models, factories, and model-factory pairs (after adjusting for the additive effects). anova2 returns the p value from these tests.

The p value for the model effect is zero to four decimal places. This is a strong indication that the mileage varies from one model to another. An F statistic as extreme as the observed F would occur by chance less than once in 10,000 times if the gas mileage were truly equal from model to model. If you used the multcompare function to perform a multiple comparison test, you would find that each pair of the three models is significantly different.

The p value for the factory effect is 0.0039 , which is also highly significant. This indicates that one factory is out-performing the other in the gas mileage of the cars it produces. The observed p value indicates that an F statistic as extreme as the observed F would occur by chance about four out of 1000 times if the gas mileage were truly equal from factory to factory.

There does not appear to be any interaction between factories and models. The p value, 0.8411 , means that the observed result is quite likely (84 out 100 times) given that there is no interaction.

The p-values returned by anova2 depend on assumptions about the random disturbances $\varepsilon_{i j k}$ in the model equation. For the p-values to be correct these disturbances need to be independent, normally distributed, and have constant variance.

In addition, anova2 requires that data be balanced, which in this case means there must be the same number of cars for each combination of model and factory. The next section discusses a function that supports unbalanced data with any number of predictors.

N-Way ANOVA

- "Introduction to N-Way ANOVA" on page 8-12
- "N-Way ANOVA with a Small Data Set" on page 8-13
- "N-Way ANOVA with a Large Data Set" on page 8-15
- "ANOVA with Random Effects" on page 8-19

Introduction to N-Way ANOVA

You can use N -way ANOVA to determine if the means in a set of data differ when grouped by multiple factors. If they do differ, you can determine which factors or combinations of factors are associated with the difference.

N-way ANOVA is a generalization of two-way ANOVA. For three factors, the model can be written

$$
y_{i j k l}=\mu+\alpha_{. j .}+\beta_{i . .}+\gamma_{. . k}+(\alpha \beta)_{i j .}+(\alpha \gamma)_{i . k}+(\beta \gamma)_{. j k}+(\alpha \beta \gamma)_{i j k}+\varepsilon_{i j k l}
$$

In this notation parameters with two subscripts, such as $(\alpha \beta)_{i j}$, represent the interaction effect of two factors. The parameter $(\alpha \beta \gamma)_{i j k}$ represents the three-way interaction. An ANOVA model can have the full set of parameters or any subset, but conventionally it does not include complex interaction terms unless it also includes all simpler terms for those factors. For example, one would generally not include the three-way interaction without also including all two-way interactions.

The anovan function performs N-way ANOVA. Unlike the anova1 and anova2 functions, anovan does not expect data in a tabular form. Instead, it expects a vector of response measurements and a separate vector (or text array) containing the values corresponding to each factor. This input data format is more convenient than matrices when there are more than two factors or when the number of measurements per factor combination is not constant.

N-Way ANOVA with a Small Data Set

Consider the following two-way example using anova2.

```
m = [23 15 20;27 17 63;43 3 55;41 9 90]
m =
    23 15 20
    27 17 63
    43 3 55
    41 9 90
anova2(m,2)
ans =
    0.0197 0.2234 0.2663
```

The factor information is implied by the shape of the matrix m and the number of measurements at each factor combination (2). Although anova2 does not actually require arrays of factor values, for illustrative purposes you could create them as follows.

```
cfactor = repmat(1:3,4,1)
cfactor =
    1 2
    1 2
    1 2 3
    1 2 
rfactor = [ones(2,3); 2*ones(2,3)]
rfactor =
```

 \(1 \quad 1 \quad 1\)
 | 1 | 1 | 1 |
| :--- | :--- | :--- |
| 2 | 2 | 2 |
| 2 | 2 | 2 |

The cfactor matrix shows that each column of m represents a different level of the column factor. The rfactor matrix shows that the top two rows of m represent one level of the row factor, and bottom two rows of m represent a second level of the row factor. In other words, each value $m(i, j)$ represents an observation at column factor level cfactor(i,j) and row factor level rfactor(i,j).

To solve the above problem with anovan, you need to reshape the matrices m, cfactor, and rfactor to be vectors.

```
m = m(:);
cfactor = cfactor(:);
rfactor = rfactor(:);
[m cfactor rfactor]
ans =
\begin{tabular}{rrr}
23 & 1 & 1 \\
27 & 1 & 1 \\
43 & 1 & 2 \\
41 & 1 & 2 \\
15 & 2 & 1 \\
17 & 2 & 1 \\
3 & 2 & 2 \\
9 & 2 & 2 \\
20 & 3 & 1 \\
63 & 3 & 1 \\
55 & 3 & 2 \\
90 & 3 & 2
\end{tabular}
anovan(m,{cfactor rfactor},2)
ans =
    0.0197
```

0.2234
0.2663

N-Way ANOVA with a Large Data Set

The previous example used anova2 to study a small data set measuring car mileage. This example illustrates how to analyze a larger set of car data with mileage and other information on 406 cars made between 1970 and 1982. First, load the data set and look at the variable names.
load carbig
whos

Name	Size	Bytes	Class
Acceleration	406×1	3248	double array
Cylinders	406×1	3248	double array
Displacement	406×1	3248	double array
Horsepower	406×1	3248	double array
MPG	406×1	3248	double array
Model	406×36	29232	char array
Model_Year	406×1	3248	double array
Origin	406×7	5684	char array
Weight	406×1	3248	double array
cyl4	406×5	4060	char array
org	406×7	5684	char array
when	406×5	4060	char array

The example focusses on four variables. MPG is the number of miles per gallon for each of 406 cars (though some have missing values coded as NaN). The other three variables are factors: cyl4 (four-cylinder car or not), org (car originated in Europe, Japan, or the USA), and when (car was built early in the period, in the middle of the period, or late in the period).

First, fit the full model, requesting up to three-way interactions and Type 3 sums-of-squares.

```
varnames = {'Origin';'4Cyl';'MfgDate'};
anovan(MPG,{org cyl4 when},3,3,varnames)
ans =
    0.0000
```


Note that many terms are marked by a \# symbol as not having full rank, and one of them has zero degrees of freedom and is missing a p value. This can happen when there are missing factor combinations and the model has higher-order terms. In this case, the cross-tabulation below shows that there are no cars made in Europe during the early part of the period with other than four cylinders, as indicated by the 0 in table $(2,1,1)$.

```
[table, chi2, p, factorvals] = crosstab(org,when,cyl4)
table(:,:,1) =
\begin{tabular}{rrr}
82 & 75 & 25 \\
0 & 4 & 3 \\
3 & 3 & 4
\end{tabular}
```

```
table(:,:,2) =
    12 22 38
    23 26 17
    12 25 32
chi2 =
    207.7689
p =
    0
factorvals =
\begin{tabular}{llr} 
'USA' & 'Early' & 'Other' \\
'Europe' & 'Mid' & 'Four' \\
'Japan' & 'Late' & []
\end{tabular}
```

Consequently it is impossible to estimate the three-way interaction effects, and including the three-way interaction term in the model makes the fit singular.

Using even the limited information available in the ANOVA table, you can see that the three-way interaction has a p value of 0.699 , so it is not significant. So this time you examine only two-way interactions.
[p, tbl, stats,terms] = anovan(MPG,\{org cyl4 when\},2,3,varnames); terms
terms =

1	0	0
0	1	0
0	0	1
1	1	0
1	0	1
0	1	1

- Figure No. 1: N-Way ANOVA				-
File Edit View Insert Iools Window Help Analysis of Variance				
Source	Sum Sq. d.f	Mean Sq	F	Prob>F \triangle
Origin	$532.6 \quad 2$	266.29	18.82	0
4 Cyl	1769.81	1769.85	125.11	0
MfgDate	2887.12	1443.55	102.05	0
Origin*4Cyl	12.52	6.27	0.44	0.6422
Origin*MfgDate	350.44	87.59	6.19	0.0001
$4 \mathrm{Cyl} * \mathrm{Mfg}$ Date	$31 \quad 2$	15.52	1.1	0.3348
Error	5432.1384	14.15		
Total	24252.6397			
Constrained (Type III) sums of squares.				

Now all terms are estimable. The p-values for interaction term 4 (Origin*4Cyl) and interaction term 6 (4Cyl*MfgDate) are much larger than a typical cutoff value of 0.05 , indicating these terms are not significant. You could choose to omit these terms and pool their effects into the error term. The output terms variable returns a matrix of codes, each of which is a bit pattern representing a term. You can omit terms from the model by deleting their entries from terms and running anovan again, this time supplying the resulting vector as the model argument.

```
terms([4 6],:) = []
terms =
\begin{tabular}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{tabular}
anovan(MPG,{org cyl4 when},terms,3,varnames)
ans =
    1.0e-003 *
```


Now you have a more parsimonious model indicating that the mileage of these cars seems to be related to all three factors, and that the effect of the manufacturing date depends on where the car was made.

ANOVA with Random Effects

- "Introduction to ANOVA with Random Effects" on page 8-19
- "Setting Up the Model" on page 8-20
- "Fitting a Random Effects Model" on page 8-21
- "F Statistics for Models with Random Effects" on page 8-22
- "Variance Components" on page 8-24

Introduction to ANOVA with Random Effects. In an ordinary ANOVA model, each grouping variable represents a fixed factor. The levels of that factor are a fixed set of values. Your goal is to determine whether different factor levels lead to different response values. This section presents an example that shows how to use anovan to fit models where a factor's levels represent a random selection from a larger (infinite) set of possible levels.

Setting Up the Model. To set up the example, first load the data, which is stored in a 6-by-3 matrix, mileage.

```
load mileage
```

The anova2 function works only with balanced data, and it infers the values of the grouping variables from the row and column numbers of the input matrix. The anovan function, on the other hand, requires you to explicitly create vectors of grouping variable values. To create these vectors, do the following steps:

1 Create an array indicating the factory for each value in mileage. This array is 1 for the first column, 2 for the second, and 3 for the third.

```
factory = repmat(1:3,6,1);
```

2 Create an array indicating the car model for each mileage value. This array is 1 for the first three rows of mileage, and 2 for the remaining three rows.
carmod $=$ [ones $(3,3) ; 2 *$ ones $(3,3)]$;
3 Turn these matrices into vectors and display them.

```
mileage = mileage(:);
factory = factory(:);
carmod = carmod(:);
[mileage factory carmod]
ans =
```

33.3000	1.0000	1.0000
33.4000	1.0000	1.0000
32.9000	1.0000	1.0000
32.6000	1.0000	2.0000
32.5000	1.0000	2.0000
33.0000	1.0000	2.0000
34.5000	2.0000	1.0000
34.8000	2.0000	1.0000
33.8000	2.0000	1.0000
33.4000	2.0000	2.0000
33.7000	2.0000	2.0000

33.9000	2.0000	2.0000
37.4000	3.0000	1.0000
36.8000	3.0000	1.0000
37.6000	3.0000	1.0000
36.6000	3.0000	2.0000
37.0000	3.0000	2.0000
36.7000	3.0000	2.0000

Fitting a Random Effects Model. Continuing the example from the preceding section, suppose you are studying a few factories but you want information about what would happen if you build these same car models in a different factory-either one that you already have or another that you might construct. To get this information, fit the analysis of variance model, specifying a model that includes an interaction term and that the factory factor is random.

```
[pvals,tbl,stats] = anovan(mileage, {factory carmod}, ...
'model',2, 'random',1,'varnames',{'Factory' 'Car Model'});
```

Analysis of Variance

Source	Sum Sq.	.f	Mean Sq.	F	Prob $>\mathrm{F}$
Factory	53.3511	2	26.6756	1333.78	0.0007
Car Model	1. 445	1	1. 445	72.25	0.0136
Factory*Car Model	0.04	2	0.02	0.18	0.8411
Error	1.3667	12	0.1139		
Total	56.2028	17			

Constrained (Type III) sums of squares.

In the fixed effects version of this fit, which you get by omitting the inputs ' random ' , 1 in the preceding code, the effect of car model is significant, with a p value of 0.0039 . But in this example, which takes into account the random variation of the effect of the variable 'Car Model' from one factory to another, the effect is still significant, but with a higher p value of 0.0136 .

F Statistics for Models with Random Effects. The F statistic in a model having random effects is defined differently than in a model having all fixed effects. In the fixed effects model, you compute the F statistic for any term by taking the ratio of the mean square for that term with the mean square for error. In a random effects model, however, some F statistics use a different mean square in the denominator.

In the example described in "Setting Up the Model" on page 8-20, the effect of the variable 'Factory' could vary across car models. In this case, the interaction mean square takes the place of the error mean square in the F statistic. The F statistic for factory is:

```
F = 26.6756 / 0.02
F =
```

1333.78

The degrees of freedom for the statistic are the degrees of freedom for the numerator (2) and denominator (2) mean squares. Therefore the p value for the statistic is:

```
pval = 1 - fcdf(F,2,2)
pval =
    7.4919e-04
```

With random effects, the expected value of each mean square depends not only on the variance of the error term, but also on the variances contributed by the random effects. You can see these dependencies by writing the expected values as linear combinations of contributions from the various model terms. To find the coefficients of these linear combinations, enter stats.ems, which returns the ems field of the stats structure:
stats.ems
ans =

6.0000	0.0000	3.0000	1.0000
0.0000	9.0000	3.0000	1.0000

```
0.0000 0.0000 3.0000 1.0000
    0 0
```

To see text representations of the linear combinations, enter
stats.txtems
ans $=$

```
'6*V(Factory)+3*V(Factory*Car Model)+V(Error)'
'9*Q(Car Model)+3*V(Factory*Car Model)+V(Error)'
'3*V(Factory*Car Model)+V(Error)'
'V(Error)'
```

The expected value for the mean square due to car model (second term) includes contributions from a quadratic function of the car model effects, plus three times the variance of the interaction term's effect, plus the variance of the error term. Notice that if the car model effects were all zero, the expression would reduce to the expected mean square for the third term (the interaction term). That is why the F statistic for the car model effect uses the interaction mean square in the denominator.

In some cases there is no single term whose expected value matches the one required for the denominator of the F statistic. In that case, the denominator is a linear combination of mean squares. The stats structure contains fields giving the definitions of the denominators for each F statistic. The txtdenom field, stats.txtdenom, gives a text representation, and the denom field gives a matrix that defines a linear combination of the variances of terms in the model. For balanced models like this one, the denom matrix, stats.denom, contains zeros and ones, because the denominator is just a single term's mean square:

```
stats.txtdenom
```

ans =

```
'MS(Factory*Car Model)'
'MS(Factory*Car Model)'
'MS(Error)'
```

stats.denom
ans $=$

-0.0000	1.0000	0.0000
0.0000	1.0000	-0.0000
0.0000	0	1.0000

Variance Components. For the model described in "Setting Up the Model" on page 8-20, consider the mileage for a particular car of a particular model made at a random factory. The variance of that car is the sum of components, or contributions, one from each of the random terms.

```
stats.rtnames
ans =
    'Factory'
    'Factory*Car Model'
    'Error'
```

You do not know those variances, but you can estimate them from the data. Recall that the ems field of the stats structure expresses the expected value of each term's mean square as a linear combination of unknown variances for random terms, and unknown quadratic forms for fixed terms. If you take the expected mean square expressions for the random terms, and equate those expected values to the computed mean squares, you get a system of equations that you can solve for the unknown variances. These solutions are the variance component estimates. The varest field contains a variance component estimate for each term. The rtnames field contains the names of the random terms.
stats.varest
ans =
4.4426
-0.0313
0.1139

Under some conditions, the variability attributed to a term is unusually low, and that term's variance component estimate is negative. In those cases it
is common to set the estimate to zero, which you might do, for example, to create a bar graph of the components.

```
bar(max(0,stats.varest))
set(gca,'xtick',1:3,'xticklabel',stats.rtnames)
```


You can also compute confidence bounds for the variance estimate. The anovan function does this by computing confidence bounds for the variance expected mean squares, and finding lower and upper limits on each variance component containing all of these bounds. This procedure leads to a set of bounds that is conservative for balanced data. (That is, 95% confidence bounds will have a probability of at least 95% of containing the true variances if the number of observations for each combination of grouping variables is the same.) For unbalanced data, these are approximations that are not guaranteed to be conservative.

```
[{'Term' 'Estimate' 'Lower' 'Upper'};
    stats.rtnames, num2cell([stats.varest stats.varci])]
ans =
    'Term' 'Estimate' 'Lower' 'Upper'
```

'Factory'	4.4426]	[1.0736]	[175.6038]
'Factory*Car Model'	[-0.0313]	NaN]	NaN]
'Error'	0.1139]	[0.0586]	$0.3103]$

Other ANOVA Models

The anovan function also has arguments that enable you to specify two other types of model terms. First, the 'nested' argument specifies a matrix that indicates which factors are nested within other factors. A nested factor is one that takes different values within each level its nested factor.

For example, the mileage data from the previous section assumed that the two car models produced in each factory were the same. Suppose instead, each factory produced two distinct car models for a total of six car models, and we numbered them 1 and 2 for each factory for convenience. Then, the car model is nested in factory. A more accurate and less ambiguous numbering of car model would be as follows:

However, it is common with nested models to number the nested factor the same way in each nested factor.

Second, the 'continuous ' argument specifies that some factors are to be treated as continuous variables. The remaining factors are categorical variables. Although the anovan function can fit models with multiple continuous and categorical predictors, the simplest model that combines one predictor of each type is known as an analysis of covariance model. The next section describes a specialized tool for fitting this model.

Analysis of Covariance

- "Introduction to Analysis of Covariance" on page 8-27
- "Analysis of Covariance Tool" on page 8-27
- "Confidence Bounds" on page 8-31
- "Multiple Comparisons" on page 8-34

Introduction to Analysis of Covariance

Analysis of covariance is a technique for analyzing grouped data having a response (y, the variable to be predicted) and a predictor (x, the variable used to do the prediction). Using analysis of covariance, you can model y as a linear function of x, with the coefficients of the line possibly varying from group to group.

Analysis of Covariance Tool

The aoctool function opens an interactive graphical environment for fitting and prediction with analysis of covariance (ANOCOVA) models. It fits the following models for the i th group:

Same mean	$y=a+\varepsilon$
Separate means	$y=\left(a+a_{i}\right)+\varepsilon$
Same line	$y=\alpha+\beta x+\varepsilon$
Parallel lines	$y=\left(a+a_{i}\right)+\beta x+\varepsilon$
Separate lines	$y=\left(\alpha+a_{i}\right)+\left(\beta+\beta_{i}\right) x+\varepsilon$

For example, in the parallel lines model the intercept varies from one group to the next, but the slope is the same for each group. In the same mean model, there is a common intercept and no slope. In order to make the group coefficients well determined, the tool imposes the constraints

$$
\sum \alpha_{j}=\sum \beta_{j}=0
$$

The following steps describe the use of aoctool.

1 Load the data. The Statistics Toolbox data set carsmall.mat contains information on cars from the years 1970, 1976, and 1982. This example studies the relationship between the weight of a car and its mileage, and whether this relationship has changed over the years. To start the demonstration, load the data set.
load carsmall
The Workspace Browser shows the variables in the data set.

Workspace			
Name -	Value	Min	Max
HAcceleration	<100x1 double>	8	24.6000
H Cylinders	<100x1 double>	4	8
\boxplus Displacement	<100x1 double>	85	455
\boxplus Horsepower	<100x1 double>	NaN	NaN
\boxplus MPG	<100x1 double>	NaN	NaN
2 acc Mfg	<100x13 char>		
20cc Model	<100x33 char>		
Model_Year	<100x1 double>	70	82
2bc Origin	<100x7 char>		
W Weight	<100x1 double>	1795	4732
1	III		,

You can also use aoctool with your own data.
2 Start the tool. The following command calls aoctool to fit a separate line to the column vectors Weight and MPG for each of the three model group defined in Model_Year. The initial fit models the y variable, MPG, as a linear function of the x variable, Weight.

```
[h,atab,ctab,stats] = aoctool(Weight,MPG,Model_Year);
```

See the aoctool function reference page for detailed information about calling aoctool.

3 Examine the output. The graphical output consists of a main window with a plot, a table of coefficient estimates, and an analysis of variance table. In the plot, each Model_Year group has a separate line. The data
points for each group are coded with the same color and symbol, and the fit for each group has the same color as the data points.

The coefficients of the three lines appear in the figure titled ANOCOVA Coefficients. You can see that the slopes are roughly -0.0078 , with a small deviation for each group:

- Model year 1970: $y=(45.9798-8.5805)+(-0.0078+0.002) x+\varepsilon$
- Model year 1976: $y=(45.9798-3.8902)+(-0.0078+0.0011) x+\varepsilon$
- Model year 1982: $y=(45.9798+12.4707)+(-0.0078-0.0031) x+\varepsilon$

-) Figure No. 3: ANOCOVA Coefficients				- \square 미		
File Edit Yiew Insert Iools Window Help						
Coefficient Estimates						
Term	Estimate	Std. Err	T	Prob>\|T		\triangle
Intercept	45.9798	1.52085	30.23	0		
70	-8.5805	1.96186	-4.37			
76	-3.8902	1.86864	-2.08	0.0403		
82	12.4707	2.5568	4.88	0		
Slope	-0.0078	0.00056	-14	0		
70	0.002	0.00066	2.96	0.0039		
76	0.0011	0.00065	1.74	0.0849		
82	-0.0031	0.001	-3.1	0.0026		

Because the three fitted lines have slopes that are roughly similar, you may wonder if they really are the same. The Model_Year*Weight interaction expresses the difference in slopes, and the ANOVA table shows a test for the significance of this term. With an F statistic of 5.23 and a p value of 0.0072 , the slopes are significantly different.

| - Figure No. 2: Anocova Test Results | | | | - \|a|x |
| :---: | :---: | :---: | :---: | :---: |
| File Edit Yiew Insert Iools Window Help ANOVA Table | | | | |
| | | | | |
| Source d. | d.f Sum Sq | Mean Sq | F | Prob>F \triangle |
| $\begin{aligned} & \text { Model_Year } \\ & \text { Weight } \\ & \text { Model_Year*Weigh } \\ & \text { Error } \end{aligned}$ | 2807.69 | 403.84 | 51.98 | 0 |
| | 12050.2 | 2050.2 | 263.87 | 0 |
| | h 281.22 | 40.61 | 5.23 | 0.0072 |
| | $88 \quad 683.74$ | 7.77 | | \square |

4 Constrain the slopes to be the same. To examine the fits when the slopes are constrained to be the same, return to the ANOCOVA Prediction Plot window and use the Model pop-up menu to select a Parallel Lines model. The window updates to show the following graph.

Though this fit looks reasonable, it is significantly worse than the Separate Lines model. Use the Model pop-up menu again to return to the original model.

Confidence Bounds

The example in "Analysis of Covariance Tool" on page 8-27 provides estimates of the relationship between MPG and Weight for each Model_Year, but how accurate are these estimates? To find out, you can superimpose confidence bounds on the fits by examining them one group at a time.

1 In the Model_Year menu at the lower right of the figure, change the setting from All Groups to 82 . The data and fits for the other groups are dimmed, and confidence bounds appear around the 82 fit.

The dashed lines form an envelope around the fitted line for model year 82. Under the assumption that the true relationship is linear, these bounds provide a 95% confidence region for the true line. Note that the fits for the other model years are well outside these confidence bounds for Weight values between 2000 and 3000 .

2 Sometimes it is more valuable to be able to predict the response value for a new observation, not just estimate the average response value. Use the
aoctool function Bounds menu to change the definition of the confidence bounds from Line to Observation. The resulting wider intervals reflect the uncertainty in the parameter estimates as well as the randomness of a new observation.

Like the polytool function, the aoctool function has cross hairs that you can use to manipulate the Weight and watch the estimate and confidence bounds along the y-axis update. These values appear only when a single group is selected, not when All Groups is selected.

Multiple Comparisons

You can perform a multiple comparison test by using the stats output structure from aoctool as input to the multcompare function. The multcompare function can test either slopes, intercepts, or population marginal means (the predicted MPG of the mean weight for each group). The example in "Analysis of Covariance Tool" on page $8-27$ shows that the slopes are not all the same, but could it be that two are the same and only the other one is different? You can test that hypothesis.

```
multcompare(stats,0.05,'on','','s')
ans =
\begin{tabular}{rrrrr}
1.0000 & 2.0000 & -0.0012 & 0.0008 & 0.0029 \\
1.0000 & 3.0000 & 0.0013 & 0.0051 & 0.0088 \\
2.0000 & 3.0000 & 0.0005 & 0.0042 & 0.0079
\end{tabular}
```

This matrix shows that the estimated difference between the intercepts of groups 1 and 2 (1970 and 1976) is 0.0008, and a confidence interval for the difference is $[-0.0012,0.0029]$. There is no significant difference between the two. There are significant differences, however, between the intercept for 1982 and each of the other two. The graph shows the same information.

Note that the stats structure was created in the initial call to the aoctool function, so it is based on the initial model fit (typically a separate-lines model). If you change the model interactively and want to base your multiple comparisons on the new model, you need to run aoctool again to get another stats structure, this time specifying your new model as the initial model.

Nonparametric Methods

- "Introduction to Nonparametric Methods" on page 8-36
- "Kruskal-Wallis Test" on page 8-36
- "Friedman's Test" on page 8-37

Introduction to Nonparametric Methods

Statistics Toolbox functions include nonparametric versions of one-way and two-way analysis of variance. Unlike classical tests, nonparametric tests make only mild assumptions about the data, and are appropriate when the distribution of the data is non-normal. On the other hand, they are less powerful than classical methods for normally distributed data.

Both of the nonparametric functions described here will return a stats structure that can be used as an input to the multcompare function for multiple comparisons.

Kruskal-Wallis Test

The example "Example: One-Way ANOVA" on page 8-4 uses one-way analysis of variance to determine if the bacteria counts of milk varied from shipment to shipment. The one-way analysis rests on the assumption that the measurements are independent, and that each has a normal distribution with a common variance and with a mean that was constant in each column. You can conclude that the column means were not all the same. The following example repeats that analysis using a nonparametric procedure.

The Kruskal-Wallis test is a nonparametric version of one-way analysis of variance. The assumption behind this test is that the measurements come from a continuous distribution, but not necessarily a normal distribution. The test is based on an analysis of variance using the ranks of the data values, not the data values themselves. Output includes a table similar to an ANOVA table, and a box plot.

You can run this test as follows:
load hogg

```
p = kruskalwallis(hogg)
p =
0.0020
```

The low p value means the Kruskal-Wallis test results agree with the one-way analysis of variance results.

Friedman's Test

"Example: Two-Way ANOVA" on page 8-10 uses two-way analysis of variance to study the effect of car model and factory on car mileage. The example tests whether either of these factors has a significant effect on mileage, and whether there is an interaction between these factors. The conclusion of the example is there is no interaction, but that each individual factor has a significant effect. The next example examines whether a nonparametric analysis leads to the same conclusion.

Friedman's test is a nonparametric test for data having a two-way layout (data grouped by two categorical factors). Unlike two-way analysis of variance, Friedman's test does not treat the two factors symmetrically and it does not test for an interaction between them. Instead, it is a test for whether the columns are different after adjusting for possible row differences. The test is based on an analysis of variance using the ranks of the data across categories of the row factor. Output includes a table similar to an ANOVA table.

You can run Friedman's test as follows.

```
load mileage
p = friedman(mileage,3)
p =
    7.4659e-004
```

Recall the classical analysis of variance gave a p value to test column effects, row effects, and interaction effects. This p value is for column effects. Using either this p value or the p value from ANOVA ($p<0.0001$), you conclude that there are significant column effects.

In order to test for row effects, you need to rearrange the data to swap the roles of the rows in columns. For a data matrix x with no replications, you could simply transpose the data and type
p = friedman(x')
With replicated data it is slightly more complicated. A simple way is to transform the matrix into a three-dimensional array with the first dimension
representing the replicates, swapping the other two dimensions, and restoring the two-dimensional shape.

```
x = reshape(mileage, [3 2 3]);
x = permute(x,[\begin{array}{lll}{1 2 2]);}\end{array}]
x = reshape(x,[9 2])
x =
    33.3000 32.6000
    33.4000 32.5000
    32.9000 33.0000
    34.5000 33.4000
    34.8000 33.7000
    33.8000 33.9000
    37.4000 36.6000
    36.8000 37.0000
    37.6000 36.7000
friedman(x,3)
ans =
    0.0082
```

Again, the conclusion is similar to that of the classical analysis of variance. Both this p value and the one from ANOVA ($p=0.0039$) lead you to conclude that there are significant row effects.

You cannot use Friedman's test to test for interactions between the row and column factors.

MANOVA

In this section...

"Introduction to MANOVA" on page 8-39
"ANOVA with Multiple Responses" on page 8-39

Introduction to MANOVA

The analysis of variance technique in "Example: One-Way ANOVA" on page 8-4 takes a set of grouped data and determine whether the mean of a variable differs significantly among groups. Often there are multiple response variables, and you are interested in determining whether the entire set of means is different from one group to the next. There is a multivariate version of analysis of variance that can address the problem.

ANOVA with Multiple Responses

The carsmall data set has measurements on a variety of car models from the years 1970, 1976, and 1982. Suppose you are interested in whether the characteristics of the cars have changed over time.

First, load the data.

load carsmall whos			
Name	Size	Bytes	Class
Acceleration	100x1	800	double array
Cylinders	100x1	800	double array
Displacement	100x1	800	double array
Horsepower	100x1	800	double array
MPG	100x1	800	double array
Model	100×36	7200	char array
Model_Year	100x1	800	double array
Origin	100x7	1400	char array
Weight	100x1	800	double array

Four of these variables (Acceleration, Displacement, Horsepower, and MPG) are continuous measurements on individual car models. The variable

Model_Year indicates the year in which the car was made. You can create a grouped plot matrix of these variables using the gplotmatrix function.

```
x = [MPG Horsepower Displacement Weight];
gplotmatrix(x,[],Model_Year,[],'+xo')
```


(When the second argument of gplotmatrix is empty, the function graphs the columns of the x argument against each other, and places histograms along the diagonals. The empty fourth argument produces a graph with the default colors. The fifth argument controls the symbols used to distinguish between groups.)

It appears the cars do differ from year to year. The upper right plot, for example, is a graph of MPG versus Weight. The 1982 cars appear to have higher mileage than the older cars, and they appear to weigh less on average. But as a group, are the three years significantly different from one another? The manova1 function can answer that question.
[d,p,stats] = manova1(x,Model_Year)

```
d =
    2
p =
    1.0e-006 *
            0
        0.1141
stats =
                    W: [4x4 double]
                    B: [4x4 double]
                    T: [4x4 double]
                    dfW: 90
                    dfB: 2
                dfT: 92
        lambda: [2x1 double]
            chisq: [2x1 double]
        chisqdf: [2x1 double]
        eigenval: [4x1 double]
        eigenvec: [4x4 double]
            canon: [100x4 double]
            mdist: [100x1 double]
        gmdist: [3x3 double]
```

The manova1 function produces three outputs:

- The first output, d , is an estimate of the dimension of the group means. If the means were all the same, the dimension would be 0 , indicating that the means are at the same point. If the means differed but fell along a line, the dimension would be 1 . In the example the dimension is 2 , indicating that the group means fall in a plane but not along a line. This is the largest possible dimension for the means of three groups.
- The second output, p , is a vector of p-values for a sequence of tests. The first p value tests whether the dimension is 0 , the next whether the dimension is 1 , and so on. In this case both p-values are small. That's why the estimated dimension is 2 .
- The third output, stats, is a structure containing several fields, described in the following section.

The Fields of the stats Structure

The W, B, and T fields are matrix analogs to the within, between, and total sums of squares in ordinary one-way analysis of variance. The next three fields are the degrees of freedom for these matrices. Fields lambda, chisq, and chisqdf are the ingredients of the test for the dimensionality of the group means. (The p-values for these tests are the first output argument of manova1.)

The next three fields are used to do a canonical analysis. Recall that in principal components analysis ("Principal Component Analysis (PCA)" on page 12-78) you look for the combination of the original variables that has the largest possible variation. In multivariate analysis of variance, you instead look for the linear combination of the original variables that has the largest separation between groups. It is the single variable that would give the most significant result in a univariate one-way analysis of variance. Having found that combination, you next look for the combination with the second highest separation, and so on.

The eigenvec field is a matrix that defines the coefficients of the linear combinations of the original variables. The eigenval field is a vector measuring the ratio of the between-group variance to the within-group variance for the corresponding linear combination. The canon field is a matrix of the canonical variable values. Each column is a linear combination of the mean-centered original variables, using coefficients from the eigenvec matrix.

A grouped scatter plot of the first two canonical variables shows more separation between groups then a grouped scatter plot of any pair of original variables. In this example it shows three clouds of points, overlapping but with distinct centers. One point in the bottom right sits apart from the others. By using the gname function, you can see that this is the 20 th point.

```
c1 = stats.canon(:,1);
c2 = stats.canon(:,2);
gscatter(c2,c1,Model_Year,[],'oxs')
gname
```


Roughly speaking, the first canonical variable, c1, separates the 1982 cars (which have high values of c1) from the older cars. The second canonical variable, c2, reveals some separation between the 1970 and 1976 cars.

The final two fields of the stats structure are Mahalanobis distances. The mdist field measures the distance from each point to its group mean. Points with large values may be outliers. In this data set, the largest outlier is the one in the scatter plot, the Buick Estate station wagon. (Note that you could have supplied the model name to the gname function above if you wanted to label the point with its model name rather than its row number.)

```
max(stats.mdist)
ans =
    31.5273
find(stats.mdist == ans)
ans =
```

20

```
Model(20,:)
ans =
    buick_estate_wagon_(sw)
```

The gmdist field measures the distances between each pair of group means. The following commands examine the group means and their distances:

```
grpstats(x, Model_Year)
ans =
    1.0e+003 *
        0.0177 0.1489 0.2869 3.4413
        0.0216 0.1011 0.1978 3.0787
        0.0317 0.0815 0.1289 2.4535
stats.gmdist
ans =
\begin{tabular}{rrr}
0 & 3.8277 & 11.1106 \\
3.8277 & 0 & 6.1374 \\
11.1106 & 6.1374 & 0
\end{tabular}
```

As might be expected, the multivariate distance between the extreme years 1970 and 1982 (11.1) is larger than the difference between more closely spaced years (3.8 and 6.1). This is consistent with the scatter plots, where the points seem to follow a progression as the year changes from 1970 through 1976 to 1982. If you had more groups, you might find it instructive to use the manovacluster function to draw a diagram that presents clusters of the groups, formed using the distances between their means.

Parametric Regression Analysis

- "Parametric Regression Analysis" on page 9-2
- "What Are Linear Regression Models?" on page 9-7
- "Linear Regression" on page 9-11
- "Regression Using Dataset Arrays" on page 9-50
- "Linear Regression with Interaction Effects" on page 9-53
- "Interpret Linear Regression Results" on page 9-63
- "Linear Regression Output and Diagnostic Statistics" on page 9-71
- "Stepwise Regression" on page 9-111
- "Robust Regression — Reduce Outlier Effects" on page 9-116
- "Ridge Regression" on page 9-119
- "Lasso and Elastic Net" on page 9-123
- "Partial Least Squares" on page 9-137
- "Generalized Linear Models" on page 9-143
- "Lasso Regularization of Generalized Linear Models" on page 9-178
- "Nonlinear Regression" on page 9-198
- "Mixed-Effects Models" on page 9-219
- "Pitfalls in Fitting Nonlinear Models by Transforming to Linearity" on page 9-255

Parametric Regression Analysis

In this section...
"What Is Parametric Regression?" on page 9-2
"Choose a Regression Function" on page 9-2
"Update Legacy Code with New Fitting Methods" on page 9-3

What Is Parametric Regression?

Regression is the process of fitting models to data. The models must have numerical responses. For models with categorical responses, see "Parametric Classification" on page 14-2 or "Supervised Learning (Machine Learning) Workflow and Algorithms" on page 15-2. The regression process depends on the model. If a model is parametric, regression estimates the parameters from the data. If a model is linear in the parameters, estimation is based on methods from linear algebra that minimize the norm of a residual vector. If a model is nonlinear in the parameters, estimation is based on search methods from optimization that minimize the norm of a residual vector.

Choose a Regression Function

You have:	You want:	Use this:
Continuous or categorical predictors, continuous response, linear model	Fitted model coefficients	LinearModel.fit See "Linear Regression" on page 9-11.
Continuous or categorical predictors, continuous response, linear model of unknown complexity	Fitted model and fitted coefficients	LinearModel.stepwise See "Stepwise Regression" on page 9-111.
Continuous or categorical predictors, response possibly with restrictions such as nonnegative or integer-valued, generalized linear model	Fitted generalized linear model coefficients	GeneralizedLinearModel.fit or GeneralizedLinearModel.stepwise
See "Generalized Linear Models" on page 9-143.		

You have:	You want:	Use this:
Continuous predictors with a continuous nonlinear response, parametrized nonlinear model	Fitted nonlinear model coefficients	NonLinearModel.fit See "Nonlinear Regression" on page 9-198.
Continuous predictors, continuous response, linear model	Set of models from ridge, lasso, or elastic net regression	lasso or ridge See "Lasso and Elastic Net" on page 9-123 or "Ridge Regression" on page 9-119.
Correlated continuous predictors, continuous response, linear model	Fitted model and fitted coefficients	plsregress See "Partial Least Squares" on page 9-137.
Continuous or categorical predictors, continuous response, unknown model	Nonparametric model	RegressionTree.fit or fitensemble See "Classification Trees and Regression Trees" on page $15-30$ or "Ensemble Methods" on page 15-58.
Categorical predictors only	ANOVA	anova, anova1, anova2, anovan
Continuous predictors, multivariable response, linear model	Fitted multivariate regression model coefficients	mvregress
Continuous predictors, continuous response, mixed-effects model	Fitted mixed-effects model coefficients	nlmefit or nlmefitsa See "Mixed-Effects Models" on page 9-219.

Update Legacy Code with New Fitting Methods

There are several Statistics Toolbox functions for performing regression. The following sections describe how to replace calls to older functions to new versions:

- "regress into LinearModel.fit" on page 9-4
- "regstats into LinearModel.fit" on page 9-4
- "robustfit into LinearModel.fit" on page 9-5
- "stepwisefit into LinearModel.stepwise" on page 9-5
- "glmfit into GeneralizedLinearModel.fit" on page 9-6
- "nlinfit into NonLinearModel.fit" on page 9-6

regress into LinearModel.fit

Previous Syntax.

[b,bint,r,rint,stats] = regress(y, X)
where X contains a column of ones.

Current Syntax.

mdl = LinearModel.fit(X,y)
where you do not add a column of ones to X.
Equivalent values of the previous outputs:

- b — mdl. Coefficients.Estimate
- bint - coefCI (mdl)
- r —mdl. Residuals.Raw
- rint - There is no exact equivalent. Try examining mdl.Residuals.Studentized to find outliers.
- stats - mdl contains various properties that replace components of stats.

regstats into LinearModel.fit

Previous Syntax.

stats $=$ regstats(y, X, model, whichstats)

Current Syntax.

```
mdl = LinearModel.fit(X,y,model)
```

Obtain statistics from the properties and methods of mdl. For example, see the mdl.Diagnostics and mdl. Residuals properties.

robustfit into LinearModel.fit

Previous Syntax.

```
[b,stats] = robustfit(X,y,wfun,tune,const)
```


Current Syntax.

```
mdl = LinearModel.fit(X,y,'robust','on') % bisquare
```

Or to use the wfun weight and the tune tuning parameter:

```
opt.RobustWgtFun = 'wfun';
opt.Tune = tune; % optional
mdl = LinearModel.fit(X,y,'robust',opt)
```

Obtain statistics from the properties and methods of mdl. For example, see the mdl.Diagnostics and mdl.Residuals properties.

stepwisefit into LinearModel.stepwise

Previous Syntax.

[b,se, pval,inmodel, stats, nextstep,history] = stepwisefit(X, y, Name, Value)

Current Syntax.

```
mdl = LinearModel.stepwise(ds,modelspec,Name,Value)
```

or

```
mdl = LinearModel.stepwise(X,y,modelspec,Name,Value)
```

Obtain statistics from the properties and methods of mdl. For example, see the mdl.Diagnostics and mdl. Residuals properties.

glmfit into GeneralizedLinearModel.fit

Previous Syntax.

[b,dev,stats] = glmfit(X,y,distr, param1, val1, ...)

Current Syntax.

mdl $=$ GeneralizedLinearModel.fit(X,y,distr,...)
Obtain statistics from the properties and methods of mdl. For example, the deviance is mdl. Deviance, and to compare mdl against a constant model, use devianceTest(mdl).

nlinfit into NonLinearModel.fit

Previous Syntax.

```
[beta,r,J,COVB,mse] = nlinfit(X,y,fun,beta0,options)
```


Current Syntax.

```
mdl = NonLinearModel.fit(X,y,fun,beta0,'Options',options)
```

Equivalent values of the previous outputs:

- beta - mdl. Coefficients.Estimate
- r-mdl.Residuals.Raw
- covb - mdl.CoefficientCovariance
- mse - mdl.mse
mdl does not provide the Jacobian (J) output. The primary purpose of J was to pass it into nlparci or nlpredci to obtain confidence intervals for the estimated coefficients (parameters) or predictions. Obtain those confidence intervals as:

```
parci = coefCI(mdl)
[pred,predci] = predict(mdl)
```


What Are Linear Regression Models?

Regression models describe the relationship between a dependent variable, y, and independent variable or variables, X. The dependent variable is also called the response variable. Independent variables are also called explanatory or predictor variables. Continuous predictor variables might be called covariates, whereas categorical predictor variables might be also referred to as factors. The matrix, X, of observations on predictor variables is usually called the design matrix.

A multiple linear regression model is

$$
y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+\cdots+\beta_{p} X_{i p}+\varepsilon_{i}, \quad i=1, \cdots, n,
$$

where

- y_{i} is the i th response.
- β_{k} is the k th coefficient, where β_{0} is the constant term in the model.

Sometimes, design matrices might include information about the constant term. However, LinearModel.fit or LinearModel.stepwise by default includes a constant term in the model, so you must not enter a column of 1 s into your design matrix X.

- $X_{i j}$ is the i th observation on the j th predictor variable, $j=1, \ldots, p$.
- ε_{i} is the i th noise term, that is, random error.

In general, a linear regression model can be a model of the form

$$
y_{i}=\beta_{0}+\sum_{k=1}^{K} \beta_{k} f_{k}\left(X_{i 1}, X_{i 2}, \cdots, X_{i p}\right)+\varepsilon_{i}, \quad i=1, \cdots, n
$$

where $f($.$) is a scalar-valued function of the independent variables, X_{i j} \mathrm{~s}$. The functions, $f(X)$, might be in any form including nonlinear functions or polynomials. The linearity, in the linear regression models, refers to the linearity of the coefficients β_{k}. That is, the response variable, y, is a linear function of the coefficients, β_{k}.

Some examples of linear models are:

$$
\begin{aligned}
y_{i} & =\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{3 i}+\varepsilon_{i} \\
y_{i} & =\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{1 i}^{3}+\beta_{4} X_{2 i}^{2}+\varepsilon_{i} \\
y_{i} & =\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\beta_{3} X_{1 i} X_{2 i}+\beta_{4} \log X_{3 i}+\varepsilon_{i}
\end{aligned}
$$

The following, however, are not linear models since they are not linear in the unknown coefficients, β_{k}.

$$
\begin{aligned}
& \log y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\varepsilon_{i} \\
& y_{i}=\beta_{0}+\beta_{1} X_{1 i}+\frac{1}{\beta_{2} X_{2 i}}+e^{\beta_{3} X_{1 i} X_{2 i}}+\varepsilon_{i}
\end{aligned}
$$

The usual assumptions for linear regression models are:

- The noise terms, ε_{i}, are uncorrelated.
- The noise terms, ε_{i}, have independent and identical normal distributions with mean zero and constant variance, σ^{2}. Thus

$$
\begin{aligned}
E\left(y_{i}\right) & =E\left(\sum_{k=0}^{K} \beta_{k} f_{k}\left(X_{i 1}, X_{i 2}, \cdots, X_{i p}\right)+\varepsilon_{i}\right) \\
& =\sum_{k=0}^{K} \beta_{k} f_{k}\left(X_{i 1}, X_{i 2}, \cdots, X_{i p}\right)+E\left(\varepsilon_{i}\right) \\
& =\sum_{k=0}^{K} \beta_{k} f_{k}\left(X_{i 1}, X_{i 2}, \cdots, X_{i p}\right)
\end{aligned}
$$

and

$$
V\left(y_{i}\right)=V\left(\sum_{k=0}^{K} \beta_{k} f_{k}\left(X_{i 1}, X_{i 2}, \cdots, X_{i p}\right)+\varepsilon_{i}\right)=V\left(\varepsilon_{i}\right)=\sigma^{2}
$$

So the variance of y_{i} is the same for all levels of $X_{i j}$.

- The responses y_{i} are uncorrelated.

The fitted linear function is

$$
\hat{y}_{i}=b_{0}+\sum_{k=1}^{K} b_{k} f_{k}\left(X_{i 1}, X_{i 2}, \cdots, X_{i p}\right), \quad i=1, \cdots, n
$$

where \hat{y}_{i} is the estimated response and $b_{k} \mathrm{~s}$ are the fitted coefficients. The coefficients are estimated so as to minimize the mean squared difference between the prediction vector $b f(X)$ and the true response vector y, that is $\hat{y}-y$. This method is called the method of least squares. Under the assumptions on the noise terms, these coefficients also maximize the likelihood of the prediction vector.

In a linear regression model of the form $y=\beta_{1} \mathrm{X}_{1}+\beta_{2} \mathrm{X}_{2}+\ldots+\beta_{p} \mathrm{X}_{p}$, the coefficient β_{k} expresses the impact of a one-unit change in predictor variable, X_{j}, on the mean of the response, $\mathrm{E}(y)$ provided that all other variables are held constant. The sign of the coefficient gives the direction of the effect. For example, if the linear model is $\mathrm{E}(y)=1.8-2.35 X_{1}+X_{2}$, then -2.35 indicates a 2.35 unit decrease in the mean response with a one-unit increase in X_{1}, given X_{2} is held constant. If the model is $\mathrm{E}(y)=1.1+1.5 X_{1}^{2}+X_{2}$, the coefficient of X_{1}^{2} indicates a 1.5 unit increase in the mean of Y with a one-unit increase in X_{1}^{2} given all else held constant. However, in the case of $\mathrm{E}(y)=1.1+2.1 X_{1}$ $+1.5 X_{1}^{2}$, it is difficult to interpret the coefficients similarly, since it is not possible to hold X_{1} constant when X_{1}^{2} changes or vice versa.

References

[1] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear Statistical Models. IRWIN, The McGraw-Hill Companies, Inc., 1996.
[2] Seber, G. A. F. Linear Regression Analysis. Wiley Series in Probability and Mathematical Statistics. John Wiley and Sons, Inc., 1977.

See Also LinearModel | LinearModel.fit | LinearModel.stepwise |
Related

- "Interpret Linear Regression Results" on page 9-63

Examples

- "Regression Using Dataset Arrays" on page 9-50
- "Linear Regression with Interaction Effects" on page 9-53
- "Regression with Categorical Covariates" on page 2-59
- "Linear Regression Workflow" on page 9-43

Linear Regression

In this section...

"Prepare Data" on page 9-11
"Choose a Fitting Method" on page 9-13
"Choose a Model or Range of Models" on page 9-14
"Fit Model to Data" on page 9-20
"Examine Quality and Adjust the Fitted Model" on page 9-20
"Predict or Simulate Responses to New Data" on page 9-39
"Share Fitted Models" on page 9-42
"Linear Regression Workflow" on page 9-43

Prepare Data

To begin fitting a regression, put your data into a form that fitting functions expect. All regression techniques begin with input data in an array X and response data in a separate vector y, or input data in a dataset array ds and response data as a column in ds. Each row of the input data represents one observation. Each column represents one predictor (variable).

For a dataset array ds, indicate the response variable with the 'ResponseVar' name-value pair:

```
mdl = LinearModel.fit(ds,'ResponseVar','BloodPressure');
% or
mdl = GeneralizedLinearModel.fit(ds,'ResponseVar','BloodPressure');
```

The response variable is the last column by default.
You can use numeric categorical predictors. A categorical predictor is one that takes values from a fixed set of possibilities.

- For a numeric array X, indicate the categorical predictors using the 'Categorical' name-value pair. For example, to indicate that predictors 2 and 3 out of six are categorical:

```
mdl = LinearModel.fit(X,y,'Categorical',[2,3]);
% or
mdl = GeneralizedLinearModel.fit(X,y,'Categorical',[2,3]);
% or equivalently
mdl = LinearModel.fit(X,y,'Categorical',logical([[0 1 1 1 0 0 0]));
```

- For a dataset array ds, fitting functions assume that these data types are categorical:
- Logical
- Categorical (nominal or ordinal)
- String or character array

If you want to indicate that a numeric predictor is categorical, use the 'Categorical' name-value pair.

Represent missing numeric data as NaN. To represent missing data for other data types, see "Missing Group Values" on page 2-53.

Dataset Array for Input and Response Data

For example, to create a dataset array from an Excel spreadsheet:

```
ds = dataset('XLSFile','hospital.xls',...
    'ReadObsNames',true);
```

To create a dataset array from workspace variables:

```
load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);
```


Numeric Matrix for Input Data, Numeric Vector for Response

For example, to create numeric arrays from workspace variables:

```
load carsmall
X = [Weight Horsepower Cylinders Model_Year];
y = MPG;
```

To create numeric arrays from an Excel spreadsheet:

```
[X Xnames] = xlsread('hospital.xls');
y = X(:,4); % response y is systolic pressure
X(:,4) = []; % remove y from the X matrix
```

Notice that the nonnumeric entries, such as sex, do not appear in X.

Choose a Fitting Method

There are three ways to fit a model to data:

- "Least-Squares Fit" on page 9-13
- "Robust Fit" on page 9-13
- "Stepwise Fit" on page 9-13

Least-Squares Fit

Use LinearModel.fit to construct a least-squares fit of a model to the data. This method is best when you are reasonably certain of the model's form, and mainly need to find its parameters. This method is also useful when you want to explore a few models. The method requires you to examine the data manually to discard outliers, though there are techniques to help (see "Residuals - Model Quality for Training Data" on page 9-24).

Robust Fit

Use LinearModel.fit with the RobustOpts name-value pair to create a model that is little affected by outliers. Robust fitting saves you the trouble of manually discarding outliers. However, step does not work with robust fitting. This means that when you use robust fitting, you cannot search stepwise for a good model.

Stepwise Fit

Use LinearModel.stepwise to find a model, and fit parameters to the model. LinearModel.stepwise starts from one model, such as a constant, and adds or subtracts terms one at a time, choosing an optimal term each time in a greedy fashion, until it cannot improve further. Use stepwise fitting to find a good model, which is one that has only relevant terms.

The result depends on the starting model. Usually, starting with a constant model leads to a small model. Starting with more terms can lead to a more complex model, but one that has lower mean squared error. See "Compare large and small stepwise models" on page 9-111.

You cannot use robust options along with stepwise fitting. So after a stepwise fit, examine your model for outliers (see "Residuals - Model Quality for Training Data" on page 9-24).

Choose a Model or Range of Models

There are several ways of specifying a model for linear regression. Use whichever you find most convenient.

- "Brief String" on page 9-15
- "Terms Matrix" on page 9-15
- "Formula" on page 9-19

For LinearModel.fit, the model specification you give is the model that is fit. If you do not give a model specification, the default is 'linear'.

For LinearModel.stepwise, the model specification you give is the starting model, which the stepwise procedure tries to improve. If you do not give a model specification, the default starting model is 'constant', and the default upper bounding model is 'interactions'. Change the upper bounding model using the Upper name-value pair.

Note Thee are other ways of selecting models, such as using lasso, lassoglm, sequentialfs, or plsregress.

Brief String

String	Model Type
'constant'	Model contains only a constant (intercept) term.
'linear'	Model contains an intercept and linear terms for each predictor.
'interactions'	Model contains an intercept, linear terms, and all products of pairs of distinct predictors (no squared terms).
'purequadratic'	Model contains an intercept, linear terms, and squared terms.
'quadratic'	Model contains an intercept, linear terms, interactions, and squared terms.
'polyijk'	Model is a polynomial with all terms up to degree i in the first predictor, degree j in the second predictor, etc. Use numerals 0 through 9. For example, 'poly2111' has a constant plus all linear and product terms, and also contains terms with predictor 1 squared.

For example, to specify an interaction model using LinearModel.fit with matrix predictors:
mdl = LinearModel.fit(X,y,'interactions');

To specify a model using LinearModel.stepwise and a dataset array ds of predictors, suppose you want to start from a constant and have a linear model upper bound. Assume the response variable in ds is in the third column.

```
mdl2 = LinearModel.stepwise(ds,'constant',...
    'Upper','linear','ResponseVar',3);
```


Terms Matrix

A terms matrix is a T-by-P+1 matrix specifying terms in a model, where T is the number of terms, P is the number of predictor variables, and plus one is for the response variable. The value of $T(i, j)$ is the exponent of variable j in term i. For example, if there are three predictor variables A, B, and C:

```
[0 0 0 0] % constant term or intercept
[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0
[\begin{array}{llll}{1}&{0}&{1}&{0}\end{array}]% %*C
[2 0 0 0] % A^2
[00 1 2 0] % B*(C^2)
```

The 0 at the end of each term represents the response variable. In general,

- If you have the variables in a dataset array, then a 0 must represent the response variable depending on the position of the response variable in the dataset array. For example:

Load sample data and define the dataset array.

```
load hospital
ds = dataset(hospital.Sex,hospital.BloodPressure(:,1),hospital.Age,...
hospital.Smoker,'VarNames',{'Sex','BloodPressure','Age','Smoker'});
Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in a terms matrix. The response variable is in the second column of the data set array, so there must be a column of zeros for the response variable in the second column of the term matrix.
```

```
T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]
T =
\begin{tabular}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{tabular}
```

Redefine the dataset array.

```
ds = dataset(hospital.BloodPressure(:,1),hospital.Sex,hospital.Age,...
hospital.Smoker,'VarNames',{'BloodPressure','Sex','Age','Smoker'});
```

Now, the response variable is the first term in the data set array. Specify the same linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a term matrix.

```
T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
```

$\mathrm{T}=$

0	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

- If you have the predictor and response variables in a matrix and column vector, then you must include a 0 for the response variable at the end of each term. For example:

Load sample data and define the matrix of predictors.
load carsmall
X = [Acceleration, Weight];

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to data. This model includes the main effect and two way interaction terms for the variables, Acceleration and Weight, and a second order term for the variable, Weight.

```
T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]
```

$\mathrm{T}=$

0	0	0
1	0	0
0	1	0
1	1	0
0	2	0

Fit a linear model.
mdl = LinearModel.fit(X,MPG,T)
mdl =

Linear regression model:
$y-1+x 1^{*} x 2+x 2^{\wedge} 2$

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	48.906	12.589	3.8847	0.00019665
x1	0.54418	0.57125	0.95261	0.34337
x2	-0.012781	0.0060312	-2.1192	0.036857
x1: x2	-0.00010892	0.00017925	-0.6076	0.545
x2^2	$9.7518 \mathrm{e}-07$	$7.5389 \mathrm{e}-07$	1.2935	0.19917

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 4.1
R-squared: 0.751, Adjusted R-Squared 0.739
F-statistic vs. constant model: 67, p-value $=4.99 \mathrm{e}-26$
Only the intercept and $x 2$ term, which corresponds to the Weight variable, are significant at the 5% significance level.

Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.

```
T = [0 0 0;1 0 0;0 1 0;1 1 0];
mdl = LinearModel.stepwise(X,MPG,[O O O],'upper',T)
1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28
mdl =
Linear regression model:
    y ~ 1 + x2
Estimated Coefficients:
\begin{tabular}{lrrrl} 
& Estimate & \multicolumn{1}{l}{ SE } & \multicolumn{1}{l}{ tStat } & pValue \\
(Intercept) & 49.238 & 1.6411 & 30.002 & \(2.7015 \mathrm{e}-49\) \\
x2 & -0.0086119 & 0.0005348 & -16.103 & \(1.6434 \mathrm{e}-28\)
\end{tabular}
Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738, Adjusted R-Squared 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28
```

The results of the stepwise regression are consistent with the results of LinearModel.fit in the previous step.

Formula

A formula for a model specification is a string of the form
'Y ~ terms',

- Y is the response name.
- terms contains
- Variable names
- + to include the next variable
- - to exclude the next variable
- : to define an interaction, a product of terms
- * to define an interaction and all lower-order terms
- ^ to raise the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as well
- () to group terms

Tip Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include - 1 in the formula.

Examples:
' $Y \sim A+B+C '$ is a three-variable linear model with intercept.
' $Y \sim A+B+C-1 '$ is a three-variable linear model without intercept.
' Y ~ $A+B+C+B \wedge 2 '$ is a three-variable model with intercept and a $B^{\wedge} 2$ term.
' Y ~ $\mathrm{A}+\mathrm{B}^{\wedge} 2+C$ ' is the same as the previous example, since $\mathrm{B}^{\wedge} 2$
includes a B term.
' Y ~ A + B + C + A:B' includes an A*B term.
' Y ~ $A * B+C$ ' is the same as the previous example, since $A * B=A+B+$
A:B.
' $Y \sim A^{*} B^{*} C-A: B: C '$ has all interactions among A, B, and C, except the three-way interaction.
' Y ~ $A^{*}(B+C+D)^{\prime}$ has all linear terms, plus products of A with each of the other variables.

For example, to specify an interaction model using LinearModel.fit with matrix predictors:

```
mdl = LinearModel.fit(X,y,'y ~ x1*x2*x3 - x1:x2:x3');
```

To specify a model using LinearModel.stepwise and a dataset array ds of predictors, suppose you want to start from a constant and have a linear model upper bound. Assume the response variable in ds is named 'y', and the predictor variables are named 'x1', 'x2', and 'x3'.

```
mdl2 = LinearModel.stepwise(ds,'y ~ 1','Upper','y ~ x1 + x2 + x3');
```


Fit Model to Data

The most common optional arguments for fitting:

- For robust regression in LinearModel.fit, set the 'RobustOpts' name-value pair to 'on'.
- Specify an appropriate upper bound model in LinearModel.stepwise, such as set 'Upper' to 'linear'.
- Indicate which variables are categorical using the 'CategoricalVars' name-value pair. Provide a vector with column numbers, such as [1 6] to specify that predictors 1 and 6 are categorical. Alternatively, give a logical vector the same length as the data columns, with a 1 entry indicating that variable is categorical. If there are seven predictors, and predictors 1 and 6 are categorical, specify logical([1, $0,0,0,0,1,0])$.
- For a dataset array, specify the response variable using the 'ResponseVar' name-value pair. The default is the last column in the array.

For example,

```
mdl = LinearModel.fit(X,y,'linear',...
    'RobustOpts','on','CategoricalVars',3);
mdl2 = LinearModel.stepwise(ds,'constant',...
    'ResponseVar','MPG','Upper','quadratic');
```


Examine Quality and Adjust the Fitted Model

After fitting a model, examine the result.

- "Model Display" on page 9-21
- "ANOVA" on page 9-22
- "Diagnostic Plots" on page 9-23
- "Residuals - Model Quality for Training Data" on page 9-24
- "Plots to Understand Predictor Effects" on page 9-29
- "Plots to Understand Terms Effects" on page 9-34
- "Change Models" on page 9-36

Model Display

A linear regression model shows several diagnostics when you enter its name or enter disp (mdl). This display gives some of the basic information to check whether the fitted model represents the data adequately.

For example, fit a linear model to data constructed with two out of five predictors not present and with no intercept term:
$X=r a n d n(100,5) ;$
$y=X *[1 ; 0 ; 3 ; 0 ;-1]+r a n d n(100,1)$;
mdl $=$ LinearModel.fit(X,y)
mdl =

Linear regression model:

```
    y ~ 1 + x1 + x2 + x3 + x4 + x5
```

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	0.038164	0.099458	0.38372	0.70205
x1	0.92794	0.087307	10.628	$8.5494 \mathrm{e}-18$
x2	-0.075593	0.10044	-0.75264	0.45355
x3	2.8965	0.099879	29	$1.1117 \mathrm{e}-48$
x4	0.045311	0.10832	0.41831	0.67667
x5	-0.99708	0.11799	-8.4504	$3.593 \mathrm{e}-13$

Number of observations: 100, Error degrees of freedom: 94
Root Mean Squared Error: 0.972
R-squared: 0.93, Adjusted R-Squared 0.926
F-statistic vs. constant model: 248, p-value $=1.5 e-52$

Notice that:

- The display contains the estimated values of each coefficient in the Estimate column. These values are reasonably near the true values [0;1;0;3;0;-1].
- There is a standard error column for the coefficient estimates.
- The reported pValue (which are derived from the t statistics under the assumption of normal errors) for predictors 1,3 , and 5 are extremely small. These are the three predictors that were used to create the response data y.
- The pValue for (Intercept), $x 2$ and $\times 4$ are much larger than 0.01 . These three predictors were not used to create the response data y.
- The display contains R^{2}, adjusted R^{2}, and F statistics.

ANOVA

To examine the quality of the fitted model, consult an ANOVA table. For example, use anova on a linear model with five predictors:

```
X = randn(100,5);
y = X*[1;0;3;0;-1]+randn(100,1);
mdl = LinearModel.fit(X,y);
tbl = anova(mdl)
```

tbl =

	SumSq	DF	MeanSq	F	pValue
x1	106.62	1	106.62	112.96	$8.5494 \mathrm{e}-18$
x2	0.53464	1	0.53464	0.56646	0.45355
x3	793.74	1	793.74	840.98	$1.1117 \mathrm{e}-48$
x4	0.16515	1	0.16515	0.17498	0.67667
x5	67.398	1	67.398	71.41	$3.593 e-13$
Error	88.719	94	0.94382		

This table gives somewhat different results than the default display (see "Model Display" on page 9-21). The table clearly shows that the effects of x2 and $x 4$ are not significant. Depending on your goals, consider removing x2 and $x 4$ from the model.

Diagnostic Plots

Diagnostic plots help you identify outliers, and see other problems in your model or fit. For example, load the carsmall data, and make a model of MPG as a function of Cylinders (nominal) and Weight:

```
load carsmall
ds = dataset(Weight,MPG,Cylinders);
ds.Cylinders = ordinal(ds.Cylinders);
mdl = LinearModel.fit(ds,'MPG ~ Cylinders*Weight + Weight^2');
```

Make a leverage plot of the data and model.
plotDiagnostics(mdl)

There are a few points with high leverage. But this plot does not reveal whether the high-leverage points are outliers.

Look for points with large Cook's distance.

```
plotDiagnostics(mdl,'cookd')
```

Case order plot of Cook's distance

There is one point with large Cook's distance. Identify it and remove it from the model. You can use the Data Cursor to click the outlier and identify it, or identify it programmatically:

```
[~,larg] = max(mdl.Diagnostics.CooksDistance);
mdl2 = LinearModel.fit(ds,'MPG ~ Cylinders*Weight + Weight^2',...
    'Exclude',larg);
```


Residuals - Model Quality for Training Data

There are several residual plots to help you discover errors, outliers, or correlations in the model or data. The simplest residual plots are the default histogram plot, which shows the range of the residuals and their frequencies,
and the probability plot, which shows how the distribution of the residuals compares to a normal distribution with matched variance.

Load the carsmall data, and make a model of MPG as a function of Cylinders (nominal) and Weight:
load carsmall
ds = dataset(Weight,MPG,Cylinders);
ds.Cylinders = ordinal(ds.Cylinders);
mdl = LinearModel.fit(ds,'MPG ~ Cylinders*Weight + Weight^2');
Examine the residuals:
plotResiduals(mdl)

Histogram of residuals

The observations above 12 are potential outliers.

```
plotResiduals(mdl,'probability')
```

Normal probability plot of residuals

The two potential outliers appear on this plot as well. Otherwise, the probability plot seems reasonably straight, meaning a reasonable fit to normally distributed residuals.

You can identify the two outliers and remove them from the data:
outl $=$ find(mdl.Residuals.Raw > 12)
outl =

90
97
To remove the outliers, use the Exclude name-value pair:

```
mdl2 = LinearModel.fit(ds,'MPG ~ Cylinders*Weight + Weight^2',...
    'Exclude',outl);
```

Examine a residuals plot of mdl2:
plotResiduals(mdl2)

Histogram of residuals

The new residuals plot looks fairly symmetric, without obvious problems. However, there might be some serial correlation among the residuals. Create a new plot to see if such an effect exists.
plotResiduals(mdl2,'lagged')

Plot of residuals vs. lagged residuals

The scatter plot shows many more crosses in the upper-right and lower-left quadrants than in the other two quadrants, indicating positive serial correlation among the residuals.

Another potential issue is when residuals are large for large observations. See if the current model has this issue.
plotResiduals(mdl2,'fitted')

There is some tendency for larger fitted values to have larger residuals. Perhaps the model errors are proportional to the measured values.

Plots to Understand Predictor Effects

This example shows how to understand the effect each predictor has on a regression model using a variety of available plots.

1 Create a model of mileage from some predictors in the carsmall data.

```
load carsmall
ds = dataset(Weight,MPG,Cylinders);
ds.Cylinders = ordinal(ds.Cylinders);
mdl = LinearModel.fit(ds,'MPG ~ Cylinders*Weight + Weight^2');
```

2 Examine a slice plot of the responses. This displays the effect of each predictor separately.
plotSlice(mdl)

You can drag the individual predictor values, which are represented by dashed blue vertical lines. You can also choose between simultaneous and non-simultaneous confidence bounds, which are represented by dashed red curves.

3 Use an effects plot to show another view of the effect of predictors on the response.
plotEffects(mdl)

This plot shows that changing Weight from about 2500 to 4732 lowers MPG by about 30 (the location of the upper blue circle). It also shows that changing the number of cylinders from 8 to 4 raises MPG by about 10 (the lower blue circle). The horizontal blue lines represent confidence intervals for these predictions. The predictions come from averaging over one predictor as the other is changed. In cases such as this, where the two predictors are correlated, be careful when interpreting the results.

4 Instead of viewing the effect of averaging over a predictor as the other is changed, examine the joint interaction in an interaction plot.

```
plotInteraction(mdl,'Weight','Cylinders')
```

Interaction of Weight and Cylinders

The interaction plot shows the effect of changing one predictor with the other held fixed. In this case, the plot is much more informative. It shows, for example, that lowering the number of cylinders in a relatively light car
(Weight = 1795) leads to an increase in mileage, but lowering the number of cylinders in a relatively heavy car $($ Weight $=4732)$ leads to a decrease in mileage.

5 For an even more detailed look at the interactions, look at an interaction plot with predictions. This plot holds one predictor fixed while varying the other, and plots the effect as a curve. Look at the interactions for various fixed numbers of cylinders.
plotInteraction(mdl,'Cylinders','Weight','predictions')

Now look at the interactions with various fixed levels of weight.
plotInteraction(mdl,'Weight','Cylinders','predictions')

Plots to Understand Terms Effects

This example shows how to understand the effect of each term in a regression model using a variety of available plots.

1 Create a model of mileage from some predictors in the carsmall data.

```
load carsmall
ds = dataset(Weight,MPG,Cylinders);
ds.Cylinders = ordinal(ds.Cylinders);
mdl = LinearModel.fit(ds,'MPG ~ Cylinders*Weight + Weight^2');
```

2 Create an added variable plot with Weight^2 as the added variable.

```
plotAdded(mdl,'Weight^2')
```


This plot shows the results of fitting both Weight^2 and MPG to the terms other than Weight^2. The reason to use plotAdded is to understand what additional improvement in the model you get by adding Weight^2. The coefficient of a line fit to these points is the coefficient of Weight^2 in the full model. The Weight^2 predictor is just over the edge of significance (p Value <0.05) as you can see in the coefficients table display. You can see that in the plot as well. The confidence bounds look like they could not contain a horizontal line (constant y), so a zero-slope model is not consistent with the data.

3 Create an added variable plot for the model as a whole.
plotAdded(mdl)

The model as a whole is very significant, so the bounds don't come close to containing a horizontal line. The slope of the line is the slope of a fit to the predictors projected onto their best-fitting direction, or in other words, the norm of the coefficient vector.

Change Models

There are two ways to change a model:

- step - Add or subtract terms one at a time, where step chooses the most important term to add or remove.
- addTerms and removeTerms - Add or remove specified terms. Give the terms in any of the forms described in "Choose a Model or Range of Models" on page 9-14.

If you created a model using LinearModel.stepwise, step can have an effect only if you give different upper or lower models. step does not work when you fit a model using RobustOpts.

For example, start with a linear model of mileage from the carbig data:
load carbig
ds = dataset(Acceleration, Displacement, Horsepower, Weight, MPG);
mdl = LinearModel.fit(ds,'linear','ResponseVar','MPG')
mdl =
Linear regression model:
MPG ~ 1 + Acceleration + Displacement + Horsepower + Weight
Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	45.251	2.456	18.424	$7.0721 \mathrm{e}-55$
Acceleration	-0.023148	0.1256	-0.1843	0.85388
Displacement	-0.0060009	0.0067093	-0.89441	0.37166
Horsepower	-0.043608	0.016573	-2.6312	0.008849
Weight	-0.0052805	0.00081085	-6.5123	2.3025e-10

Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 4.25
R-squared: 0.707, Adjusted R-Squared 0.704
F-statistic vs. constant model: 233, p-value = 9.63e-102
Try to improve the model using step for up to 10 steps:
mdl1 = step(mdl,'NSteps',10)

1. Adding Displacement:Horsepower, FStat $=87.4802, \mathrm{pValue}=7.05273 \mathrm{e}-19$
mdl1 $=$

Linear regression model:
MPG ~ 1 + Acceleration + Weight + Displacement*Horsepower

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	61.285	2.8052	21.847	$1.8593 \mathrm{e}-69$
Acceleration	-0.34401	0.11862	-2.9	0.0039445
Displacement	-0.081198	0.010071	-8.0623	$9.5014 \mathrm{e}-15$
Horsepower	-0.24313	0.026068	-9.3265	$8.6556 \mathrm{e}-19$
Weight	-0.0014367	0.00084041	-1.7095	0.088166
Displacement:Horsepower	0.00054236	$5.7987 \mathrm{e}-05$	9.3531	$7.0527 \mathrm{e}-19$

```
Number of observations: 392, Error degrees of freedom: 386
Root Mean Squared Error: 3.84
R-squared: 0.761, Adjusted R-Squared 0.758
F-statistic vs. constant model: 246, p-value = 1.32e-117
```

step stopped after just one change.
To try to simplify the model, remove the Acceleration and Weight terms from mdl1:
mdl2 = removeTerms(mdl1,'Acceleration + Weight')
mdl2 $=$

Linear regression model
MPG ~ 1 + Displacement*Horsepower

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	53.051	1.526	34.765	$3.0201 \mathrm{e}-121$
Displacement	-0.098046	0.0066817	-14.674	$4.3203 \mathrm{e}-39$
Horsepower	-0.23434	0.019593	-11.96	$2.8024 \mathrm{e}-28$
Displacement:Horsepower	0.00058278	$5.193 \mathrm{e}-05$	11.222	$1.6816 \mathrm{e}-25$

```
Number of observations: 392, Error degrees of freedom: 388
Root Mean Squared Error: 3.94
R-squared: 0.747, Adjusted R-Squared 0.745
```

```
F-statistic vs. constant model: 381, p-value \(=3 e-115\)
```

mdl2 uses just Displacement and Horsepower, and has nearly as good a fit to the data as mdl1 in the Adjusted R-Squared metric.

Predict or Simulate Responses to New Data

There are three ways to use a linear model to predict or simulate the response to new data:

- "predict" on page 9-39
- "feval" on page 9-40
- "random" on page 9-41

predict

This example shows how to predict and obtain confidence intervals on the predictions using the predict method.

1 Load the carbig data and make a default linear model of the response MPG to the Acceleration, Displacement, Horsepower, and Weight predictors.
load carbig
X = [Acceleration, Displacement, Horsepower, Weight];
mdl = LinearModel.fit(X,MPG);
2 Create a three-row array of predictors from the minimal, mean, and maximal values. There are some NaN values, so use functions that ignore NaN values.

Xnew $=[$ nanmin $(X) ;$ nanmean $(X) ; n a n m a x(X)] ;$ new data
3 Find the predicted model responses and confidence intervals on the predictions.
[NewMPG NewMPGCI] = predict(mdl,Xnew)
NewMPG =
34.1345
23.4078
4.7751

NewMPGCI =

$$
\begin{array}{rr}
31.6115 & 36.6575 \\
22.9859 & 23.8298 \\
0.6134 & 8.9367
\end{array}
$$

The confidence bound on the mean response is narrower than those for the minimum or maximum responses, which is quite sensible.

feval

When you construct a model from a dataset array, feval is often more convenient for predicting mean responses than predict. However, feval does not provide confidence bounds.

This example shows how to predict mean responses using the feval method.
1 Load the carbig data and make a default linear model of the response MPG to the Acceleration, Displacement, Horsepower, and Weight predictors.
load carbig
ds = dataset(Acceleration, Displacement,Horsepower, Weight, MPG);
mdl = LinearModel.fit(ds,'linear','ResponseVar','MPG');
2 Create a three-row array of predictors from the minimal, mean, and maximal values. There are some NaN values, so use functions that ignore NaN values.

X = [Acceleration,Displacement,Horsepower, Weight];
Xnew $=[$ nanmin $(X) ;$ nanmean $(X) ; n a n m a x(X)] ;$ new data
The Xnew array is not a dataset array. It has the right number of columns for prediction, so feval can use it for predictions.

3 Find the predicted model responses.

```
NewMPG = feval(mdl,Xnew)
```

```
NewMPG =
```

 34.1345
 23.4078
 4.7751

random

The random method simulates new random response values, equal to the mean prediction plus a random disturbance with the same variance as the training data.

This example shows how to simulate responses using the random method.

1 Load the carbig data and make a default linear model of the response MPG to the Acceleration, Displacement, Horsepower, and Weight predictors.
load carbig
X = [Acceleration, Displacement, Horsepower, Weight];
mdl $=$ LinearModel.fit(X,MPG);
2 Create a three-row array of predictors from the minimal, mean, and maximal values. There are some NaN values, so use functions that ignore NaN values.

Xnew $=$ [nanmin (X); nanmean $(X) ;$ nanmax $(X)]$; new data

3 Generate new predicted model responses including some randomness.

```
rng('default') % for reproducibility
NewMPG = random(mdl,Xnew)
NewMPG =
```

 36.4178
 31.1958
 -4.8176
 4 Because a negative value of MPG does not seem sensible, try predicting two more times.

NewMPG = random(mdl,Xnew)

NewMPG =
37.7959
24.7615
-0.7783

```
NewMPG = random(mdl,Xnew)
NewMPG =
```

 32.2931
 24.8628
 19.9715
 Clearly, the predictions for the third (maximal) row of Xnew are not reliable.

Share Fitted Models

Suppose you have a linear regression model, such as mdl from the following commands:

```
load carbig
ds = dataset(Acceleration,Displacement,Horsepower,Weight,MPG);
mdl = LinearModel.fit(ds,'linear','ResponseVar','MPG');
```

To share the model with other people, you can:

- Provide the model display.
mdl
$\mathrm{mdl}=$

Linear regression model:
MPG ~ 1 + Acceleration + Displacement + Horsepower + Weight

Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	45.251	2.456	18.424	$7.0721 \mathrm{e}-55$
Acceleration	-0.023148	0.1256	-0.1843	0.85388
Displacement	-0.0060009	0.0067093	-0.89441	0.37166
Horsepower	-0.043608	0.016573	-2.6312	0.008849
Weight	-0.0052805	0.00081085	-6.5123	$2.3025 e-10$

Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 4.25

```
R-squared: 0.707, Adjusted R-Squared 0.704
F-statistic vs. constant model: 233, p-value = 9.63e-102
```

- Provide just the model definition and coefficients.

```
mdl.CoefficientNames
ans =
    '(Intercept)' 'Acceleration' 'Displacement' 'Horsepower'
```

mdl. Coefficients.Estimate
ans =
45.2511
-0.0231
-0.0060
-0.0436
-0.0053
mdl.Formula
ans =
MPG ~ 1 + Acceleration + Displacement + Horsepower + Weight

Linear Regression Workflow

This example shows a typical workflow: import data, fit a regression, test its quality, modify it to improve the quality, and share it.

Step 1. Import the data into a dataset array.

hospital.xls is an Excel spreadsheet containing patient names, sex, age, weight, blood pressure, and dates of treatment in an experimental protocol. First read the data into a dataset array.

```
patients = dataset('XLSFile','hospital.xls',...
    'ReadObsNames',true);
```

Examine the first row of data.

```
patients(1,:)
ans =
    llllll
    lllllll
```

The sex and smoke fields seem to have two choices each. So change these fields to nominal.

```
patients.smoke = nominal(patients.smoke,{'No','Yes'});
patients.sex = nominal(patients.sex);
```


Step 2. Create a fitted model.

Your goal is to model the systolic pressure as a function of a patient's age, weight, sex, and smoking status. Create a linear formula for 'sys' as a function of 'age', 'wgt', 'sex', and 'smoke'.

```
modelspec = 'sys ~ age + wgt + sex + smoke';
```

mdl = LinearModel.fit(patients,modelspec)
mdl =
Linear regression model:
sys ~ 1 + sex + age + wgt + smoke
Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	118.28	7.6291	15.504	$9.1557 \mathrm{e}-28$
sex_m	0.88162	2.9473	0.29913	0.76549
age	0.08602	0.06731	1.278	0.20438
wgt	-0.016685	0.055714	-0.29947	0.76524
smoke_Yes	9.884	1.0406	9.498	$1.9546 \mathrm{e}-15$

[^1]```
R-squared: 0.508, Adjusted R-Squared 0.487
F-statistic vs. constant model: 24.5, p-value = 5.99e-14
```

The sex, age, and weight predictors have rather high $p$-values, indicating that some of these predictors might be unnecessary.

## Step 3. Locate and remove outliers.

See if there are outliers in the data that should be excluded from the fit. Plot the residuals.
plotResiduals(mdl)

Histogram of residuals


There is one possible outlier, with a value greater than 12 . This is probably not truly an outlier. For demonstration, here is how to find and remove it.

Find the outlier.

```
outlier = mdl.Residuals.Raw > 12;
find(outlier)
ans =
 84
```

Remove the outlier.

```
mdl = LinearModel.fit(patients,modelspec,...
 'Exclude', 84);
mdl.ObservationInfo(84,:)
ans =
\begin{tabular}{lllll}
& Weights & Excluded & Missing & Subset \\
WXM-486 & 1 & true & false & false
\end{tabular}
```

Observation 84 is no longer in the model.

## Step 4. Simplify the model.

Try to obtain a simpler model, one with fewer predictors but the same predictive accuracy. step looks for a better model by adding or removing one term at a time. Allow step take up to 10 steps.

```
mdl1 = step(mdl,'NSteps',10)
1. Removing wgt, FStat = 4.6001e-05, pValue = 0.9946
2. Removing sex, FStat = 0.063241, pValue = 0.80199
mdl1 =
Linear regression model:
 sys ~ 1 + age + smoke
Estimated Coefficients:
\begin{tabular}{lrrrr}
& Estimate & \multicolumn{1}{l}{ SE } & tStat & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 115.11 & 2.5364 & 45.383 & \(1.1407 \mathrm{e}-66\) \\
age & 0.10782 & 0.064844 & 1.6628 & 0.09962 \\
smoke_Yes & 10.054 & 0.97696 & 10.291 & \(3.5276 \mathrm{e}-17\)
\end{tabular}
```

```
Number of observations: 99, Error degrees of freedom: 96
Root Mean Squared Error: 4.61
R-squared: 0.536, Adjusted R-Squared 0.526
F-statistic vs. constant model: 55.4, p-value = 1.02e-16
```

step took two steps. This means it could not improve the model further by adding or subtracting a single term.

Plot the effectiveness of the simpler model on the training data.
plotResiduals(mdl1)

Histogram of residuals


The residuals look about as small as those of the original model.

## Step 5. Predict responses to new data.

Suppose you have four new people, aged 25, 30, 40, and 65, and the first and third smoke. Predict their systolic pressure using mdl1.

```
ages = [25;30;40;65];
smoker = {'Yes';'No';'Yes';'No'};
systolicnew = feval(mdl1,ages,smoker)
systolicnew =
```

    127.8561
    118.3412
    129.4734
    122.1149
    To make predictions, you need only the variables that mdl1 uses.

## Step 6. Share the model.

You might want others to be able to use your model for prediction. Access the terms in the linear model.

```
coefnames = mdl1.CoefficientNames
coefnames =
 '(Intercept)' 'age' 'smoke_Yes'
```

View the model formula.
mdl1.Formula
ans $=$
sys ~ 1 + age + smoke
Access the coefficients of the terms.

```
coefvals = mdl1.Coefficients(:,1); % dataset array
coefvals = double(coefvals)
```

```
coefvals =
 115.1066
 0.1078
 10.0540
```

The model is sys $=115.1066+0.1078 *$ age $+10.0540 *$ smoke, where smoke is 1 for a smoker, and 0 otherwise.

## Regression Using Dataset Arrays

This example shows how to perform linear and stepwise regression analyses using dataset arrays.

## Load sample data.

load imports-85

## Store predictor and response variables in dataset array.

```
ds = dataset(X(:,7),X(:,8),X(:,9),X(:,15),'Varnames',...
```

\{'curb_weight','engine_size','bore', 'price'\});

## Fit linear regression model.

Fit a linear regression model that explains the price of a car in terms of its curb weight, engine size, and bore.

```
LinearModel.fit(ds,'price~curb_weight+engine_size+bore')
```

ans =

Linear regression model:

```
 price ~ 1 + curb_weight + engine_size + bore
```

Estimated Coefficients:

|  | Estimate | SE | tStat | pValue |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 64.095 | 3.703 | 17.309 | $2.0481 \mathrm{e}-41$ |
| curb_weight | -0.0086681 | 0.0011025 | -7.8623 | $2.42 \mathrm{e}-13$ |
| engine_size | -0.015806 | 0.013255 | -1.1925 | 0.23452 |
| bore | -2.6998 | 1.3489 | -2.0015 | 0.046711 |

Number of observations: 201, Error degrees of freedom: 197
Root Mean Squared Error: 3.95
R-squared: 0.674, Adjusted R-Squared 0.669
F-statistic vs. constant model: 136, p-value $=1.14 \mathrm{e}-47$

The following command also returns the same result because LinearModel.fit, by default, assumes the predictor variable is in the last column of the dataset array ds.

```
LinearModel.fit(ds)
```


## Recreate dataset array and repeat analysis.

This time, put the response variable in the first column of the dataset array.

```
ds = dataset(X(:,15),X(:,7),X(:,8),X(:,9),'Varnames',...
{'price','curb_weight','engine_size','bore'});
```

When the response variable is in the first column of ds, define its location. For example, LinearModel.fit, by default, assumes that bore is the response variable. You can define the response variable in the model using either:

```
LinearModel.fit(ds,'ResponseVar','price');
```

or
LinearModel.fit(ds,'ResponseVar',logical([1 0000$])) ;$

## Perform stepwise regression.

```
LinearModel.stepwise(ds,'quadratic','lower','price~1',...
'ResponseVar','price')
1. Removing bore^2, FStat = 0.01282, pValue = 0.90997
2. Removing engine_size^2, FStat = 0.078043, pValue = 0.78027
3. Removing curb_weight:bore, FStat = 0.70558, pValue = 0.40195
ans =
```

Linear regression model:
price ~ 1 + curb_weight*engine_size + engine_size*bore + curb_weight^2
Estimated Coefficients:

|  | Estimate | SE |  | tStat |
| :--- | ---: | ---: | ---: | ---: |
| ( Intercept) | 131.13 |  | 14.273 | 9.1873 |
| curb_weight | -0.043315 | 0.0085114 | -5.0891 | 6.23 |


| engine_size | -0.17102 | 0.13844 | -1.2354 |
| :--- | ---: | ---: | ---: |
| bore | -12.244 | 4.999 | -2.4493 |
| curb_weight:engine_size | $-6.3411 e-05$ | $2.6577 e-05$ | -2.386 |
| engine_size:bore | 0.092554 | 0.037263 | 2.4838 |
| curb_weight^2 | $8.0836 e-06$ | $1.9983 e-06$ | 4.0451 |

```
Number of observations: 201, Error degrees of freedom: 194
Root Mean Squared Error: 3.59
R-squared: 0.735, Adjusted R-Squared 0.726
F-statistic vs. constant model: 89.5, p-value = 3.58e-53
```

The initial model is a quadratic formula, and the lowest model considered is the constant. Here, LinearModel.stepwise performs a backward elimination technique to determine the terms in the model. The final model is price ~ 1 + curb_weight*engine_size + engine_size*bore + curb_weight^2, which corresponds to

$$
\mathrm{P}=\beta_{0}+\beta_{C} C+\beta_{E} E+\beta_{B} B+\beta_{C E} C E+\beta_{E B} E B+\beta_{C^{2}} C^{2}+\varepsilon
$$

where $P$ is price, $C$ is curb weight, $E$ is engine size, $B$ is bore, $\beta_{i}$ is the coefficient for the corresponding term in the model, and $\varepsilon$ is the error term. The final model includes all three main effects, the interaction effects for curb weight and engine size and engine size and bore, and the second-order term for curb weight.

## See Also

LinearModel | LinearModel.fit | LinearModel.stepwise |

Related
Examples
Concepts

- "Examine Quality and Adjust the Fitted Model" on page 9-20
- "Interpret Linear Regression Results" on page 9-63
- "Linear Regression Output and Diagnostic Statistics" on page 9-71


## Linear Regression with Interaction Effects

This example shows how to construct and analyze a linear regression model with interaction effects and interpret the results.

## Load sample data.

load hospital
To retain only the first column of blood pressure, store data in a new dataset array.
ds = dataset(hospital.Sex,hospital.Age,hospital.Weight,hospital.Smoker,... hospital.BloodPressure(:,1), 'Varnames',\{'Sex','Age','Weight','Smoker',... 'BloodPressure'\});

## Perform stepwise linear regression.

For the initial model, use the full model with all terms and their pairwise interactions.

```
mdl = LinearModel.stepwise(ds,'interactions')
```

1. Removing Sex:Smoker, FStat $=0.050738$, pValue $=0.8223$
2. Removing Weight:Smoker, FStat $=0.07758$, pValue $=0.78124$
3. Removing Age:Weight, FStat $=1.9717$, pValue $=0.16367$
4. Removing Sex:Age, FStat $=0.32389$, pValue $=0.57067$
5. Removing Age:Smoker, FStat $=2.4939$, pValue $=0.11768$
mdl =
Linear regression model:
BloodPressure ~ 1 + Age + Smoker + Sex*Weight
Estimated Coefficients:

|  | Estimate | SE | tStat | pValue |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 133.17 | 10.337 | 12.883 | $1.76 \mathrm{e}-22$ |
| Sex_Male | -35.269 | 17.524 | -2.0126 | 0.047015 |
| Age | 0.11584 | 0.067664 | 1.712 | 0.090198 |
| Weight | -0.1393 | 0.080211 | -1.7367 | 0.085722 |


| Smoker_1 | 9.8307 | 1.0229 | 9.6102 | $1.2391 \mathrm{e}-15$ |
| :--- | ---: | ---: | ---: | ---: |
| Sex_Male:Weight | 0.2341 | 0.11192 | 2.0917 | 0.039162 |

```
Number of observations: 100, Error degrees of freedom: 94
Root Mean Squared Error: 4.72
R-squared: 0.53, Adjusted R-Squared 0.505
F-statistic vs. constant model: 21.2, p-value = 4e-14
```

The final model in formula form is BloodPressure ~ $1+$ Age + Smoker + Sex*Weight. This model includes all four main effects (Age, Smoker, Sex, Weight) and the two-way interaction between Sex and Weight. This model corresponds to

$$
B P=\beta_{0}+\beta_{A} X_{A}+\beta_{S m} I_{S m}+\beta_{S} I_{S}+\beta_{W} X_{W}+\beta_{S W} X_{W} I_{S}+\varepsilon
$$

where

- $B P$ is the blood pressure
- $\beta_{i} \mathrm{~s}$ are the coefficients
- $I_{S m}$ is the indicator variable for smoking; $I_{S m}=1$ indicates a smoking patient whereas $I_{S m}=0$ indicates a nonsmoking patient
- $I_{S}$ is the indicator variable for sex; $I_{S}=1$ indicates a male patient whereas $I_{S}=0$ indicates a female patient
- $X_{A}$ is the Age variable
- $X_{W}$ is the Weight variable
- $\varepsilon$ is the error term

The following table shows the fitted linear model for each gender and smoking combination.

| $\mathbf{I}_{\mathbf{S m}}$ | $\mathbf{I}_{\mathbf{s}}$ | Linear Model |
| :--- | :--- | :--- |
| 1 (Male) | 1 (Smoker) | $B P=\left(\beta_{0}+\beta_{S m}+\beta_{S}\right)+\beta_{A} X_{A}+\left(\beta_{W}+\beta_{S W}\right) X_{W}$ <br> $B P=107.5617+0.11584 X_{A}+0.11826 X_{W}$ |
| 1 (Male) | 0 (Nonsmoker) | $B P=\left(\beta_{0}+\beta_{S m}\right)+\beta_{A} X_{A}+\beta_{W} X_{W}$ |
| 0 (Female) | 1 (Smoker) | $B P=\left(\beta_{0}+\beta_{S}\right)+\beta_{A} X_{A}+\left(\beta_{W}+\beta_{S W}\right) X W$ <br> $B P=97.901+0.11584 X_{A}+0.11826 X_{W}$ |
| 0 (Female) | 0 (Nonsmoker) | $B P=\beta_{0}+\beta_{A} X_{A}+\beta_{W} X_{W}$ <br> $B P=133.17+0.11584 X_{A}-0.1393 X_{W}$ |

As seen from these models, $\beta_{S m}$ and $\beta_{S}$ show how much the intercept of the response function changes when the indicator variable takes the value 1 compared to when it takes the value 0. $\beta_{S W}$, however, shows the effect of the Weight variable on the response variable when the indicator variable for sex takes the value 1 compared to when it takes the value 0 . You can explore the main and interaction effects in the final model using the methods of the LinearModel class as follows.

Plot prediction slice plots.
figure()
plotSlice(mdl)


This plot shows the main effects for all predictor variables. The green line in each panel shows the change in the response variable as a function of the predictor variable when all other predictor variables are held constant. For example, for a smoking male patient aged 37.5 , the expected blood pressure increases as the weight of the patient increases, given all else the same.

The dashed red curves in each panel show the $95 \%$ confidence bounds for the predicted response values.

The horizontal dashed blue line in each panel shows the predicted response for the specific value of the predictor variable corresponding to the vertical dashed blue line. You can drag these lines to get the predicted response values at other predictor values, as shown next.


For example, the predicted value of the response variable is 118.3497 when a patient is female, nonsmoking, age 40.3788 , and weighs 139.9545 pounds. The values in the square brackets, [114.621, 122.079], show the lower and upper limits of a $95 \%$ confidence interval for the estimated response. Note that, for a nonsmoking female patient, the expected blood pressure decreases as the weight increases, given all else is held constant.

## Plot main effects.

```
figure()
plotEffects(mdl)
```



This plot displays the main effects. The circles show the magnitude of the effect and the blue lines show the upper and lower confidence limits for the main effect. For example, being a smoker increases the expected blood pressure by 10 units, compared to being a nonsmoker, given all else is held constant. Expected blood pressure increases about two units for males compared to females, again, given other predictors held constant. An increase in age from 25 to 50 causes an expected increase of 4 units, whereas a change in weight from 111 to 202 causes about a 4 -unit decrease in the expected blood pressure, given all else held constant.

## Plot interaction effects.

```
figure()
plotInteraction(mdl,'Sex','Weight')
```



This plot displays the impact of a change in one factor given the other factor is fixed at a value.

> Note Be cautious while interpreting the interaction effects. When there is not enough data on all factor combinations or the data is highly correlated, it might be difficult to determine the interaction effect of changing one factor while keeping the other fixed. In such cases, the estimated interaction effect is an extrapolation from the data.

The blue circles show the main effect of a specific term, as in the main effects plot. The red circles show the impact of a change in one term for fixed values of the other term. For example, in the bottom half of this plot, the red circles show the impact of a weight change in female and male patients, separately. You can see that an increase in a female's weight from 111 to 202 pounds causes about a 14 -unit decrease in the expected blood pressure, while an increase of the same amount in the weight of a male patient causes about a 5 -unit increase in the expected blood pressure, again given other predictors are held constant.

## Plot prediction effects.

figure()
plotInteraction(mdl,'Sex','Weight','predictions')


This plot shows the effect of changing one variable as the other predictor variable is held constant. In this example, the last figure shows the response variable, blood pressure, as a function of weight, when the variable sex is fixed at males and females. The lines for males and females are crossing which indicates a strong interaction between weight and sex. You can see that the expected blood pressure increases as the weight of a male patient increases, but decreases as the weight of a female patient increases.

See Also
LinearModel | LinearModel.fit | LinearModel.stepwise | plotSlice | plotEffects | plotInteraction |

Related - "Plots to Understand Predictor Effects" on page 9-29
Examples

## Interpret Linear Regression Results

This example shows how to display and interpret linear regression output statistics.

## Load sample data and define predictor variables.

```
load carsmall
X = [Weight,Horsepower,Acceleration];
```

Fit linear regression model.

```
lm = LinearModel.fit(X,MPG,'linear')
lm =
```

Linear regression model:
$y \sim 1+x 1+x 2+x 3$
Estimated Coefficients:

|  | Estimate | SE | tStat | pValue |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 47.977 | 3.8785 | 12.37 | $4.8957 \mathrm{e}-21$ |
| x1 | -0.0065416 | 0.0011274 | -5.8023 | $9.8742 \mathrm{e}-08$ |
| x2 | -0.042943 | 0.024313 | -1.7663 | 0.08078 |
| x3 | -0.011583 | 0.19333 | -0.059913 | 0.95236 |

Number of observations: 93, Error degrees of freedom: 89 Root Mean Squared Error: 4.09
R-squared: 0.752, Adjusted R-Squared 0.744
F-statistic vs. constant model: 90, p-value = 7.38e-27
This linear regression outputs display shows the following.

| $\begin{aligned} & y \sim 1+x 1+x 2 \\ & +x 3 \end{aligned}$ | Linear regression model in the formula form using Wilkinson notation. Here it corresponds to: $y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\varepsilon$ |
| :---: | :---: |
| First column (under Estimated Coefficients) | Terms included in the model. |
| Estimate | Coefficient estimates for each corresponding term in the model. For example, the estimate for the constant term (intercept) is 47.977 . |
| SE | Standard error of the coefficients. |
| tStat | $t$-statistic for each coefficient to test the null hypothesis that the corresponding coefficient is zero against the alternative that it is different from zero, given the other predictors in the model. Note that tStat $=$ Estimate/SE. For example, the $t$-statistic for the intercept is $47.977 / 3.8785=12.37$. |
| pValue | $p$-value for the F statistic of the hypotheses test that the corresponding coefficient is equal to zero or not. For example, the $p$-value of the F -statistic for x 2 is greater than 0.05 , so this term is not significant at the $5 \%$ significance level given the other terms in the model. |
| Number of observations | Number of rows without any NaN values. For example, Number of observations is 93 because the MPG data vector has 6 NaN values and one of the data vectors, Horsepower, has one NaN value for a different observation. |
| Error degrees of freedom | $n-p$, where $n$ is the number of observations, and $p$ is the number of coefficients in the model, including the intercept. For example, the model has four predictors, so the Error degrees of freedom is $93-4=89$. |
| Root mean squared error | Square root of the mean squared error, which estimates the standard deviation of the error distribution. |


| R-squared <br> and Adjusted <br> R-squared | Coefficient of determination and adjusted coefficient <br> of determination, respectively. For example, the <br> R-squared value suggests that the model explains <br> approximately $75 \%$ of the variability in the response <br> variable MPG. |
| :--- | :--- |
| F-statistic vs. <br> constant model | Test statistic for the F-test on the regression model. <br> It tests for a significant linear regression relationship <br> between the response variable and the predictor <br> variables. |
| p-value | $p$-value for the F-test on the model. For example, the <br> model is significant with a $p$-value of $7.3816 e-27$. |

You can request this display by using disp. For example, if you name your model lm, then you can display the outputs using disp(lm).

## Perform analysis of variance (ANOVA) for the model.

```
anova(lm,'summary')
```

ans =

|  | SumSq | DF | MeanSq | F | pValue |
| :--- | ---: | ---: | ---: | :--- | :--- |
| Total | 6004.8 | 92 | 65.269 |  |  |
| Model | 4516 | 3 | 1505.3 | 89.987 | $7.3816 \mathrm{e}-27$ |
| Residual | 1488.8 | 89 | 16.728 |  |  |

This ANOVA display shows the following.

| SumSq | Sum of squares for the regression model, Model, the error term, Residual, and the total, Total. |
| :---: | :---: |
| DF | Degrees of freedom for each term. Degrees of freedom is $n-1$ for the total, $p-1$ for the model, and $n-p$ for the error term, where $n$ is the number of observations, and $p$ is the number of coefficients in the model, including the intercept. For example, MPG data vector has six NaN values and one of the data vectors, Horsepower, has one NaN value for a different observation, so the total degrees of freedom is $93-1=92$. There are four coefficients in the model, so the model DF is $4-1=3$, and the DF for error term is $93-4=89$. |
| MeanSq | Mean squared error for each term. Note that MeanSq = SumSq/DF. For example, the mean squared error for the error term is $1488.8 / 89=16.728$. The square root of this value is the root mean squared error in the linear regression display, or 4.09. |
| F | F-statistic value, which is the same as F-statistic vs. constant model in the linear regression display. In this example, it is 89.987, and in the linear regression display this F-statistic value is rounded up to 90 . |
| pValue | $p$-value for the F-test on the model. In this example, it is 7.3816e-27. |

Note If there are higher-order terms in the regression model, anova partitions the model SumSq into the part explained by the higher-order terms and the rest. The corresponding F-statistics are for testing the significance of the linear terms and higher-order terms as separate groups.

If the data includes replicates, or multiple measurements at the same predictor values, then the anova partitions the error SumSq into the part for the replicates and the rest. The corresponding F-statistic is for testing the lack-of-fit by comparing the model residuals with the model-free variance estimate computed on the replicates.

See the anova method for details.

## Decompose ANOVA table for model terms.

```
anova(lm)
ans =
\begin{tabular}{lrrrrr}
& \multicolumn{1}{l}{ SumSq } & DF & \multicolumn{1}{c}{ MeanSq } & \multicolumn{1}{l}{ F } & \multicolumn{1}{l}{ pValue } \\
x1 & 563.18 & 1 & 563.18 & 33.667 & \(9.8742 \mathrm{e}-08\) \\
x2 & 52.187 & 1 & 52.187 & 3.1197 & 0.08078 \\
x3 & 0.060046 & 1 & 0.060046 & 0.0035895 & 0.95236 \\
Error & 1488.8 & 89 & 16.728 & &
\end{tabular}
```

This anova display shows the following:

| First <br> column | Terms included in the model. |
| :--- | :--- |
| SumSq | Sum of squared error for each term except for the constant. |
| DF | Degrees of freedom. In this example, DF is 1 for each term in <br> the model and $n-p$ for the error term, where $n$ is the number <br> of observations, and $p$ is the number of coefficients in the <br> model, including the intercept. For example, the DF for the <br> error term in this model is $93-4=89$. <br> If any of the variables in the model is a categorical variable, <br> the DF for that variable is the number of indicator variables <br> created for its categories (number of categories - 1). |
| MeanSq | Mean squared error for each term. Note that MeanSq = <br> SumSq/DF. For example, the mean squared error for the error <br> term is 1488.8/89 =16.728. |


| F | F-values for each coefficient. The F-value is the ratio of the mean squared of each term and mean squared error, that is, F $=$ MeanSq $\left(\mathrm{x}_{\mathrm{i}}\right) / \mathrm{MeanSq}($ Error $)$. Each F-statistic has an F distribution, with the numerator degrees of freedom, DF value for the corresponding term, and the denominator degrees of freedom, $n-p . n$ is the number of observations, and $p$ is the number of coefficients in the model. In this example, each F -statistic has an $\mathrm{F}_{(1,89)}$ distribution. |
| :---: | :---: |
| pValue | $p$-value for each hypothesis test on the coefficient of the corresponding term in the linear model. For example, the $p$-value for the F-statistic coefficient of x 2 is 0.08078 , and is not significant at the $5 \%$ significance level given the other terms in the model. |

## Display coefficient confidence intervals.

coefCI (lm)
ans =
$40.2702 \quad 55.6833$
-0.0088 -0.0043
-0.0913 0.0054
-0.3957 0.3726
The values in each row are the lower and upper confidence limits, respectively, for the default $95 \%$ confidence intervals for the coefficients. For example, the first row shows the lower and upper limits, 40.2702 and 55.6833 , for the intercept, $\beta_{0}$. Likewise, the second row shows the limits for $\beta_{1}$ and so on. Confidence intervals provide a measure of precision for linear regression coefficient estimates. A $100(1-\alpha) \%$ confidence interval gives the range the corresponding regression coefficient will be in with $100(1-\alpha) \%$ confidence.

You can also change the confidence level. Find the $99 \%$ confidence intervals for the coefficients.
coefCI(lm, 0.01)
ans =

| -37.7677 | 58.1858 |
| :--- | ---: |
| -0.0095 | -0.0036 |
| -0.1069 | 0.0211 |
| -0.5205 | 0.4973 |

## Perform hypothesis test on coefficients.

Test the null hypothesis that all predictor variable coefficients are equal to zero versus the alternate hypothesis that at least one of them is different from zero.

```
[p,F,d] = coefTest(lm)
```

$p=$
7.3816e-27
$F=$
89.9874
d =

3
Here, coefTest performs an F-test for the hypothesis that all regression coefficients (except for the intercept) are zero versus at least one differs from zero, which essentially is the hypothesis on the model. It returns p , the $p$-value, F, the F-statistic, and d, the numerator degrees of freedom. The F-statistic and $p$-value are the same as the ones in the linear regression display and ANOVA for the model. The degrees of freedom is $4-1=3$ because there are four predictors (including the intercept) in the model.

Now, perform a hypothesis test on the coefficients of the first and second predictor variables.
$H=\left[\begin{array}{llllllll}0 & 1 & 0 & 0 ; & 0 & 0 & 1 & 0\end{array}\right] ;$
$[p, F, d]=\operatorname{coefTest}(l m, H)$

```
p =
 5.1702e-23
F =
 96.4873
d =
2
```

The numerator degrees of freedom is the number of coefficients tested, which is 2 in this example. The results indicate that at least one of $\beta_{2}$ and $\beta_{3}$ differs from zero.

## See Also

LinearModel | LinearModel.fit | LinearModel.stepwise | anova |

## Related <br> Examples

- "Examine Quality and Adjust the Fitted Model" on page 9-20

Concepts • "Linear Regression Output and Diagnostic Statistics" on page 9-71

## Linear Regression Output and Diagnostic Statistics

## Summary of Measures

| Name | LinearModel | regstats |
| :--- | :--- | :--- |
| Cook's Distance | CooksDistance and <br> cookd | cookd |
| Coefficient Confidence <br> Intervals | coefCI | N/A |
| Coefficient Covariance | CoefficientCovariancecovb |  |
| Coefficient of <br> Determination (R-squared) | Rsquared: Ordinary, <br> Adjusted | rsquare, <br> adjrsquare |
| Delete-1 Change in <br> Covariance (covratio) | CovRatio | covratio |
| Delete-1 Scaled Difference <br> in Coefficient Estimates <br> (Dfbetas) | Dfbetas | dfbetas |
| Delete-1 Scaled Change in <br> Fitted Values (Dffits) | Dffits | dffits |
| Delete-1 Variance (S2_i) | S2_i | dwstat |
| Durbin-Watson Test | dwtest | fstat |
| F-statistic | Fstat | hatmat |
| Hat Matrix | HatMatrix | leverage |
| Leverage | Leverage <br> Residuals: <br> Raw, Pearson, <br> Studentized, | r, studres, <br> standres |
| Residuals | tstats | tstat |
|  | t-statistic |  |

## Cook's Distance

## Purpose

Cook's distance is useful for identifying outliers in the $X$ values (observations for predictor variables). It also shows the influence of each observation on the fitted response values. An observation with Cook's distance larger than three times the mean Cook's distance might be an outlier.

## Definition

Cook's distance is the scaled change in fitted values. Each element in CooksDistance is the normalized change in the vector of coefficients due to the deletion of an observation. The Cook's distance, $D_{i}$, of observation $i$ is

$$
D_{i}=\frac{\sum_{j=1}^{n}\left(\hat{y}_{j}-\hat{y}_{j(i)}\right)^{2}}{p M S E}
$$

where

- $\hat{y}_{j}$ is the $j$ th fitted response value.
- $\hat{y}_{j(i)}$ is the $j$ th fitted response value, where the fit does not include observation $i$.
- $M S E$ is the mean squared error.
- $p$ is the number of coefficients in the regression model.

Cook's distance is algebraically equivalent to the following expression:

$$
D_{i}=\frac{r_{i}^{2}}{p M S E}\left(\frac{h_{i i}}{\left(1-h_{i i}\right)^{2}}\right)
$$

where $r_{i}$ is the $i$ th residual, and $h_{i i}$ is the $i$ th leverage value.

CooksDistance is an $n$-by- 1 column vector in the Diagnostics dataset array of the LinearModel object.

## How To

After obtaining a fitted model, say, mdl, using LinearModel.fit or LinearModel.stepwise, you can:

- Display the Cook's distance values by indexing into the property using dot notation, mdl.Diagnostics.CooksDistance
- Plot the Cook's distance values using plotDiagnostics(mdl, 'cookd')

For details, see the plotDiagnostics method of the LinearModel class.

## Example

Load the sample data and define the independent and response variables.
load hospital
X = double(hospital(:,2:5));
y = hospital.BloodPressure(:,1);
Fit the linear regression model.
mdl = LinearModel.fit(X,y);

Plot the Cook's distance values.
plotDiagnostics(mdl, 'cookd')


The dashed line in the figure corresponds to the recommended threshold value, $3 *$ mean(mdl. Diagnostics.CooksDistance). The plot has some observations with Cook's distance values greater than the threshold value, which for this example is $3^{*}(0.0108)=0.0324$. In particular, there are two Cook's distance values that are relatively higher than the others, which exceed the threshold value. You might want to find and omit these from your data and rebuild your model.

Find the observations with Cook's distance values that exceed the threshold value.

```
find((mdl.Diagnostics.CooksDistance)>3*mean(mdl.Diagnostics.CooksDistance))
```

Find the observations with Cook's distance values that are relatively larger than the other observations with Cook's distances exceeding the threshold value.
find((mdl.Diagnostics.CooksDistance) $>5$ *mean(mdl.Diagnostics. CooksDistance))
ans =

2
84
Return to Summary of Measures.

## Coefficient Confidence Intervals

## Purpose

The coefficient confidence intervals provide a measure of precision for linear regression coefficient estimates. A 100(1-a)\% confidence interval gives the range that the corresponding regression coefficient will be in with $100(1-\alpha) \%$ confidence.

## Definition

The 100*(1- $\alpha$ )\% confidence intervals for linear regression coefficients are

$$
b_{i} \pm t_{(1-\alpha / 2, n-p)} S E\left(b_{i}\right),
$$

where $b_{i}$ is the coefficient estimate, $\operatorname{SE}\left(b_{i}\right)$ is the standard error of the coefficient estimate, and $t_{(1-\alpha / 2, n-p)}$ is the $100(1-\alpha / 2)$ percentile of $t$-distribution with $n-p$ degrees of freedom. $n$ is the number of observations and $p$ is the number of regression coefficients.

## How To

After obtaining a fitted model, say, mdl, using LinearModel.fit or LinearModel.stepwise, you can obtain the default $95 \%$ confidence intervals for coefficients using

```
coefCI(mdl)
```

You can also change the confidence level using

```
coefCI(mdl,alpha)
```

For details, see the coefCI and coefTest methods of LinearModel class.

## Example

Load the sample data and fit a linear regression model.

```
load hald
mdl = LinearModel.fit(ingredients,heat);
```

Display the $95 \%$ coefficient confidence intervals.

```
coefCI(mdl)
ans =
 -99.1786 223.9893
 -0.1663 3.2685
 -1.1589 2.1792
 -1.6385 1.8423
 -1.7791 1.4910
```

The values in each row are the lower and upper confidence limits, respectively, for the default $95 \%$ confidence intervals for the coefficients. For example, the first row shows the lower and upper limits, -99.1786 and 223.9893 , for the intercept, $\beta_{0}$. Likewise, the second row shows the limits for $\beta_{1}$ and so on.

Display the $90 \%$ confidence intervals for the coefficients ( $\alpha=0.1$ ).

```
coefCI(mdl,0.1)
ans =
 -67.8949 192.7057
 0.1662 2.9360
 -0.8358 1.8561
 -1.3015 1.5053
 -1.4626 1.1745
```

The confidence interval limits become narrower as the confidence level decreases.

Return to Summary of Measures.

## Coefficient Covariance

## Purpose

Estimated coefficient variances and covariances capture the precision of regression coefficient estimates. The coefficient variances and their square root, the standard errors, are useful in testing hypotheses for coefficients.

## Definition

The estimated covariance matrix is

$$
\Sigma=M S E\left(X^{\prime} X\right)^{-1}
$$

where $M S E$ is the mean squared error, and $X$ is the matrix of observations on the predictor variables. CoefficientCovariance, a property of the fitted model, is a $p$-by- $p$ covariance matrix of regression coefficient estimates. $p$ is the number of coefficients in the regression model. The diagonal elements are the variances of the individual coefficients.

## How To

After obtaining a fitted model, say, mdl, using LinearModel.fit or LinearModel.stepwise, you can display the coefficient covariances using

```
mdl.CoefficientCovariance
```


## Example

Load the sample data and define the predictor and response variables.

```
load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));
```

Fit a linear regression model.

```
mdl = LinearModel.fit(X,y);
```

Display the coefficient covariance matrix.

```
mdl.CoefficientCovariance
```

ans =

| 27.5113 | 11.0027 | -0.1542 | -0.2444 | 0.2702 |
| ---: | ---: | ---: | ---: | ---: |
| 11.0027 | 8.6864 | 0.0021 | -0.1547 | -0.0838 |
| -0.1542 | 0.0021 | 0.0045 | -0.0001 | -0.0029 |
| -0.2444 | -0.1547 | -0.0001 | 0.0031 | -0.0026 |
| 0.2702 | -0.0838 | -0.0029 | -0.0026 | 1.0829 |

Return to Summary of Measures.

## Coefficient of Determination (R-Squared)

## Purpose

Coefficient of determination (R-squared) indicates the proportionate amount of variation in the response variable $y$ explained by the independent variables $X$ in the linear regression model. The larger the R -squared is, the more variability is explained by the linear regression model.

## Definition

R -squared is the proportion of the total sum of squares explained by the model. Rsquared, a property of the fitted model, is a structure with two fields:

- Ordinary - Ordinary (unadjusted) R-squared

$$
R^{2}=\frac{S S R}{S S T}=1-\frac{S S E}{S S T} .
$$

- Adjusted - R-squared adjusted for the number of coefficients

$$
R_{a d j}^{2}=1-\left(\frac{n-1}{n-p}\right) \frac{S S E}{S S T} .
$$

$S S E$ is the sum of squared error, $S S R$ is the sum of squared regression, $S S T$ is the sum of squared total, $n$ is the number of observations, and $p$ is the number of regression coefficients (including the intercept). Because R -squared increases with added predictor variables in the regression model, the adjusted R -squared adjusts for the number of predictor variables in the model. This makes it more useful for comparing models with a different number of predictors.

## How To

After obtaining a fitted model, say, mdl, using LinearModel.fit or LinearModel.stepwise, you can obtain either $R$-squared value as a scalar by indexing into the property using dot notation, for example,
mdl.Rsquared.Ordinary
mdl.Rsquared.Adjusted

You can also obtain the SSE, SSR, and SST using the properties with the same name.
mdl.SSE
mdl.SSR
mdl.SST

## Example

Load the sample data and define the response and independent variables.

```
load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));
```

Fit a linear regression model.

```
mdl = LinearModel.fit(X,y)
mdl =
Linear regression model:
 y ~ 1 + x1 + x2 + x3 + x4
Estimated Coefficients:
\begin{tabular}{lrrrr}
& Estimate & \multicolumn{1}{l}{ SE } & \multicolumn{1}{l}{ tStat } & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 117.4 & 5.2451 & 22.383 & \(1.1667 \mathrm{e}-39\) \\
x1 & 0.88162 & 2.9473 & 0.29913 & 0.76549 \\
x2 & 0.08602 & 0.06731 & 1.278 & 0.20438 \\
x3 & -0.016685 & 0.055714 & -0.29947 & 0.76524 \\
x4 & 9.884 & 1.0406 & 9.498 & \(1.9546 e-15\)
\end{tabular}
Number of observations: 100, Error degrees of freedom: 95
Root Mean Squared Error: 4.81
R-squared: 0.508, Adjusted R-Squared 0.487
F-statistic vs. constant model: 24.5, p-value = 5.99e-14
```

The R-squared and adjusted R -squared values are 0.508 and 0.487 , respectively. Model explains about $50 \%$ of the variability in the response variable.

Access the R-squared and adjusted R-squared values using the property of the fitted LinearModel object.
mdl. Rsquared.Ordinary
ans =
0.5078
mdl.Rsquared.Adjusted
ans =
0.4871

The adjusted R -squared value is smaller than the ordinary R -squared value.
Return to Summary of Measures.

## Delete-1 Change in Covariance (covratio)

## Purpose

Delete-1 change in covariance (covratio) identifies the observations that are influential in the regression fit. An influential observation is one where its exclusion from the model might significantly alter the regression function. Values of covratio larger than $1+3^{*} p / n$ or smaller than $1-3^{*} p / n$ indicate influential points, where $p$ is the number of regression coefficients, and $n$ is the number of observations.

## Definition

The covratio statistic is the ratio of the determinant of the coefficient covariance matrix with observation $i$ deleted to the determinant of the covariance matrix for the full model:

$$
\operatorname{cov} \text { ratio }=\frac{\operatorname{det}\left\{M S E(i)\left[X^{\prime}(i) X(i)\right]^{-1}\right\}}{\operatorname{det}\left[M S E\left(X^{\prime} X\right)^{-1}\right]}
$$

CovRatio is an $n$-by- 1 vector in the Diagnostics dataset array of the fitted LinearModel object. Each element is the ratio of the generalized variance of the estimated coefficients when the corresponding element is deleted to the generalized variance of the coefficients using all the data.

## How To

After obtaining a fitted model, say, mdl, using LinearModel.fit or LinearModel.stepwise, you can:

- Display the CovRatio by indexing into the property using dot notation
mdl.Diagnostics.CovRatio
- Plot the delete-1 change in covariance using

```
plotDiagnostics(mdl,'CovRatio')
```

For details, see the plotDiagnostics method of the LinearModel class.

## Example

Load the sample data and define the response and predictor variables.

```
load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));
```

Fit a linear regression model.
mdl = LinearModel.fit(X,y);

Plot the CovRatio statistics.
plotDiagnostics(mdl,'CovRatio')


For this example, the threshold limits are $1+3 * 5 / 100=1.15$ and $1-3 * 5 / 100$ $=0.85$. There are a few points beyond the limits, which might be influential points.

Find the observations that are beyond the limits.
find((mdl.Diagnostics.CovRatio)>1.15|(mdl.Diagnostics.CovRatio)<0.85)
ans =

Return to Summary of Measures.

## Delete-1 Scaled Difference in Coefficient Estimates (Dfbetas)

## Purpose

The sign of a delete-1 scaled difference in coefficient estimate (Dfbetas) for coefficient $j$ and observation $i$ indicates whether that observation causes an increase or decrease in the estimate of the regression coefficient. The absolute value of a Dfbetas indicates the magnitude of the difference relative to the estimated standard deviation of the regression coefficient. A Dfbetas value larger than $3 / \operatorname{sqrt}(n)$ in absolute value indicates that the observation has a large influence on the corresponding coefficient.

## Definition

Dfbetas for coefficient $j$ and observation $i$ is the ratio of the difference in the estimate of coefficient $j$ using all observations and the one obtained by removing observation $i$, and the standard error of the coefficient estimate obtained by removing observation $i$. The Dfbetas for coefficient $j$ and observation $i$ is

$$
\text { Dfbetas }_{i j}=\frac{b_{j}-b_{j(i)}}{\sqrt{M S E_{(i)}}\left(1-h_{i i}\right)},
$$

where $b_{j}$ is the estimate for coefficient $j, b_{j(i)}$ is the estimate for coefficient $j$ by removing observation $i, M S E_{(i)}$ is the mean squared error of the regression fit by removing observation $i$, and $h_{i i}$ is the leverage value for observation $i$. Dfbetas is an $n$-by- $p$ matrix in the Diagnostics dataset array of the fitted LinearModel object. Each cell of Dfbetas corresponds to the Dfbetas value for the corresponding coefficient obtained by removing the corresponding observation.

## How To

After obtaining a fitted model, say, mdl, using LinearModel.fit or LinearModel.stepwise, you can obtain the Dfbetas values as an $n$-by- $p$ matrix by indexing into the property using dot notation,
mdl.Diagnostics.Dfbetas

## Example

Load the sample data and define the response and independent variables.

```
load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));
```

Fit a linear regression model.

```
mdl = LinearModel.fit(X,y);
```

Find the Dfbetas values that are high in absolute value.
[row,col] = find(abs(mdl.Diagnostics.Dfbetas)>3/sqrt(100)); disp([row col])

| 2 | 1 |
| ---: | ---: |
| 28 | 1 |
| 84 | 1 |
| 93 | 1 |
| 2 | 2 |
| 13 | 3 |
| 84 | 3 |
| 2 | 4 |
| 84 | 4 |

Return to Summary of Measures.

## Delete-1 Scaled Change in Fitted Values (Dffits)

## Purpose

The delete-1 scaled change in fitted values (Dffits) show the influence of each observation on the fitted response values. Dffits values with an absolute value larger than $2 * \operatorname{sqrt}(p / n)$ might be influential.

## Definition

Dffits for observation $i$ is

$$
\text { Dffits }_{i}=s r_{i} \sqrt{\frac{h_{i i}}{1-h_{i i}}}
$$

where $s r_{i}$ is the studentized residual, and $h_{i i}$ is the leverage value of the fitted LinearModel object. Dffits is an $n$-by- 1 column vector in the Diagnostics dataset array of the fitted LinearModel object. Each element in Dffits is the change in the fitted value caused by deleting the corresponding observation and scaling by the standard error.

## How To

After obtaining a fitted model, say, mdl, using LinearModel.fit or LinearModel.stepwise, you can:

- Display the Dffits values by indexing into the property using dot notation mdl.Diagnostics.Dffits
- Plot the delete-1 scaled change in fitted values using

```
plotDiagnostics(mdl,'Dffits')
```

For details, see the plotDiagnostics method of the LinearModel class for details.

## Example

Load the sample data and define the response and independent variables.
load hospital

```
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));
```

Fit a linear regression model.

```
mdl = LinearModel.fit(X,y);
```

Plot the Dffits values.
plotDiagnostics(mdl, 'Dffits')

Case order plot of scaled change in fit


The influential threshold limit for the absolute value of Dffits in this example is $2 * \operatorname{sqrt}(5 / 100)=0.45$. Again, there are some observations with Dffits values beyond the recommended limits.

Find the Dffits values that are large in absolute value.
find(abs(mdl.Diagnostics.Dffits)>2*sqrt(4/100))
ans =

2
13
28
44
58
70
71
84
93
95
Return to Summary of Measures.

## Delete-1 Variance (S2_i)

## Purpose

The delete-1 variance (S2_i) shows how the mean squared error changes when an observation is removed from the data set. You can compare the S2_i values with the value of the mean squared error.

## Definition

S2_i is a set of residual variance estimates obtained by deleting each observation in turn. The S2_i value for observation $i$ is

$$
S 2_{-} i=M S E_{(i)}=\frac{\sum_{j \neq i}^{n}\left[y_{j}-y_{j(i)}\right]^{2}}{n-p-1}
$$

where $y_{j}$ is the $j$ th observed response value. S2_i is an $n$-by- 1 vector in the Diagnostics dataset array of the fitted LinearModel object. Each element in S2 $i$ is the mean squared error of the regression obtained by deleting that observation.

## How To

After obtaining a fitted model, say, mdl, using LinearModel.fit or LinearModel.stepwise, you can:

- Display the S2_i vector by indexing into the property using dot notation mdl.Diagnostics.S2_i
- Plot the delete-1 variance values using
plotDiagnostics(mdl,'S2_i')
For details, see the plotDiagnostics method of the LinearModel class.


## Example

Load the sample data and define the response and independent variables.
load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));
Fit a linear regression model.
mdl = LinearModel.fit(X,y);
Display the MSE value for the model.
mdl.MSE
ans $=$
23.1140

Plot the S2_i values.
plotDiagnostics(mdl,'S2_i')


This plot makes it easy to compare the S2_i values to the MSE value of 23.114, indicated by the horizontal dashed lines. You can see how deleting one observation changes the error variance.

Return to Summary of Measures.

## Durbin-Watson Test

## Purpose

The Durbin-Watson test assesses whether there is autocorrelation among the residuals or not.

## Definition

The Durbin-Watson test statistic, DW, is

$$
D W=\frac{\sum_{i=1}^{n-1}\left(r_{i+1}-r_{i}\right)^{2}}{\sum_{i=1}^{n} r_{i}^{2}}
$$

Here, $r_{i}$ is the $i$ th raw residual, and $n$ is the number of observations.

## How To

After obtaining a fitted model, say, mdl, using LinearModel.fit or LinearModel.stepwise, you can perform the Durbin-Watson test using dwtest(mdl)

For details, see the dwtest method of the LinearModel class.

## Example

Load the sample data and fit a linear regression model.

```
load hald
mdl = LinearModel.fit(ingredients,heat);
```

Perform a two-sided Durbin-Watson test to determine if there is any autocorrelation among the residuals of the linear model, mdl.
[p,DW] = dwtest(mdl,'exact','both')
$\mathrm{p}=$
0.6285

DW =
2.0526

The value of the Durbin-Watson test statistic is 2.0526 . The $p$-value of 0.6285 suggest that the residuals are not autocorrelated.

## F-statistic

## Purpose

In linear regression, the F-statistic is the test statistic for the analysis of variance (ANOVA) approach to test the significance of the model or the components in the model.

## Definition

The F-statistic in the linear model output display is the test statistic for testing the statistical significance of the model. The F-statistic values in the anova display are for assessing the significance of the terms or components in the model.

## How To

After obtaining a fitted model, say, mdl, using LinearModel.fit or LinearModel.stepwise, you can:

- Find the F-statistic vs. constant model in the output display or by using

```
disp(mdl)
```

- Display the ANOVA for the model using anova(mdl,'summary')
- Obtain the F-statistic values for the components, except for the constant term using
anova(mdl)
For details, see the anova method of the LinearModel class.


## Example

Load the sample data.

```
load carbig
ds = dataset(Acceleration,Cylinders,Weight,MPG);
ds.Cylinders = ordinal(Cylinders);
```

Fit a linear regression model.

```
mdl = LinearModel.fit(ds,'MPG~Acceleration*Weight+Cylinders+Weight^2')
mdl =
```

Linear regression model:
MPG ~ 1 + Cylinders + Acceleration*Weight + Weight^2
Estimated Coefficients:

|  | Estimate | SE | tStat | pValue |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 50.816 | 7.5669 | 6.7156 | $6.661 \mathrm{e}-$ |
| Acceleration | 0.023343 | 0.33931 | 0.068796 | 0.945 |
| Cylinders_4 | 7.167 | 2.0596 | 3.4798 | 0.00055 |
| Cylinders_5 | 10.963 | 3.1299 | 3.5028 | 0.000513 |
| Cylinders_6 | 4.7415 | 2.1257 | 2.2306 | 0.0262 |
| Cylinders_8 | 5.057 | 2.2981 | 2.2005 | 0.0283 |
| Weight | -0.017497 | 0.0034674 | -5.0461 | $6.9371 \mathrm{e}-$ |
| Acceleration:Weight | $7.0745 \mathrm{e}-05$ | 0.00011171 | 0.6333 | 0.526 |
| Weight^2 | $1.5767 e-06$ | $3.6909 e-07$ | 4.2719 | $2.4396 e-$ |

Number of observations: 398, Error degrees of freedom: 389
Root Mean Squared Error: 4.02
R-squared: 0.741, Adjusted R-Squared 0.736
F-statistic vs. constant model: 139, p-value = 2.94e-109

The F-statistic of the linear fit versus the constant model is 139 , with a $p$-value of $2.94 \mathrm{e}-109$. The model is significant at the $5 \%$ significance level. The R-squared value of 0.741 means the model explains about $74 \%$ of the variability in the response.

Display the ANOVA table for the fitted model.

```
anova(mdl,'summary')
ans =
```

|  | SumSq | DF | MeanSq | F | pValue |
| :--- | ---: | ---: | ---: | :--- | :--- |
| Total | 24253 | 397 | 61.09 |  |  |
| Model | 17981 | 8 | 2247.6 | 139.41 | $2.9432 \mathrm{e}-109$ |
| . Linear | 17667 | 6 | 2944.4 | 182.63 | $7.5446 \mathrm{e}-110$ |
| . Nonlinear | 314.36 | 2 | 157.18 | 9.7492 | $7.3906 \mathrm{e}-05$ |
| Residual | 6271.6 | 389 | 16.122 |  |  |
| . Lack of fit | 6267.1 | 387 | 16.194 | 7.1973 | 0.12968 |
| . Pure error | 4.5 | 2 | 2.25 |  |  |

This display separates the variability in the model into linear and nonlinear terms. Since there are two non-linear terms (Weight^2 and the interaction between Weight and Acceleration), the nonlinear degrees of freedom in the DF column is 2. There are six linear terms in the model (four Cylinders indicator variables, Weight, and Acceleration). The corresponding $F$-statistics in the $F$ column are for testing the significance of the linear and nonlinear terms as separate groups.

The residual term is also separated into two parts; first is the error due to the lack of fit, and second is the pure error independent from the model, obtained from the replicated observations. The corresponding F-statistics in the F column are for testing the lack of fit, that is, whether the proposed model is an adequate fit or not.

Display the ANOVA table for the model terms.

```
anova(mdl)
```

ans =

|  | SumSq | DF | MeanSq | F | pValue |
| :--- | :--- | ---: | ---: | ---: | ---: |
| Acceleration | 104.99 | 1 | 104.99 | 6.5122 | 0.011095 |
| Cylinders | 408.94 | 4 | 102.23 | 6.3412 | $5.9573 \mathrm{e}-05$ |
| Weight | 2187.5 | 1 | 2187.5 | 135.68 | $4.1974 \mathrm{e}-27$ |
| Acceleration:Weight | 6.4662 | 1 | 6.4662 | 0.40107 | 0.52691 |
| Weight^2 | 294.22 | 1 | 294.22 | 18.249 | $2.4396 \mathrm{e}-05$ |

This display decomposes the ANOVA table into the model terms. The corresponding F -statistics in the F column are for assessing the statistical significance of each term. The F-test for Cylinders test whether at least one of the coefficients of indicator variables for cylinders categories is different from zero or not. That is, whether different numbers of cylinders have a significant effect on MPG or not. The degrees of freedom for each model term is the numerator degrees of freedom for the corresponding F-test. Most of the terms have 1 degree of freedom, but the degrees of freedom for Cylinders is 4. Because there are four indicator variables for this term.

Return to Summary of Measures.

## Hat Matrix

## Purpose

The hat matrix provides a measure of leverage. It is useful for investigating whether one or more observations are outlying with regard to their $X$ values, and therefore might be excessively influencing the regression results.

## Definition

The hat matrix is also known as the projection matrix because it projects the vector of observations, y, onto the vector of predictions, $\hat{y}$, thus putting the "hat" on $y$. The hat matrix $H$ is defined in terms of the data matrix $X$ :

$$
H=X\left(X^{T} X\right)^{-1} X^{T}
$$

and determines the fitted or predicted values since

$$
\hat{y}=H y=X b .
$$

The diagonal elements of $H, h_{i i}$, are called leverages and satisfy

$$
\begin{aligned}
& 0 \leq h_{i i} \leq 1 \\
& \sum_{i=1}^{n} h_{i i}=p
\end{aligned}
$$

where $p$ is the number of coefficients, and $n$ is the number of observations (rows of $X$ ) in the regression model. HatMatrix is an $n$-by- $n$ matrix in the Diagnostics dataset array.

## How To

After obtaining a fitted model, say, mdl, using LinearModel.fit or LinearModel.stepwise, you can:

- Display the HatMatrix by indexing into the property using dot notation mdl.Diagnostics.HatMatrix

When $n$ is large, HatMatrix might be computationally expensive. In those cases, you can obtain the diagonal values directly, using

```
mdl.Diagnostics.Leverage
```

Return to Summary of Measures.

## Leverage

## Purpose

Leverage is a measure of the effect of a particular observation on the regression predictions due to the position of that observation in the space of the inputs. In general, the farther a point is from the center of the input space, the more leverage it has. Because the sum of the leverage values is $p$, an observation $i$ can be considered as an outlier if its leverage substantially exceeds the mean leverage value, $p / n$, for example, a value larger than $2^{*} p / n$.

## Definition

The leverage of observation $i$ is the value of the $i$ th diagonal term, $h_{i i}$, of the hat matrix, $H$, where

$$
H=X\left(X^{T} X\right)^{-1} X^{T} .
$$

The diagonal terms satisfy

$$
\begin{aligned}
& 0 \leq h_{i i} \leq 1 \\
& \sum_{i=1}^{n} h_{i i}=p,
\end{aligned}
$$

where $p$ is the number of coefficients in the regression model, and $n$ is the number of observations. The minimum value of $h_{i i}$ is $1 / n$ for a model with a constant term. If the fitted model goes through the origin, then the minimum leverage value is 0 for an observation at $x=0$.

It is possible to express the fitted values, $\hat{y}$, by the observed values, $y$, since

$$
\hat{y}=H y=X b .
$$

Hence, $h_{i i}$ expresses how much the observation $y_{i}$ has impact on $\hat{y}_{i}$. A large value of $h_{i i}$ indicates that the $i$ th case is distant from the center of all X values for all $n$ cases and has more leverage. Leverage is an $n$-by- 1 column vector in the Diagnostics dataset array.

## How To

After obtaining a fitted model, say, mdl, using LinearModel.fit or LinearModel.stepwise, you can:

- Display the Leverage vector by indexing into the property using dot notation
mdl.Diagnostics.Leverage
- Plot the leverage for the values fitted by your model using
plotDiagnostics(mdl)
See the plotDiagnostics method of the LinearModel class for details.


## Example

Load the sample data and define the response and independent variables.

```
load hospital
y = hospital.BloodPressure(:,1);
X = double(hospital(:,2:5));
```

Fit a linear regression model.
mdl = LinearModel.fit(X,y);

Plot the leverage values.
plotDiagnostics(mdl)


For this example, the recommended threshold value is $2 * 5 / 100=0.1$. There is no indication of high leverage observations.

Return to Summary of Measures.

## Residuals

## Purpose

Residuals are useful for detecting outlying $y$ values and checking the linear regression assumptions with respect to the error term in the regression model. High-leverage observations have smaller residuals because they often shift
the regression line or surface closer to them. You can also use residuals to detect some forms of heteroscedasticity and autocorrelation.

## Definition

The Residuals matrix is an $n$-by- 4 dataset array containing a table of four types of residuals, with one row for each observation.

Raw Residuals. Observed minus fitted values, that is,

$$
r_{i}=y_{i}-\hat{y}_{i} .
$$

Pearson Residuals. Raw residuals divided by the root mean squared error, that is,

$$
p r_{i}=\frac{r_{i}}{\sqrt{M S E}}
$$

where $r_{i}$ is the raw residual and $M S E$ is the mean squared error.
Standardized Residuals. Standardized residuals are raw residuals divided by their estimated standard deviation. The standardized residual for observation $i$ is

$$
s t_{i}=\frac{r_{i}}{\sqrt{M S E\left(1-h_{i i}\right)}}
$$

where $M S E$ is the mean squared error and $h_{i i}$ is the leverage value for observation $i$.

Studentized Residuals. Studentized residuals are the raw residuals divided by an independent estimate of the residual standard deviation. The residual for observation $i$ is divided by an estimate of the error standard deviation based on all observations except for observation $i$.

$$
s r_{i}=\frac{r_{i}}{\sqrt{M S E_{(i)}\left(1-h_{i i}\right)}},
$$

where $M S E_{(i)}$ is the mean squared error of the regression fit calculated by removing observation $i$, and $h_{i i}$ is the leverage value for observation $i$. The studentized residual $s r_{i}$ has a $t$-distribution with $n-p-1$ degrees of freedom.

## How To

After obtaining a fitted model, say, mdl, using LinearModel.fit or LinearModel.stepwise, you can:

- Find the Residuals dataset array under mdl object.
- Obtain any of these columns as a vector by indexing into the property using dot notation, for example,
mdl.Residuals.Raw
- Plot any of the residuals for the values fitted by your model using plotResiduals(mdl)

For details, see the plotResiduals method of the LinearModel class.

## Example

Load the sample data and store the independent and response variables in a dataset array.

```
load imports-85
ds = dataset(X(:,7),X(:,8),X(:,9),X(:,15),'Varnames',...
{'curb_weight','engine_size','bore','price'});
```

Fit a linear regression model.

```
mdl = LinearModel.fit(ds)
mdl =
Linear regression model:
 price ~ 1 + curb_weight + engine_size + bore
Estimated Coefficients:
\begin{tabular}{cccccl}
& Estimate & SE & & tStat & pValue \\
(Intercept) & 64.095 & & 3.703 & 17.309 & \(2.0481 e-41\)
\end{tabular}
```

| curb_weight | -0.0086681 | 0.0011025 | -7.8623 | $2.42 \mathrm{e}-13$ |
| :--- | ---: | ---: | ---: | ---: |
| engine_size | -0.015806 | 0.013255 | -1.1925 | 0.23452 |
| bore | -2.6998 | 1.3489 | -2.0015 | 0.046711 |

Number of observations: 201, Error degrees of freedom: 197
Root Mean Squared Error: 3.95
R-squared: 0.674, Adjusted R-Squared 0.669
F-statistic vs. constant model: 136, p-value = 1.14e-47

Plot the histogram of raw residuals.
plotResiduals(mdl)

Histogram of residuals


The histogram shows that the residuals are slightly right skewed.
Plot the box plot of all four types of residuals.

```
Res = double(mdl.Residuals);
```



You can see the right-skewed structure of the residuals in the box plot as well.
Plot the normal probability plot of the raw residuals.
plotResiduals(mdl,'probability')
boxplot(Res)


This normal probability plot also shows the deviation from normality and the skewness on the right tail of the distribution of residuals.

Plot the residuals versus lagged residuals.
plotResiduals(mdl,'lagged')


This graph shows a trend, which indicates a possible correlation among the residuals. You can further check this using dwtest (mdl). Serial correlation among residuals usually means that the model can be improved.

Plot the symmetry plot of residuals.
plotResiduals(mdl, 'symmetry')


This plot also suggests that the residuals are not distributed equally around their median, as would be expected for normal distribution.

Plot the residuals versus the fitted values.
plotResiduals(mdl,'fitted')


The increase in the variance as the fitted values increase suggests possible heteroscedasticity.

Return to Summary of Measures.

## t-statistic

## Purpose

In linear regression, the $t$-statistic is useful for making inferences about the regression coefficients. The hypothesis test on coefficient $i$ tests the null hypothesis that it is equal to zero - meaning the corresponding term is not
significant - versus the alternate hypothesis that the coefficient is different from zero.

## Definition

For a hypotheses test on coefficient $i$, with
$\mathrm{H}_{0}: \beta_{i}=0$
$\mathrm{H}_{1}: \beta_{i} \neq 0$,
the $t$-statistic is:

$$
t=\frac{b_{i}}{S E\left(b_{i}\right)}
$$

where $S E\left(b_{i}\right)$ is the standard error of the estimated coefficient $b_{i}$.

## How To

After obtaining a fitted model, say, mdl, using LinearModel.fit or LinearModel.stepwise, you can:

- Find the coefficient estimates, the standard errors of the estimates (SE), and the $t$-statistic values of hypothesis tests for the corresponding coefficients (tStat) in the output display.
- Call for the display using
display(mdl)


## Example

Load the sample data and fit the linear regression model.

```
load hald
mdl = LinearModel.fit(ingredients,heat)
mdl =
Linear regression model:
 y ~ 1 + x1 + x2 + x3 + x4
```

```
Estimated Coefficients:
\begin{tabular}{lrrrr}
& Estimate & \multicolumn{1}{l}{ SE } & tStat & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 62.405 & 70.071 & 0.8906 & 0.39913 \\
x1 & 1.5511 & 0.74477 & 2.0827 & 0.070822 \\
x2 & 0.51017 & 0.72379 & 0.70486 & 0.5009 \\
x3 & 0.10191 & 0.75471 & 0.13503 & 0.89592 \\
x4 & -0.14406 & 0.70905 & -0.20317 & 0.84407
\end{tabular}
Number of observations: 13, Error degrees of freedom: 8 Root Mean Squared Error: 2.45
R-squared: 0.982, Adjusted R-Squared 0.974
F-statistic vs. constant model: 111, p-value = 4.76e-07
```

You can see that for each coefficient, tStat = Estimate/SE. The p-values for the hypotheses tests are in the pValue column. Each $t$-statistic tests for the significance of each term given other terms in the model. According to these results, none of the coefficients seem significant at the $5 \%$ significance level, although the R -squared value for the model is really high at 0.97 . This often indicates possible multicollinearity among the predictor variables.

Use stepwise regression to decide which variables to include in the model.

```
load hald
mdl = LinearModel.stepwise(ingredients,heat)
```

1. Adding $\mathrm{x} 4, \mathrm{FStat}=22.7985, \mathrm{pValue}=0.000576232$
2. Adding $\mathrm{x} 1, \mathrm{FStat}=108.2239, \mathrm{pValue}=1.105281 \mathrm{e}-06$
mdl =
Linear regression model:
$y \sim 1+x 1+x 4$
Estimated Coefficients:

|  | Estimate | SE | tStat | pValue |
| :--- | ---: | ---: | ---: | :--- |
| ( Intercept) | 103.1 | 2.124 | 48.54 | $3.3243 \mathrm{e}-13$ |
| x1 | 1.44 | 0.13842 | 10.403 | $1.1053 \mathrm{e}-06$ |

```
Number of observations: 13, Error degrees of freedom: 10
Root Mean Squared Error: 2.73
R-squared: 0.972, Adjusted R-Squared 0.967
F-statistic vs. constant model: 177, p-value = 1.58e-08
```

In this example, LinearModel.stepwise starts with the constant model (default) and uses forward selection to incrementally add $\times 4$ and $\times 1$. Each predictor variable in the final model is significant given the other one is in the model. The algorithm stops when adding none of the other predictor variables significantly improves in the model. For details on stepwise regression, see LinearModel.stepwise.

Return to Summary of Measures.

## References

[1] Atkinson, A. T. Plots, Transformations, and Regression. An Introduction to Graphical Methods of Diagnostic Regression Analysis. New York: Oxford Statistical Science Series, Oxford University Press, 1987.
[2] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear Statistical Models. IRWIN, The McGraw-Hill Companies, Inc., 1996.
[3] Belsley, D. A., E. Kuh, and R. E. Welsch. Regression Diagnostics, Identifying Influential Data and Sources of Collinearity. Wiley Series in Probability and Mathematical Statistics, John Wiley and Sons, Inc., 1980.

```
See Also LinearModel | LinearModel.fit | LinearModel.stepwise |
plotDiagnostics | plotResiduals | anova | coefCI | coefTest | dwtest |
```


## Related <br> Examples

- "Examine Quality and Adjust the Fitted Model" on page 9-20
- "Interpret Linear Regression Results" on page 9-63


## Stepwise Regression

## In this section...

"Stepwise Regression to Select Appropriate Models" on page 9-111
"Compare large and small stepwise models" on page 9-111

## Stepwise Regression to Select Appropriate Models

LinearModel.stepwise creates a linear model and automatically adds to or trims the model. To create a small model, start from a constant model. To create a large model, start with a model containing many terms. A large model usually has lower error as measured by the fit to the original data, but might not have any advantage in predicting new data.

LinearModel.stepwise can use all the name-value options from LinearModel.fit, with additional options relating to the starting and bounding models. In particular:

- For a small model, start with the default lower bounding model: 'constant' (a model that has no predictor terms).
- The default upper bounding model has linear terms and interaction terms (products of pairs of predictors). For an upper bounding model that also includes squared terms, set the Upper name-value pair to 'quadratic'.


## Compare large and small stepwise models

This example show how to compare the models that LinearModel.stepwise returns starting from a constant model and starting from a full interaction model.

Load the carbig data and create a dataset array from some of the data.

```
load carbig
ds = dataset(Acceleration,Displacement,Horsepower,Weight,MPG);
```

Create a mileage model stepwise starting from the constant model.

```
mdl1 = LinearModel.stepwise(ds,'constant','ResponseVar','MPG')
```

```
1. Adding Weight, FStat = 888.8507, pValue = 2.9728e-103
2. Adding Horsepower, FStat = 3.8217, pValue = 0.00049608
3. Adding Horsepower:Weight, FStat = 64.8709, pValue = 9.93362e-15
mdl1 =
Linear regression model:
 MPG ~ 1 + Horsepower*Weight
Estimated Coefficients:
\begin{tabular}{lrrrl}
& \multicolumn{1}{l}{ Estimate } & \multicolumn{1}{l}{ SE } & \multicolumn{1}{l}{ tStat } & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 63.558 & 2.3429 & 27.127 & \(1.2343 \mathrm{e}-91\) \\
Horsepower & -0.25084 & 0.027279 & -9.1952 & \(2.3226 \mathrm{e}-18\) \\
Weight & -0.010772 & 0.00077381 & -13.921 & \(5.1372 \mathrm{e}-36\) \\
Horsepower:Weight & \(5.3554 \mathrm{e}-05\) & \(6.6491 \mathrm{e}-06\) & 8.0542 & \(9.9336 \mathrm{e}-15\)
\end{tabular}
```

```
Number of observations: 392, Error degrees of freedom: 388
```

Number of observations: 392, Error degrees of freedom: 388
Root Mean Squared Error: 3.93
Root Mean Squared Error: 3.93
R-squared: 0.748, Adjusted R-Squared 0.746
R-squared: 0.748, Adjusted R-Squared 0.746
F-statistic vs. constant model: 385, p-value = 7.26e-116

```
F-statistic vs. constant model: 385, p-value = 7.26e-116
```

Create a mileage model stepwise starting from the full interaction model.

```
mdl2 = LinearModel.stepwise(ds,'interactions','ResponseVar','MPG')
```

1. Removing Acceleration:Displacement, FStat $=0.024186, \mathrm{pValue}=0.8765$
2. Removing Displacement:Weight, FStat $=0.33103$, pValue $=0.56539$
3. Removing Acceleration:Horsepower, FStat $=1.7334$, pValue $=0.18876$
4. Removing Acceleration:Weight, FStat $=0.93269$, pValue $=0.33477$
5. Removing Horsepower:Weight, FStat $=0.64486, \mathrm{pValue}=0.42245$
mdl2 $=$
Linear regression model:
MPG ~ 1 + Acceleration + Weight + Displacement*Horsepower
Estimated Coefficients:

|  | Estimate | SE | tStat | pValue |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 61.285 | 2.8052 | 21.847 | $1.8593 \mathrm{e}-69$ |
| Acceleration | -0.34401 | 0.11862 | -2.9 | 0.0039445 |
| Displacement | -0.081198 | 0.010071 | -8.0623 | $9.5014 \mathrm{e}-15$ |
| Horsepower | -0.24313 | 0.026068 | -9.3265 | $8.6556 \mathrm{e}-19$ |
| Weight | -0.0014367 | 0.00084041 | -1.7095 | 0.088166 |
| Displacement:Horsepower | 0.00054236 | $5.7987 \mathrm{e}-05$ | 9.3531 | $7.0527 \mathrm{e}-19$ |

```
Number of observations: 392, Error degrees of freedom: 386
Root Mean Squared Error: 3.84
R-squared: 0.761, Adjusted R-Squared 0.758
F-statistic vs. constant model: 246, p-value = 1.32e-117
```

Notice that:

- mdl1 has four coefficients (the Estimate column), and mdl2 has six coefficients.
- The adjusted R-squared of mdl1 is 0.746 , which is slightly less (worse) than that of mdl2, 0.758.

Create a mileage model stepwise with a full quadratic model as the upper bound, starting from the full quadratic model:

```
mdl3 = LinearModel.stepwise(ds,'quadratic',...
 'ResponseVar','MPG','Upper','quadratic');
```

Compare the three model complexities by examining their formulas.

```
mdl1.Formula
ans =
MPG ~ 1 + Horsepower*Weight
mdl2.Formula
ans =
MPG ~ 1 + Acceleration + Weight + Displacement*Horsepower
```

mdl3.Formula

```
ans =
MPG ~ 1 + Weight + Acceleration*Displacement
 + Displacement*Horsepower + Acceleration^2
```

The adjusted $\mathrm{R}^{2}$ values improve slightly as the models become more complex:

```
RSquared = [mdl1.Rsquared.Adjusted, ...
 mdl2.Rsquared.Adjusted, mdl3.Rsquared.Adjusted]
RSquared =
 0.7465 0.7580 0.7599
```

Compare residual plots of the three models.

```
subplot(3,1,1)
plotResiduals(mdl1)
subplot(3,1,2)
plotResiduals(mdl2)
subplot(3,1,3)
plotResiduals(mdl3)
```

Histogram of residuals


The models have similar residuals. It is not clear which fits the data better. Interestingly, the more complex models have larger maximum deviations of the residuals:

```
Rrange1 = [min(mdl1.Residuals.Raw),max(mdl1.Residuals.Raw)];
Rrange2 = [min(mdl2.Residuals.Raw),max(mdl2.Residuals.Raw)];
Rrange3 = [min(mdl3.Residuals.Raw),max(mdl3.Residuals.Raw)];
Rranges = [range1;range2;range3]
Rranges =
\begin{tabular}{ll}
-10.7725 & 14.7314 \\
-11.4407 & 16.7562 \\
-12.2723 & 16.7927
\end{tabular}
```


# Robust Regression - Reduce Outlier Effects 

In this section...<br>"What Is Robust Regression?" on page 9-116<br>"Robust Regression versus Standard Least-Squares Fit" on page 9-116

## What Is Robust Regression?

The models described in "What Are Linear Regression Models?" on page 9-7 are based on certain assumptions, such as a normal distribution of errors in the observed responses. If the distribution of errors is asymmetric or prone to outliers, model assumptions are invalidated, and parameter estimates, confidence intervals, and other computed statistics become unreliable. Use LinearModel.fit with the RobustOpts name-value pair to create a model that is not much affected by outliers. The robust fitting method is less sensitive than ordinary least squares to large changes in small parts of the data.

Robust regression works by assigning a weight to each data point. Weighting is done automatically and iteratively using a process called iteratively reweighted least squares. In the first iteration, each point is assigned equal weight and model coefficients are estimated using ordinary least squares. At subsequent iterations, weights are recomputed so that points farther from model predictions in the previous iteration are given lower weight. Model coefficients are then recomputed using weighted least squares. The process continues until the values of the coefficient estimates converge within a specified tolerance.

## Robust Regression versus Standard Least-Squares Fit

This example shows how to use robust regression. It compares the results of a robust fit to a standard least-squares fit.

## Step 1. Prepare data.

Load the moore data. The data is in the first five columns, and the response in the sixth.
load moore

```
X = [moore(:,1:5)];
y = moore(:,6);
```


## Step 2. Fit robust and nonrobust models.

Fit two linear models to the data, one using robust fitting, one not.

```
mdl = LinearModel.fit(X,y); % not robust
mdlr = LinearModel.fit(X,y,'RobustOpts','on');
```


## Step 3. Examine model residuals.

Examine the residuals of the two models.

```
subplot(1,2,1);plotResiduals(mdl,'probability')
subplot(1,2,2);plotResiduals(mdlr,'probability')
```



The residuals from the robust fit (right half of the plot) are nearly all closer to the straight line, except for the one obvious outlier.

## 4. Remove the outlier from the standard model

Find the index of the outlier. Examine the weight of the outlier in the robust fit.
[~,outlier] = max(mdlr.Residuals.Raw); mdlr.Robust.Weights(outlier)
ans $=$
0.0246

This weight is much less than a typical weight of an observation:

```
median(mdlr.Robust.Weights)
ans =
 0.9718
```


## Ridge Regression

In this section...
"Introduction to Ridge Regression" on page 9-119
"Ridge Regression" on page 9-119

## Introduction to Ridge Regression

Coefficient estimates for the models described in "Linear Regression" on page $9-11$ rely on the independence of the model terms. When terms are correlated and the columns of the design matrix $X$ have an approximate linear dependence, the matrix $\left(X^{T} X\right)^{-1}$ becomes close to singular. As a result, the least-squares estimate

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} y
$$

becomes highly sensitive to random errors in the observed response $y$, producing a large variance. This situation of multicollinearity can arise, for example, when data are collected without an experimental design.

Ridge regression addresses the problem by estimating regression coefficients using

$$
\hat{\beta}=\left(X^{T} X+k I\right)^{-1} X^{T} y
$$

where $k$ is the ridge parameter and $I$ is the identity matrix. Small positive values of $k$ improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of ridge estimates often result in a smaller mean square error when compared to least-squares estimates.

The Statistics Toolbox function ridge carries out ridge regression.

## Ridge Regression

For example, load the data in acetylene.mat, with observations of the predictor variables $x 1, x 2, x 3$, and the response variable $y$ :
load acetylene
Plot the predictor variables against each other:

```
subplot(1,3,1)
plot(x1,x2,'.')
xlabel('x1'); ylabel('x2'); grid on; axis square
subplot(1,3,2)
plot(x1,x3,'.')
xlabel('x1'); ylabel('x3'); grid on; axis square
subplot(1,3,3)
plot(x2,x3,'.')
xlabel('x2'); ylabel('x3'); grid on; axis square
```





Note the correlation between $x 1$ and the other two predictor variables.
Use ridge and x2fx to compute coefficient estimates for a multilinear model with interaction terms, for a range of ridge parameters:

```
X = [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = []; % No constant term
k = 0:1e-5:5e-3;
betahat = ridge(y,D,k);
```

Plot the ridge trace:
figure

```
plot(k,betahat,'LineWidth',2)
ylim([-100 100])
grid on
xlabel('Ridge Parameter')
ylabel('Standardized Coefficient')
title('{\bf Ridge Trace}')
legend('x1','x2','x3','x1x2','x1x3','x2x3')
```

Ridge Trace


The estimates stabilize to the right of the plot. Note that the coefficient of the $\times 2 \times 3$ interaction term changes sign at a value of the ridge parameter $\approx$ $5 \times 10^{-4}$.

## Lasso and Elastic Net

# In this section... <br> "What Are Lasso and Elastic Net?" on page 9-123 <br> "Lasso Regularization" on page 9-123 <br> "Lasso and Elastic Net with Cross Validation" on page 9-126 <br> "Wide Data via Lasso and Parallel Computing" on page 9-129 <br> "Lasso and Elastic Net Details" on page 9-134 <br> "References" on page 9-136 

## What Are Lasso and Elastic Net?

Lasso is a regularization technique. Use lasso to:

- Reduce the number of predictors in a regression model.
- Identify important predictors.
- Select among redundant predictors.
- Produce shrinkage estimates with potentially lower predictive errors than ordinary least squares.

Elastic net is a related technique. Use elastic net when you have several highly correlated variables. lasso provides elastic net regularization when you set the Alpha name-value pair to a number strictly between 0 and 1.

See "Lasso and Elastic Net Details" on page 9-134.
For lasso regularization of regression ensembles, see regularize.

## Lasso Regularization

To see how lasso identifies and discards unnecessary predictors:
1 Generate 200 samples of five-dimensional artificial data $X$ from exponential distributions with various means:

```
rng(3,'twister') % for reproducibility
X = zeros(200,5);
for ii = 1:5
 X(:,ii) = exprnd(ii,200,1);
end
```

2 Generate response data $Y=X * r+e p s$ where $r$ has just two nonzero components, and the noise eps is normal with standard deviation 0.1:

```
r = [0;2;0;-3;0];
Y = X*r + randn(200,1)*.1;
```

3 Fit a cross-validated sequence of models with lasso, and plot the result:

```
[b fitinfo] = lasso(X,Y,'CV',10);
lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');
```

Trace Plot of coefficients fit by Lasso


The plot shows the nonzero coefficients in the regression for various values of the Lambda regularization parameter. Larger values of Lambda appear on the left side of the graph, meaning more regularization, resulting in fewer nonzero regression coefficients.

The dashed vertical lines represent the Lambda value with minimal mean squared error (on the right), and the Lambda value with minimal mean squared error plus one standard deviation. This latter value is a recommended setting for Lambda. These lines appear only when you perform cross validation. Cross validate by setting the 'CV' name-value pair. This example uses 10 -fold cross validation.

The upper part of the plot shows the degrees of freedom (df), meaning the number of nonzero coefficients in the regression, as a function of Lambda. On the left, the large value of Lambda causes all but one coefficient to be 0 . On the right all five coefficients are nonzero, though the plot shows only two clearly. The other three coefficients are so small that you cannot visually distinguish them from 0 .

For small values of Lambda (toward the right in the plot), the coefficient values are close to the least-squares estimate. See step 5 on page 9-126.

4 Find the Lambda value of the minimal cross-validated mean squared error plus one standard deviation. Examine the MSE and coefficients of the fit at that Lambda:

```
lam = fitinfo.Index1SE;
fitinfo.MSE(lam)
ans =
 0.1398
b(:,lam)
ans =
0
 1.8855
0
```

    -2.9367
    0
lasso did a good job finding the coefficient vector $r$.
5 For comparison, find the least-squares estimate of $r$ :

```
rhat = X\Y
rhat =
 -0.0038
 1.9952
 0.0014
 -2.9993
 0.0031
```

The estimate $b(:, l a m)$ has slightly more mean squared error than the mean squared error of rhat:

```
res = X*rhat - Y; % calculate residuals
```

MSEmin $=$ res'*res/200 \% b(:,lam) value is 0.1398
MSEmin =
0.0088

But b(:, lam) has only two nonzero components, and therefore can provide better predictive estimates on new data.

## Lasso and Elastic Net with Cross Validation

Consider predicting the mileage (MPG) of a car based on its weight, displacement, horsepower, and acceleration. The carbig data contains these measurements. The data seem likely to be correlated, making elastic net an attractive choice.

1 Load the data:
load carbig

2 Extract the continuous (noncategorical) predictors (lasso does not handle categorical predictors):

X = [Acceleration Displacement Horsepower Weight];

3 Perform a lasso fit with 10 -fold cross validation:

```
[b fitinfo] = lasso(X,MPG,'CV',10);
```

4 Plot the result:

```
lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');
```

Trace Plot of coefficients fit by Lasso
df


5 Calculate the correlation of the predictors:

```
% Eliminate NaNs so corr runs
nonan = ~any(isnan([X MPG]),2);
Xnonan = X(nonan,:);
MPGnonan = MPG(nonan,:);
corr(Xnonan)
ans =
```

| 1.0000 | -0.5438 | -0.6892 | -0.4168 |
| ---: | ---: | ---: | ---: |
| -0.5438 | 1.0000 | 0.8973 | 0.9330 |
| -0.6892 | 0.8973 | 1.0000 | 0.8645 |
| -0.4168 | 0.9330 | 0.8645 | 1.0000 |

6 Because some predictors are highly correlated, perform elastic net fitting. Use Alpha = 0.5:

```
[ba fitinfoa] = lasso(X,MPG,'CV',10,'Alpha',.5);
```

7 Plot the result. Name each predictor so you can tell which curve is which:
pnames = \{'Acceleration', 'Displacement',...
'Horsepower', 'Weight'\};
lassoPlot (ba,fitinfoa,'PlotType','Lambda', ...
'XScale','log','PredictorNames', pnames);
Trace Plot of coefficients fit by Elastic Net (Alpha $=0.5$ ) df


When you activate the data cursor

and click the plot, you see the name of the predictor, the coefficient, the value of Lambda, and the index of that point, meaning the column in $b$ associated with that fit.

Here, the elastic net and lasso results are not very similar. Also, the elastic net plot reflects a notable qualitative property of the elastic net technique. The elastic net retains three nonzero coefficients as Lambda increases (toward the left of the plot), and these three coefficients reach 0 at about the same Lambda value. In contrast, the lasso plot shows two of the three coefficients becoming 0 at the same value of Lambda, while another coefficient remains nonzero for higher values of Lambda.

This behavior exemplifies a general pattern. In general, elastic net tends to retain or drop groups of highly correlated predictors as Lambda increases. In contrast, lasso tends to drop smaller groups, or even individual predictors.

## Wide Data via Lasso and Parallel Computing

Lasso and elastic net are especially well suited to wide data, meaning data with more predictors than observations. Obviously, there are redundant predictors in this type of data. Use lasso along with cross validation to identify important predictors.

Cross validation can be slow. If you have a Parallel Computing Toolbox license, speed the computation using parallel computing.

1 Load the spectra data:

```
load spectra
```

Description

Description =
== Spectral and octane data of gasoline ==

```
NIR spectra and octane numbers of 60 gasoline samples
NIR: NIR spectra, measured in 2 nm intervals from 900 nm to 1700 nm
octane: octane numbers
spectra: a dataset array containing variables for NIR and octane
Reference:
Kalivas, John H., "Two Data Sets of Near Infrared Spectra," Chemometrics
and Intelligent Laboratory Systems, v. 37 (1997) pp. 255 259
```

2 Compute the default lasso fit:
[b fitinfo] = lasso(NIR,octane);

3 Plot the number of predictors in the fitted lasso regularization as a function of Lambda, using a logarithmic $x$-axis:

```
lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');
```

Trace Plot of coefficients fit by Lasso
df


4 It is difficult to tell which value of Lambda is appropriate. To determine a good value, try fitting with cross validation:
tic
[b fitinfo] = lasso(NIR,octane,'CV',10);
\% A time-consuming operation
toc
Elapsed time is 226.876926 seconds.
5 Plot the result:
lassoPlot(b,fitinfo,'PlotType','Lambda','XScale','log');

Trace Plot of coefficients fit by Lasso
df


You can see the suggested value of Lambda is over $1 e-2$, and the Lambda with minimal MSE is under 1e-2. These values are in the fitinfo structure:
fitinfo.LambdaMinMSE
ans $=$
0.0057

```
fitinfo.Lambda1SE
ans =
 0.0190
```

6 Examine the quality of the fit for the suggested value of Lambda:

```
lambdaindex = fitinfo.Index1SE;
```

fitinfo.MSE(lambdaindex)
ans $=$
0.0532
fitinfo. DF(lambdaindex)
ans $=$
11

The fit uses just 11 of the 401 predictors, and achieves a cross-validated MSE of 0.0532 .

7 Examine the plot of cross-validated MSE:
lassoPlot(b,fitinfo,'PlotType','CV');
\% Use a log scale for MSE to see small MSE values better set(gca,'YScale','log');


As Lambda increases (toward the left), MSE increases rapidly. The coefficients are reduced too much and they do not adequately fit the responses.

As Lambda decreases, the models are larger (have more nonzero coefficients). The increasing MSE suggests that the models are overfitted.

The default set of Lambda values does not include values small enough to include all predictors. In this case, there does not appear to be a reason to look at smaller values. However, if you want smaller values than the default, use the LambdaRatio parameter, or supply a sequence of Lambda values using the Lambda parameter. For details, see the lasso reference page.

8 To compute the cross-validated lasso estimate faster, use parallel computing (available with a Parallel Computing Toolbox license):

```
matlabpool open
Starting matlabpool using the 'local' configuration ...
 connected to 4 labs.
opts = statset('UseParallel',true);
tic;
[b fitinfo] = lasso(NIR,octane,'CV',10,'Options',opts);
toc
Elapsed time is 107.539719 seconds.
```

Computing in parallel is more than twice as fast on this problem using a quad-core processor.

## Lasso and Elastic Net Details

## Overview of Lasso and Elastic Net

Lasso is a regularization technique for performing linear regression. Lasso includes a penalty term that constrains the size of the estimated coefficients. Therefore, it resembles ridge regression. Lasso is a shrinkage estimator: it generates coefficient estimates that are biased to be small. Nevertheless, a lasso estimator can have smaller mean squared error than an ordinary least-squares estimator when you apply it to new data.

Unlike ridge regression, as the penalty term increases, lasso sets more coefficients to zero. This means that the lasso estimator is a smaller model, with fewer predictors. As such, lasso is an alternative to stepwise regression and other model selection and dimensionality reduction techniques.

Elastic net is a related technique. Elastic net is a hybrid of ridge regression and lasso regularization. Like lasso, elastic net can generate reduced models by generating zero-valued coefficients. Empirical studies have suggested that the elastic net technique can outperform lasso on data with highly correlated predictors.

## Definition of Lasso

The lasso technique solves this regularization problem. For a given value of $\lambda$, a nonnegative parameter, lasso solves the problem

$$
\min _{\beta_{0}, \beta}\left(\frac{1}{2 N} \sum_{i=1}^{N}\left(y_{i}-\beta_{0}-x_{i}^{T} \beta\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|\right)
$$

where

- $N$ is the number of observations.
- $y_{i}$ is the response at observation $i$.
- $x_{i}$ is data, a vector of $p$ values at observation $i$.
- $\lambda$ is a positive regularization parameter corresponding to one value of Lambda.
- The parameters $\beta_{0}$ and $\beta$ are scalar and $p$-vector respectively.

As $\lambda$ increases, the number of nonzero components of $\beta$ decreases.
The lasso problem involves the $L^{1}$ norm of $\beta$, as contrasted with the elastic net algorithm.

## Definition of Elastic Net

The elastic net technique solves this regularization problem. For an $\alpha$ strictly between 0 and 1 , and a nonnegative $\lambda$, elastic net solves the problem

$$
\min _{\beta_{0}, \beta}\left(\frac{1}{2 N} \sum_{i=1}^{N}\left(y_{i}-\beta_{0}-x_{i}^{T} \beta\right)^{2}+\lambda P_{\alpha}(\beta)\right),
$$

where

$$
P_{\alpha}(\beta)=\frac{(1-\alpha)}{2}\|\beta\|_{2}^{2}+\alpha\|\beta\|_{1}=\sum_{j=1}^{p}\left(\frac{(1-\alpha)}{2} \beta_{j}^{2}+\alpha\left|\beta_{j}\right|\right) .
$$

Elastic net is the same as lasso when $\alpha=1$. As $a$ shrinks toward 0 , elastic net approaches ridge regression. For other values of $a$, the penalty term $P_{a}(\beta)$ interpolates between the $L^{1}$ norm of $\beta$ and the squared $L^{2}$ norm of $\beta$.

## References

[1] Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, Vol 58, No. 1, pp. 267-288, 1996.
[2] Zou, H. and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B, Vol. 67, No. 2, pp. 301-320, 2005.
[3] Friedman, J., R. Tibshirani, and T. Hastie. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, Vol 33, No. 1, 2010. http://www.jstatsoft.org/v33/i01
[4] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, 2nd edition. Springer, New York, 2008.

## Partial Least Squares

In this section...<br>"Introduction to Partial Least Squares" on page 9-137<br>"Partial Least Squares" on page 9-138

## Introduction to Partial Least Squares

Partial least-squares (PLS) regression is a technique used with data that contain correlated predictor variables. This technique constructs new predictor variables, known as components, as linear combinations of the original predictor variables. PLS constructs these components while considering the observed response values, leading to a parsimonious model with reliable predictive power.

The technique is something of a cross between multiple linear regression and principal component analysis:

- Multiple linear regression finds a combination of the predictors that best fit a response.
- Principal component analysis finds combinations of the predictors with large variance, reducing correlations. The technique makes no use of response values.
- PLS finds combinations of the predictors that have a large covariance with the response values.

PLS therefore combines information about the variances of both the predictors and the responses, while also considering the correlations among them.

PLS shares characteristics with other regression and feature transformation techniques. It is similar to ridge regression in that it is used in situations with correlated predictors. It is similar to stepwise regression (or more general feature selection techniques) in that it can be used to select a smaller set of model terms. PLS differs from these methods, however, by transforming the original predictor space into the new component space.

The Statistics Toolbox function plsregress carries out PLS regression.

## Partial Least Squares

For example, consider the data on biochemical oxygen demand in moore.mat, padded with noisy versions of the predictors to introduce correlations:

```
load moore
y = moore(:,6); % Response
X0 = moore(:,1:5); % Original predictors
X1 = X0+10*randn(size(XO)); % Correlated predictors
X = [X0,X1];
```

Use plsregress to perform PLS regression with the same number of components as predictors, then plot the percentage variance explained in the response as a function of the number of components:

```
[XL,yl,XS,YS,beta,PCTVAR] = plsregress(X,y,10);
plot(1:10,cumsum(100*PCTVAR(2,:)),'-bo');
xlabel('Number of PLS components');
ylabel('Percent Variance Explained in y');
```



Choosing the number of components in a PLS model is a critical step. The plot gives a rough indication, showing nearly $80 \%$ of the variance in y explained by the first component, with as many as five additional components making significant contributions.

The following computes the six-component model:

```
[XL,yl,XS,YS,beta,PCTVAR,MSE,stats] = plsregress(X,y,6);
yfit = [ones(size(X,1),1) X]*beta;
plot(y,yfit,'o')
```



The scatter shows a reasonable correlation between fitted and observed responses, and this is confirmed by the $R^{2}$ statistic:

```
TSS = sum((y-mean(y)).^2);
RSS = sum((y-yfit).^2);
Rsquared = 1 - RSS/TSS
Rsquared =
 0.8421
```

A plot of the weights of the ten predictors in each of the six components shows that two of the components (the last two computed) explain the majority of the variance in X :

```
plot(1:10,stats.W,'o-');
legend({'c1','c2','c3','c4','c5','c6'},'Location','NW')
xlabel('Predictor');
ylabel('Weight');
```



A plot of the mean-squared errors suggests that as few as two components may provide an adequate model:

```
[axes,h1,h2] = plotyy(0:6,MSE(1,:),0:6,MSE(2,:));
set(h1,'Marker','o')
set(h2,'Marker','o')
legend('MSE Predictors','MSE Response')
xlabel('Number of Components')
```



The calculation of mean-squared errors by plsregress is controlled by optional parameter name/value pairs specifying cross-validation type and the number of Monte Carlo repetitions.

## Generalized Linear Models

In this section...<br>"What Are Generalized Linear Models?" on page 9-143<br>"Prepare Data" on page 9-144<br>"Choose Generalized Linear Model and Link Function" on page 9-146<br>"Choose Fitting Method and Model" on page 9-150<br>"Fit Model to Data" on page 9-155<br>"Examine Quality and Adjust the Fitted Model" on page 9-156<br>"Predict or Simulate Responses to New Data" on page 9-168<br>"Share Fitted Models" on page 9-171<br>"Generalized Linear Model Workflow" on page 9-173

## What Are Generalized Linear Models?

Linear regression models describe a linear relationship between a response and one or more predictive terms. Many times, however, a nonlinear relationship exists. "Nonlinear Regression" on page 9-198 describes general nonlinear models. A special class of nonlinear models, called generalized linear models, uses linear methods.

Recall that linear models have these characteristics:

- At each set of values for the predictors, the response has a normal distribution with mean $\mu$.
- A coefficient vector $b$ defines a linear combination $X b$ of the predictors $X$.
- The model is $\mu=X b$.

In generalized linear models, these characteristics are generalized as follows:

- At each set of values for the predictors, the response has a distribution that can be normal, binomial, Poisson, gamma, or inverse Gaussian, with parameters including a mean $\mu$.
- A coefficient vector $b$ defines a linear combination $X b$ of the predictors $X$.
- A link function $f$ defines the model as $f(\mu)=X b$.


## Prepare Data

To begin fitting a regression, put your data into a form that fitting functions expect. All regression techniques begin with input data in an array $X$ and response data in a separate vector $y$, or input data in a dataset array ds and response data as a column in ds. Each row of the input data represents one observation. Each column represents one predictor (variable).

For a dataset array ds, indicate the response variable with the 'ResponseVar ' name-value pair:

```
mdl = LinearModel.fit(ds,'ResponseVar','BloodPressure');
% or
mdl = GeneralizedLinearModel.fit(ds,'ResponseVar','BloodPressure');
```

The response variable is the last column by default.
You can use numeric categorical predictors. A categorical predictor is one that takes values from a fixed set of possibilities.

- For a numeric array $X$, indicate the categorical predictors using the 'Categorical' name-value pair. For example, to indicate that predictors 2 and 3 out of six are categorical:

```
mdl = LinearModel.fit(X,y,'Categorical',[2,3]);
% or
mdl = GeneralizedLinearModel.fit(X,y,'Categorical',[2,3]);
% or equivalently
mdl = LinearModel.fit(X,y,'Categorical',logical([00 1 1 0 0 0]));
```

- For a dataset array ds, fitting functions assume that these data types are categorical:
- Logical
- Categorical (nominal or ordinal)
- String or character array

If you want to indicate that a numeric predictor is categorical, use the 'Categorical' name-value pair.

Represent missing numeric data as NaN. To represent missing data for other data types, see "Missing Group Values" on page 2-53.

- For a 'binomial' model with data matrix $X$, the response $y$ can be:
- Binary column vector - Each entry represents success (1) or failure (0).
- Two-column matrix of integers - The first column is the number of successes in each observation, the second column is the number of trials in that observation.
- For a 'binomial' model with dataset ds:
- Use the ResponseVar name-value pair to specify the column of ds that gives the number of successes in each observation.
- Use the BinomialSize name-value pair to specify the column of ds that gives the number of trials in each observation.


## Dataset Array for Input and Response Data

For example, to create a dataset array from an Excel spreadsheet:

```
ds = dataset('XLSFile','hospital.xls',...
 'ReadObsNames',true);
```

To create a dataset array from workspace variables:

```
load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);
```


## Numeric Matrix for Input Data, Numeric Vector for Response

For example, to create numeric arrays from workspace variables:

```
load carsmall
X = [Weight Horsepower Cylinders Model_Year];
y = MPG;
```

To create numeric arrays from an Excel spreadsheet:

```
[X Xnames] = xlsread('hospital.xls');
y = X(:,4); % response y is systolic pressure
```

```
X(:,4) = []; % remove y from the X matrix
```

Notice that the nonnumeric entries, such as sex, do not appear in $X$.

## Choose Generalized Linear Model and Link Function

Often, your data suggests the distribution type of the generalized linear model.

| Response Data Type | Suggested Model Distribution <br> Type |
| :--- | :--- |
| Any real number | 'normal ' |
| Any positive number | 'gamma ' or 'inverse gaussian' |
| Any nonnegative integer | 'poisson ' |
| Integer from 0 to n, where $n$ is a fixed <br> positive value | 'binomial' |

Set the model distribution type with the Distribution name-value pair. After selecting your model type, choose a link function to map between the mean $\mu$ and the linear predictor $X b$.

| Value | Description |
| :--- | :--- |
| 'comploglog ' | $\log (-\log ((1-\mu)))=X b$ |
| 'identity ', default for the <br> distribution 'normal' | $\mu=X b$ |
| 'log', default for the <br> distribution ' poisson' | $\log (\mu)=X b$ |
| 'logit', default for the <br> distribution 'binomial' | $\log (\mu /(1-\mu))=X b$ |
| 'loglog' | $\log (-\log (\mu))=X b$ |
| 'probit' | $\Phi^{-1}(\mu)=X b$, where $\Phi$ is the normal <br> $(\operatorname{Gaussian}) \mathrm{CDF}$ function |
| 'reciprocal ', default for the <br> distribution 'gamma' | $\mu^{-1}=X b$ |


| Value | Description |
| :--- | :--- |
| p (a number), default for <br> the distribution 'inverse <br> gaussian' (with $p=-2$ ) | $\mu^{p}=X b$ |
| Cell array of the form <br> \{FL FD FI \}, containing <br> three function handles, created | Link Function" on page 9-147) |
| using @, that define the link |  |
| (FL), the derivative of the |  |
| link (FD), and the inverse link |  |
| (FI). Equivalently, can be a |  |
| structure of function handles |  |
| with field Link containing FL, |  |
| field Derivative containing |  |
| FD, and field Inverse |  |
| containing FI. |  |

The nondefault link functions are mainly useful for binomial models. These nondefault link functions are 'comploglog', 'loglog', and 'probit'.

## Custom Link Function

The link function defines the relationship $f(\mu)=X b$ between the mean response $\mu$ and the linear combination $X b=X^{*} b$ of the predictors. You can choose one of the built-in link functions or define your own by specifying the link function FL, its derivative FD, and its inverse FI:

- The link function FL calculates $f(\mu)$.
- The derivative of the link function FD calculates $d f(\mu) / d \mu$.
- The inverse function FI calculates $g(X b)=\mu$.

You can specify a custom link function in either of two equivalent ways. Each way contains function handles that accept a single array of values representing $\mu$ or $X b$, and returns an array the same size. The function handles are either in a cell array or a structure:

- Cell array of the form \{FL FD FI\}, containing three function handles, created using @, that define the link (FL), the derivative of the link (FD), and the inverse link (FI).
- Structure $s$ with three fields, each containing a function handle created using $@$ :
- s.Link - Link function
- s.Derivative - Derivative of the link function
- s.Inverse - Inverse of the link function

For example, to fit a model using the 'probit' link function:

```
x = [2100 2300 2500 2700 2900 ...
 3100 3300 3500 3700 3900 4100 4300]';
n = [48 42 31 34 31 21 23 23 21 16 17 21]';
y = [1 2 2 0 3 8 8 8 14 17 19 15 17 21]';
g = GeneralizedLinearModel.fit(x,[y n],...
 'linear','distr','binomial','link','probit')
g =
```

Generalized Linear regression model:
probit(y) ~ $1+x 1$
Distribution = Binomial
Estimated Coefficients:

|  | Estimate | SE | tStat | pValue |
| :--- | ---: | ---: | ---: | :--- |
| (Intercept) | -7.3628 | 0.66815 | -11.02 | $3.0701 \mathrm{e}-28$ |
| x1 | 0.0023039 | 0.00021352 | 10.79 | $3.8274 \mathrm{e}-27$ |

12 observations, 10 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 241, p-value $=2.25 e-54$

You can perform the same fit using a custom link function that performs identically to the 'probit' link function:

```
s = {@norminv,@(x)1./normpdf(norminv(x)),@normcdf};
g = GeneralizedLinearModel.fit(x,[y n],...
 'linear','distr','binomial','link',s)
```

```
g =
Generalized Linear regression model:
 link(y) ~ 1 + x1
 Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{lcrrl}
& Estimate & \multicolumn{1}{l}{ SE } & \multicolumn{1}{l}{ tStat } & pValue \\
(Intercept) & -7.3628 & 0.66815 & -11.02 & \(3.0701 \mathrm{e}-28\) \\
x1 & 0.0023039 & 0.00021352 & 10.79 & \(3.8274 \mathrm{e}-27\)
\end{tabular}
1 2 \text { observations, 10 error degrees of freedom}
Dispersion: 1
Chi^2-statistic vs. constant model: 241, p-value = 2.25e-54
```

The two models are the same.
Equivalently, you can write $s$ as a structure instead of a cell array of function handles:

```
s.Link = @norminv;
s.Derivative = @(x) 1./normpdf(norminv(x));
s.Inverse = @normcdf;
g = GeneralizedLinearModel.fit(x,[y n],...
 'linear','distr','binomial','link',s)
g =
Generalized Linear regression model:
 link(y) ~ 1 + x1
 Distribution = Binomial
```

Estimated Coefficients:

|  | Estimate | SE | tStat | pValue |
| :--- | ---: | ---: | ---: | :--- |
| (Intercept) | -7.3628 | 0.66815 | -11.02 | $3.0701 \mathrm{e}-28$ |
| x1 | 0.0023039 | 0.00021352 | 10.79 | $3.8274 \mathrm{e}-27$ |

12 observations, 10 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 241, p-value $=2.25 e-54$

## Choose Fitting Method and Model

There are two ways to create a fitted model.

- Use GeneralizedLinearModel.fit when you have a good idea of your generalized linear model, or when you want to adjust your model later to include or exclude certain terms.
- Use GeneralizedLinearModel.stepwise when you want to fit your model using stepwise regression. GeneralizedLinearModel.stepwise starts from one model, such as a constant, and adds or subtracts terms one at a time, choosing an optimal term each time in a greedy fashion, until it cannot improve further. Use stepwise fitting to find a good model, one that has only relevant terms.

The result depends on the starting model. Usually, starting with a constant model leads to a small model. Starting with more terms can lead to a more complex model, but one that has lower mean squared error.

In either case, provide a model to the fitting function (which is the starting model for GeneralizedLinearModel.stepwise).

Specify a model using one of these methods.

- "Brief String" on page 9-150
- "Terms Matrix" on page 9-151
- "Formula" on page 9-154


## Brief String

| String | Model Type |
| :--- | :--- |
| 'constant' | Model contains only a constant (intercept) term. |
| 'linear' | Model contains an intercept and linear terms for <br> each predictor. |
| 'interactions' | Model contains an intercept, linear terms, and <br> all products of pairs of distinct predictors (no <br> squared terms). |


| String | Model Type |
| :--- | :--- |
| 'purequadratic' | Model contains an intercept, linear terms, and <br> squared terms. |
| 'quadratic' | Model contains an intercept, linear terms, <br> interactions, and squared terms. |
| 'polyijk' | Model is a polynomial with all terms up to degree <br> $i$ in the first predictor, degree $j$ in the second <br> predictor, etc. Use numerals 0 through 9. For <br> example, 'poly2111' has a constant plus all <br> linear and product terms, and also contains <br> terms with predictor 1 squared. |

## Terms Matrix

A terms matrix is a T-by- $P+1$ matrix specifying terms in a model, where $T$ is the number of terms, P is the number of predictor variables, and plus one is for the response variable. The value of $T(i, j)$ is the exponent of variable $j$ in term i. For example, if there are three predictor variables A, B, and C:
[0 0 0 0 ] \% constant term or intercept
[0 10000 \% B; equivalently, $\mathrm{A}^{\wedge} 0$ * $\mathrm{B}^{\wedge} 1$ * $\mathrm{C}^{\wedge} 0$
$\left[\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right] \% A^{*} C$
[2000] \% A^2
[0 $\left.1 \begin{array}{lll}2 & 0\end{array}\right]$ \% $B^{*}\left(C^{\wedge} 2\right)$
The 0 at the end of each term represents the response variable. In general,

- If you have the variables in a dataset array, then a 0 must represent the response variable depending on the position of the response variable in the dataset array. For example:

Load sample data and define the dataset array.
load hospital
ds = dataset(hospital.Sex,hospital.BloodPressure(:,1),hospital.Age,... hospital.Smoker, 'VarNames', \{'Sex', 'BloodPressure', 'Age', 'Smoker'\});

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in a terms matrix. The response variable is in the second column
of the data set array, so there must be a column of zeros for the response variable in the second column of the term matrix.

```
T =[[0 0 0 0;1 0 0 0;0 0 1 0;0}00001
T =
\begin{tabular}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{tabular}
```

Redefine the dataset array.

```
ds = dataset(hospital.BloodPressure(:,1),hospital.Sex,hospital.Age,...
```

hospital.Smoker, 'VarNames', \{'BloodPressure','Sex','Age','Smoker'\});

Now, the response variable is the first term in the data set array. Specify the same linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a term matrix.

```
T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
T =
```

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |

- If you have the predictor and response variables in a matrix and column vector, then you must include a 0 for the response variable at the end of each term. For example:
Load sample data and define the matrix of predictors.
load carsmall
X = [Acceleration, Weight];
Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to data. This model includes the main effect and two way
interaction terms for the variables, Acceleration and Weight, and a second order term for the variable, Weight.

```
T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]
T =
\begin{tabular}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 2 & 0
\end{tabular}
```

Fit a linear model.

```
mdl = LinearModel.fit(X,MPG,T)
```

mdl =
Linear regression model:
$y$ ~ 1 + x1*x2 + x2^2
Estimated Coefficients:

|  | Estimate | SE | tStat | pValue |
| :--- | ---: | ---: | ---: | ---: |
| (Intercept) | 48.906 | 12.589 | 3.8847 | 0.00019665 |
| x1 | 0.54418 | 0.57125 | 0.95261 | 0.34337 |
| x2 | -0.012781 | 0.0060312 | -2.1192 | 0.036857 |
| x1: x2 | -0.00010892 | 0.00017925 | -0.6076 | 0.545 |
| x2^2 | $9.7518 \mathrm{e}-07$ | $7.5389 \mathrm{e}-07$ | 1.2935 | 0.19917 |

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 4.1
R-squared: 0.751, Adjusted R-Squared 0.739
F-statistic vs. constant model: 67, p-value = 4.99e-26

Only the intercept and x2 term, which corresponds to the Weight variable, are significant at the $5 \%$ significance level.

Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.

```
T = [0 0 0;1 0 0;0 1 0;1 1 0];
mdl = LinearModel.stepwise(X,MPG,[0 O O],'upper',T)
1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28
mdl =
Linear regression model:
 y ~ 1 + x2
Estimated Coefficients:
\begin{tabular}{lrrrl}
& Estimate & \multicolumn{1}{l}{ SE } & tStat & PValue \\
(Intercept) & 49.238 & 1.6411 & 30.002 & \(2.7015 \mathrm{e}-49\) \\
x2 & -0.0086119 & 0.0005348 & -16.103 & \(1.6434 \mathrm{e}-28\)
\end{tabular}
Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738, Adjusted R-Squared 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28
```

The results of the stepwise regression are consistent with the results of LinearModel.fit in the previous step.

## Formula

A formula for a model specification is a string of the form

```
'Y ~ terms',
```

- $Y$ is the response name.
- terms contains
- Variable names
-     + to include the next variable
-     - to exclude the next variable
- : to define an interaction, a product of terms
-     * to define an interaction and all lower-order terms
- ^ to raise the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as well
- () to group terms

Tip Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include -1 in the formula.

Examples:
' $Y$ ~ A + B + C' is a three-variable linear model with intercept.
' $Y \sim A+B+C-1 '$ is a three-variable linear model without intercept.
' $Y$ ~ $A+B+C+B \wedge 2 '$ is a three-variable model with intercept and a $B^{\wedge} 2$ term.
' Y ~ $\mathrm{A}+\mathrm{B}^{\wedge} 2+C$ ' is the same as the previous example, since $\mathrm{B}^{\wedge} 2$
includes a $B$ term.
' $Y \sim A+B+C+A: B '$ includes an $A * B$ term.
' $Y$ ~ $A * B+C$ ' is the same as the previous example, since $A * B=A+B+$
A:B.
' $Y \sim A * B * C-A: B: C '$ has all interactions among $A, B$, and $C$, except the three-way interaction.
' Y ~ A* $(B+C+D)$ ' has all linear terms, plus products of $A$ with each of the other variables.

## Fit Model to Data

Create a fitted model using GeneralizedLinearModel.fit or GeneralizedLinearModel.stepwise. Choose between them as in "Choose Fitting Method and Model" on page 9-150. For generalized linear models other than those with a normal distribution, give a Distribution name-value pair as in "Choose Generalized Linear Model and Link Function" on page 9-146. For example,

```
mdl = GeneralizedLinearModel.fit(X,y,'linear','Distribution','poisson')
% or
mdl = GeneralizedLinearModel.fit(X,y,'quadratic',...
 'Distribution','binomial')
```


## Examine Quality and Adjust the Fitted Model

After fitting a model, examine the result.

- "Model Display" on page 9-156
- "Diagnostic Plots" on page 9-157
- "Residuals - Model Quality for Training Data" on page 9-160
- "Plots to Understand Predictor Effects and How to Modify a Model" on page 9-163


## Model Display

A linear regression model shows several diagnostics when you enter its name or enter disp (mdl). This display gives some of the basic information to check whether the fitted model represents the data adequately.

For example, fit a Poisson model to data constructed with two out of five predictors not affecting the response, and with no intercept term:

```
rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[14 4 5])*[.4;.2;.3]);
y = poissrnd(mu);
mdl = GeneralizedLinearModel.fit(X,y,\ldots.
 'linear','Distribution','poisson')
mdl =
Generalized Linear regression model:
 log(y) ~ 1 + x1 + x2 + x3 + x4 + x5
 Distribution = Poisson
Estimated Coefficients:
\begin{tabular}{lrrrr}
& \multicolumn{1}{l}{ Estimate } & \multicolumn{1}{l}{ SE } & \multicolumn{1}{l}{ tStat } & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 0.039829 & 0.10793 & 0.36901 & 0.71212 \\
x1 & 0.38551 & 0.076116 & 5.0647 & \(4.0895 \mathrm{e}-07\) \\
x2 & -0.034905 & 0.086685 & -0.40266 & 0.6872 \\
x3 & -0.17826 & 0.093552 & -1.9054 & 0.056722 \\
X4 & 0.21929 & 0.09357 & 2.3436 & 0.019097
\end{tabular}
```

```
 x5
 0.28918
100 observations, 94 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 44.9, p-value = 1.55e-08
```

Notice that:

- The display contains the estimated values of each coefficient in the Estimate column. These values are reasonably near the true values [0;.4;0;0;.2;.3], except possibly the coefficient of $x 3$ is not terribly near 0 .
- There is a standard error column for the coefficient estimates.
- The reported pValue (which are derived from the $t$ statistics under the assumption of normal errors) for predictors 1,4 , and 5 are small. These are the three predictors that were used to create the response data $y$.
- The pValue for (Intercept), $x 2$ and $\times 3$ are larger than 0.01 . These three predictors were not used to create the response data $y$. The pValue for $x 3$ is just over . 05, so might be regarded as possibly significant.
- The display contains the Chi-square statistic.


## Diagnostic Plots

Diagnostic plots help you identify outliers, and see other problems in your model or fit. To illustrate these plots, consider binomial regression with a logistic link function.

The logistic model is useful for proportion data. It defines the relationship between the proportion $p$ and the weight $w$ by:

$$
\log [p /(1-p)]=b_{1}+b_{2} w
$$

This example fits a binomial model to data. The data are derived from carbig.mat, which contains measurements of large cars of various weights. Each weight in whas a corresponding number of cars in total and a corresponding number of poor-mileage cars in poor.

It is reasonable to assume that the values of poor follow binomial distributions, with the number of trials given by total and the percentage of successes depending on $w$. This distribution can be accounted for in the context of a logistic model by using a generalized linear model with link function $\log (\mu /(1-\mu))=X b$. This link function is called 'logit'.

```
w = [2100 2300 2500 2700 2900 3100 ...
 3300 3500 3700 3900 4100 4300]';
total = [48 42 31 34 31 21 23 23 21 16 17 21]';
poor = [1 2 0 3 8 8 14 17 19 15 17 21]';
mdl = GeneralizedLinearModel.fit(w,[poor total],...
 'linear','Distribution','binomial','link','logit')
mdl =
Generalized Linear regression model:
 logit(y) ~ 1 + x1
 Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{lrrrl}
& Estimate & SE & tStat & pValue \\
(Intercept) & -13.38 & & 1.394 & -9.5986 \\
x1 & 0.0041812 & 0.00044258 & 9.4474 & \(3.4739 \mathrm{e}-21\)
\end{tabular}
1 2 ~ o b s e r v a t i o n s , ~ 1 0 ~ e r r o r ~ d e g r e e s ~ o f ~ f r e e d o m
Dispersion: 1
Chi^2-statistic vs. constant model: 242, p-value = 1.3e-54
```

See how well the model fits the data.

```
plotSlice(mdl)
```



The fit looks reasonably good, with fairly wide confidence bounds.
To examine further details, create a leverage plot.
plotDiagnostics(mdl)


This is typical of a regression with points ordered by the predictor variable. The leverage of each point on the fit is higher for points with relatively extreme predictor values (in either direction) and low for points with average predictor values. In examples with multiple predictors and with points not ordered by predictor value, this plot can help you identify which observations have high leverage because they are outliers as measured by their predictor values.

## Residuals - Model Quality for Training Data

There are several residual plots to help you discover errors, outliers, or correlations in the model or data. The simplest residual plots are the default histogram plot, which shows the range of the residuals and their frequencies, and the probability plot, which shows how the distribution of the residuals compares to a normal distribution with matched variance.

This example shows residual plots for a fitted Poisson model. The data construction has two out of five predictors not affecting the response, and no intercept term:

```
rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[14 5])*[2;1;.5]);
y = poissrnd(mu);
mdl = GeneralizedLinearModel.fit(X,y,...
 'linear','Distribution','poisson');
```

Examine the residuals:
plotResiduals(mdl)

## Histogram of residuals



While most residuals cluster near 0 , there are several near $\pm 18$. So examine a different residuals plot.

```
plotResiduals(mdl,'fitted')
```



The large residuals don't seem to have much to do with the sizes of the fitted values.

Perhaps a probability plot is more informative.
plotResiduals(mdl,'probability')


Now it is clear. The residuals do not follow a normal distribution. Instead, they have fatter tails, much as an underlying Poisson distribution.

## Plots to Understand Predictor Effects and How to Modify a Model

This example shows how to understand the effect each predictor has on a regression model, and how to modify the model to remove unnecessary terms.

1 Create a model from some predictors in artificial data. The data do not use the second and third columns in X. So you expect the model not to show much dependence on those predictors.

```
rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[2;1;.5]);
y = poissrnd(mu);
mdl = GeneralizedLinearModel.fit(X,y,...
```

```
'linear','Distribution','poisson');
```

2 Examine a slice plot of the responses. This displays the effect of each predictor separately.
plotSlice(mdl)

Prediction Slice Plots
$\square \square$


The scale of the first predictor is overwhelming the plot. Disable it using the Predictors menu.


Prediction Slice Plots

## $\square$ 回 $x$



Now it is clear that predictors 2 and 3 have little to no effect.
You can drag the individual predictor values, which are represented by dashed blue vertical lines. You can also choose between simultaneous and non-simultaneous confidence bounds, which are represented by dashed red curves. Dragging the predictor lines confirms that predictors 2 and 3 have little to no effect.

3 Remove the unnecessary predictors using either removeTerms or step. Using step can be safer, in case there is an unexpected importance to a term that becomes apparent after removing another term. However, sometimes removeTerms can be effective when step does not proceed. In this case, the two give identical results.

```
mdl1 = removeTerms(mdl,'x2 + x3')
mdl1 =
Generalized Linear regression model:
 log(y) ~ 1 + x1 + x4 + x5
 Distribution = Poisson
Estimated Coefficients:
\begin{tabular}{lrllr}
& Estimate & SE & tStat & pValue \\
(Intercept) & 0.17604 & 0.062215 & 2.8295 & 0.004662 \\
x1 & 1.9122 & 0.024638 & 77.614 & 0 \\
x4 & 0.98521 & 0.026393 & 37.328 & \(5.6696 \mathrm{e}-305\) \\
x5 & 0.61321 & 0.038435 & 15.955 & \(2.6473 \mathrm{e}-57\)
\end{tabular}
100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 4.97e+04, p-value = 0
mdl1 = step(mdl,'NSteps',5,'Upper','linear')
1. Removing x3, Deviance = 93.856, Chi2Stat = 0.00075551, PValue = 0.97807
2. Removing x2, Deviance = 96.333, Chi2Stat = 2.4769, PValue = 0.11553
mdl1 =
Generalized Linear regression model:
 log(y) ~ 1 + x1 + x4 + x5
 Distribution = Poisson
Estimated Coefficients:
\begin{tabular}{lcllr}
& Estimate & SE & tStat & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 0.17604 & 0.062215 & 2.8295 & 0.004662 \\
x1 & 1.9122 & 0.024638 & 77.614 & 0 \\
x4 & 0.98521 & 0.026393 & 37.328 & \(5.6696 e-305\) \\
x5 & 0.61321 & 0.038435 & 15.955 & \(2.6473 e-57\)
\end{tabular}
```

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 4.97e+04, p-value $=0$

## Predict or Simulate Responses to New Data

There are three ways to use a linear model to predict the response to new data:

- "predict" on page 9-168
- "feval" on page 9-169
- "random" on page 9-170


## predict

The predict method gives a prediction of the mean responses and, if requested, confidence bounds.

This example shows how to predict and obtain confidence intervals on the predictions using the predict method.

1 Create a model from some predictors in artificial data. The data do not use the second and third columns in X. So you expect the model not to show much dependence on these predictors. Construct the model stepwise to include the relevant predictors automatically.

```
rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[2;1;.5]);
y = poissrnd(mu);
mdl = GeneralizedLinearModel.stepwise(X,y,...
 'constant','upper','linear','Distribution','poisson');
1. Adding x1, Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0
2. Adding x4, Deviance = 328.39679, Chi2Stat = 2186.6319, PValue = 0
3. Adding x5, Deviance = 96.3326, Chi2Stat = 232.0642, PValue = 2.114384e-52
```

2 Generate some new data, and evaluate the predictions from the data.

```
Xnew = randn(3,5) + repmat([1 2 3 4 5],[3,1]); % new data
```

[ynew,ynewci] = predict(mdl,Xnew)

```
ynew =
 1.0e+04 *
 0.1130
 1.7375
 3.7471
ynewci =
 1.0e+04 *
 0.0821 0.1555
 1.2167 2.4811
 2.8419 4.9407
```


## feval

When you construct a model from a dataset array, feval is often more convenient for predicting mean responses than predict. However, feval does not provide confidence bounds.

This example shows how to predict mean responses using the feval method.
1 Create a model from some predictors in artificial data. The data do not use the second and third columns in X. So you expect the model not to show much dependence on these predictors. Construct the model stepwise to include the relevant predictors automatically.

```
rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[1 4 5])*[2;1;.5]);
y = poissrnd(mu);
ds = dataset({X,'x1','x2','x3','x4','x5'},{y,'y'});
mdl = GeneralizedLinearModel.stepwise(ds,...
 'constant','upper','linear','Distribution','poisson');
1. Adding x1, Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0
2. Adding x4, Deviance = 328.39679, Chi2Stat = 2186.6319, PValue =0
3. Adding x5, Deviance = 96.3326, Chi2Stat = 232.0642, PValue =2.114384e-52
```

2 Generate some new data, and evaluate the predictions from the data.

```
Xnew = randn(3,5) + repmat([1 2 3 4 5],[3,1]); % new data
ynew = feval(mdl,Xnew(:,1),Xnew(:,4),Xnew(:,5)) % only need predictors 1,
ynew =
 1.0e+04 *
 0.1130
 1.7375
 3.7471
Equivalently,
ynew = feval(mdl,Xnew(:,[\begin{array}{lll}{1 4 5])) % only need predictors 1,4,5}\end{array}]
ynew =
 1.0e+04 *
 0.1130
 1.7375
 3.7471
```


## random

The random method generates new random response values for specified predictor values. The distribution of the response values is the distribution used in the model. random calculates the mean of the distribution from the predictors, estimated coefficients, and link function. For distributions such as normal, the model also provides an estimate of the variance of the response. For the binomial and Poisson distributions, the variance of the response is determined by the mean; random does not use a separate "dispersion" estimate.

This example shows how to simulate responses using the random method.
1 Create a model from some predictors in artificial data. The data do not use the second and third columns in X. So you expect the model not to show
much dependence on these predictors. Construct the model stepwise to include the relevant predictors automatically.

```
rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[11 4 5])*[2;1;.5]);
y = poissrnd(mu);
mdl = GeneralizedLinearModel.stepwise(X,y,...
 'constant','upper','linear','Distribution','poisson');
1. Adding x1, Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0
2. Adding x4, Deviance = 328.39679, Chi2Stat = 2186.6319, PValue = 0
3. Adding x5, Deviance = 96.3326, Chi2Stat = 232.0642, PValue = 2.114384e-52
```

2 Generate some new data, and evaluate the predictions from the data.

```
Xnew = randn(3,5) + repmat([1 2 3 4 5],[3,1]); % new data
ysim = random(mdl,Xnew)
ysim =
```

1111
17121
37457
The predictions from random are Poisson samples, so are integers.
3 Evaluate the random method again, the result changes.

```
ysim = random(mdl,Xnew)
ysim =
```

1175
17320
37126

## Share Fitted Models

The model display contains enough information to enable someone else to recreate the model in a theoretical sense. For example,
rng('default') \% for reproducibility

```
X = randn(100,5);
mu = exp(X(:,[14 4 5])*[2;1;.5]);
y = poissrnd(mu);
mdl = GeneralizedLinearModel.stepwise(X,y,...
 'constant','upper','linear','Distribution','poisson')
1. Adding x1, Deviance = 2515.02869, Chi2Stat = 47242.9622, PValue = 0
2. Adding x4, Deviance = 328.39679, Chi2Stat = 2186.6319, PValue = 0
3. Adding x5, Deviance = 96.3326, Chi2Stat = 232.0642, PValue = 2.114384e-52
mdl =
```

Generalized Linear regression model:
$\log (y) \sim 1+x 1+x 4+x 5$
Distribution = Poisson
Estimated Coefficients:

|  | Estimate | SE | tStat | pValue |
| :--- | ---: | :--- | :--- | ---: |
| (Intercept) | 0.17604 | 0.062215 | 2.8295 | 0.004662 |
| x1 | 1.9122 | 0.024638 | 77.614 | 0 |
| x4 | 0.98521 | 0.026393 | 37.328 | $5.6696 e-305$ |
| x5 | 0.61321 | 0.038435 | 15.955 | $2.6473 \mathrm{e}-57$ |

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 4.97e+04, $p$-value $=0$
You can access the model description programmatically, too. For example, mdl.Coefficients.Estimate
ans =
0.1760
1.9122
0.9852
0.6132
mdl.Formula
$\log (\mathrm{y}) \sim 1+\mathrm{x} 1+\mathrm{x} 4+\mathrm{x} 5$

## Generalized Linear Model Workflow

This example shows a typical workflow: import data, fit a generalized linear model, test its quality, modify it to improve the quality, and make predictions based on the model. It computes the probability that a flower is in one of two classes, based on the Fisher iris data.

## Step 1. Load the data.

Load the Fisher iris data. Extract the rows that have classification versicolor or virginica. These are rows 51 to 150 . Create logical response variables that are true for versicolor flowers.

```
load fisheriris
X = meas(51:end,:); % versicolor and virginica
y = strcmp('versicolor',species(51:end));
```


## Step 2. Fit a generalized linear model.

Fit a binomial generalized linear model to the data.

```
mdl = GeneralizedLinearModel.fit(X,y,'linear',...
 'distr','binomial')
mdl =
Generalized Linear regression model:
 logit(y) ~ 1 + x1 + x2 + x3 + x4
 Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{lclrr}
& Estimate & SE & \multicolumn{1}{l}{ tStat } & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 42.638 & 25.708 & 1.6586 & 0.097204 \\
x1 & 2.4652 & 2.3943 & 1.0296 & 0.30319 \\
x2 & 6.6809 & 4.4796 & 1.4914 & 0.13585 \\
x3 & -9.4294 & 4.7372 & -1.9905 & 0.046537 \\
x4 & -18.286 & 9.7426 & -1.8769 & 0.060529
\end{tabular}
```

```
100 observations, 95 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 127, p-value = 1.95e-26
```


## Step 3. Examine the result, consider alternative models.

Some $p$-values in the pValue column are not very small. Perhaps the model can be simplified.

See if some $95 \%$ confidence intervals for the coefficients include 0 . If so, perhaps these model terms could be removed.

```
confint = coefCI(mdl)
confint =
 -8.3984 93.6740
 -2.2881 7.2185
 -2.2122 15.5739
 -18.8339 -0.0248
 -37.6277 1.0554
```

Only two of the predictors have coefficients whose confidence intervals do not include 0 .

The coefficients of ' $\mathrm{x} 1^{\prime}$ ' and ' x 2 ' have the largest $p$-values. Test whether both coefficients could be zero.

```
M = [0 1 0 0 0 % picks out coefficient for column 1
 0 0 1 0 0]; % picks out coefficient for column 2
p = coefTest(mdl,M)
p =
 0.1442
```

The $p$-value of about 0.14 is not very small. Drop those terms from the model.

```
mdl1 = removeTerms(mdl,'x1 + x2')
mdl1 =
Generalized Linear regression model:
```

```
 logit(y) ~ 1 + x3 + x4
 Distribution = Binomial
Estimated Coefficients:
\begin{tabular}{lrlrr}
& Estimate & SE & \multicolumn{1}{c}{ tStat } & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 45.272 & 13.612 & 3.326 & 0.00088103 \\
x3 & -5.7545 & 2.3059 & -2.4956 & 0.012576 \\
x4 & -10.447 & 3.7557 & -2.7816 & 0.0054092
\end{tabular}
100 observations, 97 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 118, p-value = 2.3e-26
Perhaps it would have been better to have GeneralizedLinearModel.stepwise identify the model initially.
```

```
mdl2 = GeneralizedLinearModel.stepwise(X,y,...
```

mdl2 = GeneralizedLinearModel.stepwise(X,y,...
'constant','Distribution','binomial','upper','linear')
'constant','Distribution','binomial','upper','linear')

1. Adding x4, Deviance = 33.4208, Chi2Stat = 105.2086, PValue = 1.099298e-24
2. Adding x3, Deviance = 20.5635, Chi2Stat = 12.8573, PValue = 0.000336166
3. Adding x2, Deviance = 13.2658, Chi2Stat = 7.29767, PValue = 0.00690441
mdl2 =
Generalized Linear regression model:
logit(y) ~ 1 + x2 + x3 + x4
Distribution = Binomial
Estimated Coefficients:

|  | Estimate | SE | tStat | pValue |
| :--- | :---: | :--- | :---: | :--- |
| (Intercept) | 50.527 | 23.995 | 2.1057 | 0.035227 |
| x2 | 8.3761 | 4.7612 | 1.7592 | 0.078536 |
| x3 | -7.8745 | 3.8407 | -2.0503 | 0.040334 |
| x4 | -21.43 | 10.707 | -2.0014 | 0.04535 |

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 125, p-value $=5.4 \mathrm{e}-27$

```

GeneralizedLinearModel.stepwise included 'x2' in the model, because it neither adds nor removes terms with \(p\)-values between 0.05 and 0.10 .

\section*{Step 4. Look for outliers and exclude them.}

Examine a leverage plot to look for influential outliers.
plotDiagnostics(mdl2,'leverage')

There is one observation with a leverage close to one. Using the Data Cursor, click the point, and find it has index 69.

See if the model coefficients change when you fit a model excluding this point.
```

oldCoeffs = mdl2.Coefficients.Estimate;
mdl3 = GeneralizedLinearModel.fit(X,y,'linear',...
'distr','binomial','pred',2:4,'exclude',69);
newCoeffs = mdl3.Coefficients.Estimate;
disp([oldCoeffs newCoeffs])

```
\begin{tabular}{rr}
50.5268 & 50.5268 \\
8.3761 & 8.3761 \\
-7.8745 & -7.8745 \\
-21.4296 & -21.4296
\end{tabular}

The model coefficients do not change, suggesting that the response at the high-leverage point is consistent with the predicted value from the reduced model.

\section*{Step 5. Predict the probability that a new flower is versicolor.}

Use mdl2 to predict the probability that a flower with average measurements is versicolor. Generate confidence intervals for your prediction.
[newf newc] \(=\) predict(mdl2,mean \((X)\))
newf =
0.5086
newc =
\(0.1863 \quad 0.8239\)

The model gives almost a \(50 \%\) probability that the average flower is versicolor, with a wide confidence interval about this estimate.

\title{
Lasso Regularization of Generalized Linear Models
}

\author{
In this section... \\ "What is Generalized Linear Model Lasso Regularization?" on page 9-178 \\ "Regularize Poisson Regression" on page 9-178 \\ "Regularize Logistic Regression" on page 9-182 \\ "Regularize Wide Data in Parallel" on page 9-189 \\ "Generalized Linear Model Lasso and Elastic Net" on page 9-195 \\ "References" on page 9-197
}

\section*{What is Generalized Linear Model Lasso Regularization?}

Lasso is a regularization technique. Use lassoglm to:
- Reduce the number of predictors in a generalized linear model.
- Identify important predictors.
- Select among redundant predictors.
- Produce shrinkage estimates with potentially lower predictive errors than ordinary least squares.

Elastic net is a related technique. Use it when you have several highly correlated variables. lassoglm provides elastic net regularization when you set the Alpha name-value pair to a number strictly between 0 and 1.

For details about lasso and elastic net computations and algorithms, see "Generalized Linear Model Lasso and Elastic Net" on page 9-195. For a discussion of generalized linear models, see "What Are Generalized Linear Models?" on page 9-143.

\section*{Regularize Poisson Regression}

This example shows how to identify and remove redundant predictors from a generalized linear model.

Create data with 20 predictors, and Poisson responses using just three of the predictors, plus a constant.
```

rng('default') % for reproducibility
X = randn(100,20);
mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);
y = poissrnd(mu);

```

Construct a cross-validated lasso regularization of a Poisson regression model of the data.
[B FitInfo] = lassoglm(X,y,'poisson','CV',10);
Examine the cross-validation plot to see the effect of the Lambda regularization parameter.
lassoPlot(B,FitInfo,'plottype','CV');

The green circle and dashed line locate the Lambda with minimal cross-validation error. The blue circle and dashed line locate the point with minimal cross-validation error plus one standard deviation.

Find the nonzero model coefficients corresponding to the two identified points.
```

minpts = find(B(:,FitInfo.IndexMinDeviance))
minpts =

```
 3
 5
 6
```

        10
        1 1
        15
        16
    min1pts = find(B(:,FitInfo.Index1SE))
min1pts =
5
10
15

```

The coefficients from the minimal plus one standard error point are exactly those coefficients used to create the data.

Find the values of the model coefficients at the minimal plus one standard error point.

B(min1pts,FitInfo.Index1SE)
ans =
0.2903
0.0789
0.2081

The values of the coefficients are, as expected, smaller than the original [0.4,0.2,0.3]. Lasso works by "shrinkage," which biases predictor coefficients toward zero. See "Lasso and Elastic Net Details" on page 9-134.

The constant term is in the FitInfo. Intercept vector.
FitInfo.Intercept(FitInfo.Index1SE)
ans =
1.0879

The constant term is near 1 , which is the value used to generate the data.

\section*{Regularize Logistic Regression}

This example shows a workflow for regularizing binomial regression. The default (canonical) link function for binomial regression is the logistic function.

\section*{Step 1. Prepare the data.}

Load the ionosphere data. The response \(Y\) is a cell array of ' \(g\) ' or ' \(b\) ' strings. Convert the cells to logical values, with true representing ' \(g\) '. Remove the first two columns of \(X\) because they have some awkward statistical properties, which are beyond the scope of this discussion.
load ionosphere
Ybool = strcmp(Y,'g');
X = X(: \(3:\) end);

\section*{Step 2. Create a cross-validated fit.}

Construct a regularized binomial regression using 25 Lambda values and 10 -fold cross validation. This process can take a few minutes.
```

rng('default') % for reproducibility
[B,FitInfo] = lassoglm(X,Ybool,'binomial',...
'NumLambda', 25,'CV',10);

```

\section*{Step 3. Examine plots to find appropriate regularization.}
lassoPlot can give both a standard trace plot and a cross-validated deviance plot. Examine both plots.
```

lassoPlot(B,FitInfo,'PlotType','CV');

```


The plot identifies the minimum-deviance point with a green circle and dashed line as a function of the regularization parameter Lambda. The blue circled point has minimum deviance plus no more than one standard deviation.
```

lassoPlot(B,FitInfo,'PlotType','Lambda','XScale','log');

```

Trace Plot of coefficients fit by Lasso
df

The trace plot shows nonzero model coefficients as a function of the regularization parameter Lambda. Because there are 32 predictors and a linear model, there are 32 curves. As Lambda increases to the left, lassoglm sets various coefficients to zero, removing them from the model.

The trace plot is somewhat compressed. Zoom in to see more detail.
```

xlim([.01 .1])
ylim([-3 3])

```


As Lambda increases toward the left side of the plot, fewer nonzero coefficients remain.

Find the number of nonzero model coefficients at the Lambda value with minimum deviance plus one standard deviation point. The regularized model coefficients are in column FitInfo. Index1SE of the B matrix.
```

indx = FitInfo.Index1SE;
BO = B(:,indx);
nonzeros = sum(BO ~= 0)
nonzeros =

```
14

When you set Lambda to FitInfo.Index1SE, lassoglm removes over half of the 32 original predictors.

\section*{Step 4. Create a regularized model.}

The constant term is in the FitInfo. IndexiSE entry of the FitInfo. Intercept vector. Call that value cnst.

The model is \(\operatorname{logit}(\mathrm{mu})=\log (\mathrm{mu} /(1-\mathrm{mu})) \mathrm{X} * B 0+\) cnst. Therefore, for predictions, \(m u=\exp (X * B O+c n s t) /(1+\exp (x * B O+c n s t))\).

The glmval function evaluates model predictions. It assumes that the first model coefficient relates to the constant term. Therefore, create a coefficient vector with the constant term first.
```

cnst = FitInfo.Intercept(indx);
B1 = [cnst;B0];

```

\section*{Step 5. Examine residuals.}

Plot the training data against the model predictions for the regularized lassoglm model.
```

preds = glmval(B1,X,'logit');

```
hist(Ybool - preds) \% plot residuals
title('Residuals from lassoglm model')

\section*{Step 6. Alternative: Use identified predictors in a least-squares generalized linear model.}

Instead of using the biased predictions from the model, you can make an unbiased model using just the identified predictors.
```

predictors = find(BO); % indices of nonzero predictors
mdl = GeneralizedLinearModel.fit(X,Ybool,'linear',...
'Distribution','binomial','PredictorVars',predictors)
mdl =

```
Generalized Linear regression model:
 y ~ [Linear formula with 15 terms in 14 predictors]
 Distribution = Binomial

Estimated Coefficients:
\begin{tabular}{lrlrr}
& Estimate & \multicolumn{1}{l}{ SE } & \multicolumn{1}{l}{ tStat } & \multicolumn{1}{l}{ pValue } \\
(Intercept) & -2.9367 & 0.50926 & -5.7666 & \(8.0893 \mathrm{e}-09\) \\
x1 & 2.492 & 0.60795 & 4.099 & \(4.1502 \mathrm{e}-05\) \\
x3 & 2.5501 & 0.63304 & 4.0284 & \(5.616 \mathrm{e}-05\) \\
x4 & 0.48816 & 0.50336 & 0.9698 & 0.33215 \\
x5 & 0.6158 & 0.62192 & 0.99015 & 0.3221 \\
x6 & 2.294 & 0.5421 & 4.2317 & \(2.3198 \mathrm{e}-05\) \\
x7 & 0.77842 & 0.57765 & 1.3476 & 0.1778 \\
x12 & 1.7808 & 0.54316 & 3.2786 & 0.0010432 \\
x16 & -0.070993 & 0.50515 & -0.14054 & 0.88823 \\
x20 & -2.7767 & 0.55131 & -5.0365 & \(4.7402 e-07\) \\
x24 & 2.0212 & 0.57639 & 3.5067 & 0.00045372 \\
x25 & -2.3796 & 0.58274 & -4.0835 & \(4.4363 e-05\) \\
x27 & 0.79564 & 0.55904 & 1.4232 & 0.15467 \\
x29 & 1.2689 & 0.55468 & 2.2876 & 0.022162 \\
x32 & -1.5681 & 0.54336 & -2.8859 & 0.0039035
\end{tabular}

351 observations, 336 error degrees of freedom Dispersion: 1
Chi^2-statistic vs. constant model: 262, p -value \(=1 \mathrm{e}-47\)

Plot the residuals of the model.
plotResiduals(mdl)

Histogram of residuals

As expected, residuals from the least-squares model are slightly smaller than those of the regularized model. However, this does not mean that mdl is a better predictor for new data.

\section*{Regularize Wide Data in Parallel}

This example shows how to regularize a model with many more predictors than observations. Wide data is data with more predictors than observations. Typically, with wide data you want to identify important predictors. Use lassoglm as an exploratory or screening tool to select a smaller set of variables to prioritize your modeling and research. Use parallel computing to speed up cross validation.

Load the ovariancancer data. This data has 216 observations and 4000 predictors in the obs workspace variable. The responses are binary, either
```

'Cancer' or 'Normal', in the grp workspace variable. Convert the responses
to binary for use in lassoglm.
load ovariancancer
y = strcmp(grp,'Cancer');

```

Set options to use parallel computing. Prepare to compute in parallel using matlabpool.
```

opt = statset('UseParallel',true);
matlabpool open 4

```
```

Starting matlabpool using the 'local' profile ...
connected to 4 labs.

```

Fit a cross-validated set of regularized models. Use the Alpha parameter to favor retaining groups of highly correlated predictors, as opposed to eliminating all but one member of the group. Commonly, you use a relatively large value of Alpha.
```

rng('default') % for reproducibility
tic
[B,S] = lassoglm(obs,y,'binomial','NumLambda',100, ...
'Alpha',0.9,'LambdaRatio',1e-4,'CV',10,'Options',opt);
toc
Elapsed time is 480.451777 seconds.

```

Examine trace and cross-validation plots.
```

lassoPlot(B,S,'PlotType','CV');

```

Cross-validated Deviance of Elastic Net fit Alpha \(=0.9\)

```

lassoPlot(B,S,'PlotType','Lambda','XScale','log')

```


The right (green) vertical dashed line represents the Lambda providing the smallest cross-validated deviance. The left (blue) dashed line has the minimal deviance plus no more than one standard deviation. This blue line has many fewer predictors:
```

[S.DF(S.Index1SE) S.DF(S.IndexMinDeviance)]

```
ans =
\(50 \quad 86\)

You asked lassoglm to fit using 100 different Lambda values. How many did it use?
```

size(B)

```
lassoglm stopped after 84 values because the deviance was too small for small Lambda values. To avoid overfitting, lassoglm halts when the deviance of the fitted model is too small compared to the deviance in the binary responses, ignoring the predictor variables.

You can force lassoglm to include more terms by explicitly providing a set of Lambda values.
```

minLambda = min(S.Lambda);
explicitLambda = [minLambda*[.1 .01 .001] S.Lambda];
[B2,S2] = lassoglm(obs,y,'binomial','Lambda',explicitLambda,...
'LambdaRatio',1e-4, 'CV',10,'Options',opt);
length(S2.Lambda)

```
ans =

87
lassoglm used the three smaller values in fitting.

To save time, you can use:
- Fewer Lambda, meaning fewer fits
- Fewer cross-validation folds
- A larger value for LambdaRatio

Use serial computation and all three of these time-saving methods:
```

tic

```
[Bquick,Squick] = lassoglm(obs,y,'binomial','NumLambda',25,...
 'LambdaRatio',1e-2, 'CV',5);
toc
Elapsed time is 51.708074 seconds.

Graphically compare the new results to the first results.
lassoPlot(Bquick,Squick,'PlotType', 'CV');

```

lassoPlot(Bquick,Squick,'PlotType','Lambda','XScale','log')

```


The number of nonzero coefficients in the lowest plus one standard deviation model is around 50 , similar to the first computation.

\section*{Generalized Linear Model Lasso and Elastic Net}

\section*{Overview of Lasso and Elastic Net}

Lasso is a regularization technique for estimating generalized linear models. Lasso includes a penalty term that constrains the size of the estimated coefficients. Therefore, it resembles ridge regression. Lasso is a shrinkage estimator: it generates coefficient estimates that are biased to be small. Nevertheless, a lasso estimator can have smaller error than an ordinary maximum likelihood estimator when you apply it to new data.

Unlike ridge regression, as the penalty term increases, the lasso technique sets more coefficients to zero. This means that the lasso estimator is a smaller
model, with fewer predictors. As such, lasso is an alternative to stepwise regression and other model selection and dimensionality reduction techniques.

Elastic net is a related technique. Elastic net is akin to a hybrid of ridge regression and lasso regularization. Like lasso, elastic net can generate reduced models by generating zero-valued coefficients. Empirical studies suggest that the elastic net technique can outperform lasso on data with highly correlated predictors.

\section*{Definition of Lasso for Generalized Linear Models}

For a nonnegative value of \(\lambda\), lasso solves the problem
\[
\min _{\beta_{0}, \beta}\left(\frac{1}{N} \operatorname{Deviance}\left(\beta_{0}, \beta\right)+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|\right),
\]
where
- Deviance is the deviance of the model fit to the responses using intercept \(\beta_{0}\) and predictor coefficients \(\beta\). The formula for Deviance depends on the distr parameter you supply to lassoglm. Minimizing the \(\lambda\)-penalized deviance is equivalent to maximizing the \(\lambda\)-penalized log likelihood.
- \(N\) is the number of observations.
- \(\lambda\) is a nonnegative regularization parameter corresponding to one value of Lambda.
- Parameters \(\beta_{0}\) and \(\beta\) are scalar and \(p\)-vector respectively.

As \(\lambda\) increases, the number of nonzero components of \(\beta\) decreases.
The lasso problem involves the \(L^{1}\) norm of \(\beta\), as contrasted with the elastic net algorithm.

\section*{Definition of Elastic Net for Generalized Linear Models}

For an \(a\) strictly between 0 and 1 , and a nonnegative \(\lambda\), elastic net solves the problem
\[
\min _{\beta_{0}, \beta}\left(\frac{1}{N} \operatorname{Deviance}\left(\beta_{0}, \beta\right)+\lambda P_{\alpha}(\beta)\right)
\]
where
\[
P_{\alpha}(\beta)=\frac{(1-\alpha)}{2}\|\beta\|_{2}^{2}+\alpha\|\beta\|_{1}=\sum_{j=1}^{p}\left(\frac{(1-\alpha)}{2} \beta_{j}^{2}+\alpha\left|\beta_{j}\right|\right) .
\]

Elastic net is the same as lasso when \(\alpha=1\). For other values of \(\alpha\), the penalty term \(P_{a}(\beta)\) interpolates between the \(L^{1}\) norm of \(\beta\) and the squared \(L^{2}\) norm of \(\beta\). As \(\alpha\) shrinks toward 0 , elastic net approaches ridge regression.

\section*{References}
[1] Tibshirani, R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society, Series B, Vol. 58, No. 1, pp. 267-288, 1996.
[2] Zou, H. and T. Hastie. Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society, Series B, Vol. 67, No. 2, pp. 301-320, 2005.
[3] Friedman, J., R. Tibshirani, and T. Hastie. Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33, No. 1, 2010. http://www.jstatsoft.org/v33/i01
[4] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, 2nd edition. Springer, New York, 2008.
[5] McCullagh, P., and J. A. Nelder. Generalized Linear Models, 2nd edition. Chapman \& Hall/CRC Press, 1989.

\section*{Nonlinear Regression}

\section*{In this section...}
"What Are Parametric Nonlinear Regression Models?" on page 9-198
"Prepare Data" on page 9-199
"Represent the Nonlinear Model" on page 9-200
"Choose Initial Vector beta0" on page 9-203
"Fit Nonlinear Model to Data" on page 9-203
"Examine Quality and Adjust the Fitted Model" on page 9-204
"Predict or Simulate Responses to New Data" on page 9-208
"Nonlinear Regression Workflow" on page 9-212

\section*{What Are Parametric Nonlinear Regression Models?}

Parametric nonlinear models represent the relationship between a continuous response variable and one or more continuous predictor variables in the form
\[
y=f(X, \beta)+\varepsilon,
\]
where
- \(y\) is an \(n\)-by- 1 vector of observations of the response variable.
- \(f\) is any function of \(X\) and \(\beta\) that evaluates each row of \(X\) along with the vector \(\beta\) to compute the prediction for the corresponding row of \(y\).
- \(X\) is an \(n\)-by- \(p\) matrix of predictors, with one row for each observation, and one column for each predictor.
- \(\beta\) is a \(p\)-by- 1 vector of unknown parameters to be estimated.
- \(\varepsilon\) is an \(n\)-by- 1 vector of independent, identically distributed random disturbances.

In contrast, nonparametric models do not attempt to characterize the relationship between predictors and response with model parameters. Descriptions are often graphical, as in the case of "Classification Trees and Regression Trees" on page 15-30.

NonLinearModel.fit attempts to find values of the parameters \(\beta\) that minimize the mean squared differences between the observed responses \(y\) and the predictions of the model \(f(X, \beta)\). To do so, it needs a starting value betao before iteratively modifying the vector \(\beta\) to a vector with minimal mean squared error.

\section*{Prepare Data}

To begin fitting a regression, put your data into a form that fitting functions expect. All regression techniques begin with input data in an array \(X\) and response data in a separate vector \(y\), or input data in a dataset array ds and response data as a column in ds. Each row of the input data represents one observation. Each column represents one predictor (variable).

For a dataset array ds, indicate the response variable with the 'ResponseVar' name-value pair:
```

mdl = LinearModel.fit(ds,'ResponseVar','BloodPressure');

```

The response variable is the last column by default.
You cannot use numeric categorical predictors for nonlinear regression. A categorical predictor is one that takes values from a fixed set of possibilities.

Represent missing data as NaN for both input data and response data.

\section*{Dataset Array for Input and Response Data}

For example, to create a dataset array from an Excel spreadsheet:
```

ds = dataset('XLSFile','hospital.xls',...
'ReadObsNames',true);

```

To create a dataset array from workspace variables:
```

load carsmall
ds = dataset(Weight,Model_Year,MPG n);

```

\section*{Numeric Matrix for Input Data and Numeric Vector for Response}

For example, to create numeric arrays from workspace variables:
```

load carsmall
X = [Weight Horsepower Cylinders Model_Year];
y = MPG;

```

To create numeric arrays from an Excel spreadsheet:
```

[X Xnames] = xlsread('hospital.xls');
y = X(:,4); % response y is systolic pressure
X(:,4) = []; % remove y from the X matrix

```

Notice that the nonnumeric entries, such as sex, do not appear in \(X\).

\section*{Represent the Nonlinear Model}

There are several ways to represent a nonlinear model. Use whichever is most convenient.

The nonlinear model is a required input to NonLinearModel.fit, in the modelfun input.

NonLinearModel.fit assumes that the response function \(f(X, \beta)\) is smooth in the parameters \(\beta\). If your function is not smooth, NonLinearModel.fit can fail to provide optimal parameter estimates.
- "Function Handle to Anonymous Function or Function File" on page 9-200
- "String Representation of Formula" on page 9-202

\section*{Function Handle to Anonymous Function or Function File}

The function handle @modelfun (\(\mathrm{b}, \mathrm{x}\)) accepts a vector b and matrix or dataset array \(x\). The function handle should return a vector \(f\) with the same number of rows as \(x\). For example, the function file hougen.m computes
\[
\text { hougen }(b, x)=\frac{b(1) x(2)-x(3) / b(5)}{1+b(2) x(1)+b(3) x(2)+b(4) x(3)} .
\]

Examine the function by entering type hougen at the MATLAB command line.
```

function yhat = hougen(beta,x)
%HOUGEN Hougen-Watson model for reaction kinetics.
% YHAT = HOUGEN(BETA,X) gives the predicted values of the
% reaction rate, YHAT, as a function of the vector of
% parameters, BETA, and the matrix of data, X.
% BETA must have 5 elements and X must have three
% columns.
%
% The model form is:
% y = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3)
%
% Reference:
% [1] Bates, Douglas, and Watts, Donald, "Nonlinear
% Regression Analysis and Its Applications", Wiley
% 1988 p. 271-272.
% Copyright 1993-2004 The MathWorks, Inc.
% \$Revision: 1.1.6.42.2.3 \$ \$Date: 2013/01/16 07:29:13 \$
% B.A. Jones 1-06-95.

```
b1 = beta(1);
b2 \(=\operatorname{beta}(2)\);
b3 \(=\operatorname{beta}(3)\);
b4 \(=\) beta(4);
b5 = beta(5);
\(\mathrm{x} 1=\mathrm{x}(:, 1)\);
x2 = \(x(:, 2)\);
x3 = \(x(:, 3)\);
yhat \(=(b 1 * x 2-x 3 / b 5) . /(1+b 2 * x 1+b 3 * x 2+b 4 * x 3)\);

You can write an anonymous function that performs the same calculation as hougen.m.
```

modelfun = @(b,x)(b(1)*x(:,2) - x(:,3)/b(5))./...
(1 + b(2)*x(:,1) + b(3)*x(:,2) + b(4)*x(:,3));

```

\section*{String Representation of Formula}

For data in a matrix \(X\) and response in a vector \(y\) :
- Represent the formula using ' x 1 ' as the first predictor (column) in X , ' x 2 ' as the second predictor, etc.
- Represent the vector of parameters to optimize as 'b1', 'b2', etc.
- Write the formula as 'y ~ (mathematical expressions)'.

For example, to represent the response to the reaction data:
```

modelfun = 'y ~ (b1*x2 - x3/b5)/(1 + b2*x1 + b3*x2 + b4*x3)';

```

For data in a dataset array, you can use formulas represented as strings with the variable names from the dataset array. Put the response variable name at the left of the formula, followed by a \(\sim\), followed by a string representing the response formula.

This example shows how to create a string to represent the response to the reaction data that is in a dataset array.

1 Load the reaction data.
```

load reaction

```

2 Put the data into a dataset array, where each variable has a name given in the xn or yn strings.
```

ds = dataset({reactants,xn(1,:),xn(2,:),xn(3,:)},···.
{rate,yn});

```

3 Examine the first row of the dataset array.
```

ds(1,:)
ans =

```
\begin{tabular}{llll}
Hydrogen & n_Pentane & Isopentane & ReactionRate \\
470 & 300 & 10 & 8.55
\end{tabular}

4 Write the hougen formula using names in the dataset array.
```

modelfun = ['ReactionRate ~ (b1*n_Pentane - Isopentane/b5) /'...
' (1 + Hydrogen*b2 + n_Pentane*b3 + Isopentane*b4)']
modelfun =
ReactionRate ~ (b1*n_Pentane - Isopentane/b5) / ...
(1 + Hydrogen*b2 + n_Pentane*b3 + Isopentane*b4)

```

\section*{Choose Initial Vector beta0}

The initial vector for the fitting iterations, beta0, can greatly influence the quality of the resulting fitted model. beta0 gives the dimensionality of the problem, meaning it needs the correct length. A good choice of beta0 leads to a quick, reliable model, while a poor choice can lead to a long computation, or to an inadequate model.

It is difficult to give advice on choosing a good beta0. If you believe certain components of the vector should be positive or negative, set your beta0 to have those characteristics. If you know the approximate value of other components, include them in beta0. However, if you don't know good values, try a random vector, such as
```

betaO = randn(nVars,1);
% or
beta0 = 10*rand(nVars,1);

```

\section*{Fit Nonlinear Model to Data}

The syntax for fitting a nonlinear regression model using a dataset array ds is
```

mdl = NonLinearModel.fit(ds,modelfun,betaO)

```

The syntax for fitting a nonlinear regression model using a numeric array \(X\) and numeric response vector y is
mdl = NonLinearModel.fit(X,y,modelfun, beta0)
For information on representing the input parameters, see "Prepare Data" on page 9-199, "Represent the Nonlinear Model" on page 9-200, and "Choose Initial Vector beta0" on page 9-203.

NonLinearModel.fit assumes that the response variable in a dataset array ds is the last column. To change this, use the ResponseVar name-value pair to name the response column.

\section*{Examine Quality and Adjust the Fitted Model}

There are diagnostic plots to help you examine the quality of a model.
- plotDiagnostics(mdl) gives a variety of plots, including leverage and Cook's distance plots.
- plotResiduals(mdl) gives the difference between the fitted model and the data.

There are also properties of mdl that relate to the model quality.
- mdl. RMSE gives the root mean square error between the data and the fitted model.
- mdl.Residuals. Raw gives the raw residuals.
- mdl.Diagnostics contains several fields, such as Leverage and CooksDistance, that can help you identify particularly interesting observations.

This example shows how to examine a fitted nonlinear model using diagnostic, residual, and slice plots.

1 Load the reaction data.
```

load reaction

```

2 Create a nonlinear model of rate as a function of reactants using the hougen.m function, starting from beta0 \(=\) ones \((5,1)\);.
```

beta0 = ones(5,1);

```
mdl \(=\) NonLinearModel.fit(reactants, ...
 rate, @hougen, beta0);

3 Make a leverage plot of the data and model.
```

plotDiagnostics(mdl)

```


4 There is one point that has high leverage. Locate the point: [~,maxl] = max(mdl.Diagnostics.Leverage) \(\operatorname{maxl}=\)

6

5 Examine a residuals plot.
```

plotResiduals(mdl,'fitted')

```


Nothing stands out as an outlier.
6 Use a slice plot to show the effect of each predictor on the model. plotSlice(mdl)

You can drag the vertical dashed blue lines to see the effect of a change in one predictor on the response. For example, drag the X2 line to the right, and notice that the slope of the X3 line changes.

\section*{Predict or Simulate Responses to New Data}

There are three ways to use a linear model to predict or simulate the response to new data:
- "predict" on page 9-210
- "feval" on page 9-211
- "random" on page 9-211

The prediction method examples use the following synthetic data and model. The problem is to fit a nonlinear curve of known form, with unknown center and scale parameters.

1 Generate synthetic data from a Cauchy distribution.
```

rng('default')
X = rand(100,1);
X = tan(pi*x - pi/2);

```

2 Generate the response according to the model
\[
y=b_{1}^{*}\left(\Pi / 2+\operatorname{atan}\left(\left(x-b_{2}\right) / b_{3}\right)\right)
\]

Add noise to the response.
```

modelfun = @(b,x) b(1) * ...
(pi/2 + atan((x - b(2))/b(3)));
y = modelfun([12 5 10],X) + randn(100,1);

```

3 Fit a model starting from the arbitrary parameters \(b=[1,1,1]\).
```

beta0 = [11 1 1 1]; % an arbitrary guess
mdl = NonLinearModel.fit(X,y,modelfun,betaO)
mdl =
Nonlinear regression model:
y ~ b1*(pi/2 + atan((x - b2)/b3))
Estimated Coefficients:

|  | Estimate | SE | tStat | PValue |
| :--- | :---: | ---: | :--- | :--- |
| b1 | 12.082 | 0.80028 | 15.097 | $3.3151 \mathrm{e}-27$ |
| b2 | 5.0603 | 1.0825 | 4.6747 | $9.5063 \mathrm{e}-06$ |
| b3 | 9.64 | 0.46499 | 20.732 | $2.0382 \mathrm{e}-37$ |

```
Number of observations: 100, Error degrees of freedom: 97
Root Mean Squared Error: 1.02
R-Squared: 0.92, Adjusted R-Squared 0.918
F-statistic vs. constant model: 558, p -value \(=6.11 \mathrm{e}-54\)

The fitted values are within a few percent of the parameters \([12,5,10]\).
4 Examine the fit:
```

plotSlice(mdl)

```


\section*{predict}

The predict method predicts the mean responses and, if requested, gives confidence bounds. For example, to find the predicted response values and predicted confidence intervals about the response at \(X\) values \([-15 ; 5 ; 12]\) :

Xnew = [-15;5;12];
[ynew,ynewci] = predict(mdl,Xnew)
ynew =
5.4122
18.9022
26.5161
ynewci \(=\)
```

4.8233 6.0010
18.4555 19.3490
25.0170 28.0151

```

The confidence intervals are reflected in the slice plot.

\section*{feval}

The feval method predicts the mean responses. feval is often more convenient to use than predict when you construct a model from a dataset array. For example,

1 Create the nonlinear model from a dataset array.
```

ds = dataset({X,'X'},{y,'y'});
mdl2 = NonLinearModel.fit(ds,modelfun,betaO);

```

2 Find the predicted model responses (CDF) at X values [\(-15 ; 5 ; 12]\).
```

Xnew = [-15;5;12];
ynew = feval(mdl2,Xnew)
ynew =

```
 5.4122
 18.9022
 26.5161

\section*{random}

The random method simulates new random response values, equal to the mean prediction plus a random disturbance with the same variance as the training data. For example,
```

Xnew = [-15;5;12];
ysim = random(mdl,Xnew)
ysim =

```
 6.0505
 19.0893
 25.4647

Rerun the random method. The results change.
```

ysim = random(mdl,Xnew)
ysim =

```
 6.3813
19.2157
26.6541

\section*{Nonlinear Regression Workflow}

This example shows a typical workflow: import data, fit a nonlinear regression, test its quality, modify it to improve the quality, and make predictions based on the model.

\section*{Step 1. Prepare the data.}

Load the reaction data
load reaction
Examine the data in the workspace. reactants is a matrix with 13 rows and 3 columns. Each row corresponds to one observation, and each column corresponds to one variable. The variable names are in xn :
xn
xn =

\section*{Hydrogen}
n-Pentane
Isopentane
Similarly, rate is a vector of 13 responses, with the variable name in yn:
```

yn

```
yn =
Reaction Rate

The hougen.m file contains a nonlinear model of reaction rate as a function of the three predictor variables. For a 5-D vector \(b\) and 3-D vector \(x\),
\[
\text { hougen }(b, x)=\frac{b(1) x(2)-x(3) / b(5)}{1+b(2) x(1)+b(3) x(2)+b(4) x(3)} .
\]

As a start point for the solution, take \(b\) as a vector of ones.
```

beta0 = ones(5,1);

```

\section*{Step 2. Fit a nonlinear model to the data.}
```

mdl = NonLinearModel.fit(reactants,...
rate,@hougen,beta0)

```
\(m d l=\)
Nonlinear regression model:
 \(y\) ~ hougen (b, X)
Estimated Coefficients:
\begin{tabular}{lrrll}
& Estimate & SE & tStat & pValue \\
b1 & 1.2526 & 0.86702 & 1.4447 & 0.18654 \\
b2 & 0.062776 & 0.043562 & 1.4411 & 0.18753 \\
b3 & 0.040048 & 0.030885 & 1.2967 & 0.23089 \\
b4 & 0.11242 & 0.075158 & 1.4957 & 0.17309 \\
b5 & 1.1914 & 0.83671 & 1.4239 & 0.1923
\end{tabular}

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.193
R-Squared: 0.999, Adjusted R-Squared 0.998
F-statistic vs. constant model: 1.81e+03, p-value = 7.36e-12

\section*{Step 3. Examine the quality of the model.}

The root mean squared error is fairly low compared to the range of observed values.
mdl.RMSE
ans \(=\)
```

    0.1933
    [min(rate) max(rate)]
ans =
0.0200 14.3900

```

Examine a residuals plot.
plotResiduals(mdl)

Histogram of residuals

The model seems adequate for the data.
Examine a diagnostic plot to look for outliers.
```

plotDiagnostics(mdl,'cookd')

```


Observation 6 seems out of line.

\section*{Step 4. Remove the outlier.}

Remove the outlier from the fit using the Exclude name-value pair.
mdl1 = NonLinearModel.fit(reactants,...
rate, @hougen, ones (5,1),'Exclude',6)
mdl1 =

Nonlinear regression model:
y ~ hougen (b, X)

Estimated Coefficients:
\begin{tabular}{rrrll}
& Estimate & \multicolumn{1}{l}{ SE } & tStat & pValue \\
b1 & 0.619 & 0.4552 & 1.3598 & 0.21605 \\
b2 & 0.030377 & 0.023061 & 1.3172 & 0.22924 \\
b3 & 0.018927 & 0.01574 & 1.2024 & 0.26828 \\
b4 & 0.053411 & 0.041084 & 1.3 & 0.23476 \\
b5 & 2.4125 & 1.7903 & 1.3475 & 0.2198
\end{tabular}
```

Number of observations: 12, Error degrees of freedom: 7
Root Mean Squared Error: 0.198
R-Squared: 0.999, Adjusted R-Squared 0.998
F-statistic vs. constant model: 1.24e+03, p-value = 4.73e-10

```

The model coefficients changed quite a bit from those in mdl.

\section*{Step 5. Examine slice plots of both models.}

To see the effect of each predictor on the response, make a slice plot using plotSlice(mdl).
plotSlice(mdl)

plotSlice(mdl1)

The plots look very similar, with slightly wider confidence bounds for mdl1. This difference is understandable, since there is one less data point in the fit, representing over 7\% fewer observations.

\section*{Step 6. Predict for new data.}

Create some new data and predict the response from both models.
```

Xnew = [200,200,200;100,200,100;500,50,5];

```
[ypred yci] = predict(mdl,Xnew)
ypred =
 1.8762
 6.2793
 1.6718
yci \(=\)
 \(1.6283 \quad 2.1242\)
 \(5.9789 \quad 6.5797\)
 \(1.5589 \quad 1.7846\)
[ypred1 yci1] = predict(mdl1,Xnew)
ypred1 \(=\)
```

    1.8984
    6.2555
    1.6594
    yci1 =
1.6260 2.1708
5.9323 6.5787
1.5345 1.7843

```

Even though the model coefficients are dissimilar, the predictions are nearly identical.

\section*{Mixed-Effects Models}

\author{
In this section... \\ "Introduction to Mixed-Effects Models" on page 9-219 \\ "Mixed-Effects Model Hierarchy" on page 9-220 \\ "Specifying Mixed-Effects Models" on page 9-221 \\ "Specifying Covariate Models" on page 9-224 \\ "Choosing nlmefit or nlmefitsa" on page 9-226 \\ "Using Output Functions with Mixed-Effects Models" on page 9-229 \\ "Mixed-Effects Models Using nlmefit and nlmefitsa" on page 9-234 \\ "Examining Residuals for Model Verification" on page 9-249
}

\section*{Introduction to Mixed-Effects Models}

In statistics, an effect is anything that influences the value of a response variable at a particular setting of the predictor variables. Effects are translated into model parameters. In linear models, effects become coefficients, representing the proportional contributions of model terms. In nonlinear models, effects often have specific physical interpretations, and appear in more general nonlinear combinations.

Fixed effects represent population parameters, assumed to be the same each time data is collected. Estimating fixed effects is the traditional domain of regression modeling. Random effects, by comparison, are sample-dependent random variables. In modeling, random effects act like additional error terms, and their distributions and covariances must be specified.

For example, consider a model of the elimination of a drug from the bloodstream. The model uses time \(t\) as a predictor and the concentration of the drug \(C\) as the response. The nonlinear model term \(C_{0} e^{-r t}\) combines parameters \(C_{0}\) and \(r\), representing, respectively, an initial concentration and an elimination rate. If data is collected across multiple individuals, it is reasonable to assume that the elimination rate is a random variable \(r_{i}\) depending on individual \(i\), varying around a population mean \(\bar{r}\). The term \(C_{0} e^{-r t}\) becomes
\[
C_{0} e^{-\left[\bar{r}+\left(r_{i}-\bar{r}\right) t t\right.}=C_{0} e^{-\left(\beta+b_{i}\right) t},
\]
where \(\beta=\bar{r}\) is a fixed effect and \(b_{i}=r_{i}-\bar{r}\) is a random effect.
Random effects are useful when data falls into natural groups. In the drug elimination model, the groups are simply the individuals under study. More sophisticated models might group data by an individual's age, weight, diet, etc. Although the groups are not the focus of the study, adding random effects to a model extends the reliability of inferences beyond the specific sample of individuals.

Mixed-effects models account for both fixed and random effects. As with all regression models, their purpose is to describe a response variable as a function of the predictor variables. Mixed-effects models, however, recognize correlations within sample subgroups. In this way, they provide a compromise between ignoring data groups entirely and fitting each group with a separate model.

\section*{Mixed-Effects Model Hierarchy}

Suppose data for a nonlinear regression model falls into one of \(m\) distinct groups \(i=1, \ldots, m\). To account for the groups in a model, write response \(j\) in group \(i\) as:
\[
y_{i j}=f\left(\varphi, x_{i j}\right)+\varepsilon_{i j}
\]
\(y_{i j}\) is the response, \(x_{i j}\) is a vector of predictors, \(\varphi\) is a vector of model parameters, and \(\varepsilon_{i j}\) is the measurement or process error. The index \(j\) ranges from 1 to \(n_{i}\), where \(n_{i}\) is the number of observations in group \(i\). The function \(f\) specifies the form of the model. Often, \(x_{i j}\) is simply an observation time \(t_{i j}\). The errors are usually assumed to be independent and identically, normally distributed, with constant variance.

Estimates of the parameters in \(\varphi\) describe the population, assuming those estimates are the same for all groups. If, however, the estimates vary by group, the model becomes
\[
y_{i j}=f\left(\varphi_{i}, x_{i j}\right)+\varepsilon_{i j}
\]

In a mixed-effects model, \(\varphi_{i}\) may be a combination of a fixed and a random effect:
\[
\varphi_{i}=\beta+b_{i}
\]

The random effects \(b_{i}\) are usually described as multivariate normally distributed, with mean zero and covariance \(\Psi\). Estimating the fixed effects \(\beta\) and the covariance of the random effects \(\Psi\) provides a description of the population that does not assume the parameters \(\varphi_{i}\) are the same across groups. Estimating the random effects \(b_{i}\) also gives a description of specific groups within the data.

Model parameters do not have to be identified with individual effects. In general, design matrices \(A\) and \(B\) are used to identify parameters with linear combinations of fixed and random effects:
\[
\varphi_{i}=A \beta+B b_{i}
\]

If the design matrices differ among groups, the model becomes
\[
\varphi_{i}=A_{i} \beta+B_{i} b_{i}
\]

If the design matrices also differ among observations, the model becomes
\[
\begin{aligned}
\varphi_{i j} & =A_{i j} \beta+B_{i j} b_{i} \\
y_{i j} & =f\left(\varphi_{i j}, x_{i j}\right)+\varepsilon_{i j}
\end{aligned}
\]

Some of the group-specific predictors in \(x_{i j}\) may not change with observation \(j\). Calling those \(v_{i}\), the model becomes
\[
y_{i j}=f\left(\varphi_{i j}, x_{i j}, v_{i}\right)+\varepsilon_{i j}
\]

\section*{Specifying Mixed-Effects Models}

Suppose data for a nonlinear regression model falls into one of \(m\) distinct groups \(i=1, \ldots, m\). (Specifically, suppose that the groups are not nested.) To specify a general nonlinear mixed-effects model for this data:

1 Define group-specific model parameters \(\varphi_{i}\) as linear combinations of fixed effects \(\beta\) and random effects \(b_{i}\).

2 Define response values \(y_{i}\) as a nonlinear function \(f\) of the parameters and group-specific predictor variables \(X_{i}\).

The model is:
\[
\begin{aligned}
& \varphi_{i}=A_{i} \beta+B_{i} b_{i} \\
& y_{i}=f\left(\varphi_{i}, X_{i}\right)+\varepsilon_{i} \\
& b_{i} \square N(0, \Psi) \\
& \varepsilon_{i} \square N\left(0, \sigma^{2}\right)
\end{aligned}
\]

This formulation of the nonlinear mixed-effects model uses the following notation:
\(\varphi_{i} \quad\) A vector of group-specific model parameters
\(\beta \quad\) A vector of fixed effects, modeling population parameters
\(b_{i} \quad\) A vector of multivariate normally distributed group-specific random effects
\(A_{i} \quad\) A group-specific design matrix for combining fixed effects
\(B_{i} \quad\) A group-specific design matrix for combining random effects
\(X_{i} \quad\) A data matrix of group-specific predictor values
\(y_{i} \quad\) A data vector of group-specific response values
\(f \quad\) A general, real-valued function of \(\varphi_{i}\) and \(X_{i}\)
\(\varepsilon_{i} \quad\) A vector of group-specific errors, assumed to be independent, identically, normally distributed, and independent of \(b_{i}\)
\(\Psi \quad\) A covariance matrix for the random effects
\(\sigma^{2} \quad\) The error variance, assumed to be constant across observations

For example, consider a model of the elimination of a drug from the bloodstream. The model incorporates two overlapping phases:
- An initial phase \(p\) during which drug concentrations reach equilibrium with surrounding tissues
- A second phase \(q\) during which the drug is eliminated from the bloodstream

For data on multiple individuals \(i\), the model is
\[
y_{i j}=C_{p i} e^{-r_{p i} t_{i j}}+C_{q i} e^{-r_{q i} t_{i j}}+\varepsilon_{i j},
\]
where \(y_{i j}\) is the observed concentration in individual \(i\) at time \(t_{i j}\). The model allows for different sampling times and different numbers of observations for different individuals.

The elimination rates \(r_{p i}\) and \(r_{q i}\) must be positive to be physically meaningful. Enforce this by introducing the log rates \(R_{p i}=\log \left(r_{p i}\right)\) and \(R_{q i}=\log \left(r_{q i}\right)\) and reparametrizing the model:
\[
y_{i j}=C_{p i} e^{-\exp \left(R_{p i} t_{i j}\right.}+C_{q i} e^{-\exp \left(R_{q i}\right) t_{i j}}+\varepsilon_{i j}
\]

Choosing which parameters to model with random effects is an important consideration when building a mixed-effects model. One technique is to add random effects to all parameters, and use estimates of their variances to determine their significance in the model. An alternative is to fit the model separately to each group, without random effects, and look at the variation of the parameter estimates. If an estimate varies widely across groups, or if confidence intervals for each group have minimal overlap, the parameter is a good candidate for a random effect.

To introduce fixed effects \(\beta\) and random effects \(b_{i}\) for all model parameters, reexpress the model as follows:
\[
\begin{aligned}
y_{i j}= & {\left[\bar{C}_{p}+\left(C_{p i}-\bar{C}_{p}\right)\right] e^{-\exp \left[\bar{R}_{p}+\left(R_{p i}-\bar{R}_{p}\right)\right] t_{i j}}+} \\
& {\left[\bar{C}_{q}+\left(C_{q i}-\bar{C}_{q}\right)\right] e^{-\exp \left[\bar{R}_{q}+\left(R_{q i}-\bar{R}_{q}\right)\right] t_{i j}}+\varepsilon_{i j} } \\
= & \left(\beta_{1}+b_{1 i}\right) e^{-\exp \left(\beta_{2}+b_{2 i}\right) t_{i j}}+ \\
& \left(\beta_{3}+b_{3 i}\right) e^{-\exp \left(\beta_{4}+b_{4 i}\right) t_{i j}}+\varepsilon_{i j}
\end{aligned}
\]

In the notation of the general model:
\[
\beta=\left(\begin{array}{c}
\beta_{1} \\
\vdots \\
\beta_{4}
\end{array}\right), b_{i}=\left(\begin{array}{c}
b_{i 1} \\
\vdots \\
b_{i 4}
\end{array}\right), y_{i}=\left(\begin{array}{c}
y_{i 1} \\
\vdots \\
y_{i n_{i}}
\end{array}\right), X_{i}=\left(\begin{array}{c}
t_{i 1} \\
\vdots \\
t_{i n_{i}}
\end{array}\right)
\]
where \(n_{i}\) is the number of observations of individual \(i\). In this case, the design matrices \(A_{i}\) and \(B_{i}\) are, at least initially, 4-by-4 identity matrices. Design matrices may be altered, as necessary, to introduce weighting of individual effects, or time dependency.

Fitting the model and estimating the covariance matrix \(\Psi\) often leads to further refinements. A relatively small estimate for the variance of a random effect suggests that it can be removed from the model. Likewise, relatively small estimates for covariances among certain random effects suggests that a full covariance matrix is unnecessary. Since random effects are unobserved, \(\Psi\) must be estimated indirectly. Specifying a diagonal or block-diagonal covariance pattern for \(\Psi\) can improve convergence and efficiency of the fitting algorithm.

Statistics Toolbox functions nlmefit and nlmefitsa fit the general nonlinear mixed-effects model to data, estimating the fixed and random effects. The functions also estimate the covariance matrix \(\Psi\) for the random effects. Additional diagnostic outputs allow you to assess tradeoffs between the number of model parameters and the goodness of fit.

\section*{Specifying Covariate Models}

If the model in "Specifying Mixed-Effects Models" on page 9-221 assumes a group-dependent covariate such as weight \((w)\) the model becomes:
\[
\left(\begin{array}{l}
\varphi_{1} \\
\varphi_{2} \\
\varphi_{3}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & w_{i} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{array}\right)+\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
\]

Thus, the parameter \(\varphi_{\mathrm{i}}\) for any individual in the ith group is:
\[
\left(\begin{array}{c}
\varphi_{1_{i}} \\
\varphi_{2_{i}} \\
\varphi_{3_{i}}
\end{array}\right)=\left(\begin{array}{c}
\beta_{1}+\beta_{4} * w_{i} \\
\beta_{2} \\
\beta_{3}
\end{array}\right)+\left(\begin{array}{l}
b_{1_{i}} \\
b_{2_{i}} \\
b_{3_{i}}
\end{array}\right)
\]

To specify a covariate model, use the 'FEGroupDesign' option.
'FEGroupDesign' is a \(p-b y-q-b y-m\) array specifying a different \(p-b y-q\) fixed-effects design matrix for each of the \(m\) groups. Using the previous example, the array resembles the following:

1 Create the array.
```

% Number of parameters in the model (Phi)
num_params = 3;
% Number of covariates
num_cov = 1;
% Assuming number of groups in the data set is 7
num_groups = 7;
% Array of covariate values
covariates = [75; 52; 66; 55; 70; 58; 62 ];
A = repmat(eye(num_params, num_params+num_cov),...
[1,1,num_groups]);
A(1,num_params+1,1:num_groups) = covariates(:,1)

```

2 Create a struct with the specified design matrix.
```

options.FEGroupDesign = A;

```

3 Specify the arguments for nlmefit (or nlmefitsa) as shown in "Mixed-Effects Models Using nlmefit and nlmefitsa" on page 9-234.

\section*{Choosing nlmefit or nlmefitsa}

Statistics Toolbox provides two functions, nlmefit and nlmefitsa for fitting nonlinear mixed-effects models. Each function provides different capabilities, which may help you decide which to use.
- "Approximation Methods" on page 9-226
- "Parameters Specific to nlmefitsa" on page 9-227
- "Model and Data Requirements" on page 9-228

\section*{Approximation Methods}
nlmefit provides the following four approximation methods for fitting nonlinear mixed-effects models:
- 'LME' - Use the likelihood for the linear mixed-effects model at the current conditional estimates of beta and B. This is the default.
- 'RELME ' - Use the restricted likelihood for the linear mixed-effects model at the current conditional estimates of beta and \(B\).
- 'FO' - First-order Laplacian approximation without random effects.
- ' \(F\) OCE ' - First-order Laplacian approximation at the conditional estimates of B.
nlmefitsa provides an additional approximation method, Stochastic Approximation Expectation-Maximization (SAEM) [24] with three steps :

1 Simulation: Generate simulated values of the random effects \(b\) from the posterior density \(p(b \mid \Sigma)\) given the current parameter estimates.

2 Stochastic approximation: Update the expected value of the log likelihood function by taking its value from the previous step, and moving part way toward the average value of the log likelihood calculated from the simulated random effects.

3 Maximization step: Choose new parameter estimates to maximize the log likelihood function given the simulated values of the random effects.

Both nlmefit and nlmefitsa attempt to find parameter estimates to maximize a likelihood function, which is difficult to compute. nlmefit deals with the problem by approximating the likelihood function in various ways, and maximizing the approximate function. It uses traditional optimization techniques that depend on things like convergence criteria and iteration limits.
nlmefitsa, on the other hand, simulates random values of the parameters in such a way that in the long run they converge to the values that maximize the exact likelihood function. The results are random, and traditional convergence tests don't apply. Therefore nlmefitsa provides options to plot the results as the simulation progresses, and to restart the simulation multiple times. You can use these features to judge whether the results have converged to the accuracy you desire.

\section*{Parameters Specific to nlmefitsa}

The following parameters are specific to nlmefitsa. Most control the stochastic algorithm.
- Cov0 - Initial value for the covariance matrix PSI. Must be an \(r\)-by- \(r\) positive definite matrix. If empty, the default value depends on the values of BETAO.
- ComputeStdErrors - true to compute standard errors for the coefficient estimates and store them in the output STATS structure, or false (default) to omit this computation.
- LogLikMethod - Specifies the method for approximating the log likelihood.
- NBurnIn - Number of initial burn-in iterations during which the parameter estimates are not recomputed. Default is 5 .
- NIterations - Controls how many iterations are performed for each of three phases of the algorithm.
- NMCMCIterations - Number of Markov Chain Monte Carlo (MCMC) iterations.

\section*{Model and Data Requirements}

There are some differences in the capabilities of nlmefit and nlmefitsa. Therefore some data and models are usable with either function, but some may require you to choose just one of them.
- Error models - nlmefitsa supports a variety of error models. For example, the standard deviation of the response can be constant, proportional to the function value, or a combination of the two. nlmefit fits models under the assumption that the standard deviation of the response is constant. One of the error models, 'exponential', specifies that the log of the response has a constant standard deviation. You can fit such models using nlmefit by providing the log response as input, and by rewriting the model function to produce the log of the nonlinear function value.
- Random effects - Both functions fit data to a nonlinear function with parameters, and the parameters may be simple scalar values or linear functions of covariates. nlmefit allows any coefficients of the linear functions to have both fixed and random effects. nlmefitsa supports random effects only for the constant (intercept) coefficient of the linear functions, but not for slope coefficients. So in the example in "Specifying Covariate Models" on page 9-224, nlmefitsa can treat only the first three beta values as random effects.
- Model form - nlmefit supports a very general model specification, with few restrictions on the design matrices that relate the fixed coefficients and the random effects to the model parameters. nlmefitsa is more restrictive:
- The fixed effect design must be constant in every group (for every individual), so an observation-dependent design is not supported.
- The random effect design must be constant for the entire data set, so neither an observation-dependent design nor a group-dependent design is supported.
- As mentioned under Random Effects, the random effect design must not specify random effects for slope coefficients. This implies that the design must consist of zeros and ones.
- The random effect design must not use the same random effect for multiple coefficients, and cannot use more than one random effect for any single coefficient.
- The fixed effect design must not use the same coefficient for multiple parameters. This implies that it can have at most one nonzero value in each column.
If you want to use nlmefitsa for data in which the covariate effects are random, include the covariates directly in the nonlinear model expression. Don't include the covariates in the fixed or random effect design matrices.
- Convergence - As described in the Model form, nlmefit and nlmefitsa have different approaches to measuring convergence. nlmefit uses traditional optimization measures, and nlmefitsa provides diagnostics to help you judge the convergence of a random simulation.

In practice, nlmefitsa tends to be more robust, and less likely to fail on difficult problems. However, nlmefit may converge faster on problems where it converges at all. Some problems may benefit from a combined strategy, for example by running nlmefitsa for a while to get reasonable parameter estimates, and using those as a starting point for additional iterations using nlmefit.

\section*{Using Output Functions with Mixed-Effects Models}

The Outputfon field of the options structure specifies one or more functions that the solver calls after each iteration. Typically, you might use an output function to plot points at each iteration or to display optimization quantities from the algorithm. To set up an output function:

1 Write the output function as a MATLAB file function or local function.
2 Use statset to set the value of Outputfon to be a function handle, that is, the name of the function preceded by the @ sign. For example, if the output function is outfun.m, the command
```

options = statset('OutputFcn', @outfun);

```
specifies OutputFen to be the handle to outfun. To specify multiple output functions, use the syntax:
```

options = statset('OutputFcn',{@outfun, @outfun2});

```

3 Call the optimization function with options as an input argument.

For an example of an output function, see "Sample Output Function" on page 9-234.

\section*{Structure of the Output Function}

The function definition line of the output function has the following form:
```

stop = outfun(beta,status,state)

```
where
- beta is the current fixed effects.
- status is a structure containing data from the current iteration. "Fields in status" on page 9-230 describes the structure in detail.
- state is the current state of the algorithm. "States of the Algorithm" on page 9-231 lists the possible values.
- stop is a flag that is true or false depending on whether the optimization routine should quit or continue. See "Stop Flag" on page 9-232 for more information.

The solver passes the values of the input arguments to outfun at each iteration.

\section*{Fields in status}

The following table lists the fields of the status structure:
\begin{tabular}{l|l}
\hline Field & Description \\
\hline procedure & \begin{tabular}{l}
• 'ALT' - alternating algorithm for the optimization of \\
the linear mixed effects or restricted linear mixed effects \\
approximations
\end{tabular} \\
& \begin{tabular}{l}
• 'LAP' - optimization of the Laplacian approximation for \\
first order or first order conditional estimation
\end{tabular} \\
\hline iteration & An integer starting from 0. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline inner & \begin{tabular}{l}
A structure describing the status of the inner iterations within the ALT and LAP procedures, with the fields: \\
- procedure - When procedure is 'ALT': \\
- 'PNLS' (penalized nonlinear least squares) \\
- 'LME' (linear mixed-effects estimation) \\
- 'none' \\
When procedure is 'LAP', \\
- 'PNLS' (penalized nonlinear least squares) \\
- 'PLM' (profiled likelihood maximization) \\
- 'none' \\
- state - one of the following: \\
- 'init' \\
- 'iter' \\
- 'done' \\
- 'none' \\
- iteration - an integer starting from 0, or NaN. For nlmefitsa with burn-in iterations, the output function is called after each of those iterations with a negative value for STATUS.iteration.
\end{tabular} \\
\hline fval & The current log likelihood \\
\hline Psi & The current random-effects covariance matrix \\
\hline theta & The current parameterization of Psi \\
\hline mse & The current error variance \\
\hline
\end{tabular}

\section*{States of the Algorithm}

The following table lists the possible values for state:
\begin{tabular}{l|l}
\hline state & Description \\
\hline 'init' & \begin{tabular}{l}
The algorithm is in the initial state before the first \\
iteration.
\end{tabular} \\
\hline 'iter' & The algorithm is at the end of an iteration. \\
\hline 'done' & The algorithm is in the final state after the last iteration. \\
\hline
\end{tabular}

The following code illustrates how the output function might use the value of state to decide which tasks to perform at the current iteration:
```

switch state
case 'iter'
% Make updates to plot or guis as needed
case 'init'
% Setup for plots or guis
case 'done'
% Cleanup of plots, guis, or final plot
otherwise
end

```

\section*{Stop Flag}

The output argument stop is a flag that is true or false. The flag tells the solver whether it should quit or continue. The following examples show typical ways to use the stop flag.

Stopping an Optimization Based on Intermediate Results. The output function can stop the estimation at any iteration based on the values of arguments passed into it. For example, the following code sets stop to true based on the value of the log likelihood stored in the 'fval'field of the status structure:
```

stop = outfun(beta,status,state)
stop = false;
% Check if loglikelihood is more than 132.
if status.fval > -132
stop = true;
end

```

Stopping an Iteration Based on GUI Input. If you design a GUI to perform nlmefit iterations, you can make the output function stop when a user clicks a Stop button on the GUI. For example, the following code implements a dialog to cancel calculations:
```

function retval = stop_outfcn(beta,str,status)
persistent h stop;
if isequal(str.inner.state,'none')
switch(status)
case 'init'
% Initialize dialog
stop = false;
h = msgbox('Press STOP to cancel calculations.',...
'NLMEFIT: Iteration O ');
button = findobj(h,'type','uicontrol');
set(button,'String','STOP','Callback',@stopper)
pos = get(h,'Position');
pos(3) = 1.1 * pos(3);
set(h,'Position',pos)
drawnow
case 'iter'
% Display iteration number in the dialog title
set(h,'Name',sprintf('NLMEFIT: Iteration %d',...
str.iteration))
drawnow;
case 'done'
% Delete dialog
delete(h);
end
end
if stop
% Stop if the dialog button has been pressed
delete(h)
end
retval = stop;
function stopper(varargin)
% Set flag to stop when button is pressed
stop = true;
disp('Calculation stopped.')

```
end
end

\section*{Sample Output Function}
nmlefitoutputfon is the sample Statistics Toolbox output function for nlmefit and nlmefitsa. It initializes or updates a plot with the fixed-effects (BETA) and variance of the random effects (diag(STATUS.Psi)). For nlmefit, the plot also includes the log-likelihood (STATUS.fval).
nlmefitoutputfen is the default output function for nlmefitsa. To use it with nlmefit, specify a function handle for it in the options structure:
```

opt = statset('OutputFcn', @nlmefitoutputfcn, )
beta = nlmefit( , 'Options', opt, )

```

To prevent nlmefitsa from using of this function, specify an empty value for the output function:
```

opt = statset('OutputFcn', [], )
beta = nlmefitsa( , 'Options', opt, )

```
nlmefitoutputfon stops nlmefit or nlmefitsa if you close the figure that it produces.

\section*{Mixed-Effects Models Using nlmefit and nlmefitsa}

The following example also works with nlmefitsa in place of nlmefit.
The data in indomethacin.mat records concentrations of the drug indomethacin in the bloodstream of six subjects over eight hours:
```

load indomethacin
gscatter(time,concentration,subject)
xlabel('Time (hours)')
ylabel('Concentration (mcg/ml)')
title('{\bf Indomethacin Elimination}')
hold on

```

Indomethacin Elimination

"Specifying Mixed-Effects Models" on page 9-221 discusses a useful model for this type of data. Construct the model via an anonymous function as follows:
```

model = @(phi,t)(phi(1)*exp(-exp(phi(2))*t) + ...
phi(3)*exp(-exp(phi(4))*t));

```

Use the nlinfit function to fit the model to all of the data, ignoring subject-specific effects:
```

phiO = [1 2 1 1];
[phi,res] = nlinfit(time,concentration,model,phi0);
numObs = length(time);
numParams = 4;
df = numObs-numParams;
mse = (res'*res)/df

```
```

mse =
0.0304
tplot = 0:0.01:8;
plot(tplot,model(phi,tplot),'k','LineWidth',2)
hold off

```

Indomethacin Elimination

A box plot of residuals by subject shows that the boxes are mostly above or below zero, indicating that the model has failed to account for subject-specific effects:
```

colors = 'rygcbm';
h = boxplot(res,subject,'colors',colors,'symbol','o');
set(h(~isnan(h)),'LineWidth',2)
hold on
boxplot(res,subject,'colors','k','symbol','ko')

```
```

grid on
xlabel('Subject')
ylabel('Residual')
hold off

```


To account for subject-specific effects, fit the model separately to the data for each subject:
```

phiO = [1 2 1 1];
PHI = zeros(4,6);
RES = zeros(11,6);
for I = 1:6
tI = time(subject == I);
cI = concentration(subject == I);
[PHI(:,I),RES(:,I)] = nlinfit(tI,cI,model,phiO);
end

```
```

PHI
PHI =

| 2.0293 | 2.8277 | 5.4683 | 2.1981 | 3.5661 | 3.0023 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 0.5794 | 0.8013 | 1.7498 | 0.2423 | 1.0408 | 1.0882 |
| 0.1915 | 0.4989 | 1.6757 | 0.2545 | 0.2915 | 0.9685 |
| -1.7878 | -1.6354 | -0.4122 | -1.6026 | -1.5069 | -0.8731 |

numParams = 24;
df = numObs-numParams;
mse = (RES(:)'*RES(:))/df
mse =
0.0057
gscatter(time,concentration, subject)
xlabel('Time (hours)')
ylabel('Concentration (mcg/ml)')
title('{\bf Indomethacin Elimination}')
hold on
for I = 1:6
plot(tplot,model(PHI(:, I),tplot),'Color',colors(I))
end
axis([0 8 0 3.5])
hold off

```

\section*{Indomethacin Elimination}

PHI gives estimates of the four model parameters for each of the six subjects. The estimates vary considerably, but taken as a 24 -parameter model of the data, the mean-squared error of 0.0057 is a significant reduction from 0.0304 in the original four-parameter model.

A box plot of residuals by subject shows that the larger model accounts for most of the subject-specific effects:
```

h = boxplot(RES,'colors',colors,'symbol','o');
set(h(~isnan(h)),'LineWidth',2)
hold on
boxplot(RES,'colors','k','symbol','ko')
grid on
xlabel('Subject')
ylabel('Residual')

```
hold off

The spread of the residuals (the vertical scale of the box plot) is much smaller than in the previous box plot, and the boxes are now mostly centered on zero.

While the 24-parameter model successfully accounts for variations due to the specific subjects in the study, it does not consider the subjects as representatives of a larger population. The sampling distribution from which the subjects are drawn is likely more interesting than the sample itself. The purpose of mixed-effects models is to account for subject-specific variations more broadly, as random effects varying around population means.

Use the nlmefit function to fit a mixed-effects model to the data.
The following anonymous function, nlme_model, adapts the four-parameter model used by nlinfit to the calling syntax of nlmefit by allowing separate
parameters for each individual. By default, nlmefit assigns random effects to all the model parameters. Also by default, nlmefit assumes a diagonal covariance matrix (no covariance among the random effects) to avoid overparametrization and related convergence issues.
```

nlme_model = @(PHI,t)(PHI(:,1).*exp(-exp(PHI(:,2)).*t) + ...
PHI(:,3).*exp(-exp(PHI (:,4)).*t));
phiO = [1 2 1 1];
[phi,PSI,stats] = nlmefit(time,concentration,subject, ...
[],nlme_model,phiO)
phi =
2.8277
0 . 7 7 2 9
0.4606
-1.3459
PSI =
0.3264 0 0 0
0
0 0
0 0 0
stats =
dfe: 57
logl: 54.5882
mse: 0.0066
rmse: 0.0787
errorparam: 0.0815
aic: -91.1765
bic: -93.0506
covb: [4x4 double]
sebeta: [0.2558 0.1066 0.1092 0.2244]
ires: [66x1 double]
pres: [66x1 double]
iwres: [66x1 double]
pwres: [66x1 double]
cwres: [66x1 double]

```

The mean-squared error of 0.0066 is comparable to the 0.0057 of the 24 -parameter model without random effects, and significantly better than the 0.0304 of the four-parameter model without random effects.

The estimated covariance matrix PSI shows that the variance of the fourth random effect is essentially zero, suggesting that you can remove it to simplify the model. To do this, use the REParamsSelect parameter to specify the indices of the parameters to be modeled with random effects in nlmefit:
```

[phi,PSI,stats] = nlmefit(time,concentration,subject, ...
[],nlme_model,phi0, ...
'REParamsSelect',[1 2 3])
phi =
2.8277
0.7728
0.4605
-1.3460
PSI =
0.3270 0 0
0 0.0250 0
0 0 0.0124
stats =
dfe: 58
logl: 54.5875
mse: 0.0066
rmse: 0.0780
errorparam: 0.0815
aic: -93.1750
bic: -94.8410
covb: [4x4 double]
sebeta: [0.2560 0.1066 0.1092 0.2244]
ires: [66x1 double]
pres: [66x1 double]
iwres: [66x1 double]
pwres: [66x1 double]
cwres: [66x1 double]

```

The log-likelihood logl is almost identical to what it was with random effects for all of the parameters, the Akaike information criterion aic is reduced from - 91.1765 to -93.1750 , and the Bayesian information criterion bic is reduced from -93.0506 to -94.8410 . These measures support the decision to drop the fourth random effect.

Refitting the simplified model with a full covariance matrix allows for identification of correlations among the random effects. To do this, use the CovPattern parameter to specify the pattern of nonzero elements in the covariance matrix:
```

[phi,PSI,stats] = nlmefit(time,concentration,subject, ...
[],nlme_model,phi0, ...
'REParamsSelect',[1 2 3], ...
'CovPattern',ones(3))
phi =
2.8148
0.8293
0.5613
-1.1407
PSI =
0.4767 0.1152 0.0499
0.1152 0.0321 0.0032
0.0499 0.0032 0.0236
stats =
dfe: 55
logl: 58.4731
mse: 0.0061
rmse: 0.0782
errorparam: 0.0781
aic: -94.9462
bic: -97.2369
covb: [4x4 double]
sebeta: [0.3028 0.1103 0.1179 0.1662]
ires: [66x1 double]
pres: [66x1 double]
iwres: [66x1 double]
pwres: [66x1 double]

```
```

cwres: [66x1 double]

```

The estimated covariance matrix PSI shows that the random effects on the first two parameters have a relatively strong correlation, and both have a relatively weak correlation with the last random effect. This structure in the covariance matrix is more apparent if you convert PSI to a correlation matrix using corrcov:
```

RHO = corrcov(PSI)
RHO =

| 1.0000 | 0.9316 | 0.4706 |
| :--- | :--- | :--- |
| 0.9316 | 1.0000 | 0.1178 |
| 0.4706 | 0.1178 | 1.0000 |

```
clf; imagesc (RHO)
set (gca,'XTick',[123 3],'YTick', \(\left.\left.\begin{array}{lll}1 & 2 & 3\end{array}\right]\right)\)
title('\{\bf Random Effect Correlation\}')
h = colorbar;
set(get(h,'YLabel'), 'String','Correlation');

\section*{Random Effect Correlation}

Incorporate this structure into the model by changing the specification of the covariance pattern to block-diagonal:
```

P = [1 1 0;1 1 0;0 0 1] % Covariance pattern
P =
1 1 0
1 1 0
0 0
[phi,PSI,stats,b] = nlmefit(time,concentration, subject, ...
[],nlme_model,phi0, ...
'REParamsSelect',[1 2 3], ...
'CovPattern',P)

```
```

phi =
2.7830
0.8981
0.6581
-1.0000
PSI =
0.5180 0.1069 0
0.1069 0.0221 0
0 0 0.0454
stats =
dfe: 57
logl: 58.0804
mse: 0.0061
rmse: 0.0768
errorparam: 0.0782
aic: -98.1608
bic: -100.0350
covb: [4x4 double]
sebeta: [l0.3171 0.1073 0.1384 0.1453]
ires: [66x1 double]
pres: [66x1 double]
iwres: [66x1 double]
pwres: [66x1 double]
cwres: [66x1 double]
b =

| -0.8507 | -0.1563 | 1.0427 | -0.7559 | 0.5652 | 0.1550 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| -0.1756 | -0.0323 | 0.2152 | -0.1560 | 0.1167 | 0.0320 |
| -0.2756 | 0.0519 | 0.2620 | 0.1064 | -0.2835 | 0.1389 |

```

The block-diagonal covariance structure reduces aic from -94.9462 to -98.1608 and bic from -97.2368 to -100.0350 without significantly affecting the log-likelihood. These measures support the covariance structure used in the final model.

The output \(b\) gives predictions of the three random effects for each of the six subjects. These are combined with the estimates of the fixed effects in phi to produce the mixed-effects model.

Use the following commands to plot the mixed-effects model for each of the six subjects. For comparison, the model without random effects is also shown.
```

PHI = repmat(phi,1,6) + ... % Fixed effects
[b(1,:);b(2,:);b(3,:);zeros(1,6)]; % Random effects
RES = zeros(11,6); % Residuals
colors = 'rygcbm';
for I = 1:6
fitted_model = @(t)(PHI(1,I)*exp(-exp(PHI(2,I))*t) + ...
PHI(3,I)*exp(-exp(PHI (4,I))*t));
tI = time(subject == I);
cI = concentration(subject == I);
RES(:,I) = cI - fitted_model(tI);
subplot(2,3,I)
scatter(tI,cI,20,colors(I),'filled')
hold on
plot(tplot,fitted_model(tplot),'Color',colors(I))
plot(tplot,model(phi,tplot),'k')
axis([0 8 0 3.5])
xlabel('Time (hours)')
ylabel('Concentration (mcg/ml)')
legend(num2str(I),'Subject','Fixed')
end

```


If obvious outliers in the data (visible in previous box plots) are ignored, a normal probability plot of the residuals shows reasonable agreement with model assumptions on the errors:
```

clf; normplot(RES(:))

```


\section*{Examining Residuals for Model Verification}

You can examine the stats structure, which is returned by both nlmefit and nlmefitsa, to determine the quality of your model. The stats structure contains fields with conditional weighted residuals (cwres field) and individual weighted residuals (iwres field). Since the model assumes that residuals are normally distributed, you can examine the residuals to see how well this assumption holds.

This example generates synthetic data using normal distributions. It shows how the fit statistics look:
- Good when testing against the same type of model as generates the data
- Poor when tested against incorrect data models

1 Initialize a 2-D model with 100 individuals:
```

nGroups = 100; % 100 Individuals
nlmefun = @(PHI,t)(PHI(:,1)*5 + PHI(:,2)^2.*t); % Regression fcn
REParamSelect = [1 2]; % Both Parameters have random effect
errorParam = .03;
beta0 = [ 1.5 5]; % Parameter means
psi = [ 0.35 0; ... % Covariance Matrix
0 0.51 ];
time =[0.25;0.5;0.75;1;1.25;2;3;4;5;6];
nParameters = 2;
rng(0,'twister') % for reproducibility

```

2 Generate the data for fitting with a proportional error model:
```

b_i = mvnrnd(zeros(1, numel(REParamSelect)), psi, nGroups);
individualParameters = zeros(nGroups,nParameters);
individualParameters(:, REParamSelect) = ...
bsxfun(@plus,beta0(REParamSelect), b_i);
groups = repmat(1:nGroups,numel(time),1);
groups = vertcat(groups(:));
y = zeros(numel(time)*nGroups,1);
x = zeros(numel(time)*nGroups,1);
for i = 1:nGroups
idx = groups == i;
f = nlmefun(individualParameters(i,:), time);
% Make a proportional error model for y:
y(idx) = f + errorParam*f.*randn(numel(f),1);
x(idx) = time;
end
P = [ 1 0 ; 0 1 ];

```

3 Fit the data using the same regression function and error model as the model generator:
```

[~,~,stats] = nlmefit(x,y,groups, ...
[],nlmefun,[1 1],'REParamsSelect',REParamSelect,...
'ErrorModel','Proportional','CovPattern',P);

```

4 Create a plotting routine by copying the following function definition, and creating a file plotResiduals.m on your MATLAB path:
```

function plotResiduals(stats)
pwres = stats.pwres;
iwres = stats.iwres;
cwres = stats.cwres;
figure
subplot(2,3,1);
normplot(pwres); title('PWRES')
subplot(2,3,4);
createhistplot(pwres);
subplot(2,3,2);
normplot(cwres); title('CWRES')
subplot(2,3,5);
createhistplot(cwres);
subplot(2,3,3);
normplot(iwres); title('IWRES')
subplot(2,3,6);
createhistplot(iwres); title('IWRES')
function createhistplot(pwres)
[x, n] = hist(pwres);
d = n(2)- n(1);
x = x/sum(x*d);
bar(n,x);
ylim([0 max(x)*1.05]);
hold on;
x2 = -4:0.1:4;
f2 = normpdf(x2,0,1);
plot(x2,f2,'r');
end
end

```

5 Plot the residuals using the plotResiduals function:
plotResiduals(stats);

The upper probability plots look straight, meaning the residuals are normally distributed. The bottom histogram plots match the superimposed normal density plot. So you can conclude that the error model matches the data.

6 For comparison, fit the data using a constant error model, instead of the proportional model that created the data:
```

[~,~,stats] = nlmefit(x,y,groups, ...
[],nlmefun,[0 0],'REParamsSelect',REParamSelect,...
'ErrorModel','Constant','CovPattern',P);
plotResiduals(stats);

```


The upper probability plots are not straight, indicating the residuals are not normally distributed. The bottom histogram plots are fairly close to the superimposed normal density plots.

7 For another comparison, fit the data to a different structural model than created the data:
```

nlmefun2 = @(PHI,t)(PHI(:,1)*5 + PHI(:,2).*t.^4);
[~,~,stats] = nlmefit(x,y,groups, ...
[],nlmefun2,[0 0],'REParamsSelect',REParamSelect,...
'ErrorModel','constant', 'CovPattern',P);
plotResiduals(stats);

```


Not only are the upper probability plots not straight, but the histogram plot is quite skewed compared to the superimposed normal density. These residuals are not normally distributed, and do not match the model.

\section*{Pitfalls in Fitting Nonlinear Models by Transforming to Linearity}

This example shows pitfalls that can occur when fitting a nonlinear model by transforming to linearity. Imagine that we have collected measurements on two variables, x and y , and we want to model y as a function of x. Assume that x is measured exactly, while measurements of y are affected by additive, symmetric, zero-mean errors.
```

x = [5.72 4.22 5.72 3.59 5.04 2.66 5.02 3.11 0.13 2.26 ...
5.39 2.57 1.20 1.82 3.23 5.46 3.15 1.84 0.21 4.29 ...
4.61 0.36 3.76 1.59 1.87 3.14 2.45 5.36 3.44 3.41]';
y = [lllllllllllll
0.02 3.88 6.43 4.08 4.90 1.33 3.63 5.49 7.23 0.88 ...
3.08 8.12 1.22 4.24 6.21 5.48 4.89 2.30 4.13 2.17]';

```

Let's also assume that theory tells us that these data should follow a model of exponential decay, \(\mathrm{y}=\mathrm{p} 1^{*} \exp \left(\mathrm{p} 2^{*} \mathrm{x}\right)\), where p 1 is positive and p 2 is negative. To fit this model, we could use nonlinear least squares.
```

modelFun = @(p,x) p(1)*exp(p(2)*x);

```

But the nonlinear model can also be transformed to a linear one by taking the \(\log\) on both sides, to get \(\log (y)=\log (p 1)+p 2 * x\). That's tempting, because we can fit that linear model by ordinary linear least squares. The coefficients we'd get from a linear least squares would be \(\log (\mathrm{p} 1)\) and p 2 .
```

paramEstsLin = [ones(size(x)), x] \ log(y);
paramEstsLin(1) = exp(paramEstsLin(1))

```
paramEstsLin =
11.9312
\(-0.4462\)

How did we do? We can superimpose the fit on the data to find out.
```

xx = linspace(min(x), max(x));

```
```

yyLin = modelFun(paramEstsLin, xx);
plot(x,y,'o', xx,yyLin,'-');
xlabel('x'); ylabel('y');
legend({'Raw data','Linear fit on the log scale'},'location','NE');

```


Something seems to have gone wrong, because the fit doesn't really follow the trend that we can see in the raw data. What kind of fit would we get if we used nlinfit to do nonlinear least squares instead? We'll use the previous fit as a rough starting point, even though it's not a great fit.
```

paramEsts = nlinfit(x, y, modelFun, paramEstsLin)

```
paramEsts =
 8.8145
 \(-0.2885\)
```

yy = modelFun(paramEsts,xx);
plot(x,y,'o', xx,yyLin,'-', xx,yy,'-');
xlabel('x'); ylabel('y');
legend({'Raw data','Linear fit on the log scale', ...
'Nonlinear fit on the original scale'},'location','NE');

```


The fit using nlinfit more or less passes through the center of the data point scatter. A residual plot shows something approximately like an even scatter about zero.
```

r = y-modelFun(paramEsts,x);
plot(x,r,'+', [min(x) max(x)],[0 0],'k:');
xlabel('x'); ylabel('residuals');

```


So what went wrong with the linear fit? The problem is in log transform. If we plot the data and the two fits on the log scale, we can see that there's an extreme outlier.
```

plot(x,log(y),'o', xx,log(yyLin),'-', xx,log(yy),'-');
xlabel('x'); ylabel('log(y)');
ylim([-5,3]);
legend({'Raw data', 'Linear fit on the log scale', ...
'Nonlinear fit on the original scale'},'location','SW');

```


That observation is not an outlier in the original data, so what happened to make it one on the log scale? The log transform is exactly the right thing to straighten out the trend line. But the log is a very nonlinear transform, and so symmetric measurement errors on the original scale have become asymmetric on the log scale. Notice that the outlier had the smallest y value on the original scale -- close to zero. The log transform has "stretched out" that smallest y value more than its neighbors. We made the linear fit on the log scale, and so it is very much affected by that outlier.

Had the measurement at that one point been slightly different, the two fits might have been much more similar. For example,
```

y(11) = 1;
paramEsts = nlinfit(x, y, modelFun, [10;-.3])

```
```

paramEsts =
8.7618
-0.2833
paramEstsLin = [ones(size(x)), x] \ log(y);
paramEstsLin(1) = exp(paramEstsLin(1))
paramEstsLin =
9.6357
-0.3394
yy = modelFun(paramEsts,xx);
yyLin = modelFun(paramEstsLin, xx);
plot(x,y,'o', xx,yyLin,'-', xx,yy,'-');
xlabel('x'); ylabel('y');
legend({'Raw data', 'Linear fit on the log scale', ...
'Nonlinear fit on the original scale'},'location','NE');

```


Still, the two fits are different. Which one is "right"? To answer that, suppose that instead of additive measurement errors, measurements of y were affected by multiplicative errors. These errors would not be symmetric, and least squares on the original scale would not be appropriate. On the other hand, the log transform would make the errors symmetric on the log scale, and the linear least squares fit on that scale is appropriate.

So, which method is "right" depends on what assumptions you are willing to make about your data. In practice, when the noise term is small relative to the trend, the log transform is "locally linear" in the sense that y values near the same x value will not be stretched out too asymmetrically. In that case, the two methods lead to essentially the same fit. But when the noise term is not small, you should consider what assumptions are realistic, and choose an appropriate fitting method.

\section*{Generalized Linear Models}
- "Multinomial Models for Nominal Responses" on page 10-2
- "Multinomial Models for Ordinal Responses" on page 10-5
- "Hierarchical Multinomial Models" on page 10-9

\section*{Multinomial Models for Nominal Responses}

The outcome of a response variable might be one of a restricted set of possible values. If there are only two possible outcomes, such as a yes or no answer to a question, these responses are called binary responses. If there are multiple outcomes, then they are called polytomous responses. Some examples include the degree of a disease (mild, medium, severe), preferred districts to live in a city, and so on. When the response variable is nominal, there is no natural order among the response variable categories. Nominal response models explain and predict the probability that an observation is in each category of a categorical response variable.

A nominal response model is one of several natural extensions of the binary logit model and is also called a multinomial logit model. The multinomial logit model explains the relative risk of being in one category versus being in the reference category, \(k\), using a linear combination of predictor variables. Consequently, the probability of each outcome is expressed as a nonlinear function of \(p\) predictor variables. The 'interactions', 'on' name-value pair argument in mnrfit corresponds to this multinomial model with separate intercept and slopes among categories. mnrfit uses the default logit link function for multinomial models. You cannot specify a different link function for multinomial responses.

The multinomial logit model is
\[
\begin{aligned}
& \ln \left(\frac{\pi_{1}}{\pi_{k}}\right)=\alpha_{1}+\beta_{11} X_{1}+\beta_{12} X_{2}+\cdots+\beta_{1 p} X_{p} \\
& \ln \left(\frac{\pi_{2}}{\pi_{k}}\right)=\alpha_{2}+\beta_{21} X_{1}+\beta_{22} X_{2}+\cdots+\beta_{2 p} X_{p} \\
& \quad \vdots \\
& \ln \left(\frac{\pi_{k-1}}{\pi_{k}}\right)=\alpha_{(k-1)}+\beta_{(k-1) 1} X_{1}+\beta_{(k-1) 2} X_{2}+\cdots+\beta_{(k-1) p} X_{p}
\end{aligned}
\]
where \(\Pi_{j}=\mathrm{P}(y=j)\) is the probability of an outcome being in category \(j, k\) is the number of response categories, and \(p\) is the number of predictor variables. Theoretically, any category can be the reference category, but mnrfit chooses the last one, \(k\), as the reference category. Thus, mnrfit assumes the coefficients of the \(k\) th category are zero. The total of \(j-1\) equations are
solved simultaneously to estimate the coefficients. mnrfit uses the iteratively weighted least squares algorithm to find the maximum likelihood estimates.

The coefficients in the model express the effects of the predictor variables on the relative risk or the log odds of being in category \(j\) versus the reference category, here \(k\). For example, the coefficient \(\beta_{23}\) indicates that the probability of the response variable being in category 2 compared to the probability of being in category \(k\) increases \(\exp \left(\beta_{23}\right)\) times for each unit increase in \(X_{3}\), given all else is held constant. Or it indicates that the relative log odds of the response variable being category 2 versus in category \(k\) increases \(\beta_{23}\) times with a one-unit increase in \(X_{3}\), given all else equal.

Based on the nominal response model, and the assumption that the coefficients for the last category are zero, the probability of being in each category is
\[
\pi_{j}=P(y=j)=\frac{e^{\sum_{l=1}^{p} \beta_{j l} x_{l}}}{1+\sum_{j=1}^{k-1} e_{l=1}^{p} \beta_{j l} x_{l}}, \quad j=1, \cdots, k-1 .
\]

The probability of the \(k\) th category becomes
\[
\pi_{k}=P(y=k)=\frac{1}{1+\sum_{j=1}^{k-1} e^{l=1} \sum_{j i l}^{p} x_{l}},
\]
which is simply equal to \(1-\Pi_{1}-\Pi_{2}-\ldots-\Pi_{k-1}\).
After estimating the model coefficients using mnrfit, you can estimate the category probabilities or the number in each category using mnrval (the default name-value pair is 'type', 'category'). This function accepts the coefficient estimates and the model statistics mnrfit returns and estimates the categorical probabilities or the number in each category and their confidence bounds. You can also specify the cumulative or conditional probabilities or numbers to estimate using the 'type' name-value pair argument in mnrval.

\section*{References}
[1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman \& Hall, 1990.
[2] Long, J. S. Regression Models for Categorical and Limited Dependent Variables. Sage Publications, 1997.
[3] Dobson, A. J., and A. G. Barnett. An Introduction to Generalized Linear Models. Chapman and Hall/CRC. Taylor \& Francis Group, 2008.

See Also GeneralizedLinearModel.fit | mnrfit | mnrval | glmfit | glmval
Concepts - "Multinomial Models for Ordinal Responses" on page 10-5
- "Hierarchical Multinomial Models" on page 10-9

\section*{Multinomial Models for Ordinal Responses}

The outcome of a response variable might be one of a restricted set of possible values. If there are only two possible outcomes, such as male and female for gender, these responses are called binary responses. If there are multiple outcomes, then they are called polytomous responses. Some examples of polytomous responses include levels of a disease (mild, medium, severe), preferred districts to live in a city, the species for a certain flower type, and so on. Sometimes there might be a natural order among the response categories. These responses are called ordinal responses.

The ordering might be inherent in the category choices, such as an individual being not satisfied, satisfied, or very satisfied with an online customer service. The ordering might also be introduced by categorization of a latent (continuous) variable, such as in the case of an individual being in the low risk, medium risk, or high risk group for developing a certain disease, based on a quantitative medical measure such as blood pressure.

You can specify a multinomial regression model that uses the natural ordering among the response categories. This ordinal model describes the relationship between the cumulative probabilities of the categories and predictor variables.

Different link functions can describe this relationship with logit and probit being the most used.
- Logit: The default link function mnrfit uses for ordinal categories is the logit link function. This models the log cumulative odds. The 'link', 'logit' name-value pair specifies this in mnrfit. Log cumulative odds is the logarithm of the ratio of the probability that a response belongs to a category with a value less than or equal to category \(j, \mathrm{P}\left(y \leq c_{j}\right)\), and the probability that a response belongs to a category with a value greater than category \(j, \mathrm{P}\left(y>c_{j}\right)\).
Ordinal models are usually based on the assumption that the effects of predictor variables are the same for all categories on the logarithmic scale. That is, the model has different intercepts but common slopes (coefficients) among categories. This model is called parallel regression or the proportional odds model. It is the default for ordinal responses, and the 'interactions', 'off' name-value pair specifies this model in mnrfit.
The proportional odds model is
\[
\begin{aligned}
& \ln \left(\frac{P\left(y \leq c_{1}\right)}{P\left(y>c_{1}\right)}\right)=\ln \left(\frac{\pi_{1}}{\pi_{2}+\cdots+\pi_{k}}\right)=\alpha_{1}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p}, \\
& \ln \left(\frac{P\left(y \leq c_{2}\right)}{P\left(y>c_{2}\right)}\right)=\ln \left(\frac{\pi_{1}+\pi_{2}}{\pi_{3}+\cdots+\pi_{k}}\right)=\alpha_{2}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p}, \\
& \vdots \\
& \ln \left(\frac{P\left(y \leq c_{k-1}\right)}{P\left(y>c_{k-1}\right)}\right)=\ln \left(\frac{\pi_{1}+\pi_{2}+\cdots+\pi_{k-1}}{\pi_{k}}\right)=\alpha_{k-1}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p},
\end{aligned}
\]
where \(\Pi_{j}, j=1,2, \ldots, k\), are the category probabilities.
For example, for a response variable with three categories, there are 3 \(1=2\) equations as follows:
\[
\begin{aligned}
& \ln \left(\frac{\pi_{1}}{\pi_{2}+\pi_{3}}\right)=\alpha_{1}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p} \\
& \ln \left(\frac{\pi_{1}+\pi_{2}}{\pi_{3}}\right)=\alpha_{2}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p}
\end{aligned}
\]

Under the proportional odds assumption, the partial effect of a predictor variable \(X\) is invariant to the choice of the response variable category, \(j\). For example, if there are three categories, then the coefficients express the impact of a predictor variable on the relative risk or log odds of the response value being in category 1 versus categories 2 or 3 , or in category 1 or 2 versus category 3 .

Thus, a unit change in variable \(X_{2}\) would mean a change in the cumulative odds of the response value being in category 1 versus categories 2 or 3 , or category 1 or 2 versus category 3 by a factor of \(\exp \left(\beta_{2}\right)\), given all else equal.
You can alternatively fit a model with different intercept and slopes among the categories by using the 'interactions', 'on' name-value pair argument. However, using this option for ordinal models when the equal slopes model is true causes a loss of efficiency (you lose the advantage of estimating fewer parameters).
- Probit: The 'link', 'probit' name-value pair argument uses the probit link function which is based on a normally distributed latent variable assumption. For ordinal response variables this is also called an ordered probit model. Consider the regression model that describes the relationship
of a latent variable \(y^{*}\) of an ordinal process and a vector of predictor variables, \(X\),
\[
y=\beta X+\varepsilon,
\]
where the error term \(\varepsilon\) has a standard normal distribution. Suppose there is the following relationship between the latent variable \(y^{*}\) and the observed variable \(y\) :
\[
\begin{array}{cccc}
y=c_{1} & \text { if } & \alpha_{0}<y^{*} \leq \alpha_{1}, \\
y=c_{2} & \text { if } & \alpha_{1}<y^{*} \leq \alpha_{2} \\
\vdots & & \vdots \\
y=c_{k} & \text { if } & \alpha_{k-1}<y^{*} \leq \alpha_{k},
\end{array}
\]
where \(\alpha_{0}=-\infty\) and \(\alpha_{k}=\infty\). Then, the cumulative probability of \(y\) being in category \(j\) or one of earlier categories, \(\mathrm{P}\left(y \leq c_{j}\right)\), is equal to
\[
P\left(y \leq c_{j}\right)=P\left(y^{*}<\alpha_{j}\right)=P\left(\beta X+\varepsilon<\alpha_{j}\right)=P\left(\varepsilon<\alpha_{j}-\beta X\right)=\Phi\left(\alpha_{j}-\beta X\right)
\]
where \(\Phi\) is standard normal cumulative distribution function. Thus,
\[
\Phi^{-1}\left(P\left(y \leq c_{j}\right)\right)=\alpha_{j}-\beta X,
\]
where \(\alpha_{j}\) corresponds to the cut points of the latent variable and the intercept in the regression model. This only holds under the assumptions of a normal latent variable and parallel regression. More generally, for a response variable with \(k\) categories and multiple predictors, the ordered probit model is
\[
\begin{gathered}
\Phi^{-1}\left(P\left(y \leq c_{1}\right)\right)=\alpha_{1}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p} \\
\Phi^{-1}\left(P\left(y \leq c_{2}\right)\right)=\alpha_{2}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p} \\
\vdots \\
\Phi^{-1}\left(P\left(y \leq c_{k-1}\right)\right)=\alpha_{k-1}+\beta_{1} X_{1}+\cdots+\beta_{p} X_{p}
\end{gathered}
\]
where \(\mathrm{P}\left(y \leq c_{j}\right)=\Pi_{1}+\Pi_{2}+\ldots+\Pi_{j}\).

The coefficients indicate the impact of a unit change in the predictor variable on the likelihood of a state. A positive coefficient, \(\beta_{1}\), for example, indicates an increase in the underlying latent variable with an increase in the corresponding predictor variable, \(X_{1}\). Hence, it causes a decrease in \(\mathrm{P}(y\) \(\left.\leq c_{1}\right)\) and an increase in \(\mathrm{P}\left(y \leq c_{k}\right)\).

After estimating the model coefficients using mnrfit, you can estimate the cumulative probabilities or the cumulative number in each category using mnrval with the 'type', 'cumulative' name-value pair option. mnrval accepts the coefficient estimates and the model statistics mnrfit returns, and estimates the categorical probabilities or the number in each category and their confidence intervals. You can specify which category or conditional probabilities or numbers to estimate by changing the value of the 'type' name-value pair argument.

\section*{References}
[1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman \& Hall, 1990.
[2] Long, J. S. Regression Models for Categorical and Limited Dependent Variables. Sage Publications, 1997.
[3] Dobson, A. J., and A. G. Barnett. An Introduction to Generalized Linear Models. Chapman and Hall/CRC. Taylor \& Francis Group, 2008.

\section*{See Also GeneralizedLinearModel.fit | mnrfit | mnrval | glmfit | glmval}

Concepts - "Multinomial Models for Nominal Responses" on page 10-2
- "Hierarchical Multinomial Models" on page 10-9

\section*{Hierarchical Multinomial Models}

The outcome of a response variable might sometimes be one of a restricted set of possible values. If there are only two possible outcomes, such as male and female for gender, these responses are called binary responses. If there are multiple outcomes, then they are called polytomous responses. These responses are usually qualitative rather than quantitative, such as preferred districts to live in a city, the severity level of a disease, the species for a certain flower type, and so on. Polytomous responses might also have categories which are not independent of each other. Instead the response happens in a sequential manner, or one category is nested in the previous one. These types of responses are called hierarchical, or sequential, or nested multinomial responses.

For example, if the response is the number of cigarettes a person smokes in a given day, the first level is whether the person is a smoker or not. Given that he or she is a smoker, the number of cigarettes he or she smokes can be from one to five or more than five a day. Given that it is more than 5 , this person might be smoking from 6 to 10 or more than 10 cigarettes a day, and so on. The risk group at each level changes accordingly. At level one, the risk group is all of the individuals of interest (smoker or not), say \(m\). If out of \(m\) individuals, \(y_{1}\) of them are not smokers, then at level two, the risk group is the number of all smoking individuals, \(m-y_{1}\). If \(y_{2}\) of these \(m-y_{1}\) individuals smoke from one to five cigarettes a day, then at level three, the risk group is \(m-y_{1}-y_{2}\). So, at each level, the number of people in that category becomes a conditional binomial observation.

The hierarchical multinomial regression models are extensions of binary regression models based on conditional binary observations. The default is a model with different intercept and slopes (coefficients) among categories, in which case mnrfit fits a sequence of conditional binomial models. The 'interactions', 'on' name-value pair specifies this in mnrfit. The default link function is logit and the 'link', 'logit' name-value pair specifies this model in mnrfit.

Suppose the probability that an individual is in category \(j\) given that he or she is not in the previous categories is \(\Pi_{j}\), and the cumulative probability that a response belongs to a category \(j\) or a previous category is \(\mathrm{P}\left(y \leq c_{j}\right)\). Then the hierarchical model with a logit link function and different slopes assumption is
\[
\begin{aligned}
& \ln \left(\frac{\pi_{1}}{1-P\left(y \leq c_{1}\right)}\right)=\ln \left(\frac{\pi_{1}}{1-\pi_{1}}\right)=\alpha_{1}+\beta_{11} X_{1}+\beta_{12} X_{2}+\cdots+\beta_{1 p} X_{p} \\
& \ln \left(\frac{\pi_{2}}{1-P\left(y \leq c_{2}\right)}\right)=\ln \left(\frac{\pi_{2}}{1-\left(\pi_{1}+\pi_{2}\right)}\right)=\alpha_{2}+\beta_{21} X_{2}+\beta_{22} X_{2}+\cdots+\beta_{2 p} X_{p} \\
& \quad \vdots \\
& \ln \left(\frac{\pi_{k-1}}{1-P\left(y \leq c_{k-1}\right)}\right)=\ln \left(\frac{\pi_{k-1}}{1-\left(\pi_{1}+\cdots+\pi_{k-1}\right)}\right)=\alpha_{k-1}+\beta_{(k-1) 1} X_{1}+\beta_{(k-1) 2} X_{2}+\cdots+\beta_{(k-1) p}
\end{aligned}
\]

For example, for a response variable with four sequential categories, there are 4-1 = 3 equations as follows:
\[
\begin{aligned}
& \ln \left(\frac{\pi_{1}}{\pi_{2}+\pi_{3}+\pi_{4}}\right)=\alpha_{1}+\beta_{11} X_{1}+\beta_{12} X_{2}+\cdots+\beta_{1 p} X_{p}, \\
& \ln \left(\frac{\pi_{2}}{\pi_{3}+\pi_{4}}\right)=\alpha_{2}+\beta_{21} X_{1}+\beta_{22} X_{2}+\cdots+\beta_{2 p} X_{p}, \\
& \ln \left(\frac{\pi_{3}}{\pi_{4}}\right)=\alpha_{3}+\beta_{31} X_{1}+\beta_{32} X_{2}+\cdots+\beta_{3 p} X_{p} .
\end{aligned}
\]

The coefficients \(\beta_{i j}\) are interpreted within each level. For example, for the previous smoking example, \(\beta_{12}\) shows the impact of \(X_{2}\) on the log odds of a person being a smoker versus a nonsmoker, provided that everything else is held constant. Alternatively, \(\beta_{22}\) shows the impact of \(X_{2}\) on the log odds of a person smoking one to five cigarettes versus more than five cigarettes a day, given that he or she is a smoker, provided that everything else is held constant. Similarly, \(\beta_{23}\), shows the effect of \(X_{2}\) on the log odds of a person smoking 6 to 10 cigarettes versus more than 10 cigarettes a day, given that he or she smokes more than 5 cigarettes a day, provided that everything else is held constant.

You can specify other link functions for hierarchical models. The 'link', 'probit' name-value pair argument uses the probit link function. With the separate slopes assumption, the model becomes
\[
\begin{gathered}
\Phi^{-1}\left(\pi_{1}\right)=\alpha_{1}+\beta_{11} X_{1}+\cdots+\beta_{1 p} X_{p}, \\
\Phi^{-1}\left(\pi_{2}\right)=\alpha_{2}+\beta_{21} X_{1}+\cdots+\beta_{2 p} X_{p}, \\
\vdots \\
\vdots \\
\Phi^{-1}\left(\pi_{k}\right)=\alpha_{k}+\beta_{k 1} X_{1}+\cdots+\beta_{k p} X_{p},
\end{gathered}
\]
where \(\Pi_{j}\) is the conditional probability of being in category \(j\), given that it is not in categories previous to category \(j\). And \(\Phi^{-1}(\).\() is the inverse of the\) standard normal cumulative distribution function.

After estimating the model coefficients using mnrfit, you can estimate the cumulative probabilities or the cumulative number in each category using mnrval with the 'type', 'conditional' name-value pair argument. The function mnrval accepts the coefficient estimates and the model statistics mnrfit returns, and estimates the categorical probabilities or the number in each category and their confidence bounds. You can specify which category or cumulative probabilities or numbers to estimate by changing the value of the 'type' name-value pair argument in mnrval.

\section*{References}
[1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman \& Hall, 1990.
[2] Liao, T. F. Interpreting Probability Models: Logit, Probit, and Other Generalized Linear Models Series: Quantitative Applications in the Social Sciences. Sage Publications, 1994.

\section*{See Also GeneralizedLinearModel.fit | mnrfit | mnrval | glmfit | glmval}

Concepts
- "Multinomial Models for Nominal Responses" on page 10-2
- "Multinomial Models for Ordinal Responses" on page 10-5

\section*{Survival Analysis}
- "What Is Survival Analysis?" on page 11-2
- "Kaplan-Meier Method" on page 11-11
- "Hazard and Survivor Functions for Different Groups" on page 11-19
- "Survivor Functions for Two Groups" on page 11-26
- "Cox Proportional Hazards Regression" on page 11-31
- "Cox Proportional Hazards Model for Censored Data" on page 11-34

\section*{What Is Survival Analysis?}

\author{
In this section... \\ "Introduction" on page 11-2 \\ "Censoring" on page 11-2 \\ "Data" on page 11-3 \\ "Survivor Function" on page 11-5 \\ "Hazard Function" on page 11-7
}

\section*{Introduction}

Survival analysis is time-to-event analysis, that is, when the outcome of interest is the time until an event occurs. Examples of time-to-events are the time until infection, reoccurrence of a disease, or recovery in health sciences, duration of unemployment in economics, time until the failure of a machine part or lifetime of light bulbs in engineering, and so on. Survival analysis is a part of reliability studies in engineering. In this case, it is usually used to study the lifetime of industrial components. In reliability analyses, survival times are usually called failure times as the variable of interest is how much time a component functions properly before it fails.

Survival analysis consists of parametric, semiparametric, and nonparametric methods. You can use these to estimate the most commonly used measures in survival studies, survivor and hazard functions, compare them for different groups, and assess the relationship of predictor variables to survival time. Some statistical probability distributions describe survival times well. Commonly used distributions are exponential, Weibull, lognormal, Burr, and Birnbaum-Saunders distributions. Statistics Toolbox functions ecdf and ksdensity compute the empirical and kernel density estimates of the cdf, cumulative hazard, and survivor functions. coxphfit fits the Cox proportional hazards model to the data.

\section*{Censoring}

One important concept in survival analysis is censoring. The survival times of some individuals might not be fully observed due to different reasons. In life sciences, this might happen when the survival study (e.g., the clinical trial)
stops before the full survival times of all individuals can be observed, or a person drops out of a study, or for long-term studies, when the patient is lost to follow up. In the industrial context, not all components might have failed before the end of the reliability study. In such cases, the individual survives beyond the time of the study, and the exact survival time is unknown. This is called right censoring.

During a survival study either the individual is observed to fail at time \(T\), or the observation on that individual ceases at time \(c\). Then the observation is \(\min (T, c)\) and an indicator variable \(I_{c}\) shows if the individual is censored or not. The calculations for hazard and survivor functions must be adjusted to account for censoring. Statistics Toolbox functions such as ecdf, ksdensity, coxphfit, mle account for censoring.

\section*{Data}

Survival data usually consists of the time until an event of interest occurs and the censoring information for each individual or component. The following table shows the fictitious unemployment time of individuals in a 6-month study. Two individuals are right censored (indicated by a censoring value of 1). One individual was still unemployed after the 24 th week, when the study ended. Contact with the other censored individual was lost at the end of the 21st week.
\begin{tabular}{c|c}
\hline Unemployment Time (Weeks) & Censoring \\
\hline 14 & 0 \\
\hline 23 & 0 \\
\hline 7 & 0 \\
\hline 21 & 1 \\
\hline 19 & 0 \\
\hline 16 & 0 \\
\hline 24 & 1 \\
\hline 8 & 0 \\
\hline
\end{tabular}

Survival data might also include the number of failures at a certain time (the number of times a particular survival or failure time was observed). The
following table shows the simulated time until a light-emitting diodes drops to \(70 \%\) of its full light output level, in hours, in an accelerated life test.
\begin{tabular}{c|c}
\hline Failure Time (hrs) & Frequency \\
\hline 8600 & 6 \\
\hline 15300 & 19 \\
\hline 22000 & 11 \\
\hline 28600 & 20 \\
\hline 35300 & 17 \\
\hline 42000 & 14 \\
\hline 48700 & 8 \\
\hline 55400 & 2 \\
\hline 62100 & 0 \\
\hline 68800 & 2 \\
\hline
\end{tabular}

Data might also have information on the predictor variables, to use in semi-parametric regression-like methods such as Cox proportional hazards regression.
\begin{tabular}{c|c|c|c|c}
\hline \begin{tabular}{c}
Time Until \\
Recovery \\
(weeks)
\end{tabular} & Censoring & Gender & \begin{tabular}{c}
Systolic \\
Blood \\
Pressure
\end{tabular} & \begin{tabular}{c}
Diastolic \\
Blood \\
Pressure
\end{tabular} \\
\hline 12 & 1 & Male & 124 & 93 \\
\hline 20 & 0 & Female & 109 & 77 \\
\hline 7 & 0 & Female & 125 & 83 \\
\hline 13 & 0 & Male & 117 & 75 \\
\hline 9 & 1 & Male & 122 & 80 \\
\hline 15 & 0 & Female & 121 & 70 \\
\hline 17 & 1 & Male & 130 & 88 \\
\hline 8 & 0 & Female & 115 & 82 \\
\hline 14 & 0 & Male & 118 & 86 \\
\hline
\end{tabular}

\section*{Survivor Function}

The survivor function is the probability of survival as a function of time. It is also called the survival function. It gives the probability that the survival time of an individual exceeds a certain value. Since the cumulative distribution function, \(F(t)\), is the probability that the survival time is less than or equal to a given point in time, the survival function for a continuous distribution, \(S(t)\), is the complement of the cumulative distribution function:
\(S(t)=1-F(t)\).
For example, for data coming from a Burr distribution with parameters 50, 3, and 1 , you can calculate and plot the survivor function.
```

x = 0:0.1:200;
figure()
plot(x,1-cdf('Burr',x,50,3,1))
xlabel('Failure time');
ylabel('Survival probability');

```


The survivor function is also related to the hazard function. If the data has the hazard function, \(h(t)\), then the survivor function is
\[
S(t)=\exp \left(-\int_{0}^{t} h(u) d u\right)
\]
which corresponds to
\[
S(t)=\exp (-H(t))
\]
where \(H(t)\) is the cumulative hazard function.

\section*{Hazard Function}

The hazard function gives the instantaneous failure rate of an individual conditioned on the fact that the individual survived until a given time. That is,
\[
h(t)=\lim _{\Delta t \rightarrow 0} \frac{P(t \leq T<t+\Delta t \mid T \geq t)}{\Delta t},
\]
where \(\Delta t\) is a very small time interval. The hazard rate, therefore, is sometimes called the conditional failure rate. The hazard function always takes a positive value. However, these values do not correspond to probabilities and might be greater than 1.

The hazard function is related to the probability density function, \(f(t)\), cumulative distribution function, \(F(t)\), and survivor function, \(S(t)\), as follows:
\[
h(t)=\frac{f(t)}{S(t)}=\frac{f(t)}{1-F(t)},
\]
which is also equivalent to
\[
h(t)=-\frac{d}{d t} \ln S(t)
\]

So, if you know the shape of the survival function, you can also derive the corresponding hazard function.

For example, for data coming from a Burr distribution with parameters 50, 3, and 1 , you can calculate and plot the hazard function.
```

x = 0:1:200;
Burrhazard = pdf('Burr',x,50,3,1)./(1-cdf('Burr',x,50,3,1));
figure()
plot(x,Burrhazard)
xlabel('Failure time');
ylabel('Hazard rate');

```


There are different types of hazard functions. The previous figure shows a situation when the hazard rate increases for the early time periods and then gradually decreases. The hazard rate might also be monotonically decreasing, increasing, or constant over time. The following figure shows examples of different types of hazard functions for data coming from different Weibull distributions.
```

ax1 = subplot(3,1,1);
x1 = 0:0.5:30;
hazard1 = pdf('wbl',x1,3,0.6)./(1-cdf('wbl',x1,3,0.6));
plot(x1,hazard1)
ax2 = subplot(3,1,2);
x2 = 0:0.05:2;

```
```

hazard2 = pdf('wbl',x2,0.9,4)./(1-cdf('wbl',x2,0.9,4));
plot(x2,hazard2,'color','r')
ax3 = subplot(3,1,3);
x3 = 0:0.05:5;
hazard3 = pdf('wbl',x3,2.5,1)./(1-cdf('wbl',x3,2.5,1));
plot(x3,hazard3)
set(ax1,'Ylim',[0 0.4]);
legend(ax1,'a=3, b=0.6');
legend(ax2,'a=0.9, b=4','location','northwest');
legend(ax3,'a=2.5, b=1');

```


In the third case, the Weibull distribution has a shape parameter value of 1 , which corresponds to the exponential distribution. The exponential distribution always has a constant hazard rate over time.

\section*{References}
[1] Cox, D. R., and D. Oakes. Analysis of Survival Data. London: Chapman \& Hall, 1984.
[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ: Wiley-Interscience, 2002.
[3] Kleinbaum, D. G., and M. Klein. Survival Analysis. Statistics for Biology and Health. 2nd edition. Springer, 2005.
```

See Also ecdf | coxphfit | ksdensity
ecdf | coxphfit | ksdensity

```

\section*{Related Examples}

\section*{Concepts}
- "Hazard and Survivor Functions for Different Groups" on page 11-19
- "Survivor Functions for Two Groups" on page 11-26
- "Cox Proportional Hazards Model for Censored Data" on page 11-34
- "Kaplan-Meier Method" on page 11-11
- "Cox Proportional Hazards Regression" on page 11-31

\section*{Kaplan-Meier Method}

Use the Kaplan-Meier nonparametric method to estimate the empirical hazard, survivor, and cumulative distribution functions. The Statistics Toolbox function ecdf produces the empirical cumulative hazard, survivor, and cumulative distribution functions. The Kaplan-Meier estimator for the survivor function is also called the product-limit estimator.

The Kaplan-Meier method uses survival data summarized in life tables. Life tables order data according to ascending failure times, but you don't have to enter the failure/survival times in an ordered manner to use ecdf.

A life table usually consists of:
- Failure times
- Number of items failed at a time/time period
- Number of items censored at a time/time period
- Number of items at risk at the beginning of a time/time period

The number at risk is the total number of survivors at the beginning of each period. The number at risk at the beginning of the first period is all individuals in the lifetime study. At the beginning of each remaining period, the number at risk is reduced by the number of failures plus individuals censored at the end of the previous period.

This life table shows fictitious survival data. At the beginning of the first failure time, there are seven items at risk. At time 4, three fail. So at the beginning of time 7, there are four items at risk. Only one fails at time 7, so the number at risk at the beginning of time 11 is three. Two fail at time 11, so at the beginning of time 12 , the number at risk is one. The remaining item fails at time 12 .
\begin{tabular}{c|c|c}
\hline Failure Time (\(\mathbf{t}\)) & Number Failed & Number at Risk \\
\hline 4 & 3 & 7 \\
\hline 7 & 1 & 4 \\
\hline
\end{tabular}
\begin{tabular}{c|c|c}
\hline Failure Time (\(\mathbf{t})\) & Number Failed & Number at Risk \\
\hline 11 & 2 & 3 \\
\hline 12 & 1 & 1 \\
\hline
\end{tabular}

You can estimate the hazard, cumulative hazard, survival, and cumulative distribution functions using the life tables as described next.

\section*{Cumulative Hazard Rate (Failure Rate)}

The hazard rate at each period is the number of failures in the given period divided by the number of surviving individuals at the beginning of the period (number at risk).
\begin{tabular}{c|c|c}
\hline Failure Time (t) & Hazard Rate (h(t)) & \begin{tabular}{c}
Cumulative Hazard \\
Rate
\end{tabular} \\
\hline 0 & 0 & 0 \\
\hline\(t_{1}\) & \(d_{1} / r_{1}\) & \(d_{1} / r_{1}\) \\
\hline\(t_{2}\) & \(d_{2} / r_{2}\) & \(h\left(t_{1}\right)+d_{2} / r_{2}\) \\
\hline\(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline\(t_{n}\) & \(d_{n} / r_{n}\) & \(h\left(t_{n-1}\right)+d_{n} / r_{n}\) \\
\hline
\end{tabular}

\section*{Survival Probability}

For each period, the survival probability is the product of the complement of hazard rates. The initial survival probability at the beginning of the first time period is 1 . If the hazard rate for the each period is \(h\left(t_{i}\right)\), then the survivor probability is as shown.
\begin{tabular}{c|c}
\hline Time (\(\boldsymbol{t})\) & Survival Probability \((\mathbf{S}(\boldsymbol{t}))\) \\
\hline 0 & 1 \\
\hline\(t_{1}\) & \(1 *\left(1-h\left(t_{1}\right)\right)\) \\
\hline\(t_{2}\) & \(S\left(t_{1}\right) *\left(1-h\left(t_{2}\right)\right)\) \\
\hline
\end{tabular}
\begin{tabular}{c|c}
\hline Time (\(\boldsymbol{t})\) & Survival Probability \((\mathbf{S}(\mathbf{t}))\) \\
\hline\(\ldots\) & \(\ldots\) \\
\hline\(t_{n}\) & \(S\left(t_{n-1}\right) *\left(1-h\left(t_{n}\right)\right)\) \\
\hline
\end{tabular}

\section*{Cumulative Distribution Function}

Because the cumulative distribution function (cdf) and the survivor function are complements of each other, you can find the cdf from the life tables using \(F(t)=1-S(t)\).

You can compute the cumulative hazard rate, survival rate, and cumulative distribution function for the simulated data in the first table on this page as follows.
\begin{tabular}{c|c|c|c|c|c}
\hline \(\boldsymbol{t}\) & \begin{tabular}{c}
Number \\
Failed (d)
\end{tabular} & \begin{tabular}{c}
Number \\
at Risk (r)
\end{tabular} & \begin{tabular}{c}
Hazard \\
Rate
\end{tabular} & \begin{tabular}{c}
Survival \\
Probability
\end{tabular} & \begin{tabular}{c}
Cumulative \\
Distribution \\
Function
\end{tabular} \\
\hline 4 & 3 & 7 & \(3 / 7\) & \begin{tabular}{c}
\(1-3 / 7\) \\
\(=4 / 7=\) \\
0.5714
\end{tabular} & 0.4286 \\
\hline 7 & 1 & 4 & \(1 / 4\) & \begin{tabular}{c}
\(4 / 7^{*}(1-\) \\
\(1 / 4)=3 / 7\) \\
\(=.4286\)
\end{tabular} & 0.5714 \\
\hline 11 & 2 & 3 & \(2 / 3\) & \begin{tabular}{c}
\(3 / 7^{*}(1-\) \\
\(2 / 3)=1 / 7\) \\
\(=0.1429\)
\end{tabular} & 0.8571 \\
\hline 12 & 1 & 1 & \(1 / 1\) & \begin{tabular}{c}
\(1 / 7^{*}(1-\) \\
\(1)=0\)
\end{tabular} & 1 \\
\hline
\end{tabular}

This rates in this example are based on the discrete failure times, and hence the calculations do not necessarily follow the derivative-based definition in "What Is Survival Analysis?" on page 11-2

Here is how you can enter the data and calculate these measures using ecdf. The data does not necessarily have to be in ascending order. Suppose the failure times are stored in an array \(y\).
```

y = [4 7 11 12];
freq = [$$
\begin{array}{llll}{3 1 2 1];}\end{array}
$$;⿱⿻土㇒子小
[f,x] = ecdf(y,'frequency',freq)
f =
0
0.4286
0.5714
0.8571
1.0000
x =
4
4
7
11
1 2

```

When you have censored data，the life table might look like the following：
\begin{tabular}{c|c|c|c|c|c|c}
\hline Time（t） & \begin{tabular}{c}
Number \\
failed \\
\((\boldsymbol{d})\)
\end{tabular} & CensoringNumber & \begin{tabular}{c}
Hazard \\
at Risk \\
\((\boldsymbol{r})\)
\end{tabular} & \begin{tabular}{c}
Survival \\
Rate
\end{tabular} & \begin{tabular}{c}
Cumulative \\
Probabilitpistribution \\
Function
\end{tabular} \\
\hline 4 & 2 & 1 & 7 & \(2 / 7\) & \begin{tabular}{c}
\(1-2 / 7=\) \\
0.7143
\end{tabular} & 0.2857 \\
\hline 7 & 1 & 0 & 4 & \(1 / 4\) & \begin{tabular}{c}
\(0.7143^{*}(1\) \\
\(-1 / 4)=\) \\
0.5357
\end{tabular} & 0.4643 \\
\hline 11 & 1 & 1 & 3 & \(2 / 3\) & \begin{tabular}{c}
\(0.5357 *(1\) \\
\(-1 / 3)=\) \\
0.3571
\end{tabular} & 0.6429 \\
\hline 12 & 1 & 0 & 1 & \(1 / 1\) & \begin{tabular}{c}
\(0.3571^{*}(1\) \\
\(-1)=0\)
\end{tabular} & 1.0000 \\
\hline
\end{tabular}

At any given time, the censored items are also considered in the total of number at risk, and the hazard rate formula is based on the number failed and the total number at risk. While updating the number at risk at the beginning of each period, the total number failed and censored in the previous period is reduced from the number at risk at the beginning of that period.

While using ecdf, you must also enter the censoring information using an array of binary variables. Enter 1 for censored data, and enter 0 for exact failure time.
```

y = [4 4 4 4 7 7 11 11 12];
cens = [0 1 0 0 1 0 0];
[f,x] = ecdf(y,'censoring',cens)
f =
0
0.4643
0.6429
1.0000
x =
4
4
7
1 1
1 2

```
ecdf, by default, produces the cumulative distribution function values. You have to specify the survivor function or the hazard function using optional name-value pair arguments. You can also plot the results as follows.
```

figure()
ecdf(y,'censoring',cens,'function','survivor');

```

figure()
ecdf(y,'censoring', cens,'function','cumulative hazard');

\section*{References}
[1] Cox, D. R., and D. Oakes. Analysis of Survival Data. London: Chapman \& Hall, 1984.
[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ: Wiley-Interscience, 2002.
[3] Kleinbaum, D. G., and M. Klein. Survival Analysis. Statistics for Biology and Health. 2nd edition. Springer, 2005.

See Also
ecdf | coxphfit | ksdensity

\section*{Related \\ Examples}

Concepts
- "Hazard and Survivor Functions for Different Groups" on page 11-19
- "Survivor Functions for Two Groups" on page 11-26
- "Cox Proportional Hazards Model for Censored Data" on page 11-34
- "What Is Survival Analysis?" on page 11-2
- "Cox Proportional Hazards Regression" on page 11-31

\section*{Hazard and Survivor Functions for Different Groups}

This example shows how to estimate and plot the cumulative hazard and survivor functions for different groups.

\section*{Step 1. Load and organize sample data.}

Navigate to a folder containing sample data.
```

cd(matlabroot)
cd('help/toolbox/stats/examples')

```

Load the sample data.
load readmissiontimes
The data has readmission times of patients with information on their gender, age, weight, smoking status, and censorship. This is simulated data.

Create a matrix of readmission times and censoring for each gender.
```

female = [ReadmissionTime(Sex==1),Censored(Sex==1)];
male = [ReadmissionTime(Sex==0),Censored(Sex==0)];

```

\section*{Step 2. Estimate and plot cumulative distribution function for each gender.}

Plot the Kaplan-Meier estimate of the cumulative distribution function for female and male patients.
```

figure()
ecdf(gca,female(:,1),'Censoring',female(:,2));
hold on
[f,x] = ecdf(male(:,1),'Censoring',male(:,2));
stairs(x,f,'--r')
hold off
legend('female','male','Location','SouthEast')

```


\section*{Step 3. Plot survivor functions.}

Compare the survivor functions for female and male patients.
```

figure()
ax1 = gca;
ecdf(ax1,female(:,1),'Censoring',female(:,2),'function','survivor');
hold on
[f,x] = ecdf(male(:,1),'Censoring',male(:,2),'function','survivor');
stairs(x,f,'--r')
legend('female','male')

```


This figure shows that readmission times are shorter for male patients than female patients.

\section*{Step 4. Fit Weibull survivor functions.}

Fit Weibull distributions to readmission times of female and male patients.
```

pd = fitdist(female(:,1),'wbl','Censoring',female(:,2))
pd =

```
weibull distribution
```

        a = 12.5593
        b = 1.99834
    pd2 = fitdist(male(:,1),'wbl','Censoring',male(:,2))
pd2 =
weibull distribution
a = 4.63991
b = 1.94422

```

Plot the Weibull survivor functions for female and male patients on estimated survivor functions.
```

plot(0:1:25,1-cdf('wbl',0:1:25,12.5593,1.99834),'-.')
plot(0:1:25,1-cdf('wbl',0:1:25,4.63991,1.94422),':r')
hold off
legend('Festimated','Mestimated','FWeibull','MWeibull')

```


Weibull distribution provides a good fit for the data.

\section*{Step 5. Estimate cumulative hazard and fit Weibull cumulative hazard functions.}

Estimate the cumulative hazard function for the genders and fit Weibull cumulative hazard functions.
```

figure()
[f,x] = ecdf(female(:,1),'Censoring',female(:,2),...
'function','cumhazard');
plot(x,f)
hold on
plot(x,cumsum(pdf(pd,x)./(1-cdf(pd,x))),'-.')

```
```

[f,x] = ecdf(male(:,1),'Censoring',male(:,2),...
'function','cumhazard');
plot(x,f,'--r')
plot(x,cumsum(pdf(pd2,x)./(1-cdf(pd2,x))),':r')
legend('Festimated','FWeibull','Mestimated','MWeibull', ...
'Location','North')

```


\section*{See Also ecdf | coxphfit | ksdensity}
Related
Examples
- "Survivor Functions for Two Groups" on page 11-26
- "Cox Proportional Hazards Model for Censored Data" on page 11-34

Concepts
- "What Is Survival Analysis?" on page 11-2
- "Kaplan-Meier Method" on page 11-11
- "Cox Proportional Hazards Regression" on page 11-31

\section*{Survivor Functions for Two Groups}

This example shows how to find the empirical survivor functions and the parametric survivor functions using the Burr type XII distribution fit to data for two groups.

\section*{Step 1. Load and prepare sample data.}

Navigate to a folder containing sample data.
```

cd(matlabroot)
cd('help/toolbox/stats/examples')

```

Load the sample data
```

load lightbulb

```

The first column of the data has the lifetime (in hours) of two types of light bulbs. The second column has information about the type of light bulb. 1 indicates fluorescent bulbs whereas 0 indicates the incandescent bulb. The third column has censoring information. 1 indicates censored data, and 0 indicates the exact failure time. This is simulated data.

Create a variable for each light bulb type and also include the censorship information.
```

fluo = [lightbulb(lightbulb(:,2)==0,1),...
lightbulb(lightbulb(:,2)==0,3)];
insc = [lightbulb(lightbulb(:,2)==1,1),...
lightbulb(lightbulb(:,2)==1,3)];

```

\section*{Step 2. Plot estimated survivor functions.}

Plot the estimated survivor functions for the two different types of light bulbs.
```

figure()
[f,x,flow,fup] = ecdf(fluo(:,1),'censoring',fluo(:,2),...
'function','survivor');
ax1 = stairs(x,f);
hold on
stairs(x,flow,':')

```
```

stairs(x,fup,':')
[f,x,flow,fup] = ecdf(insc(:,1),'censoring',insc(:,2),...
'function','survivor');
ax2 = stairs(x,f,'color','r');
stairs(x,flow,':r')
stairs(x,fup,':r')
legend([ax1,ax2],{'Fluorescent','Incandescent'})
xlabel('Lifetime (hours)')
ylabel('Survival probability')

```


You can see that the survival probability of incandescent light bulbs is much smaller than that of fluorescent light bulbs.

\section*{Step 3. Fit Burr Type XII distribution.}

Fit Burr distribution to the lifetime data of fluorescent and incandescent type bulbs.
```

pd = fitdist(fluo(:,1),'burr','Censoring',fluo(:,2))
pd =
burr distribution
alpha = 29143.5
c = 3.44582
k = 33.704
pd2 = fitdist(insc(:,1),'burr','Censoring',insc(:,2))
pd2 =
burr distribution
alpha = 2650.76
c = 3.41898
k = 4.5891

```

Superimpose Burr type XII survivor functions.
```

ax3 = plot(0:500:15000,1-cdf('burr',0:500:15000,29143.5,···
3.44582,33.704), 'm');
ax4 = plot(0:500:5000,1-cdf('burr',0:500:5000,2650.76,···
3.41898,4.5891), 'g');
legend([ax1;ax2;ax3;ax4],'Festimate','Iestimate','FBurr','IBurr')

```


Burr distribution provides a good fit for the lifetime of light bulbs in this example.

\section*{Step 4. Fit a Cox proportional hazards model.}

Fit a Cox proportional hazards regression where the type of the bulb is the explanatory variable.
[b,logl,H,stats] = coxphfit(lightbulb(:,2), lightbulb(:,1),...
'Censoring', lightbulb(:,3));
stats
stats =
```

covb: 1.0757
beta: 4.7262
se: 1.0372
z: 4.5568
p: 5.1936e-06

```

The \(p\)-value, p , indicates that the type of light bulb is statistically significant. The estimate of the hazard ratio is \(\exp (b)=112.8646\). This means that the hazard for the incandescent bulbs is 112.86 times the hazard for the fluorescent bulbs.

\section*{See Also ecdf | coxphfit | ksdensity}

\section*{Related \\ Examples}
- "Hazard and Survivor Functions for Different Groups" on page 11-19
- "Cox Proportional Hazards Model for Censored Data" on page 11-34

\section*{Concepts}
- "What Is Survival Analysis?" on page 11-2
- "Kaplan-Meier Method" on page 11-11
- "Cox Proportional Hazards Regression" on page 11-31

\section*{Cox Proportional Hazards Regression}

Cox proportional hazards regression is a semiparametric method for adjusting survival rate estimates to quantify the effect of predictor variables. The method represents the effects of explanatory variables as a multiplier of a common baseline hazard function, \(h_{0}(t)\). The hazard function is the nonparametric part of the Cox proportional hazards regression function, whereas the impact of the predictor variables is a loglinear regression. For a baseline relative to 0 , this model corresponds to
\[
h_{X}(t)=h_{0}(t) e^{\sum_{i} X_{i} b_{i}},
\]
where \(h_{X}(t)\) is the hazard rate at \(X\) and \(h_{0}(t)\) is the baseline hazard rate function.

The Cox proportional hazards model relates the hazard rate for individuals or items at the value \(X\), to the hazard rate for individuals or items at the baseline value. It produces an estimate for the hazard ratio, \(H R=h_{X}(t) / h_{0}(t)\). The model is based on the assumption that the baseline hazard function depends on time, \(t\), but the predictor variables do not. This is also called the proportional hazards assumption, which states that the hazard rate does not change over time for any individual. The hazard ratio represents the relative risk of instant failure for individuals or items having the predictive variable value \(X\) compared to the ones having the baseline values. For example, if the predictive variable is smoking status, where nonsmoking is the baseline category, the hazard ratio shows the relative instant failure rate of smokers compared to the baseline category, that is, nonsmokers.

For a baseline relative to \(X^{*}\) and the predictor variable value \(X\), the hazard ratio is
\[
H R=\frac{h_{X}(t)}{h_{X^{*}}(t)}=\exp \left[\sum_{i}\left(X_{i}-X_{i}^{*}\right) b_{i}\right]
\]

For example, if the baseline is the mean values of the predictor variables (mean \((X)\)), then the hazard rate model becomes
\[
h_{X}(t)=h_{\bar{X}}(t) \exp \left[\sum_{i}\left(X_{i}-\bar{X}\right) b_{i}\right] .
\]

Hazard rates are related to survival rates, such that the survival rate at time \(t\) for an individual with the explanatory variable value \(x\) is
\[
S_{X}(t)=S_{0}(t)^{H R_{X}(t)},
\]
where \(S_{0}(t)\) is the survivor function with the baseline hazard rate function \(h_{0}(t)\), and \(H R_{x}(t)\) is the hazard ratio of the predictor variable value \(x\) relative to the baseline value.

A point estimate of the effect of each explanatory variable, that is, the estimated hazard ratio for the effect of each explanatory variable is \(\exp (b)\), given all other variables are held constant, where \(b\) is the coefficient estimate for that variable. The coefficient estimates are found by maximizing the likelihood function of the model. The likelihood function for the proportional hazards regression model is based on the observed order of events. It is the product of likelihood of a failure estimated for each failure time. If there are \(n\) failures at \(n\) distinct failure times, then the likelihood is
\[
L=\left[\frac{h\left(t_{1}\right)}{\sum_{i=1}^{n} h\left(t_{i}\right)}\right] \times\left[\frac{h\left(t_{2}\right)}{\sum_{i=2}^{n} h\left(t_{i}\right)}\right] \times \cdots \times\left[\frac{h\left(t_{n}\right)}{h\left(t_{n}\right)}\right] .
\]

You can use a likelihood ratio test to assess the significance of adding a term or terms in a model. Consider the two models where the first model has \(p\) predictive variables and the second model has \(p+r\) predictive variables. Then, comparing the two models, \(-2^{*}\left(L_{1} / L_{2}\right)\) has a chi-square distribution with \(r\) degrees of freedom (the number of terms being tested).

\section*{References}
[1] Cox, D. R., and D. Oakes. Analysis of Survival Data. London: Chapman \& Hall, 1984.
[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ: Wiley-Interscience, 2002.
[3] Kleinbaum, D. G., and M. Klein. Survival Analysis. Statistics for Biology and Health. 2nd edition. Springer, 2005.
```

See Also ecdf | coxphfit | ksdensity
ecdf | coxphfit | ksdensity

```

\section*{Related Examples}

Concepts
- "Hazard and Survivor Functions for Different Groups" on page 11-19
- "Survivor Functions for Two Groups" on page 11-26
- "Cox Proportional Hazards Model for Censored Data" on page 11-34
- "What Is Survival Analysis?" on page 11-2
- "Kaplan-Meier Method" on page 11-11

\section*{Cox Proportional Hazards Model for Censored Data}

This example shows how to construct a Cox proportional hazards model, and assess the significance of the predictor variables.

\section*{Step 1. Load sample data.}

Navigate to a folder containing sample data.
```

cd(matlabroot)
cd('help/toolbox/stats/examples')

```

Load the sample data.
```

load readmissiontimes

```

The response variable is Readmission Time, which shows the readmission times for 100 patients. The predictor variables are Age, Sex, Weight, and the smoking status of each patient, Smoker. 1 indicates the patient is a smoker, and 0 indicates that the patient does not smoke. The column vector Censored has the censorship information for each patient, where 1 indicates censored data, and 0 indicates the exact readmission times are observed. This is simulated data.

\section*{Step 2. Fit Cox proportional hazards function.}

Fit a Cox proportional hazard function with the variable Sex as the predictor variable, taking the censoring into account.
```

X = Sex;
[b,logl,H,stats] = coxphfit(X,ReadmissionTime,...
'censoring',Censored);

```

Assess the statistical significance of the term Sex.
```

stats

```
stats =
 covb: 0.1016
 beta: -1.7642
```

se: 0.3188
z: -5.5335
p: 3.1392e-08

```

The \(p\)-value, p , indicates that the term Sex is statistically significant.
Save the loglikelihood value with a different name. You will use this to assess the significance of the extended models.
loglSex = logl
loglSex =
\(-262.1365\)

\section*{Step 3. Add Age and Weight to the model.}

Fit a Cox proportional hazards model with the variables Sex, Age, and Weight.
X = [Sex Age Weight];
[b,logl, H, stats] = coxphfit(X,ReadmissionTime,... 'censoring', Censored);

Assess the significance of the terms.
```

stats.beta

```
ans =
-0.5441
0.0143
0.0250
stats.p
ans =
0.4953
0.3842
0.0960

None of the terms, adjusted for others, is statistically significant.

Assess the significance of the terms using the log likelihood ratio. You can assess the significance of the new model using the likelihood ratio statistic. First find the difference between the log-likelihood statistic of the model without the terms Age and Weight and the log-likelihood of the model with Sex, Age, and Weight.
```

-2*[loglSex - logl]

```
ans =
3.6705

Now, compute the \(p\)-value for the likelihood ratio statistic. The likelihood ratio statistic has a Chi-square distribution with a degrees of freedom equal to the number of predictor variables being assessed. In this case, the degrees of freedom is 2 .
```

p = 1 - cdf('chi2',3.6705,2)

```
\(p=\)
0.1596

The \(p\)-value of 0.1596 indicates that the terms Age and Weight are not statistically significant, given the term Sex in the model.

\section*{Step 4. Add Smoker to the model.}

Fit a Cox proportional hazards model with the variables Sex and Smoker.
```

X = [Sex Smoker];
[b,logl,H,stats] = coxphfit(X,ReadmissionTime,...
'censoring',Censored);

```

Assess the significance of the terms in the model.
```

stats.p

```
ans =
0.0000
0.0148

Compare this model to the first model where Sex is the only term.
```

    -2*[loglSex - logl]
    ans =
5.5789

```

Compute the \(p\)-value for the likelihood ratio statistic. The likelihood ratio statistic has a Chi-square distribution with a degree of freedom of 1.
```

p = 1 - cdf('chi2',5.5789,1)
p =
0.0182

```

The \(p\)-value of 0.0182 indicates that Sex and Smoker are statistically significant given the other is in the model. The model with Sex and Smoker is a better fit compared to the model with only Sex.

Request the coefficient estimates.
```

stats.beta

```
ans =
-1.7165
0.6338

The default baseline is the mean of \(X\), so the final model for the hazard ratio is
\[
H R=\frac{h_{X}(t)}{h_{\bar{X}}(t)}=\exp \left[\beta_{s}\left(X_{s}-\bar{X}_{s}\right)+\beta_{a}\left(X_{a}-\bar{X}_{a}\right)\right] .
\]

Fit a Cox ph model with a baseline of 0 .
```

X = [Sex Smoker];
[b,logl,H,stats] = coxphfit(X,ReadmissionTime,...
'censoring',Censored,'baseline',0);

```

The model for the hazard ratio is
\[
H R=\frac{h_{X}(t)}{h_{0}(t)}=\exp \left[\beta_{s} X_{s}+\beta_{a} X_{a}\right] .
\]

Request the coefficient estimates.
```

stats.beta
ans =
-1.7165
0.6338

```

The coefficients are not affected, but the hazard rate differs from when the baseline is the mean of \(X\).

\section*{See Also ecdf | coxphfit | ksdensity}

\author{
Related \\ - "Hazard and Survivor Functions for Different Groups" on page 11-19 \\ Examples \\ - "Survivor Functions for Two Groups" on page 11-26 \\ Concepts \\ - "What Is Survival Analysis?" on page 11-2 \\ - "Kaplan-Meier Method" on page 11-11 \\ - "Cox Proportional Hazards Regression" on page 11-31
}

\section*{Multivariate Methods}
- "Introduction to Multivariate Methods" on page 12-2
- "Multivariate Linear Regression" on page 12-3
- "Estimation of Multivariate Regression Models" on page 12-6
- "Set Up Multivariate Regression Problems" on page 12-16
- "Multivariate General Linear Model" on page 12-30
- "Fixed Effects Panel Model with Concurrent Correlation" on page 12-35
- "Longitudinal Analysis" on page 12-43
- "Multidimensional Scaling" on page 12-50
- "Procrustes Analysis" on page 12-61
- "Feature Selection" on page 12-70
- "Feature Transformation" on page 12-75
- "Partial Least Squares Regression and Principal Components Regression" on page 12-102

\section*{Introduction to Multivariate Methods}

Large, high-dimensional data sets are common in the modern era of computer-based instrumentation and electronic data storage. High-dimensional data present many challenges for statistical visualization, analysis, and modeling.

Data visualization, of course, is impossible beyond a few dimensions. As a result, pattern recognition, data preprocessing, and model selection must rely heavily on numerical methods.

A fundamental challenge in high-dimensional data analysis is the so-called curse of dimensionality. Observations in a high-dimensional space are necessarily sparser and less representative than those in a low-dimensional space. In higher dimensions, data over-represent the edges of a sampling distribution, because regions of higher-dimensional space contain the majority of their volume near the surface. (A d-dimensional spherical shell has a volume, relative to the total volume of the sphere, that approaches 1 as \(d\) approaches infinity.) In high dimensions, typical data points at the interior of a distribution are sampled less frequently.

Often, many of the dimensions in a data set-the measured features-are not useful in producing a model. Features may be irrelevant or redundant. Regression and classification algorithms may require large amounts of storage and computation time to process raw data, and even if the algorithms are successful the resulting models may contain an incomprehensible number of terms.

Because of these challenges, multivariate statistical methods often begin with some type of dimension reduction, in which data are approximated by points in a lower-dimensional space. Dimension reduction is the goal of the methods presented in this chapter. Dimension reduction often leads to simpler models and fewer measured variables, with consequent benefits when measurements are expensive and visualization is important.

\section*{Multivariate Linear Regression}

\section*{In this section...}
"Multivariate Linear Regression Model" on page 12-3
"Solving Multivariate Regression Problems" on page 12-4

\section*{Multivariate Linear Regression Model}

The multivariate linear regression model expresses a \(d\)-dimensional continuous response vector as a linear combination of predictor terms plus a vector of error terms with a multivariate normal distribution. Let \(\mathbf{y}_{i}=\left(y_{i 1}, \ldots, y_{i d}\right)^{\prime}\) denote the response vector for observation \(i, i=1, \ldots, n\). In the most general case, given the \(d\)-by- \(K\) design matrix \(\mathbf{X}_{i}\) and the \(K\)-by- 1 vector of coefficients \(\beta\), the multivariate linear regression model is
\[
\mathbf{y}_{i}=\mathbf{X}_{i} \beta+\varepsilon_{i}
\]
where the \(d\)-dimensional vector of error terms follows a multivariate normal distribution,
\[
\varepsilon_{i} \square M V N_{d}(\mathbf{0}, \Sigma) .
\]

The model assumes independence between observations, meaning the error variance-covariance matrix for the \(n\) stacked \(d\)-dimensional response vectors is
\[
\mathbf{I}_{n} \otimes \Sigma=\left(\begin{array}{lll}
\Sigma & & 0 \\
& \ddots & \\
0 & & \Sigma
\end{array}\right)
\]

If \(\mathbf{y}\) denotes the \(n d\)-by- 1 vector of stacked \(d\)-dimensional responses, and \(\mathbf{X}\) denotes the \(n d\)-by- \(K\) matrix of stacked design matrices, then the distribution of the response vector is
\[
\mathbf{y} \square M V N_{n d}\left(\mathbf{X} \beta, \mathbf{I}_{n} \otimes \Sigma\right) .
\]

\section*{Solving Multivariate Regression Problems}

To fit multivariate linear regression models of the form
\[
\mathbf{y}_{i}=\mathbf{X}_{i} \beta+\varepsilon_{i}, \varepsilon_{i} \square M V N_{d}(\mathbf{0}, \Sigma)
\]
in Statistics Toolbox, use mvregress. This function fits multivariate regression models with a diagonal (heteroscedastic) or unstructured (heteroscedastic and correlated) error variance-covariance matrix, \(\Sigma\), using least squares or maximum likelihood estimation.

Many variations of multivariate regression might not initially appear to be of the form supported by mvregress, such as:
- Multivariate general linear model
- Multivariate analysis of variance (MANOVA)
- Longitudinal analysis
- Panel data analysis
- Seemingly unrelated regression (SUR)
- Vector autoregressive (VAR) model

In many cases, you can frame these problems in the form used by mvregress (but mvregress does not support parameterized error variance-covariance matrices). For the special case of one-way MANOVA, you can alternatively use manova1. Econometrics Toolbox \({ }^{\text {TM }}\) has functions for VAR estimation.

Note The multivariate linear regression model is distinct from the multiple linear regression model, which models a univariate continuous response as a linear combination of exogenous terms plus an independent and identically distributed error term. To fit a multiple linear regression model, use LinearModel.fit.
Related Examples
- "Set Up Multivariate Regression Problems" on page 12-16
- "Multivariate General Linear Model" on page 12-30
- "Fixed Effects Panel Model with Concurrent Correlation" on page 12-35
- "Longitudinal Analysis" on page 12-43
Concepts • "Estimation of Multivariate Regression Models" on page 12-6

\section*{Estimation of Multivariate Regression Models}

\author{
In this section... \\ "Least Squares Estimation" on page 12-6 \\ "Maximum Likelihood Estimation" on page 12-10 \\ "Missing Response Data" on page 12-12
}

\section*{Least Squares Estimation}
- "Ordinary Least Squares" on page 12-6
- "Covariance-Weighted Least Squares" on page 12-7
- "Error Covariance Estimation" on page 12-8
- "Feasible Generalized Least Squares" on page 12-9
- "Panel Corrected Standard Errors" on page 12-10

\section*{Ordinary Least Squares}

When you fit multivariate linear regression models using mvregress, you can use the optional name-value pair 'algorithm' , 'cwls' to choose least squares estimation. In this case, by default, mvregress returns ordinary
least squares (OLS) estimates using \(\Sigma=\mathbf{I}_{d}\). Alternatively, if you specify a covariance matrix for weighting, you can return covariance-weighted least squares (CWLS) estimates. If you combine OLS and CWLS, you can get feasible generalized least squares (FGLS) estimates.

The OLS estimate for the coefficient vector is the vector \(\mathbf{b}\) that minimizes
\[
\sum_{i=1}^{n}\left(\mathbf{y}_{i}-\mathbf{X}_{i} \mathbf{b}\right)^{\prime}\left(\mathbf{y}_{i}-\mathbf{X}_{i} \mathbf{b}\right)
\]

Let \(\mathbf{y}\) denote the \(n d\)-by- 1 vector of stacked \(d\)-dimensional responses, and \(\mathbf{X}\) denote the \(n d\)-by- \(K\) matrix of stacked design matrices. The \(K\)-by- 1 vector of OLS regression coefficient estimates is
\[
\mathbf{b}_{O L S}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}
\]

This is the first mvregress output.
Given \(\Sigma=\mathbf{I}_{d}\) (the mvregress OLS default), the variance-covariance matrix of the OLS estimates is
\[
V\left(\mathbf{b}_{O L S}\right)=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\]

This is the fourth mvregress output. The standard errors of the OLS regression coefficients are the square root of the diagonal of this variance-covariance matrix.

If your data is not scaled such that \(\Sigma=\sigma^{2} \mathbf{I}_{d}\), then you can multiply the mvregress variance-covariance matrix by the mean squared error (MSE), an unbiased estimate of \(\sigma^{2}\). To compute the MSE, return the \(n\)-by- \(d\) matrix of residuals, \(\mathbf{E}\) (the third mvregress output). Then,
\[
\operatorname{MSE}=\frac{\sum_{i=1}^{n} \mathbf{e}_{i} \mathbf{e}_{i}^{\prime}}{n-K}
\]
where \(\mathbf{e}_{i}=\left(\mathbf{y}_{i}-\mathbf{X}_{i} \beta\right)^{\prime}\) is the \(i\) th row of \(\mathbf{E}\).

\section*{Covariance-Weighted Least Squares}

For most multivariate problems, an identity error covariance matrix is insufficient, and leads to inefficient or biased standard error estimates. You can specify a matrix for CWLS estimation using the optional name-value pair argument covaro, for example, an invertible \(d\)-by- \(d\) matrix named \(\mathbf{C}_{0}\). Usually, \(\mathbf{C}_{0}\) is a diagonal matrix such that the inverse matrix \(\mathbf{C}_{0}^{-1}\) contains weights for each dimension to model heteroscedasticity. However, \(\mathbf{C}_{0}\) can also be a nondiagonal matrix that models correlation.

Given \(\mathbf{C}_{0}\), the CWLS solution is the vector \(\mathbf{b}\) that minimizes
\[
\sum_{i=1}^{n}\left(\mathbf{y}_{i}-\mathbf{X}_{i} \mathbf{b}\right)^{\prime} \mathbf{C}_{0}\left(\mathbf{y}_{i}-\mathbf{X}_{i} \mathbf{b}\right)
\]

In this case, the \(K\)-by- 1 vector of CWLS regression coefficient estimates is
\[
\mathbf{b}_{C W L S}=\left(\mathbf{X}^{\prime}\left(\mathbf{I}_{n} \otimes \mathbf{C}_{0}\right)^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left(\mathbf{I}_{n} \otimes \mathbf{C}_{0}\right)^{-1} \mathbf{y}
\]

This is the first mvregress output.

If \(\Sigma=\mathbf{C}_{0}\), this is the generalized least squares (GLS) solution. The corresponding variance-covariance matrix of the CWLS estimates is
\[
V\left(\mathbf{b}_{C W L S}\right)=\left(\mathbf{X}^{\prime}\left(\mathbf{I}_{n} \otimes \mathbf{C}_{0}\right)^{-1} \mathbf{X}\right)^{-1}
\]

This is the fourth mvregress output. The standard errors of the CWLS regression coefficients are the square root of the diagonal of this variance-covariance matrix.

If you only know the error covariance matrix up to a proportion, that is, \(\Sigma=\sigma^{2} \mathbf{C}_{0}\), you can multiply the mvregress variance-covariance matrix by the MSE, as described in "Ordinary Least Squares" on page 12-6.

\section*{Error Covariance Estimation}

Regardless of which least squares method you use, the estimate for the error variance-covariance matrix is
\[
\hat{\Sigma}=\left(\begin{array}{cccc}
\hat{\sigma}_{1}^{2} & \hat{\sigma}_{12} & \cdots & \hat{\sigma}_{1 d} \\
\hat{\sigma}_{12} & \hat{\sigma}_{2}^{2} & \cdots & \hat{\sigma}_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{\sigma}_{1 d} & \hat{\sigma}_{2 d} & \cdots & \hat{\sigma}_{d}^{2}
\end{array}\right)=\frac{\mathbf{E}^{\prime} \mathbf{E}}{n}
\]
where \(\mathbf{E}\) is the \(n\)-by- \(d\) matrix of residuals. The \(i\) th row of \(\mathbf{E}\) is \(\mathbf{e}_{i}=\left(\mathbf{y}_{i}-\mathbf{X}_{i} \mathbf{b}\right)^{\prime}\).

The error covariance estimate, \(\hat{\Sigma}\), is the second mvregress output, and the matrix of residuals, \(\mathbf{E}\), is the third output. If you specify the optional name-value pair 'covtype', 'diagonal', then mvregress returns \(\hat{\Sigma}\) with zeros in the off-diagonal entries,
\[
\hat{\Sigma}=\left(\begin{array}{ccc}
\hat{\sigma}_{1}^{2} & & 0 \\
& \ddots & \\
0 & & \hat{\sigma}_{d}^{2}
\end{array}\right) .
\]

\section*{Feasible Generalized Least Squares}

The generalized least squares estimate is the CWLS estimate with a known covariance matrix. That is, given \(\Sigma\) is known, the GLS solution is
\[
\mathbf{b}_{G L S}=\left(\mathbf{X}^{\prime}\left(\mathbf{I}_{n} \otimes \Sigma\right)^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left(\mathbf{I}_{n} \otimes \Sigma\right)^{-1} \mathbf{y}
\]
with variance-covariance matrix
\[
V\left(\mathbf{b}_{G L S}\right)=\left(\mathbf{X}^{\prime}\left(\mathbf{I}_{n} \otimes \Sigma\right)^{-1} \mathbf{X}\right)^{-1}
\]

In most cases, the error covariance is unknown. The feasible generalized least squares (FGLS) estimate uses \(\hat{\Sigma}\) in place of \(\Sigma\). You can obtain two-step FGLS estimates as follows:

1 Perform OLS regression, and return an estimate \(\hat{\Sigma}\).

2 Perform CWLS regression, using \(\mathbf{C}_{0}=\hat{\Sigma}\).
You can also iterate between these two steps until convergence is reached.
For some data, the OLS estimate \(\hat{\Sigma}\) is positive semidefinite, and has no unique inverse. In this case, you cannot get the FGLS estimate using mvregress. As an alternative, you can use lscov, which uses a generalized inverse to return weighted least squares solutions for positive semidefinite covariance matrices.

\section*{Panel Corrected Standard Errors}

An alternative to FGLS is to use OLS coefficient estimates (which are consistent) and make a standard error correction to improve efficiency. One such standard error adjustment-which does not require inversion of the covariance matrix-is panel corrected standard errors (PCSE) [1]. The panel corrected variance-covariance matrix for OLS estimates is
\[
V_{\text {pcse }}\left(\mathbf{b}_{O L S}\right)=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left(\mathbf{I}_{n} \otimes \Sigma\right) \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)
\]

The PCSE are the square root of the diagonal of this variance-covariance matrix. "Fixed Effects Panel Model with Concurrent Correlation" on page 12-35 illustrates PCSE computation.

\section*{Maximum Likelihood Estimation}
- "Maximum Likelihood Estimates" on page 12-10
- "Standard Errors" on page 12-11

\section*{Maximum Likelihood Estimates}

The default estimation algorithm used by mvregress is maximum likelihood estimation (MLE). The loglikelihood function for the multivariate linear regression model is
\[
\begin{aligned}
\log L(\beta, \Sigma \mid \mathbf{y}, \mathbf{X}) & =\frac{1}{2} n d \log (2 \pi)+\frac{1}{2} n \log (\operatorname{det}(\Sigma)) \\
& +\frac{1}{2} \sum_{i=1}^{n}\left(\mathbf{y}_{i}-\mathbf{X}_{i} \beta\right)^{\prime} \Sigma^{-1}\left(\mathbf{y}_{i}-\mathbf{X}_{i} \beta\right)
\end{aligned}
\]

The MLEs for \(\beta\) and \(\Sigma\) are the values that maximize the loglikelihood objective function.
mvregress finds the MLEs using an iterative two-stage algorithm. At iteration \(m+1\), the estimates are
\[
\mathbf{b}_{M L E}^{(m+1)}=\left(\mathbf{X}^{\prime}\left(\mathbf{I}_{n} \otimes \Sigma^{(m)}\right)^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\left(\mathbf{I}_{n} \otimes \Sigma^{(m)}\right)^{-1} \mathbf{y}
\]
and
\[
\hat{\Sigma}^{(m+1)}=\frac{1}{n} \sum_{i=1}^{n}\left(\mathbf{y}_{i}-\mathbf{X}_{i} \mathbf{b}_{M L E}^{(m+1)}\right)\left(\mathbf{y}_{i}-\mathbf{X}_{i} \mathbf{b}_{M L E}^{(m+1)}\right)^{\prime}
\]

The algorithm terminates when the changes in the coefficient estimates and loglikelihood objective function are less than a specified tolerance, or when the specified maximum number of iterations is reached. The optional name-value pair arguments for changing these convergence criteria are tolbeta, tolobj, and maxiter, respectively.

\section*{Standard Errors}

The variance-covariance matrix of the MLEs is an optional mvregress output. By default, mvregress returns the variance-covariance matrix for only the regression coefficients, but you can also get the variance-covariance matrix of \(\hat{\Sigma}\) using the optional name-value pair 'vartype', 'full'. In this case, mvregress returns the variance-covariance matrix for all \(K\) regression coefficients, and \(d\) or \(d(d+1) / 2\) covariance terms (depending on whether the error covariance is diagonal or full).

By default, the variance-covariance matrix is the inverse of the observed Fisher information matrix (the 'hessian' option). You can request the expected Fisher information matrix using the optional name-value pair 'vartype', 'fisher'. Provided there is no missing response data, the observed and expected Fisher information matrices are the same. If response data is missing, the observed Fisher information accounts for the added uncertainty due to the missing values, whereas the expected Fisher information matrix does not.

The variance-covariance matrix for the regression coefficient MLEs is
\[
V\left(\mathbf{b}_{M L E}\right)=\left(\mathbf{X}^{\prime}\left(\mathbf{I}_{n} \otimes \Sigma\right)^{-1} \mathbf{X}\right)^{-1}
\]
evaluated at the MLE of the error covariance matrix. This is the fourth mvregress output. The standard errors of the MLEs are the square root of the diagonal of this variance-covariance matrix.

For \(\hat{\Sigma}\), let \(\theta\) denote the vector of parameters in the estimated error variance-covariance matrix. For example, if \(d=2\), then:
- If the estimated covariance matrix is diagonal, then \(\theta=\left(\sigma_{1}^{2}, \sigma_{2}^{2}\right)\).
- If the estimated covariance matrix is full, then \(\theta=\left(\sigma_{1}^{2}, \sigma_{12}, \sigma_{2}^{2}\right)\).

The Fisher information matrix for \(\theta, I(\theta)\), has elements
\[
I(\theta)_{u, v}=\frac{1}{2} \operatorname{tr}\left(\Sigma^{-1} \frac{\partial \Sigma}{\partial \theta_{u}} \Sigma^{-1} \frac{\partial \Sigma}{\partial \theta_{v}}\right), u, v=1, \ldots, n_{\theta}
\]
where \(n_{\theta}\) is the length of \(\theta\) (either \(d\) or \(d(d+1) / 2\)). The resulting variance-covariance matrix is
\[
V(\theta)=I(\theta)^{-1} .
\]

When you request the full variance-covariance matrix, mvregress returns (as the fourth output) the block diagonal matrix
\[
\left(\begin{array}{cc}
V\left(\mathbf{b}_{M L E}\right) & \mathbf{0} \\
\mathbf{0} & V(\theta)
\end{array}\right) .
\]

\section*{Missing Response Data}
- "Expectation/Conditional Maximization" on page 12-12
- "Observed Information Matrix" on page 12-14

\section*{Expectation/Conditional Maximization}

If any response values are missing, indicated by NaN, mvregress uses an expectation/conditional maximization (ECM) algorithm for estimation (if
enough data is available). In this case, the algorithm is iterative for both least squares and maximum likelihood estimation. During each iteration, mvregress imputes missing response values using their conditional expectation.

Consider organizing the data so that the joint distribution of the missing and observed responses, denoted \(\tilde{\mathbf{y}}\) and \(\mathbf{y}\) respectively, can be written as
\[
\binom{\tilde{\mathbf{y}}}{\mathbf{y}} \square M V N\left\{\binom{\tilde{\mathbf{x}} \beta}{\mathbf{x} \beta},\left(\begin{array}{cc}
\Sigma_{\tilde{y}} & \Sigma_{\tilde{y} y} \\
\Sigma_{y \tilde{y}} & \Sigma_{y}
\end{array}\right)\right\} .
\]

Using properties of the multivariate normal distribution, the conditional expectation of the missing responses given the observed responses is
\[
\mathrm{E}(\tilde{\mathbf{y}} \mid \mathbf{y})=\tilde{\mathbf{X}} \beta+\Sigma_{\tilde{y} y} \Sigma_{y}^{-1}(\mathbf{y}-\mathbf{X} \beta) .
\]

Also, the variance-covariance matrix of the conditional distribution is
\[
\operatorname{COV}(\tilde{\mathbf{y}} \mid \mathbf{y})=\Sigma_{\tilde{y}}-\Sigma_{\tilde{y} y} \Sigma_{y}^{-1} \Sigma_{y \tilde{y}} .
\]

At each iteration of the ECM algorithm, mvregress uses the parameter values from the previous iteration to:
- Update the regression coefficients using the combined vector of observed responses and conditional expectations of missing responses.
- Update the variance-covariance matrix, adjusting for missing responses using the variance-covariance matrix of the conditional distribution.

Finally, the residuals that mvregress returns for missing responses are the difference between the conditional expectation and the fitted value, both evaluated at the final parameter estimates.

If you prefer to ignore any observations that have missing response values, use the name-value pair 'algorithm', 'mvn'. Note that mvregress always ignores observations that have missing predictor values.

\section*{Observed Information Matrix}

By default, mvregress uses the observed Fisher information matrix (the 'hessian' option) to compute the variance-covariance matrix of the regression parameters. This accounts for the additional uncertainty due to missing response values.

The observed information matrix includes contributions from only the observed responses. That is, the observed Fisher information matrix for the parameters in the error variance-covariance matrix has elements
\[
I(\theta)_{u, v}=\frac{1}{2} \sum_{i=1}^{n} \operatorname{tr}\left(\Sigma_{i}^{-1} \frac{\partial \Sigma_{i}}{\partial \theta_{u}} \Sigma_{i}^{-1} \frac{\partial \Sigma_{i}}{\partial \theta_{v}}\right), u, v=1, \ldots, n_{\theta},
\]
where \(\hat{\Sigma}_{i}\) is the subset of \(\hat{\Sigma}\) corresponding to the observed responses in \(\mathbf{y}_{i}\).

For example, if \(d=3\), but \(y_{i 2}\) is missing, then
\[
\hat{\Sigma}_{i}=\left(\begin{array}{cc}
\hat{\sigma}_{1}^{2} & \hat{\sigma}_{13} \\
\hat{\sigma}_{13} & \hat{\sigma}_{3}^{2}
\end{array}\right) .
\]

The observed Fisher information for the regression coefficients has similar contributions from the design and covariance matrices.

\section*{References}
[1] Beck, N. and J. N. Katz. What to Do (and Not to Do) with Time-Series-Cross-Section Data in Comparative Politics. American Political Science Review, Vol. 89, No. 3, pp. 634-647, 1995.

\section*{See Also mvregress | mvregresslike}

Related
Examples
- "Set Up Multivariate Regression Problems" on page 12-16
- "Multivariate General Linear Model" on page 12-30
- "Fixed Effects Panel Model with Concurrent Correlation" on page 12-35
- "Longitudinal Analysis" on page 12-43

Concepts
- "Multivariate Linear Regression" on page 12-3

\title{
Set Up Multivariate Regression Problems
}

\section*{In this section...}
"Response Matrix" on page 12-16
"Design Matrices" on page 12-21
"Common Multivariate Regression Problems" on page 12-22

\section*{Response Matrix}

To fit a multivariate linear regression model using mvregress, you must set up your response matrix and design matrices in a particular way. Given properly formatted inputs, mvregress can handle a variety of multivariate regression problems.
mvregress expects the \(n\) observations of potentially correlated \(d\)-dimensional responses to be in an \(n\)-by- \(d\) matrix, named \(Y\), for example. That is, set up your responses so that the dependency structure is between observations in the same row. If you specify Y as a vector of length \(n\) (either a row or column vector), then mvregress assumes that \(d=1\), and treats the elements as \(n\) independent observations. It does not model the vector as one realization of a correlated series (such as a time series).

To illustrate how to set up a response matrix, suppose that your multivariate responses are repeated measurements made on subjects at multiple time points, as in the following figure.

Suppose that observations within a subject are correlated.

In this case, set up the response matrix \(Y\) such that each row corresponds to a subject, and each column corresponds to a time point.

\section*{\(d=\) Number of Time Points}

Then again, suppose that observations made on subjects at the same time are correlated (concurrent correlation).

In this case, set up the response matrix \(Y\) such that each row corresponds to a time point, and each column corresponds to a subject.

\section*{\(n=\) Number of Time Points}
\(d=\) Number of Subjects
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & & & & & & \\
& & & & & & \\
& & & & & & \\
& & & & & & \\
& & & & & & \\
\end{tabular}

\section*{Design Matrices}

In the multivariate linear regression model, each \(d\)-dimensional response has a corresponding \(d\)-by- \(K\) design matrix, where \(K\) is the total number of regression coefficients in the model. Depending on the model, the design matrix might be comprised of exogenous predictor variables, dummy variables, lagged responses, or a combination of these and other covariate terms.

Specify the design matrices to mvregress using a length- \(n\) cell array of \(d\)-by- \(K\) arrays, named \(X\), for example. Note that the rows of the arrays in \(X\) correspond to the columns of the response matrix, Y .

- If all \(n\) observations have the same \(d\)-by- \(K\) design matrix, you can specify a cell array containing one \(d\)-by- \(K\) design matrix. In this case, mvregress applies the design matrix to all \(n\) observations. For example, this situation might arise if the predictors are functions of time, and all observations were measured at the same time points.
- In the special case that \(d=1\), you can specify one \(n\)-by- \(K\) design matrix (not in a cell array). However, you should consider using LinearModel.fit to fit regression models to univariate, continuous responses.

The following sections illustrate how to set up the some common multivariate regression problems for estimation using mvregress.

\section*{Common Multivariate Regression Problems}
- "Multivariate General Linear Model" on page 12-22
- "Longitudinal Analysis" on page 12-25
- "Panel Analysis" on page 12-26
- "Seemingly Unrelated Regression" on page 12-27
- "Vector Autoregressive Model" on page 12-28

\section*{Multivariate General Linear Model}

The multivariate general linear model is of the form
\[
\mathbf{Y}_{n \times d}=\mathbf{X}_{n \times(p+1)} \mathbf{B}_{(p+1) \times d}+\mathbf{E}_{n \times d}
\]

In expanded form,
\[
\left[\begin{array}{cccc}
y_{11} & y_{12} & \cdots & y_{1 d} \\
y_{21} & y_{22} & \cdots & y_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
y_{n 1} & y_{n 2} & \cdots & y_{n d}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{11} & x_{12} & \cdots & x_{1 p} \\
1 & x_{21} & x_{22} & \cdots & x_{2 p} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{n 1} & x_{n 2} & \cdots & x_{n p}
\end{array}\right]\left[\begin{array}{cccc}
\beta_{01} & \beta_{02} & \cdots & \beta_{0 d} \\
\beta_{11} & \beta_{12} & \cdots & \beta_{1 d} \\
\vdots & \vdots & \ddots & \vdots \\
\beta_{p 1} & \beta_{p 2} & \cdots & \beta_{p d}
\end{array}\right]+\left[\begin{array}{cccc}
\varepsilon_{11} & \varepsilon_{12} & \cdots & \varepsilon_{1 d} \\
\varepsilon_{21} & \varepsilon_{22} & \cdots & \varepsilon_{2 d} \\
\vdots & \vdots & \ddots & \vdots \\
\varepsilon_{n 1} & \varepsilon_{n 2} & \cdots & \varepsilon_{n d}
\end{array}\right]
\]

That is, each \(d\)-dimensional response has an intercept and \(p\) predictor variables, and each dimension has its own set of regression coefficients. In this form, the least squares solution is \(B=X \backslash Y\). To estimate this model using mvregress, use the \(n\)-by- \(d\) matrix of responses, as above. Reformat the \(n\)-by- \((p+1)\) design matrix into a length- \(n\) cell array of \(d\)-by- \(K\) matrices, where here \(K=(p+1) d\) for an intercept and slopes for each dimension.

For example, suppose \(n=4, d=3\), and \(p=2\) (two predictor terms in addition to an intercept). This figure shows how to format the \(i\) th element in the cell array.
\(\left[\begin{array}{lll}y_{11} & y_{12} & y_{13} \\ y_{21} & y_{22} & y_{23} \\ y_{31} & y_{32} & y_{33} \\ y_{41} & y_{42} & y_{43}\end{array}\right]=\left[\begin{array}{lll}1 & x_{11} & x_{12} \\ 1 & x_{21} & x_{22} \\ 1 & x_{31} & x_{32} \\ 1 & x_{41} & x_{42}\end{array}\right]\left[\begin{array}{lll}\beta_{01} & \beta_{02} & \beta_{03} \\ \beta_{11} & \beta_{12} & \beta_{13} \\ \beta_{21} & \beta_{22} & \beta_{23}\end{array}\right]+\left[\begin{array}{lll}\varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \\ \varepsilon_{41} & \varepsilon_{42} & \varepsilon_{43}\end{array}\right]\)

If you prefer, you can reshape the \(K\)-by- 1 vector of coefficients back into a \((p+1)\)-by- \(d\) matrix after estimation.

To put constraints on the model parameters, adjust the design matrix accordingly. For example, suppose that the three dimensions in the previous example have a common slope. That is, \(\beta_{11}=\beta_{12}=\beta_{13}=\beta_{1}\) and \(\beta_{21}=\beta_{22}=\beta_{23}=\beta_{2}\). In this case, each design matrix is 3-by-5, as shown in the following figure.

\section*{Longitudinal Analysis}

In a longitudinal analysis, you might measure responses on \(n\) subjects at \(d\) time points, with correlation between observations made on the same subject. For example, suppose that you measure responses \(y_{i j}\) at times \(t_{i j}, i=1, \ldots, n\) and \(j=1, \ldots, d\). In addition, suppose that each subject is in one of two groups (such as male or female), specified by the indicator variable \(G_{i}\). You could model \(y_{i j}\) as a function of \(G_{i}\) and \(t_{i j}\), with group-specific intercepts and slopes, as follows:
\[
y_{i j}=\beta_{0}+\beta_{1} G_{i}+\beta_{2} t_{i j}+\beta_{3} G_{i} \times t_{i j}+\varepsilon_{i j}, i=1, \ldots, n ; j=1, \ldots, d,
\]
where
\[
\varepsilon_{i}=\left(\varepsilon_{i 1}, \ldots, \varepsilon_{i d}\right)^{\prime} \square M V N(\mathbf{0}, \Sigma) .
\]

Most longitudinal models include time as an explicit predictor.
To fit this model using mvregress, arrange the responses in an \(n\)-by- \(d\) matrix, where \(n\) is the number of subjects and \(d\) is the number of time points. Specify the design matrices in an \(n\)-length cell array of \(d\)-by- \(K\) matrices, where here \(K\) \(=4\) for the four regression coefficients.

For example, suppose \(d=5\) (five observations per subject). The \(i\) th design matrix and corresponding parameter vector for the specified model are shown in the following figure.

\section*{Panel Analysis}

In a panel analysis, you might measure responses and covariates on \(d\) subjects (such as individuals or countries) at \(n\) time points. For example, suppose you measure responses \(y_{t j}\) and covariates \(x_{t j}\) on subjects \(j=1, \ldots, d\) at times \(t\) \(=1, \ldots, n\). A fixed effects panel model, with subject-specific fixed effects, and concurrent correlation might look like:
\[
y_{t j}=\alpha_{j}+\beta x_{t j}+\varepsilon_{t j}
\]
where
\[
\varepsilon_{t}=\left(\varepsilon_{t 1}, \ldots, \varepsilon_{t d}\right)^{\prime} \square M V N(\mathbf{0}, \Sigma)
\]

In contrast to longitudinal models, the panel analysis model typically includes covariates measured at each time point, instead of using time as an explicit predictor.

To fit this model using mvregress, arrange the responses in an \(n\)-by- \(d\) matrix, such that each column corresponds to a subject. Specify the design matrices in an \(n\)-length cell array of \(d\)-by- \(K\) matrices, where here \(K=d+1\) for the \(d\) intercepts and a slope term.

For example, suppose \(d=4\) (four subjects). The \(t\) th design matrix and corresponding parameter vector are shown in the following figure.

\section*{Seemingly Unrelated Regression}

In a seemingly unrelated regression (SUR), you model \(d\) separate regressions, each with its own intercept and slope, but a common error variance-covariance matrix. For example, suppose you measure responses \(y_{i j}\) and covariates \(x_{i j}\) for regression models \(j=1, \ldots, d\), with \(i=1, \ldots, n\) observations to fit each regression. The SUR model might look like:
\[
y_{i j}=\beta_{0 j}+\beta_{j} x_{i j}+\varepsilon_{i j},
\]
where
\[
\varepsilon_{i}=\left(\varepsilon_{i 1}, \ldots, \varepsilon_{i d}\right)^{\prime} \square M V N(\mathbf{0}, \Sigma) .
\]

This model is very similar to the multivariate general linear model, except that it has different covariates for each dimension.

To fit this model using mvregress, arrange the responses in an \(n\)-by- \(d\) matrix, such that each column has the data for the \(j\) th regression model. Specify the design matrices in an \(n\)-length cell array of \(d\)-by- \(K\) matrices, where here \(K\) \(=2 d\) for \(d\) intercepts and \(d\) slopes.

For example, suppose \(d=3\) (three regressions). The \(i\) th design matrix and corresponding parameter vector are shown in the following figure.
\[
\underbrace{\left[\begin{array}{llllll}
1 & 0 & 0 & x_{i 1} & 0 & 0 \\
0 & 1 & 0 & 0 & x_{i 2} & 0 \\
0 & 0 & 1 & 0 & 0 & x_{i 3}
\end{array}\right]}_{X\{i\}}\left[\begin{array}{l}
\beta_{01} \\
\beta_{02} \\
\beta_{03} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right]
\]

\section*{Vector Autoregressive Model}

The \(\operatorname{VAR}(p)\) vector autoregressive model expresses \(d\)-dimensional time series responses as a linear function of \(p\) lagged \(d\)-dimensional responses from previous times. For example, suppose you measure responses \(y_{t j}\) for time series \(j=1, \ldots, d\) at times \(t=1, \ldots, n\). The \(\operatorname{VAR}(p)\) model might look like:
\[
\left[\begin{array}{c}
y_{t 1} \\
y_{t 2} \\
\vdots \\
y_{t d}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{d}
\end{array}\right]+\left[\begin{array}{cccc}
\varphi_{11}^{(1)} & \varphi_{12}^{(1)} & \cdots & \varphi_{1 d}^{(1)} \\
\vdots & \vdots & \ddots & \vdots \\
\varphi_{d 1}^{(1)} & \varphi_{d 2}^{(1)} & \cdots & \varphi_{d d}^{(1)}
\end{array}\right]\left[\begin{array}{c}
y_{t-1,1} \\
y_{t-1,2} \\
\vdots \\
y_{t-1, d}
\end{array}\right]+\cdots+\left[\begin{array}{ccc}
\varphi_{11}^{(p)} & \varphi_{12}^{(p)} & \cdots
\end{array} \varphi_{1 d}^{(p)} \begin{array}{c}
\vdots \\
\vdots \\
\varphi_{d 1}^{(p)}
\end{array} \varphi_{d 2}^{(p)} \cdots \varphi_{d d}^{(p)}\right]\left[\begin{array}{c}
y_{t-p, 1} \\
y_{t-p, 2} \\
\vdots \\
y_{t-p, d}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{t 1} \\
\varepsilon_{t 2} \\
\vdots \\
\varepsilon_{t d}
\end{array}\right],
\]
where
\[
\varepsilon_{t}=\left(\varepsilon_{t 1}, \ldots, \varepsilon_{t d}\right)^{\prime} \square M V N(\mathbf{0}, \Sigma) .
\]

When estimating vector autoregressive models, you typically need to use the first \(p\) observations to initiate the model, or provide some other presample response values.

To fit this model using mvregress, arrange the responses in an \(n\)-by- \(d\) matrix, such that each column corresponds to a time series. Specify the design matrices in an \(n\)-length cell array of \(d\)-by- \(K\) matrices, where here \(K=d+p d^{2}\).

For example, suppose \(d=2\) (two time series) and \(p=1\) (one lag). The \(t\) th design matrix and corresponding parameter vector are shown in the following figure.

Alternatively, Econometrics Toolbox has functions for fitting and forecasting \(\operatorname{VAR}(p)\) models, including the option to specify exogenous predictor variables.

\section*{See Also}

\section*{Related \\ Examples}

Concepts
mvregress | mvregresslike
- "Multivariate General Linear Model" on page 12-30
- "Fixed Effects Panel Model with Concurrent Correlation" on page 12-35
- "Longitudinal Analysis" on page 12-43
- "Multivariate Linear Regression" on page 12-3
- "Estimation of Multivariate Regression Models" on page 12-6

\section*{Multivariate General Linear Model}

This example shows how to set up a multivariate general linear model for estimation using mvregress.

\section*{Load sample data.}
load('imports-85')
This data contains measurements on a sample of 205 auto imports from 1985. Here, model the bivariate response of city and highway MPG (columns 14 and 15).

Y = X(:,14:15);
[n,d] = size(Y);
For predictors, use wheel base (column 3), curb weight (column 7), and fuel type (column 18). The first two predictors are continuous, and for this example are centered and scaled. Fuel type is a categorical variable with two categories (11 and 20), so a dummy indicator variable is needed for the regression.
\(\mathrm{X} 1=\operatorname{zscore}(\mathrm{X}(:, 3))\);
X2 = zscore(X(:,7));
X3 \(=X(:, 18)==20\);
The variable X3 is coded to have value 1 for the fuel type 20 , and value 0 otherwise.

For convenience, combine the three predictors (wheel base, curb weight, and fuel type indicator) into one design matrix, with an added intercept term.

Xmat \(=\) [ones(n,1) X1 X2 X3];

\section*{Set up design matrices.}

Given these predictors, the multivariate general linear model for the bivariate MPG response is
\[
\left[\begin{array}{cc}
y_{11} & y_{12} \\
y_{21} & y_{22} \\
\vdots & \vdots \\
y_{n 1} & y_{n 2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & x_{11} & x_{12} & x_{13} \\
1 & x_{21} & x_{22} & x_{23} \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_{n 1} & x_{n 2} & x_{n 3}
\end{array}\right]\left[\begin{array}{ll}
\beta_{01} & \beta_{02} \\
\beta_{11} & \beta_{12} \\
\beta_{21} & \beta_{22} \\
\beta_{31} & \beta_{32}
\end{array}\right]+\left[\begin{array}{cc}
\varepsilon_{11} & \varepsilon_{12} \\
\varepsilon_{21} & \varepsilon_{22} \\
\vdots & \vdots \\
\varepsilon_{n 1} & \varepsilon_{n 2}
\end{array}\right]
\]
where \(\varepsilon_{i}=\left(\varepsilon_{i 1}, \varepsilon_{i 2}\right)^{\prime} \square M V N(\mathbf{0}, \Sigma)\). There are \(K=8\) regression coefficients in total.

Create a length \(n=205\) cell array of 2-by-8 (\(d\)-by- \(K\)) matrices for use with mvregress. The \(i\) th matrix in the cell array is
```

    X{i}=[\begin{array}{ccccccccc}{1}&{0}&{\mp@subsup{x}{i1}{}}&{0}&{\mp@subsup{x}{i2}{}}&{0}&{\mp@subsup{x}{i3}{}}&{0}\\{0}&{1}&{0}&{\mp@subsup{x}{i1}{}}&{0}&{\mp@subsup{x}{i2}{}}&{0}&{\mp@subsup{x}{i3}{}}\end{array}].
    Xcell = cell(1,n);
for i = 1:n
Xcell{i} = [kron([Xmat(i,:)],eye(d))];
end

```

Given this specification of the design matrices, the corresponding parameter vector is
\[
\beta=\left[\begin{array}{l}
\beta_{01} \\
\beta_{02} \\
\beta_{11} \\
\beta_{12} \\
\beta_{21} \\
\beta_{22} \\
\beta_{31} \\
\beta_{32}
\end{array}\right] .
\]

\section*{Estimate regression coefficients.}

Fit the model using maximum likelihood estimation.
[beta,sigma, E, V] = mvregress(Xcell, Y);
beta
beta =
33.5476
38.5720
0.9723
0.3950
-6. 3064
- 6.3584
-9.2284
-8. 6663
These coefficient estimates show:
- The expected city and highway MPG for cars of average wheel base, curb weight, and fuel type 11 are 33.5 and 38.6 , respectively. For fuel type 20, the expected city and highway MPG are \(33.5476-9.2284=24.3192\) and \(38.5720-8.6663=29.9057\).
- An increase of one standard deviation in curb weight has almost the same effect on expected city and highway MPG. Given all else is equal, the expected MPG decreases by about 6.3 with each one standard deviation increase in curb weight, for both city and highway MPG.
- For each one standard deviation increase in wheel base, the expected city MPG increases 0.972 , while the expected highway MPG increases by only 0.395 , given all else is equal.

The standard errors for the regression coefficients are the square root of the diagonal of the variance-covariance matrix, V .
```

se = sqrt(diag(V))
se =
0.7365
0.7599
0.3589
0.3702
0.3497
0.3608

```
\[
\begin{aligned}
& 0.7790 \\
& 0.8037
\end{aligned}
\]

You can easily reshape the regression coefficients into the original 4 -by- 2 matrix.
```

B = reshape(beta,2,4)'
B =

| 33.5476 | 38.5720 |
| ---: | ---: |
| 0.9723 | 0.3950 |
| -6.3064 | -6.3584 |
| -9.2284 | -8.6663 |

```

\section*{Check model assumptions.}

Under the model assumptions, \(\mathbf{z}=\mathbf{E} \Sigma^{-1 / 2}\) should be independent, with a bivariate standard normal distribution. In this 2-D case, you can assess the validity of this assumption using a scatter plot.
```

z = E/chol(sigma);
figure()
plot(z(:,1),z(:,2),'.')
title('Standardized Residuals')
hold on
% Overlay standard normal contours
z1 = linspace(-5,5);
z2 = linspace(-5,5);
[zx,zy] = meshgrid(z1,z2);
zgrid = [reshape(zx,100^2,1),reshape(zy,100^2,1)];
zn = reshape(mvnpdf(zgrid),100,100);
[c,h] = contour(zx,zy,zn);
clabel(c,h)

```


Several residuals are larger than expected, but overall, there is little evidence against the multivariate normality assumption.

\section*{See Also}

\section*{Related Examples}

Concepts
mvregress | mvregresslike
- "Set Up Multivariate Regression Problems" on page 12-16
- "Fixed Effects Panel Model with Concurrent Correlation" on page 12-35
- "Longitudinal Analysis" on page 12-43
- "Multivariate Linear Regression" on page 12-3
- "Estimation of Multivariate Regression Models" on page 12-6

\section*{Fixed Effects Panel Model with Concurrent Correlation}

This example shows how to perform panel data analysis using mvregress. First, a fixed effects model with concurrent correlation is fit by ordinary least squares (OLS) to some panel data. Then, the estimated error covariance matrix is used to get panel corrected standard errors for the regression coefficients.

\section*{Load sample data.}

Navigate to the folder containing sample data.
```

cd(matlabroot)
cd('help/toolbox/stats/examples')

```

Load the sample panel data.
load('panelData')
The dataset array, panelData, contains yearly observations on eight cities for 6 years. This is simulated data.

The first variable, Growth, measures economic growth (the response variable). The second and third variables are city and year indicators, respectively. The last variable, Employ, measures employment (the predictor variable).
```

y = panelData.Growth;
city = panelData.City;
year = panelData.Year;
x = panelData.Employ;

```

\section*{Plot the data.}

To look for potential city-specific fixed effects, create a box plot of the response grouped by city.
```

figure()
boxplot(y,city)
xlabel('City')

```


There does not appear to be any systematic differences in the mean response among cities.

To look for potential year-specific fixed effects, create a box plot of the response grouped by year.
```

figure()
boxplot(y,year)
xlabel('Year')

```


Some evidence of systematic differences in the mean response between years seems to exist.

\section*{Format response and design matrices.}

Let \(y_{i j}\) denote the response for city \(j=1, \ldots, d\), in year \(i=1, \ldots, n\). Similarly, \(x_{i j}\) is the corresponding value of the predictor variable. In this example, \(n=\) 6 and \(d=8\).

Consider fitting a year-specific fixed effects model with a constant slope and concurrent correlation among cities in the same year,
\[
y_{i j}=\alpha_{i}+\beta_{1} x_{i j}+\varepsilon_{i j}, i=1, \ldots, n, j=1, \ldots, d,
\]
where \(\varepsilon_{i}=\left(\varepsilon_{i 1}, \ldots, \varepsilon_{i d}\right)^{\prime} \square M V N(\mathbf{0}, \Sigma)\). The concurrent correlation accounts for any unmeasured, time-static factors that might impact growth similarly for some cities. For example, cities with close spatial proximity might be more likely to have similar economic growth.

To fit this model using mvregress, first reshape the response data into an \(n\)-by- \(d\) matrix.
\(\mathrm{n}=6\); \(\mathrm{d}=8\);
\(Y=\operatorname{reshape}(y, n, d)\);

Next, create a length- \(n\) cell array of \(d\)-by- \(K\) design matrices. For this model, there are \(K=7\) parameters (\(d=6\) intercept terms and a slope).

Suppose the vector of parameters is arranged as
\[
\beta=\left(\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{6} \\
\beta_{1}
\end{array}\right) .
\]

In this case, the first design matrix for year 1 looks like
\[
X\{1\}=\left(\begin{array}{ccccc}
1 & 0 & \cdots & 0 & x_{11} \\
1 & 0 & \cdots & 0 & x_{12} \\
\vdots & \vdots & \cdots & 0 & \vdots \\
1 & 0 & \cdots & 0 & x_{18}
\end{array}\right),
\]
and the second design matrix for year 2 looks like
\[
X\{2\}=\left(\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & x_{21} \\
0 & 1 & 0 & \cdots & 0 & x_{22} \\
\vdots & \vdots & 0 & \cdots & 0 & \vdots \\
0 & 1 & 0 & \cdots & 0 & x_{28}
\end{array}\right)
\]

The design matrices for the remaining 4 years are similar.
```

K = 7; N = n*d;
X = cell(n,1);
for i = 1:n
x0 = zeros(d,K-1);
x0(:,i) = 1;
X{i} = [x0,x(i:n:N)];

```
end

\section*{Fit the model.}

Fit the model using ordinary least squares (OLS).
```

[b,sig,E,V] = mvregress(X,Y,'algorithm','cwls');
b
b =

```
 41.6878
 26.1864
 \(-64.5107\)
 11.0924
 \(-59.1872\)
 71.3313
 4.9525

Plot the fitted model.
```

xx = linspace(min(x),max(x));
axx = repmat(b(1:K-1),1,length(xx));
bxx = repmat(b(K)*xx,n,1);
yhat = axx + bxx;
figure()
hPoints = gscatter(x,y,year);
hold on
hLines = plot(xx,yhat);
for i=1:n
set(hLines(i),'color',get(hPoints(i),'color'));
end
hold off

```


The model with year-specific intercepts and common slope appears to fit the data quite well.

\section*{Residual correlation.}

Plot the residuals, grouped by year.
```

figure()
gscatter(year,E(:),city)
ylabel('Residuals')

```


The residual plot suggests concurrent correlation is present. For examples, cities \(1,2,3\), and 4 are consistently above or below average as a group in any given year. The same is true for the collection of cities \(5,6,7\), and 8 . As seen in the exploratory plots, there are no systematic city-specific effects.

\section*{Panel corrected standard errors.}

Use the estimated error variance-covariance matrix to compute panel corrected standard errors for the regression coefficients.
```

XX = cell2mat(X);
S = kron(eye(n),sig);
Vpcse = inv(XX'*XX)*XX'*S*XX*inv(XX'*XX);
se = sqrt(diag(Vpcse))
se =

```
8.66989.34069.4286
9.5729
8.82070.1527
See Also mvregress | mvregresslike
Related - "Set Up Multivariate Regression Problems" on page 12-16Examples- "Multivariate General Linear Model" on page 12-30- "Longitudinal Analysis" on page 12-43
Concepts - "Multivariate Linear Regression" on page 12-3- "Estimation of Multivariate Regression Models" on page 12-6

\section*{Longitudinal Analysis}

This example shows how to perform longitudinal analysis using mvregress.

\section*{Load sample data.}

Navigate to the folder containing sample data.
```

cd(matlabroot)
cd('help/toolbox/stats/examples')

```

Load the sample longitudinal data.
load('longitudinalData')
The matrix \(Y\) contains response data for 16 individuals. The response is the blood level of a drug measured at five time points (\(t=0,2,4,6\), and 8). Each row of \(Y\) corresponds to an individual, and each column corresponds to a time point. The first eight subjects are female, and the second eight subjects are male. This is simulated data.

Plot the data for all 16 subjects.
```

figure()
t = [0,2,4,6,8];
plot(t,Y)
hold on
hf = plot(t,Y(1:8,:),'^');
hm = plot(t,Y(9:16,:),'o');
legend([hf(1),hm(1)],'Female','Male','Location','NorthEast')
title('Longitudinal Response')
ylabel('Blood Drug Level')
xlabel('Time')
hold off

```


\section*{Format design matrices.}

Let \(y_{i j}\) denote the response for individual \(i=1, \ldots, n\) measured at times \(t_{i j}\), \(j=1, \ldots, d\). In this example, \(n=16\) and \(d=5\). Let \(G_{i}\) denote the gender of individual \(i\), where \(G_{i}=1\) for males and 0 for females.

Consider fitting a quadratic longitudinal model, with a separate slope and intercept for each gender,
\[
y_{i j}=\beta_{0}+\beta_{1} G_{i}+\beta_{2} t_{i j}+\beta_{3} t_{i j}^{2}+\beta_{4} G_{i} \times t_{i j}+\beta_{5} G_{i} \times t_{i j}^{2}+\varepsilon_{i j}
\]
where \(\varepsilon_{i}=\left(\varepsilon_{i 1}, \ldots, \varepsilon_{i d}\right)^{\prime} \square M V N(\mathbf{0}, \Sigma)\). The error correlation accounts for clustering within an individual.

To fit this model using mvregress, the response data should be in an \(n\)-by- \(d\) matrix. Y is already in the proper format.

Next, create a length- \(n\) cell array of \(d\)-by- \(K\) design matrices. For this model, there are \(K=6\) parameters.

For individual \(i\), the 5 -by- 6 design matrix is
\[
X\{i\}=\left(\begin{array}{cccccc}
1 & G_{i} & t_{i 1} & t_{i 1}^{2} & G_{i} \times t_{i 1} & G_{i} \times t_{i 1}^{2} \\
1 & G_{i} & t_{i 2} & t_{i 2}^{2} & G_{i} \times t_{i 2} & G_{i} \times t_{i 2}^{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & G_{i} & t_{i 5} & t_{i 5}^{2} & G_{i} \times t_{i 5} & G_{i} \times t_{i 5}^{2}
\end{array}\right),
\]
corresponding to the parameter vector
\[
\beta=\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{5}
\end{array}\right)
\]

The matrix X 1 has the design matrix for a female, and X 2 has the design matrix for a male.

X1
\(\mathrm{X} 1=\)
\begin{tabular}{rrrrrr}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 2 & 4 & 0 & 0 \\
1 & 0 & 4 & 16 & 0 & 0 \\
1 & 0 & 6 & 36 & 0 & 0 \\
1 & 0 & 8 & 64 & 0 & 0
\end{tabular}

X2

X2 =
\begin{tabular}{rrrrrr}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 2 & 4 & 2 & 4 \\
1 & 1 & 4 & 16 & 4 & 16 \\
1 & 1 & 6 & 36 & 6 & 36 \\
1 & 1 & 8 & 64 & 8 & 64
\end{tabular}

Create a cell array of design matrices. The first eight individuals are females, and the second eight are males.
```

X = cell(8,1);
X(1:8) = {X1};
X(9:16) = {X2};

```

\section*{Fit the model.}

Fit the model using maximum likelihood estimation. Display the estimated coefficients and standard errors.
```

[b,sig,E,V,loglikF] = mvregress(X,Y);
[b sqrt(diag(V))]
ans =

| 18.8619 | 0.7432 |
| ---: | ---: |
| 13.0942 | 1.0511 |
| 2.5968 | 0.2845 |
| -0.3771 | 0.0398 |
| -0.5929 | 0.4023 |
| 0.0290 | 0.0563 |

```

Plot the fitted lines for females and males.
```

Yhatf = X1*b;
Yhatm = X2*b;
figure()
plot(t,Y)
hold on
plot(t,Y(1:8,:),'^',t,Y(9:16,:),'o')
hf = plot(t,Yhatf,'k--','LineWidth',3);
hm = plot(t,Yhatm,'k','LineWidth',3);
legend([hf,hm],'Females','Males','Location','NorthEast')
title('Longitudinal Response')
ylabel('Blood Drug Level')

```
```

xlabel('Time')
hold off

```


The coefficients on the interaction terms (in the last two rows of b) do not appear significant. You can use the value of the loglikelihood objective function for this fit, loglikF, to compare this model to one without the interaction terms using a likelihood ratio test.

\section*{Fit a reduced model.}

Fit the model without interaction terms,
\[
y_{i j}=\beta_{0}+\beta_{1} G_{i}+\beta_{2} t_{i j}+\beta_{3} t_{i j}^{2}+\varepsilon_{i j}
\]
where \(\varepsilon_{i}=\left(\varepsilon_{i 1}, \ldots, \varepsilon_{i d}\right)^{\prime} \square M V N(\mathbf{0}, \Sigma)\).
This model has four coefficients, which correspond to the first four columns of the design matrices X1 and X2 (for females and males, respectively).
```

X1R = X1(:,1:4);
X2R = X2(:,1:4);
XR = cell(8,1);
XR(1:8) = {X1R};
XR(9:16) = {X2R};

```

Fit this model using maximum likelihood estimation. Display the estimated coefficients and their standard errors.
```

[bR,sigR,ER,VR,loglikR] = mvregress(XR,Y);

```
[bR, sqrt(diag(VR))]
ans \(=\)
\begin{tabular}{rr}
19.3765 & 0.6898 \\
12.0936 & 0.8591 \\
2.2919 & 0.2139 \\
-0.3623 & 0.0283
\end{tabular}

\section*{Conduct a likelihood ratio test.}

Compare the two models using a likelihood ratio test. The null hypothesis is that the reduced model is sufficient. The alternative is that the reduced model is inadequate (compared to the full model with the interaction terms).

The likelihood ratio test statistic is compared to a chi-squared distribution with two degrees of freedom (for the two coefficients being dropped).
```

LR = 2*(loglikF-loglikR);
pval = 1 - chi2cdf(LR,2)
pval =
0.0803

```

The \(p\)-value 0.0803 indicates that the null hypothesis is not rejected at the \(5 \%\) significance level. Therefore, there is insufficient evidence that the extra terms improve the fit.
Related - "Set Up Multivariate Regression Problems" on page 12-16Examples
- "Multivariate General Linear Model" on page 12-30
- "Fixed Effects Panel Model with Concurrent Correlation" on page 12-35
Concepts • "Multivariate Linear Regression" on page 12-3
- "Estimation of Multivariate Regression Models" on page 12-6

\section*{Multidimensional Scaling}

\author{
In this section... \\ "Introduction to Multidimensional Scaling" on page 12-50 \\ "Classical Multidimensional Scaling" on page 12-50 \\ "Nonclassical Multidimensional Scaling" on page 12-55 \\ "Nonmetric Multidimensional Scaling" on page 12-57
}

\section*{Introduction to Multidimensional Scaling}

One of the most important goals in visualizing data is to get a sense of how near or far points are from each other. Often, you can do this with a scatter plot. However, for some analyses, the data that you have might not be in the form of points at all, but rather in the form of pairwise similarities or dissimilarities between cases, observations, or subjects. There are no points to plot.

Even if your data are in the form of points rather than pairwise distances, a scatter plot of those data might not be useful. For some kinds of data, the relevant way to measure how near two points are might not be their Euclidean distance. While scatter plots of the raw data make it easy to compare Euclidean distances, they are not always useful when comparing other kinds of inter-point distances, city block distance for example, or even more general dissimilarities. Also, with a large number of variables, it is very difficult to visualize distances unless the data can be represented in a small number of dimensions. Some sort of dimension reduction is usually necessary.

Multidimensional scaling (MDS) is a set of methods that address all these problems. MDS allows you to visualize how near points are to each other for many kinds of distance or dissimilarity metrics and can produce a representation of your data in a small number of dimensions. MDS does not require raw data, but only a matrix of pairwise distances or dissimilarities.

\section*{Classical Multidimensional Scaling}
- "Introduction to Classical Multidimensional Scaling" on page 12-51
- "Example: Multidimensional Scaling" on page 12-53

\section*{Introduction to Classical Multidimensional Scaling}

The function cmdscale performs classical (metric) multidimensional scaling, also known as principal coordinates analysis. cmdscale takes as an input a matrix of inter-point distances and creates a configuration of points. Ideally, those points are in two or three dimensions, and the Euclidean distances between them reproduce the original distance matrix. Thus, a scatter plot of the points created by cmdscale provides a visual representation of the original distances.

As a very simple example, you can reconstruct a set of points from only their inter-point distances. First, create some four dimensional points with a small component in their fourth coordinate, and reduce them to distances.
```

X = [ normrnd(0,1,10,3), normrnd(0,.1,10,1) ];
D = pdist(X,'euclidean');

```

Next, use cmdscale to find a configuration with those inter-point distances. cmdscale accepts distances as either a square matrix, or, as in this example, in the vector upper-triangular form produced by pdist.
[Y,eigvals] = cmdscale(D);
cmdscale produces two outputs. The first output, Y , is a matrix containing the reconstructed points. The second output, eigvals, is a vector containing the sorted eigenvalues of what is often referred to as the "scalar product matrix," which, in the simplest case, is equal to \(Y^{*} Y^{\prime}\). The relative magnitudes of those eigenvalues indicate the relative contribution of the corresponding columns of \(Y\) in reproducing the original distance matrix \(D\) with the reconstructed points.
```

format short g
[eigvals eigvals/max(abs(eigvals))]
ans =
12.623 1
4.3699 0.34618
1.9307 0.15295
0.025884 0.0020505
1.7192e-015 1.3619e-016
6.8727e-016 5.4445e-017

```
```

4.4367e-017 3.5147e-018
-9.2731e-016 -7.3461e-017
-1.327e-015 -1.0513e-016
-1.9232e-015 -1.5236e-016

```

If eigvals contains only positive and zero (within round-off error) eigenvalues, the columns of \(Y\) corresponding to the positive eigenvalues provide an exact reconstruction of D, in the sense that their inter-point Euclidean distances, computed using pdist, for example, are identical (within round-off) to the values in \(D\).
```

maxerr4 = max(abs(D - pdist(Y))) % exact reconstruction
maxerr4 =
2.6645e-015

```

If two or three of the eigenvalues in eigvals are much larger than the rest, then the distance matrix based on the corresponding columns of \(Y\) nearly reproduces the original distance matrix D. In this sense, those columns form a lower-dimensional representation that adequately describes the data. However it is not always possible to find a good low-dimensional reconstruction.
```

% good reconstruction in 3D
maxerr3 = max(abs(D - pdist(Y(:,1:3))))
maxerr3 =
0.029728
% poor reconstruction in 2D
maxerr2 = max(abs(D - pdist(Y(:,1:2))))
maxerr2 =
0.91641

```

The reconstruction in three dimensions reproduces \(D\) very well, but the reconstruction in two dimensions has errors that are of the same order of magnitude as the largest values in \(D\).
```

max(max(D))
ans =
3.4686

```

Often, eigvals contains some negative eigenvalues, indicating that the distances in D cannot be reproduced exactly. That is, there might not be any configuration of points whose inter-point Euclidean distances are given by D. If the largest negative eigenvalue is small in magnitude relative to the largest positive eigenvalues, then the configuration returned by cmdscale might still reproduce \(D\) well.

\section*{Example: Multidimensional Scaling}

Given only the distances between 10 US cities, cmdscale can construct a map of those cities. First, create the distance matrix and pass it to cmdscale. In this example, D is a full distance matrix: it is square and symmetric, has positive entries off the diagonal, and has zeros on the diagonal.
```

cities = ...
{'Atl','Chi','Den','Hou','LA','Mia','NYC','SF', 'Sea', 'WDC'};
D = [ 0 0 587 1212 701 1936 604 748 2139 2182 543;
587 0 920 940 1745 1188 713 1858 1737 597;
1212 920 0 879 831 1726 1631 949 1021 1494;
701 940 879 0 1374 968 1420 1645 1891 1220;
1936 1745 831 1374 0 2339 2451 347 959 2300;
604 1188 1726 968 2339 0 1092 2594 2734 923;
748 713 1631 1420 2451 1092 0 2571 2408 205;
2139 1858 949 1645 347 2594 2571 0 678 2442;
2182 1737 1021 1891 959 2734 2408 678 0 2329;
543 597 1494 1220 2300 923 205 2442 2329 0];
[Y,eigvals] = cmdscale(D);

```

Next, look at the eigenvalues returned by cmdscale. Some of these are negative, indicating that the original distances are not Euclidean. This is because of the curvature of the earth.
```

format short g
[eigvals eigvals/max(abs(eigvals))]
ans =
9.5821e+006 1
1.6868e+006 0.17604
8157.3 0.0008513
1432.9 0.00014954
508.67 5.3085e-005
25.143 2.624e-006

```
```

5.3394e-010 5.5722e-017
-897.7 -9.3685e-005
-5467.6 -0.0005706
-35479 -0.0037026

```

However, in this case, the two largest positive eigenvalues are much larger in magnitude than the remaining eigenvalues. So, despite the negative eigenvalues, the first two coordinates of \(Y\) are sufficient for a reasonable reproduction of \(D\).
```

Dtriu = D(find(tril(ones(10),-1)))';
maxrelerr = max(abs(Dtriu-pdist(Y(:,1:2))))./max(Dtriu)
maxrelerr =
0.0075371

```

Here is a plot of the reconstructed city locations as a map. The orientation of the reconstruction is arbitrary. In this case, it happens to be close to, although not exactly, the correct orientation.
```

plot(Y(:,1),Y(:,2),'.')
text(Y(:,1)+25,Y(:,2),cities)
xlabel('Miles')
ylabel('Miles')

```


\section*{Nonclassical Multidimensional Scaling}

The function mdscale performs nonclassical multidimensional scaling. As with cmdcale, you use mdscale either to visualize dissimilarity data for which no "locations" exist, or to visualize high-dimensional data by reducing its dimensionality. Both functions take a matrix of dissimilarities as an input and produce a configuration of points. However, mdscale offers a choice of different criteria to construct the configuration, and allows missing data and weights.

For example, the cereal data include measurements on 10 variables describing breakfast cereals. You can use mdscale to visualize these data in two dimensions. First, load the data. For clarity, this example code selects a subset of 22 of the observations.
```

load cereal.mat
X = [Calories Protein Fat Sodium Fiber ...
Carbo Sugars Shelf Potass Vitamins];

```
```

% Take a subset from a single manufacturer
mfg1 = strcmp('G',cellstr(Mfg));
X = X(mfg1,:);
size(X)
ans =
22 10

```

Then use pdist to transform the 10 -dimensional data into dissimilarities. The output from pdist is a symmetric dissimilarity matrix, stored as a vector containing only the (\(23 * 22 / 2\)) elements in its upper triangle.
```

dissimilarities = pdist(zscore(X),'cityblock');
size(dissimilarities)
ans =
1 231

```

This example code first standardizes the cereal data, and then uses city block distance as a dissimilarity. The choice of transformation to dissimilarities is application-dependent, and the choice here is only for simplicity. In some applications, the original data are already in the form of dissimilarities.

Next, use mdscale to perform metric MDS. Unlike cmdscale, you must specify the desired number of dimensions, and the method to use to construct the output configuration. For this example, use two dimensions. The metric STRESS criterion is a common method for computing the output; for other choices, see the mdscale reference page in the online documentation. The second output from mdscale is the value of that criterion evaluated for the output configuration. It measures the how well the inter-point distances of the output configuration approximate the original input dissimilarities:
```

[Y,stress] =...
mdscale(dissimilarities,2,'criterion','metricstress');
stress
stress =
0.1856

```

A scatterplot of the output from mdscale represents the original 10 -dimensional data in two dimensions, and you can use the gname function to label selected points:
```

plot(Y(:,1),Y(:,2),'o','LineWidth',2);

```
gname (Name (mfg1))

\section*{Nonmetric Multidimensional Scaling}

Metric multidimensional scaling creates a configuration of points whose inter-point distances approximate the given dissimilarities. This is sometimes too strict a requirement, and non-metric scaling is designed to relax it a bit. Instead of trying to approximate the dissimilarities themselves, non-metric scaling approximates a nonlinear, but monotonic, transformation of them. Because of the monotonicity, larger or smaller distances on a plot of the output will correspond to larger or smaller dissimilarities, respectively. However, the nonlinearity implies that mdscale only attempts to preserve the
ordering of dissimilarities. Thus, there may be contractions or expansions of distances at different scales.

You use mdscale to perform nonmetric MDS in much the same way as for metric scaling. The nonmetric STRESS criterion is a common method for computing the output; for more choices, see the mdscale reference page in the online documentation. As with metric scaling, the second output from mdscale is the value of that criterion evaluated for the output configuration. For nonmetric scaling, however, it measures the how well the inter-point distances of the output configuration approximate the disparities. The disparities are returned in the third output. They are the transformed values of the original dissimilarities:
```

[Y,stress,disparities] = ...
mdscale(dissimilarities,2,'criterion','stress');
stress
stress =
0.1562

```

To check the fit of the output configuration to the dissimilarities, and to understand the disparities, it helps to make a Shepard plot:
```

distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...
dissimilarities(ord),disparities(ord),'r.-', ...
[0 25],[0 25],'k-')
xlabel('Dissimilarities')
ylabel('Distances/Disparities')
legend({'Distances' 'Disparities' '1:1 Line'},...
'Location','NorthWest');

```


This plot shows that mdscale has found a configuration of points in two dimensions whose inter-point distances approximates the disparities, which in turn are a nonlinear transformation of the original dissimilarities. The concave shape of the disparities as a function of the dissimilarities indicates that fit tends to contract small distances relative to the corresponding dissimilarities. This may be perfectly acceptable in practice.
mdscale uses an iterative algorithm to find the output configuration, and the results can often depend on the starting point. By default, mdscale uses cmdscale to construct an initial configuration, and this choice often leads to a globally best solution. However, it is possible for mdscale to stop at a configuration that is a local minimum of the criterion. Such
cases can be diagnosed and often overcome by running mdscale multiple times with different starting points. You can do this using the 'start' and 'replicates' parameters. The following code runs five replicates of MDS, each starting at a different randomly-chosen initial configuration. The criterion value is printed out for each replication; mdscale returns the configuration with the best fit.
```

opts = statset('Display','final');
[Y,stress] =...
mdscale(dissimilarities,2,'criterion','stress',...
'start','random','replicates',5,'Options',opts);
3 5 iterations, Final stress criterion = 0.156209
3 1 ~ i t e r a t i o n s , ~ F i n a l ~ s t r e s s ~ c r i t e r i o n ~ = ~ 0 . 1 5 6 2 0 9 ~
4 8 iterations, Final stress criterion = 0.171209
3 3 iterations, Final stress criterion = 0.175341
3 2 iterations, Final stress criterion = 0.185881

```

Notice that mdscale finds several different local solutions, some of which do not have as low a stress value as the solution found with the cmdscale starting point.

\section*{Procrustes Analysis}

\author{
In this section... \\ "Compare Landmark Data" on page 12-61 \\ "Data Input" on page 12-61 \\ "Preprocess Data for Accurate Results" on page 12-62 \\ "Compare Handwritten Shapes" on page 12-63
}

\section*{Compare Landmark Data}

The procrustes function analyzes the distribution of a set of shapes using Procrustes analysis. This analysis method matches landmark data (geometric locations representing significant features in a given shape) to calculate the best shape-preserving Euclidian transformations. These transformations minimize the differences in location between compared landmark data.

Procrustes analysis is also useful in conjunction with multidimensional scaling. In "Example: Multidimensional Scaling" on page 12-53 there is an observation that the orientation of the reconstructed points is arbitrary. Two different applications of multidimensional scaling could produce reconstructed points that are very similar in principle, but that look different because they have different orientations. The procrustes function transforms one set of points to make them more comparable to the other.

\section*{Data Input}

The procrustes function takes two matrices as input:
- The target shape matrix \(X\) has dimension \(n \times p\), where \(n\) is the number of landmarks in the shape and \(p\) is the number of measurements per landmark.
- The comparison shape matrix \(Y\) has dimension \(n \times q\) with \(q \leq p\). If there are fewer measurements per landmark for the comparison shape than the target shape (\(q<p\)), the function adds columns of zeros to \(Y\), yielding an \(n \times p\) matrix.

The equation to obtain the transformed shape, \(Z\), is
\[
\begin{equation*}
Z=b Y T+c \tag{12-1}
\end{equation*}
\]
where:
- \(b\) is a scaling factor that stretches \((b>1)\) or shrinks \((b<1)\) the points.
- \(T\) is the orthogonal rotation and reflection matrix.
- \(c\) is a matrix with constant values in each column, used to shift the points.

The procrustes function chooses \(b, T\), and \(c\) to minimize the distance between the target shape \(X\) and the transformed shape \(Z\) as measured by the least squares criterion:
\[
\sum_{i=1}^{n} \sum_{j=1}^{p}\left(X_{i j}-Z_{i j}\right)^{2}
\]

\section*{Preprocess Data for Accurate Results}

Procrustes analysis is appropriate when all \(p\) measurement dimensions have similar scales. The analysis would be inaccurate, for example, if the columns of \(Z\) had different scales:
- The first column is measured in milliliters ranging from 2,000 to 6,000 .
- The second column is measured in degrees Celsius ranging from 10 to 25 .
- The third column is measured in kilograms ranging from 50 to 230.

In such cases, standardize your variables by:
1 Subtracting the sample mean from each variable.
2 Dividing each resultant variable by its sample standard deviation.
Use the zscore function to perform this standardization.

\section*{Compare Handwritten Shapes}

In this example, use Procrustes analysis to compare two handwritten number threes. Visually and analytically explore the effects of forcing size and reflection changes as follows:
- "Step 1: Load and Display the Original Data" on page 12-63
- "Step 2: Calculate the Best Transformation" on page 12-64
- "Step 3: Examine the Similarity of the Two Shapes" on page 12-65
- "Step 4: Restrict the Form of the Transformations" on page 12-67

\section*{Step 1: Load and Display the Original Data}

Input landmark data for two handwritten number threes:
A = [11 39;17 42;25 42;25 40;23 36;19 35;30 34;35 29;...
30 20;18 19];
B = [15 31;20 37;30 40;29 35;25 29;29 31;31 31;35 20;...
29 10;25 18];
Create \(X\) and \(Y\) from \(A\) and \(B\), moving \(B\) to the side to make each shape more visible:
\(X=A ;\)
\(Y=B+\operatorname{repmat}([250], 10,1) ;\)
Plot the shapes, using letters to designate the landmark points. Lines in the figure join the points to indicate the drawing path of each shape.
```

plot(X(:,1), X(:,2),'r-', Y(:,1), Y(:,2),'b-');
text(X(:,1), X(:,2),('abcdefghij')')
text(Y(:,1), Y(:,2),('abcdefghij')')
legend('X = Target','Y = Comparison','location','SE')
set(gca,'YLim',[0 55],'XLim',[0 65]);

```


\section*{Step 2: Calculate the Best Transformation}

Use Procrustes analysis to find the transformation that minimizes distances between landmark data points.

Call procrustes as follows:
[d, Z, tr] = procrustes(X,Y);
The outputs of the function are:
- d - A standardized dissimilarity measure.)
- Z - A matrix of the transformed landmarks.
- tr - A structure array of the computed transformation with fields \(\mathrm{T}, \mathrm{b}\), and c which correspond to the transformation equation, Equation 12-1.

Visualize the transformed shape, Z , using a dashed blue line:
```

plot(X(:,1), X(:,2),'r-', Y(:,1), Y(:,2),'b-',...
Z(:,1),Z(:,2),'b:');
text(X(:,1), X(:,2),('abcdefghij')')
text(Y(:,1), Y(:,2),('abcdefghij')')
text(Z(:,1), Z(:,2),('abcdefghij')')
legend('X = Target','Y = Comparison',...
'Z = Transformed','location','SW')
set(gca,'YLim',[0 55],'XLim',[0 65]);

```


\section*{Step 3: Examine the Similarity of the Two Shapes}

Use two different numerical values to assess the similarity of the target shape and the transformed shape.

Dissimilarity Measure d. The dissimilarity measure d gives a number between 0 and 1 describing the difference between the target shape and the transformed shape. Values near 0 imply more similar shapes, while values near 1 imply dissimilarity. For this example:
d \(=\)
0.1502

The small value of \(d\) in this case shows that the two shapes are similar.
procrustes calculates \(d\) by comparing the sum of squared deviations between the set of points with the sum of squared deviations of the original points from their column means:
```

numerator = sum(sum((X-Z).^2))
numerator =
166.5321
denominator = sum(sum(bsxfun(@minus,X,mean(X)).^2))
denominator =
1.1085e+003
ratio = numerator/denominator
ratio =
0.1502

```

Note The resulting measure \(d\) is independent of the scale of the size of the shapes and takes into account only the similarity of landmark data. "Examine the Scaling Measure b" on page 12-66 shows how to examine the size similarity of the shapes.

Examine the Scaling Measure b. The target and comparison threes in the previous figure visually show that the two numbers are of a similar size. The closeness of calculated value of the scaling factor \(b\) to 1 supports this observation as well:
```

tr.b
ans =
0.9291

```

The sizes of the target and comparison shapes appear similar. This visual impression is reinforced by the value of \(b=0.93\), which implies that the best transformation results in shrinking the comparison shape by a factor . 93 (only 7\%).

\section*{Step 4: Restrict the Form of the Transformations}

Explore the effects of manually adjusting the scaling and reflection coefficients.

Fix the Scaling Factor \(\mathbf{b}=\mathbf{1}\). Force b to equal 1 (set 'Scaling' to false) to examine the amount of dissimilarity in size of the target and transformed figures:
```

ds = procrustes(X,Y,'Scaling',false)
ds =
0.1552

```

In this case, setting 'Scaling' to false increases the calculated value of d only 0.0049 , which further supports the similarity in the size of the two number threes. A larger increase in d would have indicated a greater size discrepancy.

Force a Reflection in the Transformation. This example requires only a rotation, not a reflection, to align the shapes. You can show this by observing that the determinant of the matrix T is 1 in this analysis:
```

det(tr.T)
ans =
1.0000

```

If you need a reflection in the transformation, the determinant of T is -1 . You can force a reflection into the transformation as follows:
```

[dr,Zr,trr] = procrustes(X,Y,'Reflection',true);
dr
dr =

```
\[
0.8130
\]

The d value increases dramatically, indicating that a forced reflection leads to a poor transformation of the landmark points. A plot of the transformed shape shows a similar result:
- The landmark data points are now further away from their target counterparts.
- The transformed three is now an undesirable mirror image of the target three.
```

plot(X(:,1), X(:,2),'r-', Y(:,1), Y(:,2),'b-',...
Zr(:,1),Zr(:,2),'b:');
text(X(:,1), X(:,2),('abcdefghij')')
text(Y(:,1), Y(:,2),('abcdefghij')')
text(Zr(:,1), Zr(:,2),('abcdefghij')')
legend('X = Target','Y = Comparison',...
'Z = Transformed','location','SW')
set(gca,'YLim',[0 55],'XLim',[0 65]);

```


It appears that the shapes might be better matched if you flipped the transformed shape upside down. Flipping the shapes would make the transformation even worse, however, because the landmark data points would be further away from their target counterparts. From this example, it is clear that manually adjusting the scaling and reflection parameters is generally not optimal.

\section*{Feature Selection}

\author{
In this section... \\ "Introduction to Feature Selection" on page 12-70 \\ "Sequential Feature Selection" on page 12-70
}

\section*{Introduction to Feature Selection}

Feature selection reduces the dimensionality of data by selecting only a subset of measured features (predictor variables) to create a model. Selection criteria usually involve the minimization of a specific measure of predictive error for models fit to different subsets. Algorithms search for a subset of predictors that optimally model measured responses, subject to constraints such as required or excluded features and the size of the subset.

Feature selection is preferable to feature transformation when the original units and meaning of features are important and the modeling goal is to identify an influential subset. When categorical features are present, and numerical transformations are inappropriate, feature selection becomes the primary means of dimension reduction.

\section*{Sequential Feature Selection}
- "Introduction to Sequential Feature Selection" on page 12-70
- "Example: Sequential Feature Selection" on page 12-71

\section*{Introduction to Sequential Feature Selection}

A common method of feature selection is sequential feature selection. This method has two components:
- An objective function, called the criterion, which the method seeks to minimize over all feasible feature subsets. Common criteria are mean squared error (for regression models) and misclassification rate (for classification models).
- A sequential search algorithm, which adds or removes features from a candidate subset while evaluating the criterion. Since an exhaustive
comparison of the criterion value at all \(2^{n}\) subsets of an \(n\)-feature data set is typically infeasible (depending on the size of \(n\) and the cost of objective calls), sequential searches move in only one direction, always growing or always shrinking the candidate set.

The method has two variants:
- Sequential forward selection (SFS), in which features are sequentially added to an empty candidate set until the addition of further features does not decrease the criterion.
- Sequential backward selection (SBS), in which features are sequentially removed from a full candidate set until the removal of further features increase the criterion.

Stepwise regression is a sequential feature selection technique designed specifically for least-squares fitting. The functions stepwise and stepwisefit make use of optimizations that are only possible with least-squares criteria. Unlike generalized sequential feature selection, stepwise regression may remove features that have been added or add features that have been removed.

The Statistics Toolbox function sequentialfs carries out sequential feature selection. Input arguments include predictor and response data and a function handle to a file implementing the criterion function. Optional inputs allow you to specify SFS or SBS, required or excluded features, and the size of the feature subset. The function calls cvpartition and crossval to evaluate the criterion at different candidate sets.

\section*{Example: Sequential Feature Selection}

For example, consider a data set with 100 observations of 10 predictors. The following generates random data from a logistic model, with a binomial distribution of responses at each set of values for the predictors. Some coefficients are set to zero so that not all of the predictors affect the response:
```

n = 100;
m = 10;
X = rand(n,m);
b = [11 0 0 2 .5 0 0 0.1 0 1];
Xb}= X*\mp@subsup{b}{}{\prime}
p = 1./(1+exp(-Xb));

```
```

N = 50;
y = binornd(N,p);

```

The glmfit function fits a logistic model to the data:
```

Y = [y N*ones(size(y))];
[bO,devO,stats0] = glmfit(X,Y,'binomial');
% Display coefficient estimates and their standard errors:
modelO = [bO statsO.se]
model0 =
0.3115 0.2596
0.9614 0.1656
-0.1100 0.1651
-0.2165 0.1683
1.9519 0.1809
0.5683 0.2018
-0.0062 0.1740
0.0651 0.1641
-0.1034 0.1685
0.0017 0.1815
0.7979 0.1806
% Display the deviance of the fit:
dev0
dev0 =
101.2594

```

This is the full model, using all of the features (and an initial constant term). Sequential feature selection searches for a subset of the features in the full model with comparative predictive power.

First, you must specify a criterion for selecting the features. The following function, which calls glmfit and returns the deviance of the fit (a generalization of the residual sum of squares) is a useful criterion in this case:
```

function dev = critfun(X,Y)
[b,dev] = glmfit(X,Y,'binomial');

```

You should create this function as a file on the MATLAB path.

The function sequentialfs performs feature selection, calling the criterion function via a function handle:
```

maxdev = chi2inv(.95,1);
opt = statset('display','iter',...
'TolFun',maxdev,...
'TolTypeFun', 'abs');
inmodel = sequentialfs(@critfun,X,Y,···
'cv','none',...
'nullmodel',true,...
'options',opt,...
'direction','forward');
Start forward sequential feature selection:
Initial columns included: none
Columns that can not be included: none
Step 1, used initial columns, criterion value 309.118
Step 2, added column 4, criterion value 180.732
Step 3, added column 1, criterion value 138.862
Step 4, added column 10, criterion value 114.238
Step 5, added column 5, criterion value 103.503
Final columns included: 14510

```

The iterative display shows a decrease in the criterion value as each new feature is added to the model. The final result is a reduced model with only four of the original ten features: columns \(1,4,5\), and 10 of X . These features are indicated in the logical vector inmodel returned by sequentialfs.

The deviance of the reduced model is higher than for the full model, but the addition of any other single feature would not decrease the criterion by more than the absolute tolerance, maxdev, set in the options structure. Adding a feature with no effect reduces the deviance by an amount that has a chi-square distribution with one degree of freedom. Adding a significant feature results in a larger change. By setting maxdev to chi2inv (.95, 1), you instruct sequentialfs to continue adding features so long as the change in deviance is more than would be expected by random chance.

The reduced model (also with an initial constant term) is:
```

[b,dev,stats] = glmfit(X(:,inmodel),Y,'binomial');

```
```

% Display coefficient estimates and their standard errors:
model = [b stats.se]
model =
0.0784 0.1642
1.0040 0.1592
1.9459 0.1789
0.6134 0.1872
0.8245 0.1730

```

\section*{Feature Transformation}

\author{
In this section... \\ "Introduction to Feature Transformation" on page 12-75 \\ "Nonnegative Matrix Factorization" on page 12-75 \\ "Principal Component Analysis (PCA)" on page 12-78 \\ "Quality of Life in U.S. Cities" on page 12-80 \\ "Factor Analysis" on page 12-92
}

\section*{Introduction to Feature Transformation}

Feature transformation is a group of methods that create new features (predictor variables). The methods are useful for dimension reduction when the transformed features have a descriptive power that is more easily ordered than the original features. In this case, less descriptive features can be dropped from consideration when building models.

Feature transformation methods are contrasted with the methods presented in "Feature Selection" on page 12-70, where dimension reduction is achieved by computing an optimal subset of predictive features measured in the original data.

The methods presented in this section share some common methodology. Their goals, however, are essentially different:
- Nonnegative matrix factorization is used when model terms must represent nonnegative quantities, such as physical quantities.
- Principal component analysis is used to summarize data in fewer dimensions, for example, to visualize it.
- Factor analysis is used to build explanatory models of data correlations.

\section*{Nonnegative Matrix Factorization}
- "Introduction to Nonnegative Matrix Factorization" on page 12-76
- "Example: Nonnegative Matrix Factorization" on page 12-76

\section*{Introduction to Nonnegative Matrix Factorization}

Nonnegative matrix factorization (NMF) is a dimension-reduction technique based on a low-rank approximation of the feature space. Besides providing a reduction in the number of features, NMF guarantees that the features are nonnegative, producing additive models that respect, for example, the nonnegativity of physical quantities.

Given a nonnegative \(m\)-by- \(n\) matrix \(X\) and a positive integer \(k<\min (m, n)\), NMF finds nonnegative \(m\)-by- \(k\) and \(k\)-by- \(n\) matrices \(W\) and \(H\), respectively, that minimize the norm of the difference \(X-W H . W\) and \(H\) are thus approximate nonnegative factors of \(X\).

The \(k\) columns of \(W\) represent transformations of the variables in \(X\); the \(k\) rows of \(H\) represent the coefficients of the linear combinations of the original \(n\) variables in \(X\) that produce the transformed variables in \(W\). Since \(k\) is generally smaller than the rank of \(X\), the product \(W H\) provides a compressed approximation of the data in \(X\). A range of possible values for \(k\) is often suggested by the modeling context.

The Statistics Toolbox function nnmf carries out nonnegative matrix factorization. nnmf uses one of two iterative algorithms that begin with random initial values for \(W\) and \(H\). Because the norm of the residual \(X\) - WH may have local minima, repeated calls to nnmf may yield different factorizations. Sometimes the algorithm converges to a solution of lower rank than \(k\), which may indicate that the result is not optimal.

\section*{Example: Nonnegative Matrix Factorization}

For example, consider the five predictors of biochemical oxygen demand in the data set moore.mat:
load moore
X = moore(: \(1: 5\));
The following uses nnmf to compute a rank-two approximation of \(X\) with a multiplicative update algorithm that begins from five random initial values for W and H :
```

opt = statset('MaxIter',10,'Display','final');
[WO,HO] = nnmf(X,2,'replicates',5,...
'options',opt,...

```
```

    'algorithm','mult');
    rep iteration rms resid
2 10 78.3556 0.000351747
3 10 230.962 0.0172839
4 10 326.347 0.00739552
5 10 361.547 0.00705539
Final root mean square residual = 78.3556

```

The 'mult' algorithm is sensitive to initial values, which makes it a good choice when using 'replicates' to find W and H from multiple random starting values.

Now perform the factorization using an alternating least-squares algorithm, which converges faster and more consistently. Run 100 times more iterations, beginning from the initial WO and HO identified above:
```

opt = statset('Maxiter',1000,'Display','final');
[W,H] = nnmf(X,2,'wO',WO,'hO',HO,...
'options',opt,...
'algorithm','als');
rep iteration rms resid |delta x|
1 3 77.5315 3.52673e-005
Final root mean square residual = 77.5315

```

The two columns of \(W\) are the transformed predictors. The two rows of H give the relative contributions of each of the five predictors in \(X\) to the predictors in W:
```

H
H =

| 0.0835 | 0.0190 | 0.1782 | 0.0072 | 0.9802 |
| :--- | :--- | :--- | :--- | :--- |
| 0.0558 | 0.0250 | 0.9969 | 0.0085 | 0.0497 |

```

The fifth predictor in \(X\) (weight 0.9802) strongly influences the first predictor in W. The third predictor in \(X\) (weight 0.9969) strongly influences the second predictor in W .

Visualize the relative contributions of the predictors in \(X\) with a biplot, showing the data and original variables in the column space of w :
```

biplot(H','scores',W,'varlabels',{'','','v3','','v5'});
axis([0 1.1 0 1.1])
xlabel('Column 1')
ylabel('Column 2')

```


\section*{Principal Component Analysis (PCA)}

One of the difficulties inherent in multivariate statistics is the problem of visualizing data that has many variables. The MATLAB function plot displays a graph of the relationship between two variables. The plot3 and surf commands display different three-dimensional views. But when there are more than three variables, it is more difficult to visualize their relationships.

Fortunately, in data sets with many variables, groups of variables often move together. One reason for this is that more than one variable might be measuring the same driving principle governing the behavior of the system. In many systems there are only a few such driving forces. But an abundance
of instrumentation enables you to measure dozens of system variables. When this happens, you can take advantage of this redundancy of information. You can simplify the problem by replacing a group of variables with a single new variable.

Principal component analysis is a quantitatively rigorous method for achieving this simplification. The method generates a new set of variables, called principal components. Each principal component is a linear combination of the original variables. All the principal components are orthogonal to each other, so there is no redundant information. The principal components as a whole form an orthogonal basis for the space of the data.

There are an infinite number of ways to construct an orthogonal basis for several columns of data. What is so special about the principal component basis?

The first principal component is a single axis in space. When you project each observation on that axis, the resulting values form a new variable. And the variance of this variable is the maximum among all possible choices of the first axis.

The second principal component is another axis in space, perpendicular to the first. Projecting the observations on this axis generates another new variable. The variance of this variable is the maximum among all possible choices of this second axis.

The full set of principal components is as large as the original set of variables. But it is commonplace for the sum of the variances of the first few principal components to exceed \(80 \%\) of the total variance of the original data. By examining plots of these few new variables, researchers often develop a deeper understanding of the driving forces that generated the original data.

You can use the function pca to find the principal components. To use pca, you need to have the actual measured data you want to analyze. However, if you lack the actual data, but have the sample covariance or correlation matrix for the data, you can still use the function pcacov to perform a principal components analysis. See the reference page for pcacov for a description of its inputs and outputs.

\section*{Quality of Life in U.S. Cities}

This example shows how to perform a weighted principal components analysis and interpret the results.

\section*{Explore data.}

Load the sample data.
```

load cities

```

The data includes ratings for 9 different indicators of the quality of life in 329 U.S. cities. These are climate, housing, health, crime, transportation, education, arts, recreation, and economics. For each category, a higher rating is better. For example, a higher rating for crime means a lower crime rate.

The cities data set contains three variables:
- categories, a string matrix containing the names of the indices
- names, a string matrix containing the 329 city names
- ratings, the data matrix with 329 rows and 9 columns

Display the categories variable.
categories
categories =
climate
housing
health
crime
transportation
education
arts
recreation
economics
Display the first five rows of the names variable.
```

first5 = names(1:5,:)
first5 =
Abilene, TX
Akron, OH
Albany, GA
Albany-Troy, NY
Albuquerque, NM

```

Make a boxplot to look at the distribution of the ratings data.
```

figure()
boxplot(ratings,'orientation','horizontal','labels',categories)

```


There is more variability in the ratings of the arts and housing than in the ratings of crime and climate.

Now, check the pairwise correlation between the variables.
```

C = corr(ratings,ratings);

```

The correlation among some variables is as high as 0.85 . Principal components analysis constructs independent new variables which are linear combinations of the original variables.

\section*{Compute principal components.}

When all variables are in the same unit, it is appropriate to compute principal components for raw data. When the variables are in different units or the difference in the variance of different columns is substantial (as in this case), scaling of the data or use of weights is often preferable.

Perform the principal component analysis by using the inverse variances of the ratings as weights.
```

w = 1./var(ratings);
[wcoeff,score,latent,tsquared,explained] = pca(ratings,...
'VariableWeights',w);

```

Or equivalently:
```

[wcoeff,score,latent,tsquared,explained] = pca(ratings,...

```
'VariableWeights', 'variance');

The following sections explain the five outputs of pca.

\section*{Component coefficients.}

The first output, wcoeff, contains the coefficients of the principal components.
The first three principal component coefficient vectors are:
```

c3 = wcoeff(:,1:3)
c3 = wcoeff(:,1:3)
c3 =
1.0e+03 *

```
\begin{tabular}{rrr}
0.0249 & -0.0263 & -0.0834 \\
0.8504 & -0.5978 & -0.4965 \\
0.4616 & 0.3004 & -0.0073 \\
0.1005 & -0.1269 & 0.0661 \\
0.5096 & 0.2606 & 0.2124 \\
0.0883 & 0.1551 & 0.0737 \\
2.1496 & 0.9043 & -0.1229 \\
0.2649 & -0.3106 & -0.0411 \\
0.1469 & -0.5111 & 0.6586
\end{tabular}

These coefficients are weighted, hence the coefficient matrix is not orthonormal.

Compute the orthonormal coefficient matrix.
```

coefforth = inv(diag(std(ratings)))*wcoeff;

```

Or if you use a weights vector, w, while conducting the pca, then
```

coefforth = diag(sqrt(w))*wcoeff;

```

The first three transformed coefficients are:
```

c3 = coefforth(:,1:3)

```
c3 =
\begin{tabular}{rrr}
0.2064 & -0.2178 & -0.6900 \\
0.3565 & -0.2506 & -0.2082 \\
0.4602 & 0.2995 & -0.0073 \\
0.2813 & -0.3553 & 0.1851 \\
0.3512 & 0.1796 & 0.1464 \\
0.2753 & 0.4834 & 0.2297 \\
0.4631 & 0.1948 & -0.0265 \\
0.3279 & -0.3845 & -0.0509 \\
0.1354 & -0.4713 & 0.6073
\end{tabular}

The transformed coefficients are now orthonormal.
```

I = c3'*c3

```
```

I =

| 1.0000 | -0.0000 | -0.0000 |
| ---: | ---: | ---: |
| -0.0000 | 1.0000 | -0.0000 |
| -0.0000 | -0.0000 | 1.0000 |

```

\section*{Component scores.}

The second output, score, contains the coordinates of the original data in the new coordinate system defined by the principal components. The score matrix is the same size as the input data matrix. You can also obtain the component scores using the orthonormal coefficients and the standardized ratings as follows.
cscores = zscore(ratings)*coefforth;
cscores and score are identical matrices.
Create a plot of the first two columns of score.
```

figure()
plot(score(:,1),score(:,2),'+')
xlabel('1st Principal Component')
ylabel('2nd Principal Component')

```


This plot shows the centered and scaled ratings data projected onto the first two principal components. pca computes the scores to have mean zero.

Note the outlying points in the right half of the plot. You can graphically identify these points as follows.
gname

Move your cursor over the plot and click once near the rightmost seven points. This labels the points by their row numbers as in the following figure.

After labeling points, press Return.
Create an index variable containing the row numbers of all the cities you chose and get the names of the cities.
```

metro = [43 65 179 213 234 270 314];
names(metro,:)
ans =
Boston, MA
Chicago, IL
Los Angeles, Long Beach, CA
New York, NY

```
```

Philadelphia, PA-NJ
San Francisco, CA
Washington, DC-MD-VA

```

These labeled cities are some of the biggest population centers in the United States and they appear more extreme than the remainder of the data.

\section*{Component variances and percent explained.}

The third output, latent, is a vector containing the variance explained by the corresponding principal component. Each column of score has a sample variance equal to the corresponding row of latent.
latent
latent =
3.4083
1.2140
1.1415
0.9209
0.7533
0.6306
0.4930
0.3180
0.1204

The fifth output, explained, is a vector containing the percent variance explained by the corresponding principal component.
explained
explained =
37.8699
13.4886
12.6831
10.2324
8.3698
7.0062
5.4783
\[
\begin{aligned}
& 3.5338 \\
& 1.3378
\end{aligned}
\]

Make a scree plot of the percent variability explained by each principal component.
```

figure()
pareto(explained)
xlabel('Principal Component')
ylabel('Variance Explained (%)')

```


This scree plot only shows the first seven (instead of the total nine) components that explain \(95 \%\) of the total variance. The only clear break in
the amount of variance accounted for by each component is between the first and second components. However, the first component by itself explains less than \(40 \%\) of the variance, so more components might be needed. You can see that the first three principal components explain roughly two-thirds of the total variability in the standardized ratings, so that might be a reasonable way to reduce the dimensions.

\section*{Hotelling's T-squared statistic.}

The last output of pca is tsquared, which is Hotelling's \(\mathrm{T}^{2}\), a statistical measure of the multivariate distance of each observation from the center of the data set. This is an analytical way to find the most extreme points in the data.
```

[st2,index] = sort(tsquared,'descend'); % sort in descending order
extreme = index(1)
extreme =

```
 213
names(extreme,:)
ans =
New York, NY

The ratings for New York are the furthest from the average U.S. city.

\section*{Visualize the results.}

Visualize both the orthonormal principal component coefficients for each variable and the principal component scores for each observation in a single plot.
```

biplot(coefforth(:,1:2),'scores',score(:,1:2),'varlabels',categories);

```
axis([-. 26 0.6-.51 .51]);

All nine variables are represented in this bi-plot by a vector, and the direction and length of the vector indicate how each variable contributes to the two principal components in the plot. For example, the first principal component, on the horizontal axis, has positive coefficients for all nine variables. That is why the nine vectors are directed into the right half of the plot. The largest coefficients in the first principal component are the third and seventh elements, corresponding to the variables health and arts.

The second principal component, on the vertical axis, has positive coefficients for the variables education, health, arts, and transportation, and negative coefficients for the remaining five variables. This indicates that the
second component distinguishes among cities that have high values for the first set of variables and low for the second, and cities that have the opposite.

The variable labels in this figure are somewhat crowded. You can either exclude the VarLabels parameter when making the plot, or select and drag some of the labels to better positions using the Edit Plot tool from the figure window toolbar.

This 2-D bi-plot also includes a point for each of the 329 observations, with coordinates indicating the score of each observation for the two principal components in the plot. For example, points near the left edge of this plot have the lowest scores for the first principal component. The points are scaled with respect to the maximum score value and maximum coefficient length, so only their relative locations can be determined from the plot.

You can identify items in the plot by selecting Tools>Data Cursor from the figure window. By clicking a variable (vector), you can read that variable's coefficients for each principal component. By clicking an observation (point), you can read that observation's scores for each principal component.

You can also make a bi-plot in three dimensions.
```

figure()
biplot(coefforth(:,1:3),'scores',score(:,1:3),'obslabels',names);
axis([-. 26 0.8 -. 51 .51 -. 61 . 81]);
view([30 40]);

```


\section*{Component 1}

This graph is useful if the first two principal coordinates do not explain enough of the variance in your data. You can also rotate the figure to see it from different angles by selecting theTools> Rotate 3D.

\section*{Factor Analysis}
- "Introduction to Factor Analysis" on page 12-93
- "Example: Factor Analysis" on page 12-93

\section*{Introduction to Factor Analysis}

Multivariate data often includes a large number of measured variables, and sometimes those variables overlap, in the sense that groups of them might be dependent. For example, in a decathlon, each athlete competes in 10 events, but several of them can be thought of as speed events, while others can be thought of as strength events, etc. Thus, you can think of a competitor's 10 event scores as largely dependent on a smaller set of three or four types of athletic ability.

Factor analysis is a way to fit a model to multivariate data to estimate just this sort of interdependence. In a factor analysis model, the measured variables depend on a smaller number of unobserved (latent) factors. Because each factor might affect several variables in common, they are known as common factors. Each variable is assumed to be dependent on a linear combination of the common factors, and the coefficients are known as loadings. Each measured variable also includes a component due to independent random variability, known as specific variance because it is specific to one variable.

Specifically, factor analysis assumes that the covariance matrix of your data is of the form
\[
\sum_{x}=\Lambda \Lambda^{\mathrm{T}}+\Psi
\]
where \(\Lambda\) is the matrix of loadings, and the elements of the diagonal matrix \(\Psi\) are the specific variances. The function factoran fits the Factor Analysis model using maximum likelihood.

\section*{Example: Factor Analysis}
- "Factor Loadings" on page 12-94
- "Factor Rotation" on page 12-96
- "Factor Scores" on page 12-98
- "Visualize the Results" on page 12-99

Factor Loadings. Over the course of 100 weeks, the percent change in stock prices for ten companies has been recorded. Of the ten companies, the first four can be classified as primarily technology, the next three as financial, and the last three as retail. It seems reasonable that the stock prices for companies that are in the same sector might vary together as economic conditions change. Factor Analysis can provide quantitative evidence that companies within each sector do experience similar week-to-week changes in stock price.

In this example, you first load the data, and then call factoran, specifying a model fit with three common factors. By default, factoran computes rotated estimates of the loadings to try and make their interpretation simpler. But in this example, you specify an unrotated solution.

\section*{load stockreturns}
[Loadings,specificVar,T,stats] = ...
factoran(stocks,3,'rotate','none');

The first two factoran return arguments are the estimated loadings and the estimated specific variances. Each row of the loadings matrix represents one of the ten stocks, and each column corresponds to a common factor. With unrotated estimates, interpretation of the factors in this fit is difficult because most of the stocks contain fairly large coefficients for two or more factors.
```

Loadings
Loadings =

| 0.8885 | 0.2367 | -0.2354 |
| ---: | ---: | ---: |
| 0.7126 | 0.3862 | 0.0034 |
| 0.3351 | 0.2784 | -0.0211 |
| 0.3088 | 0.1113 | -0.1905 |
| 0.6277 | -0.6643 | 0.1478 |
| 0.4726 | -0.6383 | 0.0133 |
| 0.1133 | -0.5416 | 0.0322 |
| 0.6403 | 0.1669 | 0.4960 |
| 0.2363 | 0.5293 | 0.5770 |
| 0.1105 | 0.1680 | 0.5524 |

```

Note "Factor Rotation" on page 12-96 helps to simplify the structure in the Loadings matrix, to make it easier to assign meaningful interpretations to the factors.

From the estimated specific variances, you can see that the model indicates that a particular stock price varies quite a lot beyond the variation due to the common factors.
```

specificVar
specificVar =
0.0991
0.3431
0.8097
0.8559
0.1429
0.3691
0.6928
0.3162
0.3311
0.6544

```

A specific variance of 1 would indicate that there is no common factor component in that variable, while a specific variance of 0 would indicate that the variable is entirely determined by common factors. These data seem to fall somewhere in between.

The \(p\) value returned in the stats structure fails to reject the null hypothesis of three common factors, suggesting that this model provides a satisfactory explanation of the covariation in these data.
```

stats.p

```
ans =
 0.8144

To determine whether fewer than three factors can provide an acceptable fit, you can try a model with two common factors. The \(p\) value for this second fit is highly significant, and rejects the hypothesis of two factors, indicating that the simpler model is not sufficient to explain the pattern in these data.
```

[Loadings2,specificVar2,T2,stats2] = ...
factoran(stocks, 2,'rotate','none');
stats2.p
ans =
3.5610e-006

```

Factor Rotation. As the results illustrate, the estimated loadings from an unrotated factor analysis fit can have a complicated structure. The goal of factor rotation is to find a parameterization in which each variable has only a small number of large loadings. That is, each variable is affected by a small number of factors, preferably only one. This can often make it easier to interpret what the factors represent.

If you think of each row of the loadings matrix as coordinates of a point in \(M\)-dimensional space, then each factor corresponds to a coordinate axis. Factor rotation is equivalent to rotating those axes and computing new loadings in the rotated coordinate system. There are various ways to do this. Some methods leave the axes orthogonal, while others are oblique methods that change the angles between them. For this example, you can rotate the estimated loadings by using the promax criterion, a common oblique method.
[LoadingsPM,specVarPM] = factoran(stocks,3,'rotate','promax'); LoadingsPM
LoadingsPM =
\begin{tabular}{rrr}
0.9452 & 0.1214 & -0.0617 \\
0.7064 & -0.0178 & 0.2058 \\
0.3885 & -0.0994 & 0.0975 \\
0.4162 & -0.0148 & -0.1298 \\
0.1021 & 0.9019 & 0.0768 \\
0.0873 & 0.7709 & -0.0821 \\
-0.1616 & 0.5320 & -0.0888 \\
0.2169 & 0.2844 & 0.6635 \\
0.0016 & -0.1881 & 0.7849 \\
-0.2289 & 0.0636 & 0.6475
\end{tabular}

Promax rotation creates a simpler structure in the loadings, one in which most of the stocks have a large loading on only one factor. To see this structure more clearly, you can use the biplot function to plot each stock using its factor loadings as coordinates.
```

biplot(LoadingsPM, 'varlabels', num2str((1:10)'));
axis square
view(155,27);

```


This plot shows that promax has rotated the factor loadings to a simpler structure. Each stock depends primarily on only one factor, and it is possible to describe each factor in terms of the stocks that it affects. Based on which companies are near which axes, you could reasonably conclude that the first factor axis represents the financial sector, the second retail, and the third technology. The original conjecture, that stocks vary primarily within sector, is apparently supported by the data.

Factor Scores. Sometimes, it is useful to be able to classify an observation based on its factor scores. For example, if you accepted the three-factor model and the interpretation of the rotated factors, you might want to categorize each week in terms of how favorable it was for each of the three stock sectors, based on the data from the 10 observed stocks.

Because the data in this example are the raw stock price changes, and not just their correlation matrix, you can have factoran return estimates of the value of each of the three rotated common factors for each week. You can then plot the estimated scores to see how the different stock sectors were affected during each week.
```

[LoadingsPM,specVarPM,TPM,stats,F] = ...
factoran(stocks, 3,'rotate','promax');
plot3(F(:,1),F(:,2),F(:,3),'b.')
line([-4 4 NaN O O NaN O 0], [O O NaN -4 4 NaN O 0],...
[0 O NaN O O NaN -4 4], 'Color','black')
xlabel('Financial Sector')
ylabel('Retail Sector')
zlabel('Technology Sector')
grid on
axis square
view(-22.5, 8)

```


Oblique rotation often creates factors that are correlated. This plot shows some evidence of correlation between the first and third factors, and you can investigate further by computing the estimated factor correlation matrix.
```

inv(TPM'*TPM)
ans =

| 1.0000 | 0.1559 | 0.4082 |
| ---: | ---: | ---: |
| 0.1559 | 1.0000 | -0.0559 |
| 0.4082 | -0.0559 | 1.0000 |

```

Visualize the Results. You can use the biplot function to help visualize both the factor loadings for each variable and the factor scores for each observation in a single plot. For example, the following command plots the results from the factor analysis on the stock data and labels each of the 10 stocks.
```

biplot(LoadingsPM,'scores',F,'varlabels',num2str((1:10)'))
xlabel('Financial Sector')
ylabel('Retail Sector')
zlabel('Technology Sector')
axis square
view(155,27)

```


In this case, the factor analysis includes three factors, and so the biplot is three-dimensional. Each of the 10 stocks is represented in this plot by a vector, and the direction and length of the vector indicates how each stock depends on the underlying factors. For example, you have seen that after promax rotation, the first four stocks have positive loadings on the first factor, and unimportant loadings on the other two factors. That first factor, interpreted as a financial sector effect, is represented in this biplot as one of the horizontal axes. The dependence of those four stocks on that factor corresponds to the four vectors directed approximately along that axis. Similarly, the dependence
of stocks 5,6 , and 7 primarily on the second factor, interpreted as a retail sector effect, is represented by vectors directed approximately along that axis.

Each of the 100 observations is represented in this plot by a point, and their locations indicate the score of each observation for the three factors. For example, points near the top of this plot have the highest scores for the technology sector factor. The points are scaled to fit within the unit square, so only their relative locations can be determined from the plot.

You can use the Data Cursor tool from the Tools menu in the figure window to identify the items in this plot. By clicking a stock (vector), you can read off that stock's loadings for each factor. By clicking an observation (point), you can read off that observation's scores for each factor.

\section*{Partial Least Squares Regression and Principal Components Regression}

This example shows how to apply Partial Least Squares Regression (PLSR) and Principal Components Regression (PCR), and discusses the effectiveness of the two methods. PLSR and PCR are both methods to model a response variable when there are a large number of predictor variables, and those predictors are highly correlated or even collinear. Both methods construct new predictor variables, known as components, as linear combinations of the original predictor variables, but they construct those components in different ways. PCR creates components to explain the observed variability in the predictor variables, without considering the response variable at all. On the other hand, PLSR does take the response variable into account, and therefore often leads to models that are able to fit the response variable with fewer components. Whether or not that ultimately translates into a more parsimonious model, in terms of its practical use, depends on the context.

\section*{Loading the Data}

Load a data set comprising spectral intensities of 60 samples of gasoline at 401 wavelengths, and their octane ratings. These data are described in Kalivas, John H., "Two Data Sets of Near Infrared Spectra," Chemometrics and Intelligent Laboratory Systems, v. 37 (1997) pp.255-259.
```

load spectra
whos NIR octane

```
\begin{tabular}{llrlr}
Name & Size & Bytes Class & Attributes \\
NIR & \(60 \times 401\) & 192480 & double \\
octane & \(60 \times 1\) & 480 & double
\end{tabular}
```

[dummy,h] = sort(octane);
oldorder = get(gcf,'DefaultAxesColorOrder');
set(gcf,'DefaultAxesColorOrder',jet(60));
plot3(repmat(1:401,60,1)',repmat(octane(h),1,401)',NIR(h,: )');
set(gcf,'DefaultAxesColorOrder',oldorder);
xlabel('Wavelength Index'); ylabel('Octane'); axis('tight');
grid on

```


\section*{Fitting the Data with Two Components}

Use the plsregress function to fit a PLSR model with ten PLS components and one response.
```

X = NIR;
y = octane;
[n,p] = size(X);
[Xloadings,Yloadings,Xscores,Yscores,betaPLS10,PLSPctVar] = plsregress(...
X,y,10);

```

Ten components may be more than will be needed to adequately fit the data, but diagnostics from this fit can be used to make a choice of a simpler model with fewer components. For example, one quick way to choose the number of components is to plot the percent of variance explained in the response variable as a function of the number of components.
```

plot(1:10,cumsum(100*PLSPctVar(2,:)),'-bo');
xlabel('Number of PLS components');
ylabel('Percent Variance Explained in Y');

```


In practice, more care would probably be advisable in choosing the number of components. Cross-validation, for instance, is a widely-used method that will be illustrated later in this example. For now, the above plot suggests that PLSR with two components explains most of the variance in the observed \(y\). Compute the fitted response values for the two-component model.
[Xloadings, Yloadings, Xscores,Yscores,betaPLS] = plsregress(X,y,2); yfitPLS = [ones(n,1) X]*betaPLS;

Next, fit a PCR model with two principal components. The first step is to perform Principal Components Analysis on X, using the pca function, and retaining two principal components. PCR is then just a linear regression of the response variable on those two components. It often makes sense to
normalize each variable first by its standard deviation when the variables have very different amounts of variability, however, that is not done here.
```

[PCALoadings,PCAScores,PCAVar] = pca(X,'Economy',false);
betaPCR = regress(y-mean(y), PCAScores(:,1:2));

```

To make the PCR results easier to interpret in terms of the original spectral data, transform to regression coefficients for the original, uncentered variables.
```

betaPCR = PCALoadings(:,1:2)*betaPCR;
betaPCR = [mean(y) - mean(X)*betaPCR; betaPCR];
yfitPCR = [ones(n,1) X]*betaPCR;

```

Plot fitted vs. observed response for the PLSR and PCR fits.
```

plot(y,yfitPLS,'bo',y,yfitPCR,'r^');
xlabel('Observed Response');
ylabel('Fitted Response');
legend({'PLSR with 2 Components' 'PCR with 2 Components'}, ...
'location','NW');

```


In a sense, the comparison in the plot above is not a fair one -- the number of components (two) was chosen by looking at how well a two-component PLSR model predicted the response, and there's no reason why the PCR model should be restricted to that same number of components. With the same number of components, however, PLSR does a much better job at fitting y. In fact, looking at the horizontal scatter of fitted values in the plot above, PCR with two components is hardly better than using a constant model. The \(r\)-squared values from the two regressions confirm that.
```

TSS = sum((y-mean(y)).^2);
RSS_PLS = sum((y-yfitPLS).^2);
rsquaredPLS = 1 - RSS_PLS/TSS

```
```

    0.9466
    RSS_PCR = sum((y-yfitPCR).^2);
rsquaredPCR = 1 - RSS_PCR/TSS
rsquaredPCR =
0.1962

```

Another way to compare the predictive power of the two models is to plot the response variable against the two predictors in both cases.
plot3(Xscores(:,1),Xscores(:,2),y-mean(y),'bo');
legend('PLSR');
grid on; view(-30,30);

It's a little hard to see without being able to interactively rotate the figure, but the PLSR plot above shows points closely scattered about a plane. On the other hand, the PCR plot below shows a cloud of points with little indication of a linear relationship.
plot3(PCAScores(:,1),PCAScores(:,2),y-mean(y),'r^');
legend('PCR');
grid on; view(-30,30);

Notice that while the two PLS components are much better predictors of the observed \(y\), the following figure shows that they explain somewhat less variance in the observed \(X\) than the first two principal components used in the PCR.
```

plot(1:10,100*cumsum(PLSPctVar(1,:)),'b-o',1:10, ...
100*cumsum(PCAVar(1:10))/sum(PCAVar(1:10)),'r-^');
xlabel('Number of Principal Components');
ylabel('Percent Variance Explained in X');
legend({'PLSR' 'PCR'},'location','SE');

```


The fact that the PCR curve is uniformly higher suggests why PCR with two components does such a poor job, relative to PLSR, in fitting y. PCR constructs components to best explain \(X\), and as a result, those first two components ignore the information in the data that is important in fitting the observed \(y\).

\section*{Fitting with More Components}

As more components are added in PCR, it will necessarily do a better job of fitting the original data \(y\), simply because at some point most of the important predictive information in X will be present in the principal components. For example, the following figure shows that the difference in residuals for the two methods is much less dramatic when using ten components than it was for two components.
```

yfitPLS10 = [ones(n,1) X]*betaPLS10;
betaPCR10 = regress(y-mean(y), PCAScores(:,1:10));
betaPCR10 = PCALoadings(:,1:10)*betaPCR10;

```
```

betaPCR10 = [mean(y) - mean(X)*betaPCR10; betaPCR10];
yfitPCR10 = [ones(n,1) X]*betaPCR10;
plot(y,yfitPLS10,'bo',y,yfitPCR10,'r^');
xlabel('Observed Response');
ylabel('Fitted Response');
legend({'PLSR with 10 components' 'PCR with 10 Components'}, ...
'location','NW');

```


Both models fit y fairly accurately, although PLSR still makes a slightly more accurate fit. However, ten components is still an arbitrarily-chosen number for either model.

\section*{Choosing the Number of Components with Cross-Validation}

It's often useful to choose the number of components to minimize the expected error when predicting the response from future observations on the predictor
variables. Simply using a large number of components will do a good job in fitting the current observed data, but is a strategy that leads to overfitting. Fitting the current data too well results in a model that does not generalize well to other data, and gives an overly-optimistic estimate of the expected error.

Cross-validation is a more statistically sound method for choosing the number of components in either PLSR or PCR. It avoids overfitting data by not reusing the same data to both fit a model and to estimate prediction error. Thus, the estimate of prediction error is not optimistically biased downwards.
plsregress has an option to estimate the mean squared prediction error (MSEP) by cross-validation, in this case using 10 -fold C-V.
[Xl, Yl, Xs,Ys,beta, pctVar,PLSmsep] = plsregress(X,y,10,'CV',10);
For PCR, crossval combined with a simple function to compute the sum of squared errors for PCR, can estimate the MSEP, again using 10 -fold cross-validation.

PCRmsep = sum(crossval(@pcrsse, X,y,'KFold',10),1) / n;
The MSEP curve for PLSR indicates that two or three components does about as good a job as possible. On the other hand, PCR needs four components to get the same prediction accuracy.
```

plot(0:10,PLSmsep(2,:),'b-o',0:10,PCRmsep,'r-^');
xlabel('Number of components');
ylabel('Estimated Mean Squared Prediction Error');
legend({'PLSR' 'PCR'},'location','NE');

```


In fact, the second component in PCR increases the prediction error of the model, suggesting that the combination of predictor variables contained in that component is not strongly correlated with y. Again, that's because PCR constructs components to explain variation in X , not y .

\section*{Model Parsimony}

So if PCR requires four components to get the same prediction accuracy as PLSR with three components, is the PLSR model more parsimonious? That depends on what aspect of the model you consider.

The PLS weights are the linear combinations of the original variables that define the PLS components, i.e., they describe how strongly each component in the PLSR depends on the original variables, and in what direction.
```

[Xl,Yl,Xs,Ys,beta,pctVar,mse,stats] = plsregress(X,y,3);
plot(1:401,stats.W,' -');

```
```

xlabel('Variable');
ylabel('PLS Weight');
legend({'1st Component' '2nd Component' '3rd Component'}, ...
'location','NW');

```


Similarly, the PCA loadings describe how strongly each component in the PCR depends on the original variables.
```

plot(1:401,PCALoadings(:,1:4),'-');
xlabel('Variable');
ylabel('PCA Loading');
legend({'1st Component' '2nd Component' '3rd Component' ...
'4th Component'},'location','NW');

```


For either PLSR or PCR, it may be that each component can be given a physically meaningful interpretation by inspecting which variables it weights most heavily. For instance, with these spectral data it may be possible to interpret intensity peaks in terms of compounds present in the gasoline, and then to observe that weights for a particular component pick out a small number of those compounds. From that perspective, fewer components are simpler to interpret, and because PLSR often requires fewer components to predict the response adequately, it leads to more parsimonious models.

On the other hand, both PLSR and PCR result in one regression coefficient for each of the original predictor variables, plus an intercept. In that sense, neither is more parsimonious, because regardless of how many components are used, both models depend on all predictors. More concretely, for these data, both models need 401 spectral intensity values in order to make a prediction.

However, the ultimate goal may to reduce the original set of variables to a smaller subset still able to predict the response accurately. For example, it may be possible to use the PLS weights or the PCA loadings to select only those variables that contribute most to each component. As shown earlier, some components from a PCR model fit may serve primarily to describe the variation in the predictor variables, and may include large weights for variables that are not strongly correlated with the response. Thus, PCR can lead to retaining variables that are unnecessary for prediction.

For the data used in this example, the difference in the number of components needed by PLSR and PCR for accurate prediction is not great, and the PLS weights and PCA loadings seem to pick out the same variables. That may not be true for other data.

\section*{Cluster Analysis}
- "Introduction to Cluster Analysis" on page 13-2
- "Hierarchical Clustering" on page 13-3
- "k-Means Clustering" on page 13-21
- "Gaussian Mixture Models" on page 13-28

\section*{Introduction to Cluster Analysis}

Cluster analysis, also called segmentation analysis or taxonomy analysis, creates groups, or clusters, of data. Clusters are formed in such a way that objects in the same cluster are very similar and objects in different clusters are very distinct. Measures of similarity depend on the application.
"Hierarchical Clustering" on page 13-3 groups data over a variety of scales by creating a cluster tree or dendrogram. The tree is not a single set of clusters, but rather a multilevel hierarchy, where clusters at one level are joined as clusters at the next level. This allows you to decide the level or scale of clustering that is most appropriate for your application. The Statistics Toolbox function clusterdata performs all of the necessary steps for you. It incorporates the pdist, linkage, and cluster functions, which may be used separately for more detailed analysis. The dendrogram function plots the cluster tree.
" k -Means Clustering" on page \(13-21\) is a partitioning method. The function kmeans partitions data into \(k\) mutually exclusive clusters, and returns the index of the cluster to which it has assigned each observation. Unlike hierarchical clustering, k -means clustering operates on actual observations (rather than the larger set of dissimilarity measures), and creates a single level of clusters. The distinctions mean that k -means clustering is often more suitable than hierarchical clustering for large amounts of data.
"Gaussian Mixture Models" on page 13-28 form clusters by representing the probability density function of observed variables as a mixture of multivariate normal densities. Mixture models of the gmdistribution class use an expectation maximization (EM) algorithm to fit data, which assigns posterior probabilities to each component density with respect to each observation. Clusters are assigned by selecting the component that maximizes the posterior probability. Clustering using Gaussian mixture models is sometimes considered a soft clustering method. The posterior probabilities for each point indicate that each data point has some probability of belonging to each cluster. Like k-means clustering, Gaussian mixture modeling uses an iterative algorithm that converges to a local optimum. Gaussian mixture modeling may be more appropriate than k -means clustering when clusters have different sizes and correlation within them.

\section*{Hierarchical Clustering}

\author{
In this section... \\ "Introduction to Hierarchical Clustering" on page 13-3 \\ "Algorithm Description" on page 13-3 \\ "Similarity Measures" on page 13-4 \\ "Linkages" on page 13-6 \\ "Dendrograms" on page 13-8 \\ "Verify the Cluster Tree" on page 13-10 \\ "Create Clusters" on page 13-16
}

\section*{Introduction to Hierarchical Clustering}

Hierarchical clustering groups data over a variety of scales by creating a cluster tree or dendrogram. The tree is not a single set of clusters, but rather a multilevel hierarchy, where clusters at one level are joined as clusters at the next level. This allows you to decide the level or scale of clustering that is most appropriate for your application. The Statistics Toolbox function clusterdata supports agglomerative clustering and performs all of the necessary steps for you. It incorporates the pdist, linkage, and cluster functions, which you can use separately for more detailed analysis. The dendrogram function plots the cluster tree.

\section*{Algorithm Description}

To perform agglomerative hierarchical cluster analysis on a data set using Statistics Toolbox functions, follow this procedure:

1 Find the similarity or dissimilarity between every pair of objects in the data set. In this step, you calculate the distance between objects using the pdist function. The pdist function supports many different ways to compute this measurement. See "Similarity Measures" on page 13-4 for more information.

2 Group the objects into a binary, hierarchical cluster tree. In this step, you link pairs of objects that are in close proximity using the linkage
function. The linkage function uses the distance information generated in step 1 to determine the proximity of objects to each other. As objects are paired into binary clusters, the newly formed clusters are grouped into larger clusters until a hierarchical tree is formed. See "Linkages" on page 13-6 for more information.

3 Determine where to cut the hierarchical tree into clusters. In this step, you use the cluster function to prune branches off the bottom of the hierarchical tree, and assign all the objects below each cut to a single cluster. This creates a partition of the data. The cluster function can create these clusters by detecting natural groupings in the hierarchical tree or by cutting off the hierarchical tree at an arbitrary point.

The following sections provide more information about each of these steps.

Note The Statistics Toolbox function clusterdata performs all of the necessary steps for you. You do not need to execute the pdist, linkage, or cluster functions separately.

\section*{Similarity Measures}

You use the pdist function to calculate the distance between every pair of objects in a data set. For a data set made up of \(m\) objects, there are \(m^{*}(m-\) \(1) / 2\) pairs in the data set. The result of this computation is commonly known as a distance or dissimilarity matrix.

There are many ways to calculate this distance information. By default, the pdist function calculates the Euclidean distance between objects; however, you can specify one of several other options. See pdist for more information.

Note You can optionally normalize the values in the data set before calculating the distance information. In a real world data set, variables can be measured against different scales. For example, one variable can measure Intelligence Quotient (IQ) test scores and another variable can measure head circumference. These discrepancies can distort the proximity calculations. Using the zscore function, you can convert all the values in the data set to use the same proportional scale. See zscore for more information.

For example, consider a data set, X , made up of five objects where each object is a set of \(x, y\) coordinates.
- Object 1: 1, 2
- Object 2: 2.5, 4.5
- Object 3: 2, 2
- Object 4: 4, 1.5
- Object 5: 4, 2.5

You can define this data set as a matrix
\(X=[12 ; 2.54 .5 ; 22 ; 41.5 ; 42.5]\)
and pass it to pdist. The pdist function calculates the distance between object 1 and object 2 , object 1 and object 3 , and so on until the distances between all the pairs have been calculated. The following figure plots these objects in a graph. The Euclidean distance between object 2 and object 3 is shown to illustrate one interpretation of distance.

\section*{Distance Information}

The pdist function returns this distance information in a vector, Y , where each element contains the distance between a pair of objects.
```

Y = pdist(X)
Y =
Columns 1 through 5
2.9155 1.0000 3.0414 3.0414 2.5495
Columns 6 through 10
3.3541 2.5000 2.0616 2.0616 1.0000

```

To make it easier to see the relationship between the distance information generated by pdist and the objects in the original data set, you can reformat the distance vector into a matrix using the squareform function. In this matrix, element \(i, j\) corresponds to the distance between object \(i\) and object \(j\) in the original data set. In the following example, element 1,1 represents the distance between object 1 and itself (which is zero). Element 1,2 represents the distance between object 1 and object 2 , and so on.
```

squareform(Y)
ans =

| 0 | 2.9155 | 1.0000 | 3.0414 | 3.0414 |
| ---: | ---: | ---: | ---: | ---: |
| 2.9155 | 0 | 2.5495 | 3.3541 | 2.5000 |
| 1.0000 | 2.5495 | 0 | 2.0616 | 2.0616 |
| 3.0414 | 3.3541 | 2.0616 | 0 | 1.0000 |
| 3.0414 | 2.5000 | 2.0616 | 1.0000 | 0 |

```

\section*{Linkages}

Once the proximity between objects in the data set has been computed, you can determine how objects in the data set should be grouped into clusters, using the linkage function. The linkage function takes the distance information generated by pdist and links pairs of objects that are close together into binary clusters (clusters made up of two objects). The linkage function then links these newly formed clusters to each other and to other objects to create bigger clusters until all the objects in the original data set are linked together in a hierarchical tree.

For example, given the distance vector \(Y\) generated by pdist from the sample data set of \(x\) - and \(y\)-coordinates, the linkage function generates a hierarchical cluster tree, returning the linkage information in a matrix, \(Z\).
```

Z = linkage(Y)
Z =
4.0000 5.0000 1.0000

```
\begin{tabular}{lll}
1.0000 & 3.0000 & 1.0000 \\
6.0000 & 7.0000 & 2.0616 \\
2.0000 & 8.0000 & 2.5000
\end{tabular}

In this output, each row identifies a link between objects or clusters. The first two columns identify the objects that have been linked. The third column contains the distance between these objects. For the sample data set of \(x\) and \(y\)-coordinates, the linkage function begins by grouping objects 4 and 5, which have the closest proximity (distance value \(=1.0000\)). The linkage function continues by grouping objects 1 and 3 , which also have a distance value of 1.0000 .

The third row indicates that the linkage function grouped objects 6 and 7. If the original sample data set contained only five objects, what are objects 6 and 7 ? Object 6 is the newly formed binary cluster created by the grouping of objects 4 and 5 . When the linkage function groups two objects into a new cluster, it must assign the cluster a unique index value, starting with the value \(m+1\), where \(m\) is the number of objects in the original data set. (Values 1 through \(m\) are already used by the original data set.) Similarly, object 7 is the cluster formed by grouping objects 1 and 3 .
linkage uses distances to determine the order in which it clusters objects. The distance vector \(Y\) contains the distances between the original objects 1 through 5. But linkage must also be able to determine distances involving clusters that it creates, such as objects 6 and 7 . By default, linkage uses a method known as single linkage. However, there are a number of different methods available. See the linkage reference page for more information.

As the final cluster, the linkage function grouped object 8, the newly formed cluster made up of objects 6 and 7 , with object 2 from the original data set. The following figure graphically illustrates the way linkage groups the objects into a hierarchy of clusters.

\section*{Dendrograms}

The hierarchical, binary cluster tree created by the linkage function is most easily understood when viewed graphically. The Statistics Toolbox function dendrogram plots the tree, as follows:
dendrogram(Z)

In the figure, the numbers along the horizontal axis represent the indices of the objects in the original data set. The links between objects are represented as upside-down \(U\)-shaped lines. The height of the \(U\) indicates the distance between the objects. For example, the link representing the cluster containing objects 1 and 3 has a height of 1 . The link representing the cluster that groups object 2 together with objects 1, 3, 4, and 5, (which are already clustered as object 8) has a height of 2.5 . The height represents the distance linkage computes between objects 2 and 8 . For more information about creating a dendrogram diagram, see the dendrogram reference page.

\section*{Verify the Cluster Tree}

After linking the objects in a data set into a hierarchical cluster tree, you might want to verify that the distances (that is, heights) in the tree reflect the original distances accurately. In addition, you might want to investigate natural divisions that exist among links between objects. Statistics Toolbox functions are available for both of these tasks, as described in the following sections:
- "Verify Dissimilarity" on page 13-10
- "Verify Consistency" on page 13-11

\section*{Verify Dissimilarity}

In a hierarchical cluster tree, any two objects in the original data set are eventually linked together at some level. The height of the link represents the distance between the two clusters that contain those two objects. This height is known as the cophenetic distance between the two objects. One way to measure how well the cluster tree generated by the linkage function reflects your data is to compare the cophenetic distances with the original distance data generated by the pdist function. If the clustering is valid, the linking of objects in the cluster tree should have a strong correlation with the distances between objects in the distance vector. The cophenet function compares these two sets of values and computes their correlation, returning a value called the cophenetic correlation coefficient. The closer the value of the cophenetic correlation coefficient is to 1 , the more accurately the clustering solution reflects your data.

You can use the cophenetic correlation coefficient to compare the results of clustering the same data set using different distance calculation methods or clustering algorithms. For example, you can use the cophenet function to evaluate the clusters created for the sample data set
```

c = cophenet(Z,Y)
c =
0.8615

```
where \(Z\) is the matrix output by the linkage function and \(Y\) is the distance vector output by the pdist function.

Execute pdist again on the same data set, this time specifying the city block metric. After running the linkage function on this new pdist output using the average linkage method, call cophenet to evaluate the clustering solution.
```

Y = pdist(X,'cityblock');
Z = linkage(Y,'average');
c = cophenet(Z,Y)
c =
0.9047

```

The cophenetic correlation coefficient shows that using a different distance and linkage method creates a tree that represents the original distances slightly better.

\section*{Verify Consistency}

One way to determine the natural cluster divisions in a data set is to compare the height of each link in a cluster tree with the heights of neighboring links below it in the tree.

A link that is approximately the same height as the links below it indicates that there are no distinct divisions between the objects joined at this level of the hierarchy. These links are said to exhibit a high level of consistency, because the distance between the objects being joined is approximately the same as the distances between the objects they contain.

On the other hand, a link whose height differs noticeably from the height of the links below it indicates that the objects joined at this level in the cluster tree are much farther apart from each other than their components were when they were joined. This link is said to be inconsistent with the links below it.

In cluster analysis, inconsistent links can indicate the border of a natural division in a data set. The cluster function uses a quantitative measure of inconsistency to determine where to partition your data set into clusters.

The following dendrogram illustrates inconsistent links. Note how the objects in the dendrogram fall into two groups that are connected by links at a much higher level in the tree. These links are inconsistent when compared with the links below them in the hierarchy.

These links show inconsistency when compared to the links below them.

These links show consistency.

The relative consistency of each link in a hierarchical cluster tree can be quantified and expressed as the inconsistency coefficient. This value compares the height of a link in a cluster hierarchy with the average height of links below it. Links that join distinct clusters have a high inconsistency coefficient; links that join indistinct clusters have a low inconsistency coefficient.

To generate a listing of the inconsistency coefficient for each link in the cluster tree, use the inconsistent function. By default, the inconsistent
function compares each link in the cluster hierarchy with adjacent links that are less than two levels below it in the cluster hierarchy. This is called the depth of the comparison. You can also specify other depths. The objects at the bottom of the cluster tree, called leaf nodes, that have no further objects below them, have an inconsistency coefficient of zero. Clusters that join two leaves also have a zero inconsistency coefficient.

For example, you can use the inconsistent function to calculate the inconsistency values for the links created by the linkage function in "Linkages" on page 13-6.
```

I = inconsistent(Z)
I =

| 1.0000 | 0 | 1.0000 | 0 |
| ---: | ---: | ---: | ---: |
| 1.0000 | 0 | 1.0000 | 0 |
| 1.3539 | 0.6129 | 3.0000 | 1.1547 |
| 2.2808 | 0.3100 | 2.0000 | 0.7071 |

```

The inconsistent function returns data about the links in an (\(m-1\))-by- 4 matrix, whose columns are described in the following table.
\begin{tabular}{l|l}
\hline Column & Description \\
\hline 1 & Mean of the heights of all the links included in the calculation \\
\hline 2 & Standard deviation of all the links included in the calculation \\
\hline 3 & Number of links included in the calculation \\
\hline 4 & Inconsistency coefficient \\
\hline
\end{tabular}

In the sample output, the first row represents the link between objects 4 and 5 . This cluster is assigned the index 6 by the linkage function. Because both 4 and 5 are leaf nodes, the inconsistency coefficient for the cluster is zero. The second row represents the link between objects 1 and 3 , both of which are also leaf nodes. This cluster is assigned the index 7 by the linkage function.

The third row evaluates the link that connects these two clusters, objects 6 and 7. (This new cluster is assigned index 8 in the linkage output). Column 3 indicates that three links are considered in the calculation: the link itself and the two links directly below it in the hierarchy. Column 1 represents the mean of the heights of these links. The inconsistent function uses the height
information output by the linkage function to calculate the mean. Column 2 represents the standard deviation between the links. The last column contains the inconsistency value for these links, 1.1547. It is the difference between the current link height and the mean, normalized by the standard deviation:
```

(2.0616 - 1.3539) / .6129
ans =
1.1547

```

The following figure illustrates the links and heights included in this calculation.

Note In the preceding figure, the lower limit on the \(y\)-axis is set to 0 to show the heights of the links. To set the lower limit to 0 , select Axes Properties from the Edit menu, click the \(\mathbf{Y}\) Axis tab, and enter 0 in the field immediately to the right of \(\mathbf{Y}\) Limits.

Row 4 in the output matrix describes the link between object 8 and object 2 . Column 3 indicates that two links are included in this calculation: the link itself and the link directly below it in the hierarchy. The inconsistency coefficient for this link is 0.7071 .

The following figure illustrates the links and heights included in this calculation.

\section*{Create Clusters}

After you create the hierarchical tree of binary clusters, you can prune the tree to partition your data into clusters using the cluster function. The cluster function lets you create clusters in two ways, as discussed in the following sections:
- "Find Natural Divisions in Data" on page 13-17
- "Specify Arbitrary Clusters" on page 13-18

\section*{Find Natural Divisions in Data}

The hierarchical cluster tree may naturally divide the data into distinct, well-separated clusters. This can be particularly evident in a dendrogram diagram created from data where groups of objects are densely packed in certain areas and not in others. The inconsistency coefficient of the links in the cluster tree can identify these divisions where the similarities between objects change abruptly. (See "Verify the Cluster Tree" on page 13-10 for more information about the inconsistency coefficient.) You can use this value to determine where the cluster function creates cluster boundaries.

For example, if you use the cluster function to group the sample data set into clusters, specifying an inconsistency coefficient threshold of 1.2 as the value of the cutoff argument, the cluster function groups all the objects in the sample data set into one cluster. In this case, none of the links in the cluster hierarchy had an inconsistency coefficient greater than 1.2.
```

T = cluster(Z,'cutoff',1.2)
T =
1
1
1
1
1

```

The cluster function outputs a vector, T , that is the same size as the original data set. Each element in this vector contains the number of the cluster into which the corresponding object from the original data set was placed.

If you lower the inconsistency coefficient threshold to 0.8 , the cluster function divides the sample data set into three separate clusters.
```

T = cluster(Z,'cutoff',0.8)
T =
3
2
3
1
1

```

This output indicates that objects 1 and 3 were placed in cluster 1, objects 4 and 5 were placed in cluster 2 , and object 2 was placed in cluster 3 .

When clusters are formed in this way, the cutoff value is applied to the inconsistency coefficient. These clusters may, but do not necessarily, correspond to a horizontal slice across the dendrogram at a certain height. If you want clusters corresponding to a horizontal slice of the dendrogram, you can either use the criterion option to specify that the cutoff should be based on distance rather than inconsistency, or you can specify the number of clusters directly as described in the following section.

\section*{Specify Arbitrary Clusters}

Instead of letting the cluster function create clusters determined by the natural divisions in the data set, you can specify the number of clusters you want created.

For example, you can specify that you want the cluster function to partition the sample data set into two clusters. In this case, the cluster function creates one cluster containing objects \(1,3,4\), and 5 and another cluster containing object 2 .
```

T = cluster(Z,'maxclust',2)

```
T =

2
1
2
2
2
To help you visualize how the cluster function determines these clusters, the following figure shows the dendrogram of the hierarchical cluster tree. The horizontal dashed line intersects two lines of the dendrogram, corresponding to setting 'maxclust' to 2. These two lines partition the objects into two clusters: the objects below the left-hand line, namely \(1,3,4\), and 5 , belong to one cluster, while the object below the right-hand line, namely 2 , belongs to the other cluster.

On the other hand, if you set 'maxclust' to 3 , the cluster function groups objects 4 and 5 in one cluster, objects 1 and 3 in a second cluster, and object 2 in a third cluster. The following command illustrates this.
```

T = cluster(Z,'maxclust',3)
T =

```
 1
 3
 1
 2
 2

This time, the cluster function cuts off the hierarchy at a lower point, corresponding to the horizontal line that intersects three lines of the dendrogram in the following figure.

\section*{k-Means Clustering}

\author{
In this section... \\ "Introduction to k-Means Clustering" on page 13-21 \\ "Create Clusters and Determine Separation" on page 13-22 \\ "Determine the Correct Number of Clusters" on page 13-23 \\ "Avoid Local Minima" on page 13-26
}

\section*{Introduction to k-Means Clustering}
k -means clustering is a partitioning method. The function kmeans partitions data into \(k\) mutually exclusive clusters, and returns the index of the cluster to which it has assigned each observation. Unlike hierarchical clustering, k -means clustering operates on actual observations (rather than the larger set of dissimilarity measures), and creates a single level of clusters. The distinctions mean that k-means clustering is often more suitable than hierarchical clustering for large amounts of data.
kmeans treats each observation in your data as an object having a location in space. It finds a partition in which objects within each cluster are as close to each other as possible, and as far from objects in other clusters as possible. You can choose from five different distance measures, depending on the kind of data you are clustering.

Each cluster in the partition is defined by its member objects and by its centroid, or center. The centroid for each cluster is the point to which the sum of distances from all objects in that cluster is minimized. kmeans computes cluster centroids differently for each distance measure, to minimize the sum with respect to the measure that you specify.
kmeans uses an iterative algorithm that minimizes the sum of distances from each object to its cluster centroid, over all clusters. This algorithm moves objects between clusters until the sum cannot be decreased further. The result is a set of clusters that are as compact and well-separated as possible. You can control the details of the minimization using several optional input parameters to kmeans, including ones for the initial values of the cluster centroids, and for the maximum number of iterations.

\section*{Create Clusters and Determine Separation}

The following example explores possible clustering in four-dimensional data by analyzing the results of partitioning the points into three, four, and five clusters.

Note Because each part of this example generates random numbers sequentially, i.e., without setting a new state, you must perform all steps in sequence to duplicate the results shown. If you perform the steps out of sequence, the answers will be essentially the same, but the intermediate results, number of iterations, or ordering of the silhouette plots may differ.

First, load some data:
```

load kmeansdata;
size(X)
ans =
560 4

```

Even though these data are four-dimensional, and cannot be easily visualized, kmeans enables you to investigate whether a group structure exists in them. Call kmeans with k, the desired number of clusters, equal to 3. For this example, specify the city block distance measure, and use the default starting method of initializing centroids from randomly selected data points:
```

idx3 = kmeans(X,3,'distance','city');

```

To get an idea of how well-separated the resulting clusters are, you can make a silhouette plot using the cluster indices output from kmeans. The silhouette plot displays a measure of how close each point in one cluster is to points in the neighboring clusters. This measure ranges from +1 , indicating points that are very distant from neighboring clusters, through 0 , indicating points that are not distinctly in one cluster or another, to -1 , indicating points that are probably assigned to the wrong cluster. silhouette returns these values in its first output:
```

[silh3,h] = silhouette(X,idx3,'city');
set(get(gca,'Children'),'FaceColor',[.8 . 8 1])
xlabel('Silhouette Value')
ylabel('Cluster')

```


From the silhouette plot, you can see that most points in the third cluster have a large silhouette value, greater than 0.6 , indicating that the cluster is somewhat separated from neighboring clusters. However, the first cluster contains many points with low silhouette values, and the second contains a few points with negative values, indicating that those two clusters are not well separated.

\section*{Determine the Correct Number of Clusters}

Increase the number of clusters to see if kmeans can find a better grouping of the data. This time, use the optional 'display ' parameter to print information about each iteration:
```

idx4 = kmeans(X,4, 'dist','city', 'display','iter');
iter phase num sum
1 1 560 2897.56

```
\begin{tabular}{ccrc}
2 & 1 & 53 & 2736.67 \\
3 & 1 & 50 & 2476.78 \\
4 & 1 & 102 & 1779.68 \\
5 & 1 & 5 & 1771.1 \\
6 & 2 & 0 & 1771.1 \\
6 iterations, total sum of distances \(=1771.1\)
\end{tabular}

Notice that the total sum of distances decreases at each iteration as kmeans reassigns points between clusters and recomputes cluster centroids. In this case, the second phase of the algorithm did not make any reassignments, indicating that the first phase reached a minimum after five iterations. In some problems, the first phase might not reach a minimum, but the second phase always will.

A silhouette plot for this solution indicates that these four clusters are better separated than the three in the previous solution:
```

[silh4,h] = silhouette(X,idx4,'city');
set(get(gca,'Children'),'FaceColor',[.8 . 8 1])
xlabel('Silhouette Value')
ylabel('Cluster')

```


A more quantitative way to compare the two solutions is to look at the average silhouette values for the two cases:
```

mean(silh3)
ans =
0.52594
mean(silh4)
ans =
0.63997

```

Finally, try clustering the data using five clusters:
```

idx5 = kmeans(X,5,'dist','city','replicates',5);
[silh5,h] = silhouette(X,idx5,'city');
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
xlabel('Silhouette Value')

```
```

ylabel('Cluster')
mean(silh5)
ans =
0.52657

```


This silhouette plot indicates that this is probably not the right number of clusters, since two of the clusters contain points with mostly low silhouette values. Without some knowledge of how many clusters are really in the data, it is a good idea to experiment with a range of values for \(k\).

\section*{Avoid Local Minima}

Like many other types of numerical minimizations, the solution that kmeans reaches often depends on the starting points. It is possible for kmeans to reach a local minimum, where reassigning any one point to a new cluster would increase the total sum of point-to-centroid distances, but where a
better solution does exist. However, you can use the optional 'replicates' parameter to overcome that problem.

For four clusters, specify five replicates, and use the 'display ' parameter to print out the final sum of distances for each of the solutions.
```

[idx4,cent4,sumdist] = kmeans(X,4,'dist','city',...
'display','final','replicates',5);
17 iterations, total sum of distances = 2303.36
5 iterations, total sum of distances = 1771.1
6 iterations, total sum of distances = 1771.1
5 iterations, total sum of distances = 1771.1
8 iterations, total sum of distances = 2303.36

```

The output shows that, even for this relatively simple problem, non-global minima do exist. Each of these five replicates began from a different randomly selected set of initial centroids, and kmeans found two different local minima. However, the final solution that kmeans returns is the one with the lowest total sum of distances, over all replicates.
```

sum(sumdist)
ans =
1771.1

```

\section*{Gaussian Mixture Models}

\author{
In this section... \\ "Introduction to Gaussian Mixture Models" on page 13-28 \\ "Cluster with Gaussian Mixtures" on page 13-28
}

\section*{Introduction to Gaussian Mixture Models}

Gaussian mixture models are formed by combining multivariate normal density components.

In Statistics Toolbox software, use the gmdistribution class to fit data using an expectation maximization (EM) algorithm, which assigns posterior probabilities to each component density with respect to each observation.

Gaussian mixture models are often used for data clustering. Clusters are assigned by selecting the component that maximizes the posterior probability. Like k-means clustering, Gaussian mixture modeling uses an iterative algorithm that converges to a local optimum. Gaussian mixture modeling may be more appropriate than k -means clustering when clusters have different sizes and correlation within them. Clustering using Gaussian mixture models is sometimes considered a soft clustering method. The posterior probabilities for each point indicate that each data point has some probability of belonging to each cluster.

\section*{Cluster with Gaussian Mixtures}

Gaussian mixture distributions can be used for clustering data, by realizing that the multivariate normal components of the fitted model can represent clusters.

1 To demonstrate the process, first generate some simulated data from a mixture of two bivariate Gaussian distributions using the mvnrnd function:
```

mu1 = [11 2];
sigma1 = [3 .2; .2 2];
mu2 = [-1 -2];
sigma2 = [2 0; 0 1];

```


2 Fit a two-component Gaussian mixture distribution. Here, you know the correct number of components to use. In practice, with real data, this decision would require comparing models with different numbers of components.
```

options = statset('Display','final');
gm = gmdistribution.fit(X,2,'Options',options);

```

This displays
```

4 9 iterations, log-likelihood = -1207.91

```

3 Plot the estimated probability density contours for the two-component mixture distribution. The two bivariate normal components overlap, but their peaks are distinct. This suggests that the data could reasonably be divided into two clusters:
```

hold on
ezcontour(@(x,y)pdf(gm,[x y]),[-8 6],[-8 6]);
hold off

```


4 Partition the data into clusters using the cluster method for the fitted mixture distribution. The cluster method assigns each point to one of the two components in the mixture distribution.
idx = cluster(gm,X);
```

cluster1 = (idx == 1);
cluster2 = (idx == 2);
scatter(X(cluster1,1),X(cluster1,2),10,'r+');
hold on
scatter(X(cluster2,1),X(cluster2,2),10,'bo');
hold off
legend('Cluster 1','Cluster 2','Location','NW')

```


Each cluster corresponds to one of the bivariate normal components in the mixture distribution. cluster assigns points to clusters based on the estimated posterior probability that a point came from a component; each point is assigned to the cluster corresponding to the highest posterior probability. The posterior method returns those posterior probabilities.

For example, plot the posterior probability of the first component for each point:
```

P = posterior(gm,X);
scatter(X(cluster1,1),X(cluster1,2),10,P(cluster1,1), '+')
hold on
scatter(X(cluster2,1),X(cluster2,2),10,P(cluster2,1),'o')
hold off
legend('Cluster 1','Cluster 2','Location','NW')
clrmap = jet(80); colormap(clrmap(9:72,:))
ylabel(colorbar,'Component 1 Posterior Probability')

```


\section*{Soft Clustering Using Gaussian Mixture Distributions}

An alternative to the previous example is to use the posterior probabilities for "soft clustering". Each point is assigned a membership score to each cluster. Membership scores are simply the posterior probabilities, and describe how similar each point is to each cluster's archetype, i.e., the mean of the
corresponding component. The points can be ranked by their membership score in a given cluster:
```

[~,order] = sort(P(:,1));
plot(1:size(X,1),P(order,1),'r-',1:size(X,1),P(order,2),'b-');
legend({'Cluster 1 Score' 'Cluster 2 Score'},'location','NW');
ylabel('Cluster Membership Score');
xlabel('Point Ranking');

```


Although a clear separation of the data is hard to see in a scatter plot of the data, plotting the membership scores indicates that the fitted distribution does a good job of separating the data into groups. Very few points have scores close to 0.5 .

Soft clustering using a Gaussian mixture distribution is similar to fuzzy k -means clustering, which also assigns each point to each cluster with a membership score. The fuzzy k-means algorithm assumes that clusters are roughly spherical in shape, and all of roughly equal size. This is comparable to a Gaussian mixture distribution with a single covariance matrix that is shared across all components, and is a multiple of the identity matrix. In contrast, gmdistribution allows you to specify different covariance options. The default is to estimate a separate, unconstrained covariance matrix for each component. A more restricted option, closer to k-means, would be to estimate a shared, diagonal covariance matrix:
```

gm2 = gmdistribution.fit(X,2,'CovType','Diagonal',...
'SharedCov',true);

```

This covariance option is similar to fuzzy k-means clustering, but provides more flexibility by allowing unequal variances for different variables.

You can compute the soft cluster membership scores without computing hard cluster assignments, using posterior, or as part of hard clustering, as the second output from cluster:
```

P2 = posterior(gm2,X); % equivalently [idx,P2] = cluster(gm2,X)
[~,order] = sort(P2(:,1));
plot(1:size(X,1),P2(order,1),'r-',1:size(X,1),P2(order,2),'b-');
legend({'Cluster 1 Score' 'Cluster 2 Score'},'location','NW');
ylabel('Cluster Membership Score');
xlabel('Point Ranking');

```


\section*{Assign New Data to Clusters}

In the previous example, fitting the mixture distribution to data using fit, and clustering those data using cluster, are separate steps. However, the same data are used in both steps. You can also use the cluster method to assign new data points to the clusters (mixture components) found in the original data.

1 Given a data set X , first fit a Gaussian mixture distribution. The previous code has already done that.
gm
gm =
Gaussian mixture distribution with 2 components in 2 dimensions
```

Component 1:
Mixing proportion: 0.312592
Mean: -0.9082 -2.1109
Component 2:
Mixing proportion: 0.687408
Mean: 0.9532 1.8940

```

2 You can then use cluster to assign each point in a new data set, \(Y\), to one of the clusters defined for the original data:
```

Y = [mvnrnd(mu1,sigma1,50);mvnrnd(mu2,sigma2,25)];
idx = cluster(gm,Y);
cluster1 = (idx == 1);
cluster2 = (idx == 2);
scatter(Y(cluster1,1),Y(cluster1,2),10,'r+');
hold on
scatter(Y(cluster2,1),Y(cluster2,2),10,'bo');
hold off
legend('Class 1','Class 2','Location','NW')

```


As with the previous example, the posterior probabilities for each point can be treated as membership scores rather than determining "hard" cluster assignments.

For cluster to provide meaningful results with new data, Y should come from the same population as \(X\), the original data used to create the mixture distribution. In particular, the estimated mixing probabilities for the Gaussian mixture distribution fitted to \(X\) are used when computing the posterior probabilities for Y .

\section*{Parametric Classification}
- "Parametric Classification" on page 14-2
- "Discriminant Analysis" on page 14-3
- "Naive Bayes Classification" on page 14-36
- "Performance Curves" on page 14-39

\section*{Parametric Classification}

Models of data with a categorical response are called classifiers. A classifier is built from training data, for which classifications are known. The classifier assigns new test data to one of the categorical levels of the response.

Parametric methods, like "Discriminant Analysis" on page 14-3, fit a parametric model to the training data and interpolate to classify test data.

Nonparametric methods, like classification and regression trees, use other means to determine classifications.

\section*{Discriminant Analysis}

\author{
In this section... \\ "What Is Discriminant Analysis?" on page 14-3 \\ "Create Discriminant Analysis Classifiers" on page 14-3 \\ "Creating a Classifier Using ClassificationDiscriminant.fit" on page 14-4 \\ "How the predict Method Classifies" on page 14-6 \\ "Create and Visualize a Discriminant Analysis Classifier" on page 14-9 \\ "Improve a Discriminant Analysis Classifier" on page 14-14 \\ "Regularize a Discriminant Analysis Classifier" on page 14-22 \\ "Examine the Gaussian Mixture Assumption" on page 14-29 \\ "Bibliography" on page 14-35
}

\section*{What Is Discriminant Analysis?}

Discriminant analysis is a classification method. It assumes that different classes generate data based on different Gaussian distributions.
- To train (create) a classifier, the fitting function estimates the parameters of a Gaussian distribution for each class (see "Creating a Classifier Using ClassificationDiscriminant.fit" on page 14-4).
- To predict the classes of new data, the trained classifier finds the class with the smallest misclassification cost (see "How the predict Method Classifies" on page 14-6).

Linear discriminant analysis is also known as the Fisher discriminant, named for its inventor, Sir R. A. Fisher [2].

\section*{Create Discriminant Analysis Classifiers}

To create the basic types of discriminant analysis classifiers for the Fisher iris data:

1 Load the data:
load fisheriris;
2 Create a default (linear) discriminant analysis classifier:
```

linclass = ClassificationDiscriminant.fit(meas,species);

```

To visualize the classification boundaries of a 2-D linear classification of the data, see Linear Discriminant Classification - Fisher Training Data on page 14-12.

3 Classify an iris with average measurements:
```

meanmeas = mean(meas);
meanclass = predict(linclass,meanmeas)
meanclass =
'versicolor'

```

4 Create a quadratic classifier:
```

quadclass = ClassificationDiscriminant.fit(meas,species,...
'discrimType','quadratic');

```

To visualize the classification boundaries of a \(2-\mathrm{D}\) quadratic classification of the data, see Quadratic Discriminant Classification - Fisher Training Data on page 14-14.

5 Classify an iris with average measurements using the quadratic classifier:
```

meanclass2 = predict(quadclass,meanmeas)
meanclass2 =
'versicolor'

```

\section*{Creating a Classifier Using ClassificationDiscriminant.fit}

The model for discriminant analysis is:
- Each class \((Y)\) generates data \((X)\) using a multivariate normal distribution. In other words, the model assumes \(X\) has a Gaussian mixture distribution (gmdistribution).
- For linear discriminant analysis, the model has the same covariance matrix for each class; only the means vary.
- For quadratic discriminant analysis, both means and covariances of each class vary.

Under this modeling assumption, ClassificationDiscriminant.fit infers the mean and covariance parameters of each class.
- For linear discriminant analysis, it computes the sample mean of each class. Then it computes the sample covariance by first subtracting the sample mean of each class from the observations of that class, and taking the empirical covariance matrix of the result.
- For quadratic discriminant analysis, it computes the sample mean of each class. Then it computes the sample covariances by first subtracting the sample mean of each class from the observations of that class, and taking the empirical covariance matrix of each class.

The fit method does not use prior probabilities or costs for fitting.

\section*{Weighted Observations}

The fit method constructs weighted classifiers using the following scheme. Suppose \(M\) is an \(N\)-by- \(K\) class membership matrix:
\(M_{n k}=1\) if observation \(n\) is from class \(k\)
\(M_{n k}=0\) otherwise.
The estimate of the class mean for unweighted data is
\[
\hat{\mu}_{k}=\frac{\sum_{n=1}^{N} M_{n k} x_{n}}{\sum_{n=1}^{N} M_{n k}} .
\]

For weighted data with positive weights \(w_{n}\), the natural generalization is
\[
\hat{\mu}_{k}=\frac{\sum_{n=1}^{N} M_{n k} w_{n} x_{n}}{\sum_{n=1}^{N} M_{n k} w_{n}} .
\]

The unbiased estimate of the pooled-in covariance matrix for unweighted data is
\[
\hat{\Sigma}=\frac{\sum_{n=1}^{N} \sum_{k=1}^{K} M_{n k}\left(x_{n}-\hat{\mu}_{k}\right)\left(x_{n}-\hat{\mu}_{k}\right)^{T}}{N-K} .
\]

For quadratic discriminant analysis, the fit method uses \(K=1\).
For weighted data, assuming the weights sum to 1 , the unbiased estimate of the pooled-in covariance matrix is
\[
\hat{\Sigma}=\frac{\sum_{n=1}^{N} \sum_{k=1}^{K} M_{n k} w_{n}\left(x_{n}-\hat{\mu}_{k}\right)\left(x_{n}-\hat{\mu}_{k}\right)^{T}}{1-\sum_{k=1}^{K} \frac{W_{k}^{(2)}}{W_{k}}}
\]
where
- \(W_{k}=\sum_{n=1}^{N} M_{n k} w_{n}\) is the sum of the weights for class \(k\).
- \(W_{k}^{(2)}=\sum_{n=1}^{N} M_{n k} w_{n}^{2}\) is the sum of squared weights per class.

\section*{How the predict Method Classifies}

There are three elements in the predict classification algorithm:
- "Posterior Probability" on page 14-7
- "Prior Probability" on page 14-8
- "Cost" on page 14-8
predict classifies so as to minimize the expected classification cost:
\[
\hat{y}=\underset{y=1, \ldots, K}{\arg \min } \sum_{k=1}^{K} \hat{P}(k \mid x) C(y \mid k),
\]
where
- \(\hat{y}\) is the predicted classification.
- \(K\) is the number of classes.
- \(\hat{P}(k \mid x)\) is the posterior probability of class \(k\) for observation \(x\).
- \(C(y \mid k)\) is the cost of classifying an observation as \(y\) when its true class is \(k\).

The space of \(X\) values divides into regions where a classification \(Y\) is a particular value. The regions are separated by straight lines for linear discriminant analysis, and by conic sections (ellipses, hyperbolas, or parabolas) for quadratic discriminant analysis. For a visualization of these regions, see "Create and Visualize a Discriminant Analysis Classifier" on page 14-9.

\section*{Posterior Probability}

The posterior probability that a point \(x\) belongs to class \(k\) is the product of the prior probability and the multivariate normal density. The density function of the multivariate normal with mean \(\mu_{k}\) and covariance \(\Sigma_{k}\) at a point \(x\) is
\[
P(x \mid k)=\frac{1}{\left(2 \pi\left|\Sigma_{k}\right|\right)^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x-\mu_{k}\right)\right),
\]
where \(\left|\Sigma_{k}\right|\) is the determinant of \(\Sigma_{k}\), and \(\Sigma_{k}^{-1}\) is the inverse matrix.
Let \(P(k)\) represent the prior probability of class \(k\). Then the posterior probability that an observation \(x\) is of class \(k\) is
\[
\hat{P}(k \mid x)=\frac{P(x \mid k) P(k)}{P(x)}
\]
where \(P(x)\) is a normalization constant, namely, the sum over \(k\) of \(P(x \mid k) P(k)\).

\section*{Prior Probability}

The prior probability is one of three choices:
- 'uniform' - The prior probability of class k is 1 over the total number of classes.
- 'empirical' - The prior probability of class \(k\) is the number of training samples of class k divided by the total number of training samples.
- A numeric vector - The prior probability of class \(k\) is the \(j\) th element of the prior vector. See ClassificationDiscriminant.fit.

After creating a classifier obj, you can set the prior using dot addressing:
```

obj.Prior = v;

```
where \(v\) is a vector of positive elements representing the frequency with which each element occurs. You do not need to retrain the classifier when you set a new prior.

\section*{Cost}

There are two costs associated with discriminant analysis classification: the true misclassification cost per class, and the expected misclassification cost per observation.

True Misclassification Cost per Class. Cost (i,j) is the cost of classifying an observation into class \(j\) if its true class is \(i\). By default, \(\operatorname{Cost}(i, j)=1\) if \(i \sim=j\), and \(\operatorname{Cost}(i, j)=0\) if \(i=j\). In other words, the cost is 0 for correct classification, and 1 for incorrect classification.

You can set any cost matrix you like when creating a classifier. Pass the cost matrix in the Cost name-value pair in ClassificationDiscriminant.fit.

After you create a classifier obj, you can set a custom cost using dot addressing:
obj.Cost = B;
\(B\) is a square matrix of size K -by- K when there are K classes. You do not need to retrain the classifier when you set a new cost.

Expected Misclassification Cost per Observation. Suppose you have Nobs observations that you want to classify with a trained discriminant analysis classifier obj. Suppose you have K classes. You place the observations into a matrix Xnew with one observation per row. The command
```

[label,score,cost] = predict(obj,Xnew)

```
returns, among other outputs, a cost matrix of size Nobs-by-K. Each row of the cost matrix contains the expected (average) cost of classifying the observation into each of the \(K\) classes. cost (\(n, k\)) is
\[
\sum_{i=1}^{K} \hat{P}(i \mid X n e w(n)) C(k \mid i)
\]
where
- \(K\) is the number of classes.
- \(\hat{P}(i \mid X n e w(n))\) is the posterior probability of class \(i\) for observation Xnew(\(n\)).
- \(C(k \mid i)\) is the cost of classifying an observation as \(k\) when its true class is \(i\).

\section*{Create and Visualize a Discriminant Analysis Classifier}

This example shows both linear and quadratic classification of the Fisher iris data. The example uses only two of the four predictors to enable simple plotting.

1 Load the data:
load fisheriris
2 Use the petal length (PL) and petal width (PW) measurements:
```

PL = meas(:,3);
PW = meas(:,4);

```

3 Plot the data, showing the classification:
```

h1 = gscatter(PL,PW,species,'krb','ov^',[],'off');
set(h1,'LineWidth',2)
legend('Setosa','Versicolor','Virginica',...
'Location','best')

```


4 Create a linear classifier:
```

X = [PL,PW];
cls = ClassificationDiscriminant.fit(X,species);

```

5 Plot the classification boundaries:
```

hold on
K = cls.Coeffs(2,3).Const;
L = cls.Coeffs(2,3).Linear;
% Plot the curve K + [x,y]*L = 0:
f = @(x1,x2) K + L(1)*x1 + L(2)*x2;
h2 = ezplot(f,[.9 7.1 0 2.5]);
set(h2,'Color','r','LineWidth',2)
K = cls.Coeffs(1,2).Const;
L = cls.Coeffs(1,2).Linear;
% Plot the curve K + [x1,x2]*L = 0:
f = @(x1,x2) K + L(1)*x1 + L(2)*x2;
h3 = ezplot(f,[.9 7.1 0 2.5]);
set(h3,'Color','k','LineWidth',2)
axis([.9 7.1 0 2.5])
xlabel('Petal Length')
ylabel('Petal Width')
title('{\bf Linear Classification with Fisher Training Data}')

```


\section*{Linear Discriminant Classification - Fisher Training Data}

6 Create a quadratic discriminant classifier:
```

cqs = ClassificationDiscriminant.fit(X,species,...
'DiscrimType', 'quadratic');

```

7 Plot the classification boundaries:
```

delete(h2); delete(h3) % remove the linear plots
K = cqs.Coeffs(2,3).Const;
L = cqs.Coeffs(2,3).Linear;
Q = cqs.Coeffs(2,3).Quadratic;
% Plot the curve K + [x1,x2]*L + [x1,x2]*Q*[x1, x2]'=0:

```
```

f = @(x1,x2) K + L(1)*x1 + L(2)*x2 + Q(1,1)*x1.^2 + ...
(Q(1,2)+Q(2,1))*x1.*x2 + Q(2,2)*x2.^2;
h2 = ezplot(f,[.9 7.1 0 2.5]);
set(h2,'Color','r','LineWidth',2)
K = cqs.Coeffs(1,2).Const;
L = cqs.Coeffs(1,2).Linear;
Q = cqs.Coeffs(1,2).Quadratic;
% Plot the curve K + [x1,x2]*L + [x1,x2]*Q*[x1,x2]'=0:
f = @(x1,x2) K + L(1)*x1 + L(2)*x2 + Q(1,1)*x1.^2 + ...
(Q(1,2)+Q(2,1))*x1.*x2 + Q(2,2)*x2.^2;
h3 = ezplot(f,[.9 7.1 0 1.02]); % plot the relevant
% portion of the curve
set(h3,'Color','k','LineWidth',2)
axis([.9 7.1 0 2.5])
xlabel('Petal Length')
ylabel('Petal Width')
title('{\bf Quadratic Classification with Fisher Training Data}')
hold off

```


\section*{Quadratic Discriminant Classification - Fisher Training Data}

\section*{Improve a Discriminant Analysis Classifier}
- "Deal with Singular Data" on page 14-15
- "Choose a Discriminant Type" on page 14-16
- "Examine the Resubstitution Error and Confusion Matrix" on page 14-17
- "Cross Validation" on page 14-18
- "Change Costs and Priors" on page 14-19

\section*{Deal with Singular Data}

Discriminant analysis needs data sufficient to fit Gaussian models with invertible covariance matrices. If your data is not sufficient to fit such a model uniquely, ClassificationDiscriminant.fit fails. This section shows methods for handling failures.

Tip To obtain a discriminant analysis classifier without failure, set the DiscrimType name-value pair to 'pseudoLinear' or 'pseudoQuadratic' in ClassificationDiscriminant.fit.
"Pseudo" discriminants never fail, because they use the pseudoinverse of the covariance matrix \(\Sigma_{k}\) (see pinv).

Example: Singular Covariance Matrix. When the covariance matrix of the fitted classifier is singular, ClassificationDiscriminant.fit can fail:
```

load popcorn
X = popcorn(:,[1 2]);
X(:,3) = 0; % a zero-variance column
Y = popcorn(:,3);
ppcrn = ClassificationDiscriminant.fit(X,Y);
Error using ClassificationDiscriminant (line 635)
Predictor x3 has zero variance. Either exclude this predictor or set 'discrimType' to
'pseudoLinear' or 'diagLinear'.
Error in classreg.learning.FitTemplate/fit (line 243)
obj = this.MakeFitObject(X,Y,W,this.ModelParams,fitArgs{:});
Error in ClassificationDiscriminant.fit (line 296)
this = fit(temp,X,Y);
To proceed with linear discriminant analysis, use a pseudoLinear or diagLinear discriminant type:
ppcrn = ClassificationDiscriminant.fit(X,Y,...
'discrimType','pseudoLinear');
meanpredict = predict(ppcrn,mean(X))

```
```

meanpredict =
3.5000

```

\section*{Choose a Discriminant Type}

There are six types of discriminant analysis classifiers: linear and quadratic, with diagonal and pseudo variants of each type.

Tip To see if your covariance matrix is singular, set discrimType to 'linear' or 'quadratic'. If the matrix is singular, the ClassificationDiscriminant.fit method fails for 'quadratic', and the Gamma property is nonzero for 'linear'.

To obtain a quadratic classifier even when your covariance matrix is singular, set discrimType to 'pseudoQuadratic' or 'diagQuadratic'.
obj = ClassificationDiscriminant.fit(X,Y,...
'discrimType','pseudoQuadratic') \% or 'diagQuadratic'

Choose a classifier type by setting the discrimType name-value pair to one of:
- 'linear' (default) - Estimate one covariance matrix for all classes.
- 'quadratic' - Estimate one covariance matrix for each class.
- 'diagLinear' - Use the diagonal of the 'linear' covariance matrix, and use its pseudoinverse if necessary.
- 'diagQuadratic' - Use the diagonals of the 'quadratic' covariance matrices, and use their pseudoinverses if necessary.
- 'pseudoLinear' - Use the pseudoinverse of the 'linear' covariance matrix if necessary.
- 'pseudoQuadratic' - Use the pseudoinverses of the 'quadratic' covariance matrices if necessary.

ClassificationDiscriminant.fit can fail for the 'linear' and 'quadratic' classifiers. When it fails, it returns an explanation, as shown in "Deal with Singular Data" on page 14-15.

ClassificationDiscriminant.fit always succeeds with the diagonal and pseudo variants. For information about pseudoinverses, see pinv.

You can set the discriminant type using dot addressing after constructing a classifier:
obj.DiscrimType = 'discrimType'
You can change between linear types or between quadratic types, but cannot change between a linear and a quadratic type.

\section*{Examine the Resubstitution Error and Confusion Matrix}

The resubstitution error is the difference between the response training data and the predictions the classifier makes of the response based on the input training data. If the resubstitution error is high, you cannot expect the predictions of the classifier to be good. However, having low resubstitution error does not guarantee good predictions for new data. Resubstitution error is often an overly optimistic estimate of the predictive error on new data.

The confusion matrix shows how many errors, and which types, arise in resubstitution. When there are K classes, the confusion matrix R is a K-by-K matrix with
\(R(i, j)=\) the number of observations of class \(i\) that the classifier predicts to be of class \(j\).

\section*{Example: Resubstitution Error of a Discriminant Analysis Classifier.}

Examine the resubstitution error of the default discriminant analysis classifier for the Fisher iris data:
```

load fisheriris
obj = ClassificationDiscriminant.fit(meas,species);
resuberror = resubLoss(obj)
resuberror =
0.0200

```

The resubstitution error is very low, meaning obj classifies nearly all the Fisher iris data correctly. The total number of misclassifications is:
```

resuberror * obj.NObservations
ans =
3.0000

```

To see the details of the three misclassifications, examine the confusion matrix:
```

R = confusionmat(obj.Y,resubPredict(obj))

```
R \(=\)
 \(50 \quad 0 \quad 0\)
 \(0 \quad 48 \quad 2\)
 \(0 \quad 1 \quad 49\)
obj.ClassNames
ans =
 'setosa'
 'versicolor'
 'virginica'
- \(R(1,:)=\left[\begin{array}{lll}50 & 0 & 0\end{array}\right]\) means obj classifies all 50 setosa irises correctly.
- \(R(2,:)=\left[\begin{array}{ll}0 & 48 \\ 2\end{array}\right]\) means obj classifies 48 versicolor irises correctly, and misclassifies two versicolor irises as virginica.
- \(R(3,:)=\left[\begin{array}{lll}0 & 1 & 49\end{array}\right]\) means obj classifies 49 virginica irises correctly, and misclassifies one virginica iris as versicolor.

\section*{Cross Validation}

Typically, discriminant analysis classifiers are robust and do not exhibit overtraining when the number of predictors is much less than the number of observations. Nevertheless, it is good practice to cross validate your classifier to ensure its stability.

Example: Cross Validating a Discriminant Analysis Classifier. Try five-fold cross validation of a quadratic discriminant analysis classifier:

1 Load the Fisher iris data:
load fisheriris
2 Create a quadratic discriminant analysis classifier for the data:
```

quadisc = ClassificationDiscriminant.fit(meas,species,...
'DiscrimType','quadratic');

```

3 Find the resubstitution error of the classifier:
```

qerror = resubLoss(quadisc)
qerror =
0.0200

```

The classifier does an excellent job. Nevertheless, resubstitution error can be an optimistic estimate of the error when classifying new data. So proceed to cross validation.

4 Create a cross-validation model:
```

cvmodel = crossval(quadisc,'kfold',5);

```

5 Find the cross-validation loss for the model, meaning the error of the out-of-fold observations:
```

cverror = kfoldLoss(cvmodel)

```
cverror =
 0.0333

The cross-validated loss is nearly as low as the original resubstitution loss. Therefore, you can have confidence that the classifier is reasonably accurate.

\section*{Change Costs and Priors}

Sometimes you want to avoid certain misclassification errors more than others. For example, it might be better to have oversensitive cancer detection instead of undersensitive cancer detection. Oversensitive detection gives more false positives (unnecessary testing or treatment). Undersensitive detection gives more false negatives (preventable illnesses or deaths). The
consequences of underdetection can be high. Therefore, you might want to set costs to reflect the consequences.

Similarly, the training data \(Y\) can have a distribution of classes that does not represent their true frequency. If you have a better estimate of the true frequency, you can include this knowledge in the classification prior property.

Example: Setting Custom Misclassification Costs. Consider the Fisher iris data. Suppose that the cost of classifying a versicolor iris as virginica is 10 times as large as making any other classification error. Create a classifier from the data, then incorporate this cost and then view the resulting classifier.

1 Load the Fisher iris data and create a default (linear) classifier as in "Example: Resubstitution Error of a Discriminant Analysis Classifier" on page 14-17:
load fisheriris
obj = ClassificationDiscriminant.fit(meas,species);
resuberror = resubLoss(obj)
resuberror =
0.0200

R = confusionmat(obj.Y,resubPredict(obj))
R =
\(50 \quad 0 \quad 0\)
\(0 \quad 48 \quad 2\)
\(0 \quad 1 \quad 49\)
obj.ClassNames
```

ans =
'setosa'
'versicolor'
'virginica'

```
\(R(2,:)=\left[\begin{array}{lll}0 & 48 & 2\end{array}\right]\) means obj classifies 48 versicolor irises correctly, and misclassifies two versicolor irises as virginica.

2 Change the cost matrix to make fewer mistakes in classifying versicolor irises as virginica:
```

obj.Cost(2,3) = 10;
R2 = confusionmat(obj.Y,resubPredict(obj))
R2 =
50 0 0
0 50 0
0 7 43

```
obj now classifies all versicolor irises correctly, at the expense of increasing the number of misclassifications of virginica irises from 1 to 7 .

Example: Setting Alternative Priors. Consider the Fisher iris data. There are 50 irises of each kind in the data. Suppose that, in a particular region, you have historical data that shows virginica are five times as prevalent as the other kinds. Create a classifier that incorporates this information.

1 Load the Fisher iris data and make a default (linear) classifier as in "Example: Resubstitution Error of a Discriminant Analysis Classifier" on page 14-17:
```

load fisheriris
obj = ClassificationDiscriminant.fit(meas,species);
resuberror = resubLoss(obj)
resuberror =
0.0200
R = confusionmat(obj.Y,resubPredict(obj))
R =
50 0 0
0 48 2
0 1 49
obj.ClassNames
ans =
'setosa'
'versicolor'

```
```

'virginica'

```
\(R(3,:)=\left[\begin{array}{lll}0 & 1 & 49\end{array}\right]\) means obj classifies 49 virginica irises correctly, and misclassifies one virginica iris as versicolor.

2 Change the prior to match your historical data, and examine the confusion matrix of the new classifier:
```

obj.Prior = [1 1 5];
R2 = confusionmat(obj.Y,resubPredict(obj))
R2 =
50 0 0
0 46 4
0 0 50

```

The new classifier classifies all virginica irises correctly, at the expense of increasing the number of misclassifications of versicolor irises from 2 to 4.

\section*{Regularize a Discriminant Analysis Classifier}

To make a more robust and simpler model, try to remove predictors from your model without hurting its predictive power. This is especially important when you have many predictors in your data. Linear discriminant analysis uses the two regularization parameters, Gamma and Delta, to identify and remove redundant predictors. The cvshrink method helps you identify appropriate settings for these parameters.

\section*{1. Load data and create a classifier.}

Create a linear discriminant analysis classifier for the ovariancancer data. Set the SaveMemory and FillCoeffs options to keep the resulting model reasonably small.
```

load ovariancancer
obj = ClassificationDiscriminant.fit(obs,grp,...
'SaveMemory','on','FillCoeffs', 'off');

```

\section*{2. Cross validate the classifier.}

Use 30 levels of Gamma and 30 levels of Delta to search for good parameters. This search is time consuming. Set Verbose to 1 to view the progress.
```

rng(8000,'twister') % for reproducibility
[err,gamma,delta,numpred] = cvshrink(obj,...
'NumGamma', 29,'NumDelta',29,'Verbose',1);
Done building cross-validated model.
Processing Gamma step 1 out of 30.
Processing Gamma step 2 out of 30.
Processing Gamma step 3 out of 30.
%%% (many lines removed) %%%
Processing Gamma step 28 out of 30.
Processing Gamma step 29 out of 30.
Processing Gamma step 30 out of 30.

```

\section*{3. Examine the quality of the regularized classifiers.}

Plot the number of predictors against the error.
```

figure;
plot(err,numpred,'k.')
xlabel('Error rate');
ylabel('Number of predictors');

```


Examine the lower-left part of the plot more closely. axis([0 . 1001000\(])\)

There is a clear tradeoff between lower number of predictors and lower error.
4. Choose an optimal tradeoff between model size and accuracy.

Find the values of Gamma and Delta that give minimal error.
minerr \(=\min (\min (e r r))\);
\([p, q]=\) find \((e r r==\) minerr \()\)
p =
24
25
q =
8
8

Two points have the same minimal error: [24,8] and [25,8], which correspond to
```

[gamma(p(1)),delta(p(1),q(1))]
ans =
0.8436 0.1463
[gamma(p(2)),delta(p(2),q(2))]
ans =
0.8697 0.1425

```

These points correspond to about a quarter of the total predictors having nonzero coefficients in the model.
```

numpred(p(1),q(1))

```
ans =
 957
numpred(\(p(2), q(2))\)
ans =
 960

To further lower the number of predictors, you must accept larger error rates. For example, to choose the Gamma and Delta that give the lowest error rate with 250 or fewer predictors:
```

low250 = min(min(err(numpred <= 250)))
low250 =
0.0278
lownum = min(min(numpred(err == low250)))
lownum =

```
 243

You need 243 predictors to achieve an error rate of 0.0278 , and this is the lowest error rate among those that have 250 predictors or fewer. The Gamma and Delta that achieve this error/number of predictors:
```

[r,s] = find((err == low250) \& (numpred == lownum));
gamma(r)
ans =
0.7133
delta(r,s)
ans =
0.2960

```

\section*{5. Set the regularization parameters.}

To set the classifier with these values of Gamma and Delta, use dot addressing.
```

obj.Gamma = gamma(r);
obj.Delta = delta(r,s);

```

\section*{6. Heat map plot.}

To compare the cvshrink calculation to that in Guo, Hastie, and Tibshirani [3], plot heat maps of error and number of predictors against Gamma and the index of the Delta parameter. (The Delta parameter range depends on the value of the Gamma parameter. So to get a rectangular plot, use the Delta index, not the parameter itself.)
```

% First create the Delta index matrix
indx = repmat(1:size(delta,2),size(delta,1),1);
figure
subplot(1,2,1)
imagesc(err);
colorbar;
title('Classification error');
xlabel('Delta index');
ylabel('Gamma index');

```
```

subplot(1,2,2)
imagesc(numpred);
colorbar;
title('Number of predictors in the model');
xlabel('Delta index');
ylabel('Gamma index');

```


You see the best classification error when Delta is small, but fewest predictors when Delta is large.

\section*{Examine the Gaussian Mixture Assumption}

Discriminant analysis assumes that the data comes from a Gaussian mixture model (see "Creating a Classifier Using ClassificationDiscriminant.fit" on page 14-4). If the data appears to come from a Gaussian mixture model, you can expect discriminant analysis to be a good classifier. Furthermore, the default linear discriminant analysis assumes that all class covariance matrices are equal. This section shows methods to check these assumptions:
- "Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis" on page 14-29
- "Q-Q Plot" on page 14-31
- "Mardia Kurtosis Test of Multivariate Normality" on page 14-34

\section*{Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis}

The Bartlett test (see Box [1]) checks equality of the covariance matrices of the various classes. If the covariance matrices are equal, the test indicates that linear discriminant analysis is appropriate. If not, consider using quadratic discriminant analysis, setting the DiscrimType name-value pair to 'quadratic' in ClassificationDiscriminant.fit.

The Bartlett test assumes normal (Gaussian) samples, where neither the means nor covariance matrices are known. To determine whether the covariances are equal, compute the following quantities:
- Sample covariance matrices per class \(\sigma_{i}, 1 \leq i \leq k\), where \(k\) is the number of classes.
- Pooled-in covariance matrix \(\sigma\).
- Test statistic \(V\) :
\[
V=(n-k) \log (|\Sigma|)-\sum_{i=1}^{k}\left(n_{i}-1\right) \log \left(\left|\Sigma_{i}\right|\right)
\]
where \(n\) is the total number of observations, and \(n_{i}\) is the number of observations in class \(i\), and \(|\Sigma|\) means the determinant of the matrix \(\Sigma\).
- Asymptotically, as the number of observations in each class \(n_{i}\) become large, \(V\) is distributed approximately \(x^{2}\) with \(k d(d+1) / 2\) degrees of freedom, where \(d\) is the number of predictors (number of dimensions in the data).

The Bartlett test is to check whether \(V\) exceeds a given percentile of the \(x^{2}\) distribution with \(k d(d+1) / 2\) degrees of freedom. If it does, then reject the hypothesis that the covariances are equal.

Example: Bartlett Test for Equal Covariance Matrices. Check whether the Fisher iris data is well modeled by a single Gaussian covariance, or whether it would be better to model it as a Gaussian mixture.
```

load fisheriris;
prednames = {'SepalLength','SepalWidth',...
'PetalLength', 'PetalWidth'};
L = ClassificationDiscriminant.fit(meas,species,...
'PredictorNames',prednames);
Q = ClassificationDiscriminant.fit(meas,species,...
'PredictorNames',prednames,'DiscrimType','quadratic');
D = 4; % Number of dimensions of X
Nclass = [50 50 50];
N = L.NObservations;
K = numel(L.ClassNames);
SigmaQ = Q.Sigma;
SigmaL = L.Sigma;
logV = (N-K)*log(det(SigmaL));
for k=1:K
logV = logV - (Nclass(k)-1)*log(det(SigmaQ(:,:,k)));
end
nu = (K-1)*D*(D+1)/2;
pval = 1-chi2cdf(logV,nu)
pval =
0

```

The Bartlett test emphatically rejects the hypothesis of equal covariance matrices. If pval had been greater than 0.05 , the test would not have rejected the hypothesis. The result indicates to use quadratic discriminant analysis, as opposed to linear discriminant analysis.

\section*{Q-Q Plot}

A Q-Q plot graphically shows whether an empirical distribution is close to a theoretical distribution. If the two are equal, the \(\mathrm{Q}-\mathrm{Q}\) plot lies on a \(45^{\circ}\) line. If not, the Q-Q plot strays from the \(45^{\circ}\) line.

Check Q-Q Plots for Linear and Quadratic Discriminants. For linear discriminant analysis, use a single covariance matrix for all classes.
```

load fisheriris;
prednames = {'SepalLength','SepalWidth',...
'PetalLength','PetalWidth'};
L = ClassificationDiscriminant.fit(meas,species,...
'PredictorNames',prednames);
N = L.NObservations;
K = numel(L.ClassNames);
mahL = mahal(L,L.X,'ClassLabels',L.Y);
D = 4;
expQ = chi2inv(((1:N)-0.5)/N,D); % expected quantiles
[mahL,sorted] = sort(mahL); % sorted obbserved quantiles
figure;
gscatter(expQ,mahL,L.Y(sorted),'bgr',[],[],'off');
legend('virginica','versicolor','setosa','Location','NW');
xlabel('Expected quantile');
ylabel('Observed quantile');
line([0 20],[0 20],'color','k');

```


Overall, the agreement between the expected and observed quantiles is good. Look at the right half of the plot. The deviation of the plot from the \(45^{\circ}\) line upward indicates that the data has tails heavier than a normal distribution. There are three possible outliers on the right: two observations from class 'setosa' and one observation from class 'virginica'.

As shown in "Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis" on page 14-29, the data does not match a single covariance matrix. Redo the calculations for a quadratic discriminant.
```

load fisheriris;
prednames = {'SepalLength','SepalWidth',...
'PetalLength','PetalWidth'};
Q = ClassificationDiscriminant.fit(meas,species,...
'PredictorNames',prednames,'DiscrimType','quadratic');
Nclass = [50 50 50];

```
```

N = L.NObservations;
K = numel(L.ClassNames);
mahQ = mahal(Q,Q.X,'ClassLabels',Q.Y);
expQ = chi2inv(((1:N)-0.5)/N,D);
[mahQ,sorted] = sort(mahQ);
figure;
gscatter(expQ,mahQ,Q.Y(sorted),'bgr',[],[],'off');
legend('virginica','versicolor','setosa','Location','NW');
xlabel('Expected quantile');
ylabel('Observed quantile for QDA');
line([0 20],[0 20],'color','k');

```


The Q-Q plot shows a better agreement between the observed and expected quantiles. There is only one outlier candidate, from class 'setosa'.

\section*{Mardia Kurtosis Test of Multivariate Normality}

The Mardia kurtosis test (see Mardia [4]) is an alternative to examining a Q-Q plot. It gives a numeric approach to deciding if data matches a Gaussian mixture model.

In the Mardia kurtosis test you compute \(M\), the mean of the fourth power of the Mahalanobis distance of the data from the class means. If the data is normally distributed with constant covariance matrix (and is thus suitable for linear discriminant analysis), \(M\) is asymptotically distributed as normal with mean \(d(d+2)\) and variance \(8 d(d+2) / n\), where
- \(d\) is the number of predictors (number of dimensions in the data).
- \(n\) is the total number of observations.

The Mardia test is two sided: check whether \(M\) is close enough to \(d(d+2)\) with respect to a normal distribution of variance \(8 d(d+2) / n\).

\section*{Example: Mardia Kurtosis Test for Linear and Quadratic}

Discriminants. Check whether the Fisher iris data is approximately normally distributed for both linear and quadratic discriminant analysis. According to "Bartlett Test of Equal Covariance Matrices for Linear Discriminant Analysis" on page 14-29, the data is not normal for linear discriminant analysis (the covariance matrices are different). "Check Q-Q Plots for Linear and Quadratic Discriminants" on page 14-31 indicates that the data is well modeled by a Gaussian mixture model with different covariances per class. Check these conclusions with the Mardia kurtosis test:
```

load fisheriris;
prednames = {'SepalLength','SepalWidth',...
'PetalLength','PetalWidth'};
L = ClassificationDiscriminant.fit(meas,species,...
'PredictorNames',prednames);
mahL = mahal(L,L.X,'ClassLabels',L.Y);
D = 4;
N = L.NObservations;
obsKurt = mean(mahL.^2);
expKurt = D*(D+2);
varKurt = 8*D*(D+2)/N;
[~,pval] = ztest(obsKurt,expKurt,sqrt(varKurt))

```
```

pval =
0.0208

```

The Mardia test indicates to reject the hypothesis that the data is normally distributed.

Continuing the example with quadratic discriminant analysis:
```

Q = ClassificationDiscriminant.fit(meas,species,...
'PredictorNames',prednames,'DiscrimType','quadratic');
mahQ = mahal(Q,Q.X,'ClassLabels',Q.Y);
obsKurt = mean(mahQ.^2);
[~,pval] = ztest(obsKurt,expKurt,sqrt(varKurt))
pval =
0.7230

```

Because pval is high, you conclude the data are consistent with the multivariate normal distribution.

\section*{Bibliography}
[1] Box, G. E. P. A General Distribution Theory for a Class of Likelihood Criteria. Biometrika 36(3), pp. 317-346, 1949.
[2] Fisher, R. A. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, Vol. 7, pp. 179-188, 1936. Available at http://digital.library.adelaide.edu.au/dspace/handle/2440/15227.
[3] Guo, Y., T. Hastie, and R. Tibshirani. Regularized Discriminant Analysis and Its Application in Microarray. Biostatistics, Vol. 8, No. 1, pp. 86-100, 2007.
[4] Mardia, K. V. Measures of multivariate skewness and kurtosis with applications. Biometrika 57 (3), pp. 519-530, 1970.

\section*{Naive Bayes Classification}

The Naive Bayes classifier is designed for use when features are independent of one another within each class, but it appears to work well in practice even when that independence assumption is not valid. It classifies data in two steps:

1 Training step: Using the training samples, the method estimates the parameters of a probability distribution, assuming features are conditionally independent given the class.

2 Prediction step: For any unseen test sample, the method computes the posterior probability of that sample belonging to each class. The method then classifies the test sample according the largest posterior probability.

The class-conditional independence assumption greatly simplifies the training step since you can estimate the one-dimensional class-conditional density for each feature individually. While the class-conditional independence between features is not true in general, research shows that this optimistic assumption works well in practice. This assumption of class independence allows the Naive Bayes classifier to better estimate the parameters required for accurate classification while using less training data than many other classifiers. This makes it particularly effective for datasets containing many predictors or features.

\section*{Supported Distributions}

Naive Bayes classification is based on estimating \(P(X \mid Y)\), the probability or probability density of features \(X\) given class \(Y\). The Naive Bayes classification object NaiveBayes provides support for normal (Gaussian), kernel, multinomial, and multivariate multinomial distributions. It is possible to use different distributions for different features.

\section*{Normal (Gaussian) Distribution}

The 'normal' distribution is appropriate for features that have normal distributions in each class. For each feature you model with a normal distribution, the Naive Bayes classifier estimates a separate normal
distribution for each class by computing the mean and standard deviation of the training data in that class.

\section*{Kernel Distribution}

The 'kernel' distribution is appropriate for features that have a continuous distribution. It does not require a strong assumption such as a normal distribution and you can use it in cases where the distribution of a feature may be skewed or have multiple peaks or modes. It requires more computing time and more memory than the normal distribution. For each feature you model with a kernel distribution, the Naive Bayes classifier computes a separate kernel density estimate for each class based on the training data for that class. By default the kernel is the normal kernel, and the classifier selects a width automatically for each class and feature. It is possible to specify different kernels for each feature, and different widths for each feature or class.

\section*{Multinomial Distribution}

The multinomial distribution (specify with the 'mn' keyword) is appropriate when all features represent counts of a set of words or tokens. This is sometimes called the "bag of words" model. For example, an email spam classifier might be based on features that count the number of occurrences of various tokens in an email. One feature might count the number of exclamation points, another might count the number of times the word "money" appears, and another might count the number of times the recipient's name appears. This is a Naive Bayes model under the further assumption that the total number of tokens (or the total document length) is independent of response class.

For the multinomial option, each feature represents the count of one token. The classifier counts the set of relative token probabilities separately for each class. The classifier defines the multinomial distribution for each row by the vector of probabilities for the corresponding class, and by N , the total token count for that row.

Classification is based on the relative frequencies of the tokens. For a row in which no token appears, N is 0 and no classification is possible. This classifier is not appropriate when the total number of tokens provides information about the response class.

\section*{Multivariate Multinomial Distribution}

The multivariate multinomial distribution (specify with the 'mvmn' keyword) is appropriate for categorical features. For example, you could fit a feature describing the weather in categories such as rain/sun/snow/clouds using the multivariate multinomial model. The feature categories are sometimes called the feature levels, and differ from the class levels for the response variable.

For each feature you model with a multivariate multinomial distribution, the Naive Bayes classifier computes a separate set of probabilities for the set of feature levels for each class.

\section*{Performance Curves}

\author{
In this section... \\ "Introduction to Performance Curves" on page 14-39 \\ "What are ROC Curves?" on page 14-39 \\ "Evaluate Classifier Performance Using perfcurve" on page 14-39
}

\section*{Introduction to Performance Curves}

After a classification algorithm such as NaiveBayes or TreeBagger has trained on data, you may want to examine the performance of the algorithm on a specific test dataset. One common way of doing this would be to compute a gross measure of performance such as quadratic loss or accuracy, averaged over the entire test dataset.

\section*{What are ROC Curves?}

You may want to inspect the classifier performance more closely, for example, by plotting a Receiver Operating Characteristic (ROC) curve. By definition, a ROC curve [1,2] shows true positive rate versus false positive rate (equivalently, sensitivity versus 1 -specificity) for different thresholds of the classifier output. You can use it, for example, to find the threshold that maximizes the classification accuracy or to assess, in more broad terms, how the classifier performs in the regions of high sensitivity and high specificity.

\section*{Evaluate Classifier Performance Using perfcurve}
perfcurve computes measures for a plot of classifier performance. You can use this utility to evaluate classifier performance on test data after you train the classifier. Various measures such as mean squared error, classification error, or exponential loss can summarize the predictive power of a classifier in a single number. However, a performance curve offers more information as it lets you explore the classifier performance across a range of thresholds on its output.

You can use perfcurve with any classifier or, more broadly, with any method that returns a numeric score for an instance of input data. By convention adopted here,
- A high score returned by a classifier for any given instance signifies that the instance is likely from the positive class.
- A low score signifies that the instance is likely from the negative classes.

For some classifiers, you can interpret the score as the posterior probability of observing an instance of the positive class at point \(X\). An example of such a score is the fraction of positive observations in a leaf of a decision tree. In this case, scores fall into the range from 0 to 1 and scores from positive and negative classes add up to unity. Other methods can return scores ranging between minus and plus infinity, without any obvious mapping from the score to the posterior class probability.
perfcurve does not impose any requirements on the input score range. Because of this lack of normalization, you can use perfcurve to process scores returned by any classification, regression, or fit method. perfcurve does not make any assumptions about the nature of input scores or relationships between the scores for different classes. As an example, consider a problem with three classes, A, B, and C, and assume that the scores returned by some classifier for two instances are as follows:
\begin{tabular}{llll}
& A & B & C \\
instance 1 & 0.4 & 0.5 & 0.1 \\
instance 2 & 0.4 & 0.1 & 0.5
\end{tabular}

If you want to compute a performance curve for separation of classes A and B, with \(C\) ignored, you need to address the ambiguity in selecting A over B. You could opt to use the score ratio, \(s(A) / s(B)\), or score difference, \(s(A)-s(B)\); this choice could depend on the nature of these scores and their normalization. perfcurve always takes one score per instance. If you only supply scores for class A, perfcurve does not distinguish between observations 1 and 2. The performance curve in this case may not be optimal.
perfcurve is intended for use with classifiers that return scores, not those that return only predicted classes. As a counter-example, consider a decision tree that returns only hard classification labels, 0 or 1 , for data with two classes. In this case, the performance curve reduces to a single point because classified instances can be split into positive and negative categories in one way only.

For input, perfcurve takes true class labels for some data and scores assigned by a classifier to these data. By default, this utility computes a Receiver Operating Characteristic (ROC) curve and returns values of 1 -specificity, or false positive rate, for \(X\) and sensitivity, or true positive rate, for \(Y\). You can choose other criteria for \(X\) and \(Y\) by selecting one out of several provided criteria or specifying an arbitrary criterion through an anonymous function. You can display the computed performance curve using plot (\(\mathrm{X}, \mathrm{Y}\)).
perfcurve can compute values for various criteria to plot either on the \(x\) - or the \(y\)-axis. All such criteria are described by a 2 -by- 2 confusion matrix, a 2 -by- 2 cost matrix, and a 2 -by- 1 vector of scales applied to class counts.

The confusion matrix, \(C\), is defined as
\[
\left(\begin{array}{ll}
T P & F N \\
F P & T N
\end{array}\right)
\]
where
- \(P\) stands for "positive".
- \(N\) stands for "negative".
- \(T\) stands for "true".
- \(F\) stands for "false".

For example, the first row of the confusion matrix defines how the classifier identifies instances of the positive class: \(C(1,1)\) is the count of correctly identified positive instances and \(C(1,2)\) is the count of positive instances misidentified as negative.

The cost matrix defines the cost of misclassification for each category:
\[
\left(\begin{array}{ll}
\operatorname{Cost}(P \mid P) & \operatorname{Cost}(N \mid P) \\
\operatorname{Cost}(P \mid N) & \operatorname{Cost}(N \mid N)
\end{array}\right)
\]
where Cost (I \(\mid \mathrm{J})\) is the cost of assigning an instance of class \(J\) to class I. Usually Cost (I|J)=0 for I=J. For flexibility, perfcurve allows you to specify nonzero costs for correct classification as well.

The two scales include prior information about class probabilities. perfcurve computes these scales by taking scale (P) = prior \((P)\) *N and scale (\(N\)) =prior (\(N\)) *P and normalizing the sum scale (P) +scale (\(N\)) to 1. \(P=T P+F N\) and \(N=T N+F P\) are the total instance counts in the positive and negative class, respectively. The function then applies the scales as multiplicative factors to the counts from the corresponding class: perfcurve multiplies counts from the positive class by scale (P) and counts from the negative class by scale(\(N\)). Consider, for example, computation of positive predictive value, PPV = TP/(TP+FP). TP counts come from the positive class and FP counts come from the negative class. Therefore, you need to scale TP by scale (P) and FP by scale(N), and the modified formula for PPV with prior probabilities taken into account is now:
\[
P P V=\frac{\operatorname{scale}(P) * T P}{\operatorname{scale}(P) * T P+\operatorname{scale}(N) * F P}
\]

If all scores in the data are above a certain threshold, perfcurve classifies all instances as 'positive'. This means that TP is the total number of instances in the positive class and FP is the total number of instances in the negative class. In this case, PPV is simply given by the prior:
\[
P P V=\frac{\operatorname{prior}(P)}{\operatorname{prior}(P)+\operatorname{prior}(N)}
\]

The perfcurve function returns two vectors, X and Y , of performance measures. Each measure is some function of confusion, cost, and scale values. You can request specific measures by name or provide a function handle to compute a custom measure. The function you provide should take confusion, cost, and scale as its three inputs and return a vector of output values.

The criterion for X must be a monotone function of the positive classification count, or equivalently, threshold for the supplied scores. If perfcurve cannot perform a one-to-one mapping between values of the X criterion and score thresholds, it exits with an error message.

By default, perfcurve computes values of the \(X\) and \(Y\) criteria for all possible score thresholds. Alternatively, it can compute a reduced number of specific \(X\) values supplied as an input argument. In either case, for \(M\) requested values, perfcurve computes \(M+1\) values for \(X\) and \(Y\). The first value out of these \(M+1\) values is special. perfcurve computes it by setting the TP instance count
to zero and setting TN to the total count in the negative class. This value corresponds to the 'reject all' threshold. On a standard ROC curve, this translates into an extra point placed at \((0,0)\).

If there are NaN values among input scores, perfcurve can process them in either of two ways:
- It can discard rows with NaN scores.
- It can add them to false classification counts in the respective class.

That is, for any threshold, instances with NaN scores from the positive class are counted as false negative (FN), and instances with NaN scores from the negative class are counted as false positive (FP). In this case, the first value of X or Y is computed by setting TP to zero and setting TN to the total count minus the NaN count in the negative class. For illustration, consider an example with two rows in the positive and two rows in the negative class, each pair having a NaN score:

Class
Negative
Negative
Positive
Positive

\section*{Score}
0.2 NaN
0.7 NaN

If you discard rows with NaN scores, then as the score cutoff varies, perfcurve computes performance measures as in the following table. For example, a cutoff of 0.5 corresponds to the middle row where rows 1 and 3 are classified correctly, and rows 2 and 4 are omitted.
\begin{tabular}{llll}
TP & FN & FP & TN \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0
\end{tabular}

If you add rows with NaN scores to the false category in their respective classes, perfcurve computes performance measures as in the following table. For example, a cutoff of 0.5 corresponds to the middle row where now rows

2 and 4 are counted as incorrectly classified. Notice that only the FN and FP columns differ between these two tables.
\begin{tabular}{llll}
TP & FN & FP & TN \\
0 & 2 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 0
\end{tabular}

For data with three or more classes, perfcurve takes one positive class and a list of negative classes for input. The function computes the \(X\) and \(Y\) values using counts in the positive class to estimate TP and FN, and using counts in all negative classes to estimate TN and FP. perfcurve can optionally compute \(Y\) values for each negative class separately and, in addition to \(Y\), return a matrix of size M-by-C, where \(M\) is the number of elements in \(X\) or \(Y\) and \(C\) is the number of negative classes. You can use this functionality to monitor components of the negative class contribution. For example, you can plot TP counts on the X -axis and FP counts on the Y -axis. In this case, the returned matrix shows how the FP component is split across negative classes.

You can also use perfcurve to estimate confidence intervals. perfcurve computes confidence bounds using either cross-validation or bootstrap. If you supply cell arrays for labels and scores, perfcurve uses cross-validation and treats elements in the cell arrays as cross-validation folds. If you set input parameter NBoot to a positive integer, perfcurve generates nboot bootstrap replicas to compute pointwise confidence bounds.
perfcurve estimates the confidence bounds using one of two methods:
- Vertical averaging (VA) - estimate confidence bounds on \(Y\) and \(T\) at fixed values of \(X\). Use the XVals input parameter to use this method for computing confidence bounds.
- Threshold averaging (TA) - estimate confidence bounds for \(X\) and \(Y\) at fixed thresholds for the positive class score. Use the TVals input parameter to use this method for computing confidence bounds.

To use observation weights instead of observation counts, you can use the 'Weights' parameter in your call to perfcurve. When you use this parameter, to compute \(\mathrm{X}, \mathrm{Y}\) and T or to compute confidence bounds by cross-validation, perfcurve uses your supplied observation weights instead of
observation counts. To compute confidence bounds by bootstrap, perfcurve samples \(N\) out of \(N\) with replacement using your weights as multinomial sampling probabilities.

\title{
Nonparametric Supervised Learning
}
- "Supervised Learning (Machine Learning) Workflow and Algorithms" on page 15-2
- "Classification Using Nearest Neighbors" on page 15-9
- "Classification Trees and Regression Trees" on page 15-30
- "Splitting Categorical Predictors" on page 15-55
- "Ensemble Methods" on page 15-58
- "Support Vector Machines (SVM)" on page 15-161
- "Bibliography" on page 15-182

\title{
Supervised Learning (Machine Learning) Workflow and Algorithms
}

\author{
In this section... \\ "Steps in Supervised Learning (Machine Learning)" on page 15-2 \\ "Characteristics of Algorithms" on page 15-7
}

\section*{Steps in Supervised Learning (Machine Learning)}

Supervised learning (machine learning) takes a known set of input data and known responses to the data, and seeks to build a predictor model that generates reasonable predictions for the response to new data.

2

Suppose you want to predict if someone will have a heart attack within a year. You have a set of data on previous people, including age, weight, height, blood pressure, etc. You know if the previous people had heart attacks within a year of their data measurements. So the problem is combining all the existing data into a model that can predict whether a new person will have a heart attack within a year.

Supervised learning splits into two broad categories:
- Classification for responses that can have just a few known values, such as 'true' or 'false'. Classification algorithms apply to nominal, not ordinal response values.
- Regression for responses that are a real number, such as miles per gallon for a particular car.

You can have trouble deciding whether you have a classification problem or a regression problem. In that case, create a regression model first, because they are often more computationally efficient.

While there are many Statistics Toolbox algorithms for supervised learning, most use the same basic workflow for obtaining a predictor model. (Detailed instruction on the steps for ensemble learning is in "Framework for Ensemble Learning" on page 15-58.) The steps for supervised learning are:

1 "Prepare Data" on page 15-3
2 "Choose an Algorithm" on page 15-4
3 "Fit a Model" on page 15-4
4 "Choose a Validation Method" on page 15-5
5 "Examine Fit and Update Until Satisfied" on page 15-6
6 "Use Fitted Model for Predictions" on page 15-6

\section*{Prepare Data}

All supervised learning methods start with an input data matrix, usually called \(X\) here. Each row of \(X\) represents one observation. Each column of X represents one variable, or predictor. Represent missing entries with NaN values in X. Statistics Toolbox supervised learning algorithms can handle NaN values, either by ignoring them or by ignoring any row with a NaN value.

You can use various data types for response data \(Y\). Each element in \(Y\) represents the response to the corresponding row of \(X\). Observations with missing \(Y\) data are ignored.
- For regression, Y must be a numeric vector with the same number of elements as the number of rows of \(X\).
- For classification, Y can be any of these data types. This table also contains the method of including missing entries.
\begin{tabular}{l|l}
\hline Data Type & Missing Entry \\
\hline Numeric vector & NaN \\
\hline Categorical vector & <undefined> \\
\hline Character array & Row of spaces \\
\hline Cell array of strings & '' \\
\hline Logical vector & (Cannot represent) \\
\hline
\end{tabular}

\section*{Choose an Algorithm}

There are tradeoffs between several characteristics of algorithms, such as:
- Speed of training
- Memory usage
- Predictive accuracy on new data
- Transparency or interpretability, meaning how easily you can understand the reasons an algorithm makes its predictions

Details of the algorithms appear in "Characteristics of Algorithms" on page 15-7. More detail about ensemble algorithms is in "Choose an Applicable Ensemble Method" on page 15-61.

\section*{Fit a Model}

The fitting function you use depends on the algorithm you choose.
\begin{tabular}{l|l}
\hline Algorithm & Fitting Function \\
\hline Classification Trees & ClassificationTree.fit \\
\hline Regression Trees & RegressionTree.fit \\
\hline \begin{tabular}{l}
Discriminant Analysis \\
(classification)
\end{tabular} & ClassificationDiscriminant.fit \\
\hline K-Nearest Neighbors (classification) & ClassificationKNN.fit \\
\hline Naive Bayes (classification) & NaiveBayes.fit \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Algorithm & Fitting Function \\
\hline \begin{tabular}{l}
Classification or Regression \\
Ensembles
\end{tabular} & fitensemble \\
\hline \begin{tabular}{l}
Classification or Regression \\
Ensembles in Parallel
\end{tabular} & TreeBagger \\
\hline
\end{tabular}

\section*{Choose a Validation Method}

The three main methods to examine the accuracy of the resulting fitted model are:
- Examine the resubstitution error. For examples, see:
- "Example: Resubstitution Error of a Classification Tree" on page 15-38
- "Example: Cross Validating a Regression Tree" on page 15-39
- "Example: Test Ensemble Quality" on page 15-71
- "Example: Resubstitution Error of a Discriminant Analysis Classifier" on page 14-17
- Examine the cross-validation error. For examples, see:
- "Example: Cross Validating a Regression Tree" on page 15-39
- "Example: Test Ensemble Quality" on page 15-71
- "Classification with Many Categorical Levels" on page 15-90
- "Example: Cross Validating a Discriminant Analysis Classifier" on page 14-18
- Examine the out-of-bag error for bagged decision trees. For examples, see:
- "Example: Test Ensemble Quality" on page 15-71
- "Workflow Example: Regression of Insurance Risk Rating for Car Imports with TreeBagger" on page 15-124
- "Workflow Example: Classifying Radar Returns for Ionosphere Data with TreeBagger" on page 15-133

\section*{Examine Fit and Update Until Satisfied}

After validating the model, you might want to change it for better accuracy, better speed, or to use less memory.
- Change fitting parameters to try to get a more accurate model. For examples, see:
- "Tuning RobustBoost" on page 15-114
- "Example: Unequal Classification Costs" on page 15-84
- "Improve a Discriminant Analysis Classifier" on page 14-14
- Change fitting parameters to try to get a smaller model. This sometimes gives a model with more accuracy. For examples, see:
- "Example: Selecting Appropriate Tree Depth" on page 15-40
- "Example: Pruning a Classification Tree" on page 15-43
- "Surrogate Splits" on page 15-94
- "Example: Regularizing a Regression Ensemble" on page 15-104
- "Workflow Example: Regression of Insurance Risk Rating for Car Imports with TreeBagger" on page 15-124
- "Workflow Example: Classifying Radar Returns for Ionosphere Data with TreeBagger" on page 15-133
- Try a different algorithm. For applicable choices, see:
- "Characteristics of Algorithms" on page 15-7
- "Choose an Applicable Ensemble Method" on page 15-61

When satisfied with a model of some types, you can trim it using the appropriate compact method (compact for classification trees, compact for classification ensembles, compact for regression trees, compact for regression ensembles, compact for discriminant analysis). compact removes training data and pruning information, so the model uses less memory.

\section*{Use Fitted Model for Predictions}

To predict classification or regression response for most fitted models, use the predict method:
```

Ypredicted = predict(obj,Xnew)

```
- obj is the fitted model object.
- Xnew is the new input data.
- Ypredicted is the predicted response, either classification or regression.

For classregtree, use the eval method instead of predict.

\section*{Characteristics of Algorithms}

This table shows typical characteristics of the various supervised learning algorithms. The characteristics in any particular case can vary from the listed ones. Use the table as a guide for your initial choice of algorithms, but be aware that the table can be inaccurate for some problems.

\section*{Characteristics of Supervised Learning Algorithms}
\begin{tabular}{l|l|l|l|l|l|l}
\hline Algorithm & \begin{tabular}{l}
Predictive \\
Accuracy
\end{tabular} & \begin{tabular}{l}
Fitting \\
Speed
\end{tabular} & \begin{tabular}{l}
Prediction \\
Speed
\end{tabular} & \begin{tabular}{l}
Memory \\
Usage
\end{tabular} & \begin{tabular}{l}
Easy to \\
Interpret
\end{tabular} & \begin{tabular}{l}
Handles \\
Categorical \\
Predictors
\end{tabular} \\
\hline Trees & Low & Fast & Fast & Low & Yes & Yes \\
\hline SVM & High & Medium & \(*\) & \(*\) & \(*\) & No \\
\hline Naive Bayes & Low & \(* *\) & \(* *\) & \(* *\) & Yes & Yes \\
\hline \begin{tabular}{l}
Nearest \\
Neighbor
\end{tabular} & \(* * *\) & Fast*** & Medium & High & No & Yes*** \\
\hline \begin{tabular}{l}
Discriminant \\
Analysis
\end{tabular} & \(* * * *\) & Fast & Fast & Low & Yes & No \\
\hline Ensembles & \begin{tabular}{l}
See "Suggestions for Choosing an Appropriate Ensemble Algorithm" on page \\
\(15-63 ~ a n d ~ " G e n e r a l ~ C h a r a c t e r i s t i c s ~ o f ~ E n s e m b l e ~ A l g o r i t h m s " ~ o n ~ p a g e ~ 15-64 ~\)
\end{tabular} \\
\hline
\end{tabular}
* - SVM prediction speed and memory usage are good if there are few support vectors, but can be poor if there are many support vectors. When you use a kernel function, it can be difficult to interpret how SVM classifies data, though the default linear scheme is easy to interpret.
** - Naive Bayes speed and memory usage are good for simple distributions, but can be poor for kernel distributions and large data sets.
*** - Nearest Neighbor usually has good predictions in low dimensions, but can have poor predictions in high dimensions. For linear search, Nearest Neighbor does not perform any fitting. For \(k\) d-trees, Nearest Neighbor does perform fitting. Nearest Neighbor can have either continuous or categorical predictors, but not both.
**** - Discriminant Analysis is accurate when the modeling assumptions are satisfied (multivariate normal by class). Otherwise, the predictive accuracy varies.

\section*{Classification Using Nearest Neighbors}

\author{
In this section... \\ "Pairwise Distance" on page 15-9 \\ " \(k\)-Nearest Neighbor Search and Radius Search" on page 15-12 \\ " \(K\)-Nearest Neighbor Classification for Supervised Learning" on page 15-25 \\ "Construct a KNN Classifier" on page 15-25 \\ "Examine the Quality of a KNN Classifier" on page 15-26 \\ "Predict Classification Based on a KNN Classifier" on page 15-27 \\ "Modify a KNN Classifier" on page 15-27
}

\section*{Pairwise Distance}

Categorizing query points based on their distance to points in a training dataset can be a simple yet effective way of classifying new points. You can use various metrics to determine the distance, described next. Use pdist2 to find the distance between a set of data and query points.

\section*{Distance Metrics}

Given an \(m x\)-by- \(n\) data matrix \(X\), which is treated as \(m x\) (1-by- \(n\)) row vectors \(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{m \mathrm{x}}\), and \(m y\)-by- \(n\) data matrix Y , which is treated as \(m y\) (1-by- \(n\)) row vectors \(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{m y}\), the various distances between the vector \(\mathrm{x}_{s}\) and \(\mathrm{y}_{t}\) are defined as follows:
- Euclidean distance
\[
d_{s t}^{2}=\left(x_{s}-y_{t}\right)\left(x_{s}-y_{t}\right)^{\prime}
\]

The Euclidean distance is a special case of the Minkowski metric, where p \(=2\).
- Standardized Euclidean distance
\[
d_{s t}^{2}=\left(x_{s}-y_{t}\right) V^{-1}\left(x_{s}-y_{t}\right)^{\prime}
\]
where V is the \(n\)-by- \(n\) diagonal matrix whose \(j\) th diagonal element is \(\mathrm{S}(j)^{2}\), where \(S\) is the vector containing the inverse weights.
- Mahalanobis distance
\[
d_{s t}^{2}=\left(x_{s}-y_{t}\right) C^{-1}\left(x_{s}-y_{t}\right)^{\prime}
\]
where C is the covariance matrix.
- City block metric
\[
d_{s t}=\sum_{j=1}^{n}\left|x_{s j}-y_{t j}\right|
\]

The city block distance is a special case of the Minkowski metric, where \(p\) \(=1\).
- Minkowski metric
\[
d_{s t}=\sqrt[p]{\sum_{j=1}^{n}\left|x_{s j}-y_{t j}\right|^{p}}
\]

For the special case of \(p=1\), the Minkowski metric gives the city block metric, for the special case of \(p=2\), the Minkowski metric gives the Euclidean distance, and for the special case of \(p=\infty\), the Minkowski metric gives the Chebychev distance.
- Chebychev distance
\[
d_{s t}=\max _{j}\left\{\left|x_{s j}-y_{t j}\right|\right\}
\]

The Chebychev distance is a special case of the Minkowski metric, where \(p\) \(=\infty\).
- Cosine distance
\[
d_{s t}=\left(1-\frac{x_{s} y_{t}^{\prime}}{\sqrt{\left(x_{s} x_{s}^{\prime}\right)\left(y_{t} y_{t}^{\prime}\right)}}\right)
\]
- Correlation distance
\[
d_{s t}=1-\frac{\left(x_{s}-\bar{x}_{s}\right)\left(y_{t}-\bar{y}_{t}\right)^{\prime}}{\sqrt{\left(x_{s}-\bar{x}_{s}\right)\left(x_{s}-\bar{x}_{s}\right)^{\prime}} \sqrt{\left(y_{t}-\bar{y}_{t}\right)\left(y_{t}-\bar{y}_{t}\right)^{\prime}}}
\]
where
\[
\begin{aligned}
& \bar{x}_{s}=\frac{1}{n} \sum_{j} x_{s j} \\
& \bar{y}_{t}=\frac{1}{n} \sum_{j} y_{t j}
\end{aligned}
\]
- Hamming distance
\[
d_{s t}=\left(\#\left(x_{s j} \neq y_{t j}\right) / n\right)
\]
- Jaccard distance
\[
d_{s t}=\frac{\#\left[\left(x_{s j} \neq y_{t j}\right) \cap\left(\left(x_{s j} \neq 0\right) \cup\left(y_{t j} \neq 0\right)\right)\right]}{\#\left[\left(x_{s j} \neq 0\right) \cup\left(y_{t j} \neq 0\right)\right]}
\]
- Spearman distance
\[
d_{s t}=1-\frac{\left(r_{s}-\bar{r}_{s}\right)\left(r_{t}-\bar{r}_{t}\right)^{\prime}}{\sqrt{\left(r_{s}-\bar{r}_{s}\right)\left(r_{s}-\bar{r}_{s}\right)^{\prime}} \sqrt{\left(r_{t}-\bar{r}_{t}\right)\left(r_{t}-\bar{r}_{t}\right)^{\prime}}}
\]
where
- \(r_{s j}\) is the rank of \(x_{s j}\) taken over \(x_{1 j}, x_{2 j}, \ldots x_{m x, j}\), as computed by tiedrank.
- \(r_{t j}\) is the rank of \(y_{t j}\) taken over \(y_{1 j}, y_{2 j}, \ldots y_{m y, j}\), as computed by tiedrank.
- \(r_{s}\) and \(r_{t}\) are the coordinate-wise rank vectors of \(x_{s}\) and \(y_{t}\), i.e., \(r_{s}=\left(r_{s l}\right.\), \(\left.r_{s 2}, \ldots r_{s n}\right)\) and \(r_{t}=\left(r_{t 1}, r_{t 2}, \ldots r_{t n}\right)\).
- \(\quad \bar{r}_{s}=\frac{1}{n} \sum_{j} r_{s j}=\frac{(n+1)}{2}\).
- \(\bar{r}_{t}=\frac{1}{n} \sum_{j} r_{t j}=\frac{(n+1)}{2}\).

\section*{\(\boldsymbol{k}\)-Nearest Neighbor Search and Radius Search}

Given a set \(X\) of \(n\) points and a distance function, \(k\)-nearest neighbor (\(k \mathrm{NN}\)) search lets you find the \(k\) closest points in \(X\) to a query point or set of points Y . The \(k \mathrm{NN}\) search technique and \(k \mathrm{NN}\)-based algorithms are widely used as benchmark learning rules. The relative simplicity of the \(k N N\) search technique makes it easy to compare the results from other classification techniques to \(k N N\) results. The technique has been used in various areas such as:
- bioinformatics
- image processing and data compression
- document retrieval
- computer vision
- multimedia database
- marketing data analysis

You can use \(k N N\) search for other machine learning algorithms, such as:
- \(k N N\) classification
- local weighted regression
- missing data imputation and interpolation
- density estimation

You can also use \(k \mathrm{NN}\) search with many distance-based learning functions, such as K-means clustering.

In contrast, for a positive real value \(r\), rangesearch finds all points in \(X\) that are within a distance \(r\) of each point in \(Y\). This fixed-radius search is closely
related to \(k\) NN search, as it supports the same distance metrics and search classes, and uses the same search algorithms.

\section*{k-Nearest Neighbor Search Using Exhaustive Search}

When your input data meets any of the following criteria, knnsearch uses the exhaustive search method by default to find the \(k\)-nearest neighbors:
- The number of columns of \(X\) is more than 10 .
- X is sparse.
- The distance measure is either:
- 'seuclidean'
- 'mahalanobis'
- 'cosine'
- 'correlation'
- 'spearman'
- 'hamming'
- 'jaccard'
- A custom distance function
knnsearch also uses the exhaustive search method if your search object is an ExhaustiveSearcher object. The exhaustive search method finds the distance from each query point to every point in \(X\), ranks them in ascending order, and returns the \(k\) points with the smallest distances. For example, this diagram shows the \(k=3\) nearest neighbors.

\section*{k-Nearest Neighbor Search Using a kd-Tree}

When your input data meets all of the following criteria, knnsearch creates a \(k\) d-tree by default to find the \(k\)-nearest neighbors:
- The number of columns of \(X\) is less than 10 .
- X is not sparse.
- The distance measure is either:
- 'euclidean' (default)
- 'cityblock'
- 'minkowski'
- 'chebychev'
knnsearch also uses a \(k\) d-tree if your search object is a KDTreeSearcher object.
\(k\) d-trees divide your data into nodes with at most BucketSize (default is 50) points per node, based on coordinates (as opposed to categories). The following diagrams illustrate this concept using patch objects to color code the different "buckets."

When you want to find the \(k\)-nearest neighbors to a given query point, knnsearch does the following:

1 Determines the node to which the query point belongs. In the following example, the query point \((32,90)\) belongs to Node 4.

2 Finds the closest \(k\) points within that node and its distance to the query point. In the following example, the points in red circles are equidistant from the query point, and are the closest points to the query point within Node 4.

3 Chooses all other nodes having any area that is within the same distance, in any direction, from the query point to the \(k\) th closest point. In this example, only Node 3 overlaps the solid black circle centered at the query point with radius equal to the distance to the closest points within Node 4.

4 Searches nodes within that range for any points closer to the query point. In the following example, the point in a red square is slightly closer to the query point than those within Node 4.

\begin{tabular}{|cc|}
\hline\(\times\) & Query \\
\(\square\) & Neighbors \\
& Cuts \\
\(\cdots \cdots \cdots\) & Neighborhood \\
\(\square\) & Node 1 \\
\(\square\) & Node 2 \\
\(\square\) & Node 3 \\
\(\square\) & Node 4 \\
\(\square\) & Node 5 \\
\(\square\) & Node 6 \\
\(\square\) & Node 7 \\
\(\square\) & Node 8 \\
\hline
\end{tabular}

Using a \(k\) d-tree for large datasets with fewer than 10 dimensions (columns) can be much more efficient than using the exhaustive search method, as knnsearch needs to calculate only a subset of the distances. To maximize the efficiency of \(k\) d-trees, use a KDTreeSearcher object.

\section*{What Are Search Objects?}

Basically, objects are a convenient way of storing information. Classes of related objects (for example, all search objects) have the same properties with values and types relevant to a specified search method. In addition to storing information within objects, you can perform certain actions (called methods) on objects.

All search objects have a knnsearch method specific to that class. This lets you efficiently perform a \(k\)-nearest neighbors search on your object for that specific object type. In addition, there is a generic knnsearch function that searches without creating or using an object.

To determine which type of object and search method is best for your data, consider the following:
- Does your data have many columns, say more than 10 ? The ExhaustiveSearcher object may perform better.
- Is your data sparse? Use the ExhaustiveSearcher object.
- Do you want to use one of these distance measures to find the nearest neighbors? Use the ExhaustiveSearcher object.
- 'seuclidean'
- 'mahalanobis'
- 'cosine'
- 'correlation'
- 'spearman'
- 'hamming'
- 'jaccard'
- A custom distance function
- Is your dataset huge (but with fewer than 10 columns)? Use the KDTreeSearcher object.
- Are you searching for the nearest neighbors for a large number of query points? Use the KDTreeSearcher object.

\section*{Example: Classifying Query Data Using knnsearch}

1 Classify a new point based on the last two columns of the Fisher iris data. Using only the last two columns makes it easier to plot:
```

load fisheriris
x = meas(:,3:4);
gscatter(x(:,1),x(:,2),species)
set(legend,'location','best')

```


2 Plot the new point:
```

newpoint = [5 1.45];
line(newpoint(1),newpoint(2),'marker','x','color','k',...
'markersize',10,'linewidth',2)

```


3 Find the 10 sample points closest to the new point:
```

[n,d] = knnsearch(x,newpoint,'k',10)
line(x(n,1),x(n,2),'color',[.5 .5 .5],'marker','o',...
'linestyle','none','markersize',10)

```


4 It appears that knnsearch has found only the nearest eight neighbors. In fact, this particular dataset contains duplicate values:
```

x(n,:)
ans =
5.0000 1.5000
4.9000 1.5000
4.9000 1.5000
5.1000 1.5000
5.1000 1.6000
4.8000 1.4000
5.0000 1.7000
4.7000 1.4000
4.7000 1.4000

```

\section*{\(4.7000 \quad 1.5000\)}

5 To make duplicate values visible on the plot, use the following code:
```

% jitter to make repeated points visible
xj = x + .05*(rand(150,2)-.5);
gscatter(xj(:,1),xj(:,2),species)

```

The jittered points do not affect any analysis of the data, only the visualization. This example does not jitter the points.

6 Make the axes equal so the calculated distances correspond to the apparent distances on the plot axis equal and zoom in to see the neighbors better:

7 Find the species of the 10 neighbors:
```

tabulate(species(n))

| Value | Count | Percent |
| ---: | ---: | ---: |
| virginica | 2 | $20.00 \%$ |
| versicolor | 8 | $80.00 \%$ |

```

Using a rule based on the majority vote of the 10 nearest neighbors, you can classify this new point as a versicolor.

8 Visually identify the neighbors by drawing a circle around the group of them:
```

% Define the center and diameter of a circle, based on the
% location of the new point:
ctr = newpoint - d(end);
diameter = 2*d(end);
% Draw a circle around the 10 nearest neighbors:
h = rectangle('position',[ctr,diameter,diameter],...
'curvature',[1 1]);
set(h,'linestyle',':')

```


9 Using the same dataset, find the 10 nearest neighbors to three new points:
```

figure
newpoint2 = [5 1.45;6 2;2.75 .75];
gscatter(x(:,1),x(:,2),species)
legend('location','best')
[n2,d2] = knnsearch(x,newpoint2,'k',10);
line(x(n2,1),x(n2,2),'color',[.5 .5 .5],'marker','o',...
'linestyle','none','markersize',10)
line(newpoint2(:,1),newpoint2(:,2),'marker','x','color','k',...
'markersize',10,'linewidth',2,'linestyle','none')

```


10 Find the species of the 10 nearest neighbors for each new point:
```

tabulate(species(n2(1,:)))
Value Count Percent
virginica 2 20.00%
versicolor 8 80.00%

```
tabulate(species(n2(2,:)))
 Value Count Percent
 virginica 10 100.00\%
tabulate(species(n2(3,:)))
 Value Count Percent
 versicolor \(7070.00 \%\)
 setosa 3 30.00\%

For more examples using knnsearch methods and function, see the individual reference pages.

\section*{K-Nearest Neighbor Classification for Supervised Learning}

The ClassificationKNN class lets you:
- "Construct a KNN Classifier" on page 15-25
- "Examine the Quality of a KNN Classifier" on page 15-26
- "Predict Classification Based on a KNN Classifier" on page 15-27
- "Modify a KNN Classifier" on page 15-27

Work with the classifier as you would with ClassificationTree or ClassificationDiscriminant. In particular, prepare your data for classification according to the procedure in "Steps in Supervised Learning (Machine Learning)" on page 15-2. Then construct the classifier using ClassificationKNN.fit.

\section*{Construct a KNN Classifier}

This example shows how to construct a \(k\)-nearest neighbor classifier for the Fisher iris data.

Load the Fisher iris data.
load fisheriris
X = meas; \% use all data for fitting \(Y=\) species; \% response data

Construct the classifier using ClassificationKNN.fit.
```

mdl = ClassificationKNN.fit(X,Y)

```
mdl =

\section*{ClassificationKNN}

PredictorNames: \{'x1' 'x2' 'x3' 'x4'\} ResponseName: 'Y'
```

    ClassNames: {'setosa' 'versicolor' 'virginica'}
    ScoreTransform: 'none'
NObservations: 150
Distance: 'euclidean'
NumNeighbors: 1

```
```

Properties, Methods

```

A default \(k\)-nearest neighbor classifier uses just the single nearest neighbor. Often, a classifier is more robust with more neighbors than that. Change the neighborhood size of mdl to 4, meaning mdl classifies using the four nearest neighbors:
```

mdl.NumNeighbors = 4;

```

\section*{Examine the Quality of a KNN Classifier}

This example shows how to examine the quality of a \(k\)-nearest neighbor classifier using resubstitution and cross validation.

Construct a KNN classifier for the Fisher iris data as in "Construct a KNN Classifier" on page 15-25.
load fisheriris
\(X=\) meas; \% use all data for fitting Y = species; \% response data mdl = ClassificationKNN.fit(X,Y,'NumNeighbors',4);

Examine the resubstitution loss, which, by default, is the fraction of misclassifications from the predictions of mdl. (For nondefault cost, weights, or priors, see ClassificationKNN.loss.)
rloss \(=\) resubLoss(mdl)
rloss =
0.0400

The classifier predicts incorrectly for \(4 \%\) of the training data.
Construct a cross-validated classifier from the model.
```

cvmdl = crossval(mdl);

```

Examine the cross-validation loss, which is the average loss of each cross-validation model when predicting on data that is not used for training.
```

kloss = kfoldLoss(cvmdl)
kloss =
0.0600

```

The cross-validated classification accuracy resembles the resubstitution accuracy. Therefore, you can expect mdl to misclassify approximately \(5 \%\) of new data, assuming that the new data has about the same distribution as the training data.

\section*{Predict Classification Based on a KNN Classifier}

This example shows how to predict classification for a \(k\)-nearest neighbor classifier.

Construct a default KNN classifier for the Fisher iris data as in "Construct a KNN Classifier" on page 15-25.
```

load fisheriris
X = meas; % use all data for fitting
Y = species; % response data
mdl = ClassificationKNN.fit(X,Y);

```

Predict the classification of an average flower.
```

flwr = mean(X); % an average flower
flwrClass = predict(mdl,flwr)
flwrClass =

```
'versicolor'

\section*{Modify a KNN Classifier}

This example shows how to modify a \(k\)-nearest neighbor classifier.

Construct a default KNN classifier for the Fisher iris data as in "Construct a KNN Classifier" on page 15-25.
```

load fisheriris
X = meas; % use all data for fitting
Y = species; % response data
mdl = ClassificationKNN.fit(X,Y);

```

Modify the model to use the three nearest neighbors, rather than the default one nearest neighbor.
```

mdl.NumNeighbors = 3;

```

Compare the resubstitution predictions and cross-validation loss with the new number of neighbors.
```

rloss = resubLoss(mdl)
rloss =
0.0400
rng('default')
cvmdl = crossval(mdl,'kfold',5);
kloss = kfoldLoss(cvmdl)
kloss =
0.0333

```

The model with three neighbors has lower cross-validated loss than a model with four neighbors (see "Examine the Quality of a KNN Classifier" on page 15-26).

Modify the model to use cosine distance instead of the default, and examine the loss. To use cosine distance, you must recreate the model using the exhaustive search method.
```

cmdl = ClassificationKNN.fit(X,Y,'NSMethod','exhaustive',...
'Distance','cosine');
cmdl.NumNeighbors = 3;
closs = resubLoss(cmdl)

```
```

closs =
0.0200

```

The classifier now has lower resubstitution error than before.
Check the quality of a cross-validated version of the new model.
cvemdl = crossval(cmdl);
kcloss \(=\) kfoldLoss(cvcmdl)
kcloss =
0.0333

The cross-validated loss is the same as before. The lesson is that improving the resubstitution error does not necessarily produce a model with better predictions.

\section*{Classification Trees and Regression Trees}

\author{
In this section... \\ "What Are Classification Trees and Regression Trees?" on page 15-30 \\ "Creating a Classification Tree" on page 15-31 \\ "Creating a Regression Tree" on page 15-31 \\ "Viewing a Tree" on page 15-32 \\ "How the Fit Methods Create Trees" on page 15-35 \\ "Predicting Responses With Classification and Regression Trees" on page 15-37 \\ "Improving Classification Trees and Regression Trees" on page 15-37 \\ "Alternative: classregtree" on page 15-47
}

\section*{What Are Classification Trees and Regression Trees?}

Classification trees and regression trees predict responses to data. To predict a response, follow the decisions in the tree from the root (beginning) node down to a leaf node. The leaf node contains the response. Classification trees give responses that are nominal, such as 'true' or 'false'. Regression trees give numeric responses.

Statistics Toolbox trees are binary. Each step in a prediction involves checking the value of one predictor (variable). For example, here is a simple classification tree:

This tree predicts classifications based on two predictors, x 1 and x 2 . To predict, start at the top node, represented by a triangle (\(\Delta\)). The first decision is whether \(x 1\) is smaller than 0.5 . If so, follow the left branch, and see that the tree classifies the data as type 0 .

If, however, \(x 1\) exceeds 0.5 , then follow the right branch to the lower-right triangle node. Here the tree asks if \(x 2\) is smaller than 0.5 . If so, then follow the left branch to see that the tree classifies the data as type 0 . If not, then follow the right branch to see that the that the tree classifies the data as type 1 .

To learn how to prepare your data for classification or regression using decision trees, see "Steps in Supervised Learning (Machine Learning)" on page 15-2.

\section*{Creating a Classification Tree}

To create a classification tree for the ionosphere data:
```

load ionosphere % contains X and Y variables
ctree = ClassificationTree.fit(X,Y)
ctree =
ClassificationTree
PredictorNames: {1x34 cell}
ResponseName: 'Y'
ClassNames: {'b' 'g'}
ScoreTransform: 'none'
CategoricalPredictors: [
NObservations: 351

```
 Properties, Methods

\section*{Creating a Regression Tree}

To create a regression tree for the carsmall data based on the Horsepower and Weight vectors for data, and MPG vector for response:
load carsmall \% contains Horsepower, Weight, MPG
```

X = [Horsepower Weight];
rtree = RegressionTree.fit(X,MPG)
rtree =
RegressionTree
PredictorNames: {'x1' 'x2'}
ResponseName: 'Y
ResponseTransform: 'none
CategoricalPredictors: []
NObservations: 94

```
 Properties, Methods

\section*{Viewing a Tree}

There are two ways to view a tree:
- view(tree) returns a text description of the tree.
- view(tree,'mode','graph') returns a graphic description of the tree.
"Creating a Classification Tree" on page 15-31 has the following two views:
```

load fisheriris
ctree = ClassificationTree.fit(meas,species);
view(ctree)
Decision tree for classification
1 if x3<2.45 then node 2 elseif x3>=2.45 then node 3 else setosa
2 class = setosa
3 if x4<1.75 then node 4 elseif x4>=1.75 then node 5 else versicolor
4 if x3<4.95 then node 6 elseif x3>=4.95 then node 7 else versicolor
5 class = virginica
6 if x4<1.65 then node 8 elseif x4>=1.65 then node 9 else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica

```
```

view(ctree,'mode','graph')

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{- Classification tree viewer} & \(\square\) & [回 & - \\
\hline File Tools D & Desktop & Tree & Window & Help & & & & v \\
\hline \multicolumn{9}{|l|}{\(\Leftrightarrow \mid+\underbrace{+} \underbrace{+}\)} \\
\hline Click to display: & Identity & & \(\checkmark\) & Magnification: & 100\% & \(\checkmark\) & Pruni & ing lev \\
\hline
\end{tabular}

Similarly, "Creating a Regression Tree" on page 15-31 has the following two views:
```

load carsmall % contains Horsepower, Weight, MPG
X = [Horsepower Weight];
rtree = RegressionTree.fit(X,MPG,'MinParent',30);
view(rtree)
Decision tree for regression
1 if x2<3085.5 then node 2 elseif x2>=3085.5 then node 3 else 23.7181
2 if x1<89 then node 4 elseif x1>=89 then node 5 else 28.7931
3 if x1<115 then node 6 elseif x1>=115 then node 7 else 15.5417
4 if x2<2162 then node 8 elseif x2>=2162 then node 9 else 30.9375
5 fit = 24.0882
6 fit = 19.625
7 fit = 14.375
fit = 33.3056
9 fit = 29

```
```

view(rtree,'mode','graph')

```
```

view(rtree,'mode','graph')

```


\section*{How the Fit Methods Create Trees}

The ClassificationTree.fit and RegressionTree.fit methods perform the following steps to create decision trees:

1 Start with all input data, and examine all possible binary splits on every predictor.

2 Select a split with best optimization criterion.
- If the split leads to a child node having too few observations (less than the MinLeaf parameter), select a split with the best optimization criterion subject to the MinLeaf constraint.

3 Impose the split.

4 Repeat recursively for the two child nodes.
The explanation requires two more items: description of the optimization criterion, and stopping rule.

Stopping rule: Stop splitting when any of the following hold:
- The node is pure.
- For classification, a node is pure if it contains only observations of one class.
- For regression, a node is pure if the mean squared error (MSE) for the observed response in this node drops below the MSE for the observed response in the entire data multiplied by the tolerance on quadratic error per node (qetoler parameter).
- There are fewer than MinParent observations in this node.
- Any split imposed on this node would produce children with fewer than MinLeaf observations.

\section*{Optimization criterion:}
- Regression: mean-squared error (MSE). Choose a split to minimize the MSE of predictions compared to the training data.
- Classification: One of three measures, depending on the setting of the SplitCriterion name-value pair:
- 'gdi' (Gini's diversity index, the default)
- 'twoing'
- 'deviance'

For details, see ClassificationTree "Definitions" on page 20-287.
For a continuous predictor, a tree can split halfway between any two adjacent unique values found for this predictor. For a categorical predictor with \(L\) levels, a classification tree needs to consider \(2^{L-1}-1\) splits to find the optimal split. Alternatively, you can choose a heuristic algorithm to find a good split, as described in "Splitting Categorical Predictors" on page 15-55.

\section*{Predicting Responses With Classification and Regression Trees}

After creating a tree, you can easily predict responses for new data. Suppose Xnew is new data that has the same number of columns as the original data X . To predict the classification or regression based on the tree and the new data, enter

Ynew = predict(tree,Xnew);
For each row of data in Xnew, predict runs through the decisions in tree and gives the resulting prediction in the corresponding element of Ynew. For more information for classification, see the classification predict reference page; for regression, see the regression predict reference page.

For example, to find the predicted classification of a point at the mean of the ionosphere data:
```

load ionosphere % contains X and Y variables
ctree = ClassificationTree.fit(X,Y);
Ynew = predict(ctree,mean(X))
Ynew =

```
 ' g '

To find the predicted MPG of a point at the mean of the carsmall data:
```

load carsmall % contains Horsepower, Weight, MPG
X = [Horsepower Weight];
rtree = RegressionTree.fit(X,MPG);
Ynew = predict(rtree,mean(X))
Ynew =

```
 28.7931

\section*{Improving Classification Trees and Regression Trees}

You can tune trees by setting name-value pairs in ClassificationTree.fit and RegressionTree.fit. The remainder of this section describes how to
determine the quality of a tree, how to decide which name-value pairs to set, and how to control the size of a tree:
- "Examining Resubstitution Error" on page 15-38
- "Cross Validation" on page 15-38
- "Control Depth or "Leafiness'"" on page 15-39
- "Pruning" on page 15-43

\section*{Examining Resubstitution Error}

Resubstitution error is the difference between the response training data and the predictions the tree makes of the response based on the input training data. If the resubstitution error is high, you cannot expect the predictions of the tree to be good. However, having low resubstitution error does not guarantee good predictions for new data. Resubstitution error is often an overly optimistic estimate of the predictive error on new data.

Example: Resubstitution Error of a Classification Tree. Examine the resubstitution error of a default classification tree for the Fisher iris data:
```

load fisheriris
ctree = ClassificationTree.fit(meas,species);
resuberror = resubLoss(ctree)
resuberror =
0.0200

```

The tree classifies nearly all the Fisher iris data correctly.

\section*{Cross Validation}

To get a better sense of the predictive accuracy of your tree for new data, cross validate the tree. By default, cross validation splits the training data into 10 parts at random. It trains 10 new trees, each one on nine parts of the data. It then examines the predictive accuracy of each new tree on the data not included in training that tree. This method gives a good estimate of the predictive accuracy of the resulting tree, since it tests the new trees on new data.

Example: Cross Validating a Regression Tree. Examine the resubstitution and cross-validation accuracy of a regression tree for predicting mileage based on the carsmall data:
```

load carsmall
X = [Acceleration Displacement Horsepower Weight];
rtree = RegressionTree.fit(X,MPG);
resuberror = resubLoss(rtree)
resuberror =
4.7188

```

The resubstitution loss for a regression tree is the mean-squared error. The resulting value indicates that a typical predictive error for the tree is about the square root of 4.7 , or a bit over 2 .

Now calculate the error by cross validating the tree:
```

rng('default')
cvrtree = crossval(rtree);
cvloss = kfoldLoss(cvrtree)
cvloss =

```
 23.8065

The cross-validated loss is almost 25, meaning a typical predictive error for the tree on new data is about 5 . This demonstrates that cross-validated loss is usually higher than simple resubstitution loss.

\section*{Control Depth or "Leafiness"}

When you grow a decision tree, consider its simplicity and predictive power. A deep tree with many leaves is usually highly accurate on the training data. However, the tree is not guaranteed to show a comparable accuracy on an independent test set. A leafy tree tends to overtrain, and its test accuracy is often far less than its training (resubstitution) accuracy. In contrast, a shallow tree does not attain high training accuracy. But a shallow tree can be more robust - its training accuracy could be close to that of a representative test set. Also, a shallow tree is easy to interpret.

If you do not have enough data for training and test, estimate tree accuracy by cross validation.

For an alternative method of controlling the tree depth, see "Pruning" on page 15-43.

Example: Selecting Appropriate Tree Depth. This example shows how to control the depth of a decision tree, and how to choose an appropriate depth.

1 Load the ionosphere data:
load ionosphere
2 Generate minimum leaf occupancies for classification trees from 10 to 100, spaced exponentially apart:
leafs = logspace(1,2,10);

3 Create cross validated classification trees for the ionosphere data with minimum leaf occupancies from leafs:
```

rng('default')
N = numel(leafs);
err = zeros(N,1);
for n=1:N
t = ClassificationTree.fit(X,Y,'crossval','on',...
'minleaf',leafs(n));
err(n) = kfoldLoss(t);
end
plot(leafs,err);
xlabel('Min Leaf Size');
ylabel('cross-validated error');

```


The best leaf size is between about 20 and 50 observations per leaf.
4 Compare the near-optimal tree with at least 40 observations per leaf with the default tree, which uses 10 observations per parent node and 1 observation per leaf.

DefaultTree = ClassificationTree.fit(X,Y); view(DefaultTree,'mode','graph')

OptimalTree = ClassificationTree.fit(X,Y,'minleaf', 40); view(OptimalTree,'mode','graph')

```

resubOpt = resubLoss(OptimalTree);
lossOpt = kfoldLoss(crossval(OptimalTree));
resubDefault = resubLoss(DefaultTree);
lossDefault = kfoldLoss(crossval(DefaultTree));
resubOpt,resubDefault,lossOpt,lossDefault
resubOpt =

```
```

    0.0883
    resubDefault =
0.0114
lossOpt =
0.1054
lossDefault =
0.1111

```

The near-optimal tree is much smaller and gives a much higher resubstitution error. Yet it gives similar accuracy for cross-validated data.

\section*{Pruning}

Pruning optimizes tree depth (leafiness) is by merging leaves on the same tree branch. "Control Depth or "Leafiness"" on page 15-39 describes one method for selecting the optimal depth for a tree. Unlike in that section, you do not need to grow a new tree for every node size. Instead, grow a deep tree, and prune it to the level you choose.

Prune a tree at the command line using the prune method (classification) or prune method (regression). Alternatively, prune a tree interactively with the tree viewer:
```

view(tree,'mode','graph')

```

To prune a tree, the tree must contain a pruning sequence. By default, both ClassificationTree.fit and RegressionTree.fit calculate a pruning sequence for a tree during construction. If you construct a tree with the 'Prune ' name-value pair set to 'off', or if you prune a tree to a smaller level, the tree does not contain the full pruning sequence. Generate the full pruning sequence with the prune method (classification) or prune method (regression).

Example: Pruning a Classification Tree. This example creates a classification tree for the ionosphere data, and prunes it to a good level.

1 Load the ionosphere data:
load ionosphere
2 Construct a default classification tree for the data:
tree \(=\) ClassificationTree.fit(\(\mathrm{X}, \mathrm{Y}\));
3 View the tree in the interactive viewer:
```

view(tree,'mode','graph')

```

Classification tree viewer

4 Find the optimal pruning level by minimizing cross-validated loss:
```

[~,~,~,bestlevel] = cvLoss(tree,...
'subtrees','all','treesize','min')

```
bestlevel =

5 Prune the tree to level 6 in the interactive viewer:

The pruned tree is the same as the near-optimal tree in "Example: Selecting Appropriate Tree Depth" on page 15-40.

6 Set 'treesize' to 'se' (default) to find the maximal pruning level for which the tree error does not exceed the error from the best level plus one standard deviation:
```

[~,~,~,bestlevel] = cvLoss(tree,'subtrees','all')
bestlevel =

```

6
In this case the level is the same for either setting of 'treesize'.
7 Prune the tree to use it for other purposes:
```

tree = prune(tree,'Level',6);

```
view(tree,'mode','graph')

\section*{Alternative: classregtree}

The ClassificationTree and RegressionTree classes are new in MATLAB R2011a. Previously, you represented both classification trees and regression trees with a classregtree object. The new classes provide all the functionality of the classregtree class, and are more convenient when used in conjunction with "Ensemble Methods" on page 15-58.

Before the classregtree class, there were treefit, treedisp, treeval, treeprune, and treetest functions. Statistics Toolbox software maintains these only for backward compatibility.

\section*{Example: Creating Classification Trees Using classregtree}

This example uses Fisher's iris data in fisheriris.mat to create a classification tree for predicting species using measurements of sepal length, sepal width, petal length, and petal width as predictors. Here, the predictors are continuous and the response is categorical.

1 Load the data and use the classregtree constructor of the classregtree class to create the classification tree:
```

load fisheriris
t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2 class = setosa
3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
5 class = virginica
6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica

```
\(t\) is a classregtree object and can be operated on with any class method.
2 Use the type method of the classregtree class to show the type of the tree:
```

treetype = type(t)
treetype =
classification

```
classregtree creates a classification tree because species is a cell array of strings, and the response is assumed to be categorical.

3 To view the tree, use the view method of the classregtree class:
```

view(t)

```
Click to display: \begin{tabular}{|l|l|l|l|l|}
\hline Identity & \(\square\) & Magnification: & \(100 \%\) & \(\square\) \\
\hline
\end{tabular}

The tree predicts the response values at the circular leaf nodes based on a series of questions about the iris at the triangular branching nodes. A true answer to any question follows the branch to the left. A false follows the branch to the right.

4 The tree does not use sepal measurements for predicting species. These can go unmeasured in new data, and you can enter them as NaN values for predictions. For example, to use the tree to predict the species of an iris with petal length 4.8 and petal width 1.6 , type:
```

predicted = t([NaN NaN 4.8 1.6])
predicted =
'versicolor'

```

The object allows for functional evaluation, of the form \(t(X)\). This is a shorthand way of calling the eval method of the classregtree class. The predicted species is the left leaf node at the bottom of the tree in the previous view.

5 You can use a variety of methods of the classregtree class, such as cutvar and cuttype to get more information about the split at node 6 that makes the final distinction between versicolor and virginica:
```

var6 = cutvar(t,6) % What variable determines the split?
var6 =
'PW'
type6 = cuttype(t,6) % What type of split is it?
type6 =
'continuous'

```

6 Classification trees fit the original (training) data well, but can do a poor job of classifying new values. Lower branches, especially, can be strongly affected by outliers. A simpler tree often avoids overfitting. You can use the prune method of the classregtree class to find the next largest tree from an optimal pruning sequence:
```

pruned = prune(t,'level',1)
pruned =
Decision tree for classification
if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
class = setosa
if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
class = virginica
class = versicolor
7 class = virginica
view(pruned)

```


To find the best classification tree, employing the techniques of resubstitution and cross validation, use the test method of the classregtree class.

\section*{Example: Creating Regression Trees Using classregtree}

This example uses the data on cars in carsmall.mat to create a regression tree for predicting mileage using measurements of weight and the number of cylinders as predictors. Here, one predictor (weight) is continuous and the other (cylinders) is categorical. The response (mileage) is continuous.

1 Load the data and use the classregtree constructor of the classregtree class to create the regression tree:
```

load carsmall
t = classregtree([Weight, Cylinders],MPG,...
'cat',2,'splitmin',20,...
'names',{'W','C'})
t =
Decision tree for regression
if W<3085.5 then node 2 elseif W>=3085.5 then node 3 else 23.7181
if W<2371 then node 4 elseif W>=2371 then node 5 else 28.7931
if C=8 then node 6 elseif C in {4 6} then node 7 else 15.5417
if W<2162 then node 8 elseif W>=2162 then node 9 else 32.0741
if C=6 then node 10 elseif C=4 then node 11 else 25.9355
if W<4381 then node 12 elseif W>=4381 then node 13 else 14.2963
fit = 19.2778
fit = 33.3056
fit = 29.6111
fit = 23.25
if W<2827.5 then node 14 elseif W>=2827.5 then node 15 else 27.2143
if W<3533.5 then node 16 elseif W>=3533.5 then node 17 else 14.8696
fit = 11
fit = 27.6389
fit = 24.6667
fit = 16.6
7 fit = 14.3889

```
t is a classregtree object and can be operated on with any of the methods of the class.

2 Use the type method of the classregtree class to show the type of the tree:
```

treetype = type(t)
treetype =
regression

```
classregtree creates a regression tree because MPG is a numerical vector, and the response is assumed to be continuous.

3 To view the tree, use the view method of the classregtree class:
```

view(t)

```


The tree predicts the response values at the circular leaf nodes based on a series of questions about the car at the triangular branching nodes. A true answer to any question follows the branch to the left; a false follows the branch to the right.

4 Use the tree to predict the mileage for a 2000 -pound car with either 4,6 , or 8 cylinders:
```

mileage2K = t([2000 4; 2000 6; 2000 8])
mileage2K =
33.3056
33.3056
33.3056

```

The object allows for functional evaluation, of the form \(t(X)\). This is a shorthand way of calling the eval method of the classregtree class.

5 The predicted responses computed above are all the same. This is because they follow a series of splits in the tree that depend only on weight, terminating at the leftmost leaf node in the view above. A 4000-pound car, following the right branch from the top of the tree, leads to different predicted responses:
```

mileage4K = t([4000 4; 4000 6; 4000 8])

```
```

mileage4K =
19.2778
19.2778
14.3889

```

6 You can use a variety of other methods of the classregtree class, such as cutvar, cuttype, and cutcategories, to get more information about the split at node 3 that distinguishes the 8 -cylinder car:
```

var3 = cutvar(t,3) % What variable determines the split?
var3 =
'C'
type3 = cuttype(t,3) % What type of split is it?
type3 =
'categorical'
c = cutcategories(t,3) % Which classes are sent to the left
% child node, and which to the right?
c =
[8] [1x2 double]
c {1}
ans =
8
c {2}
ans =
4 6

```

Regression trees fit the original (training) data well, but may do a poor job of predicting new values. Lower branches, especially, may be strongly affected by outliers. A simpler tree often avoids overfitting. To find the best regression tree, employing the techniques of resubstitution and cross validation, use the test method of the classregtree class.

\section*{Splitting Categorical Predictors}

\author{
In this section... \\ "Challenges in Splitting Multilevel Predictors" on page 15-55 \\ "Pull Left By Purity" on page 15-56 \\ "Principle Component-Based Partitioning" on page 15-56 \\ "One Versus All By Class" on page 15-57
}

\section*{Challenges in Splitting Multilevel Predictors}

When growing a classification tree, finding an optimal binary split for a categorical predictor with many levels is significantly more computationally challenging than finding a split for a continuous predictor. For a continuous predictor, a tree can split halfway between any two adjacent unique values of this predictor.

In contrast, to find an exact optimal binary split for a categorical predictor with \(L\) levels, a classification tree needs to consider \(2^{L-1}-1\) splits. To obtain this formula, observe that you can assign \(L\) distinct values to the left and right nodes in \(2^{L}\) ways. Two out of these \(2^{L}\) configurations leave either the left or right node empty, and therefore should be discarded. Now, divide by 2 because left and right can be swapped.

For regression and binary classification problems, with \(K=2\) response classes, there is a computational shortcut [1]. The tree can order the categories by mean response (for regression) or class probability for one of the classes (for classification). Then, the optimal split is one of the \(L-1\) splits for the ordered list. When \(K=2\), ClassificationTree.fit always uses an exact search.

Therefore, computational challenges really only arise when growing classification trees for data with \(K \geq 3\) classes. To reduce computation, there are several heuristic algorithms for finding a good split. When using ClassificationTree.fit to grow a classification tree, you can choose an algorithm for splitting categorical predictors using the AlgorithmForCategorical name-value pair argument. You can also set this algorithm when creating a classification template.

If you do not specify an algorithm, ClassificationTree.fit splits categorical predictors using the exact search algorithm, provided the predictor has at most MaxCat levels (the default is 10 levels, and, depending on your platform, you cannot perform an exact search on categorical predictors with more than 32 or 64 levels). Otherwise, ClassificationTree.fit chooses a good inexact search algorithm based on the number of classes and levels.

The available heuristic algorithms are: pull left by purity, a principle component-based partitioning, and one versus all by class.

\section*{Pull Left By Purity}

This algorithm starts with all \(L\) categorical levels on the right branch. Inspect the \(K\) categories that have the largest class probabilities for each class. Move the category with the maximum value of the split criterion to the left branch. Continue moving categories from right to left, recording the split criterion at each move, until the right child has only one category remaining. Out of this sequence, the chosen split is the one that maximizes the split criterion.

Select this pull left by purity algorithm by using the 'AlgorithmForCategorial', 'PullLeft' name-value pair in ClassificationTree.fit.

\section*{Principle Component-Based Partitioning}

This algorithm was developed by Coppersmith, Hong, and Hosking [2]. It finds a close-to-optimal binary partition of the \(L\) predictor levels by searching for a separating hyperplane that is perpendicular to the first principal component of the weighted covariance matrix of the centered class probability matrix.

The algorithm assigns a score to each of the \(L\) categories, computed as the inner product between the found principal component and the vector of class probabilities for that category. Then, the chosen split is the one of the \(L-1\) splits of the scores that maximizes the split criterion.

Select this principle component-based partitioning by using the 'AlgorithmForCategorical','PCA' name-value pair in ClassificationTree.fit.

\section*{One Versus All By Class}

This algorithm starts with all \(L\) categorical levels on the right branch. For each of the \(K\) classes, order the categories based on their probability for that class.

For the first class, move each category to the left branch in order, recording the split criterion at each move. Repeat for the remaining classes. Out of this sequence, the chosen split is the one that maximizes the split criterion.

Select this one versus all by class algorithm by using the 'AlgorithmForCategorial','OVAbyClass' name-value pair in ClassificationTree.fit.

\section*{References}
[1] Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Chapman \& Hall, Boca Raton, 1993.
[2] Coppersmith, D., S. J. Hong, and J. R. M. Hosking. "Partitioning Nominal Attributes in Decision Trees." Data Mining and Knowledge Discovery, Vol. 3, 1999, pp. 197-217.
```

See Also ClassificationTree.fit | template | RegressionTree.fit |

```

Related - "How the Fit Methods Create Trees" on page 15-35
Examples
Concepts • "What Are Classification Trees and Regression Trees?" on page 15-30

\section*{Ensemble Methods}

\section*{In this section...}
"Framework for Ensemble Learning" on page 15-58
"Basic Ensemble Examples" on page 15-68
"Test Ensemble Quality" on page 15-70
"Classification with Imbalanced Data" on page 15-76
"Classification: Imbalanced Data or Unequal Misclassification Costs" on page 15-82
"Classification with Many Categorical Levels" on page 15-90
"Surrogate Splits" on page 15-94
"LPBoost and TotalBoost for Small Ensembles" on page 15-97
"Ensemble Regularization" on page 15-102
"Tuning RobustBoost" on page 15-114
"Random Subspace Classification" on page 15-118
"TreeBagger Examples" on page 15-124
"Ensemble Algorithms" on page 15-145

\section*{Framework for Ensemble Learning}

You have several methods for melding results from many weak learners into one high-quality ensemble predictor. These methods closely follow the same syntax, so you can try different methods with minor changes in your commands.

Create an ensemble with the fitensemble function. Its syntax is
ens = fitensemble(\(\mathrm{X}, \mathrm{Y}\), model, numberens, learners)
- \(X\) is the matrix of data. Each row contains one observation, and each column contains one predictor variable.
- Y is the vector of responses, with the same number of observations as the rows in \(X\).
- model is a string naming the type of ensemble.
- numberens is the number of weak learners in ens from each element of learners. So the number of elements in ens is numberens times the number of elements in learners.
- learners is either a string naming a weak learner, a weak learner template, or a cell array of such templates.

Pictorially, here is the information you need to create an ensemble:

For all classification or nonlinear regression problems, follow these steps to create an ensemble:

1 "Put Predictor Data in a Matrix" on page 15-60
2 "Prepare the Response Data" on page 15-60
3 "Choose an Applicable Ensemble Method" on page 15-61
4 "Set the Number of Ensemble Members" on page 15-64
5 "Prepare the Weak Learners" on page 15-65
6 "Call fitensemble" on page 15-67

\section*{Put Predictor Data in a Matrix}

All supervised learning methods start with a data matrix, usually called X in this documentation. Each row of \(X\) represents one observation. Each column of \(X\) represents one variable, or predictor.

\section*{Prepare the Response Data}

You can use a wide variety of data types for response data.
- For regression ensembles, \(Y\) must be a numeric vector with the same number of elements as the number of rows of \(X\).
- For classification ensembles, Y can be any of the following data types. This table also contains the method of including missing entries.
\begin{tabular}{l|l}
\hline Data Type & Missing Entry \\
\hline Numeric vector & NaN \\
\hline Categorical vector & <undefined> \\
\hline Character array & Row of spaces \\
\hline Cell array of strings & '' \\
\hline Logical vector & (not possible to represent) \\
\hline
\end{tabular}
fitensemble ignores missing values in \(Y\) when creating an ensemble.
For example, suppose your response data consists of three observations in the following order: true, false, true. You could express Y as:
- [1;0;1] (numeric vector)
- nominal(\{'true', 'false','true'\}) (categorical vector)
- [true;false;true] (logical vector)
- ['true ';'false';'true '] (character array, padded with spaces so each row has the same length)
- \{'true','false', 'true'\} (cell array of strings)

Use whichever data type is most convenient. Because you cannot represent missing values with logical entries, do not use logical entries when you have missing values in Y .

\section*{Choose an Applicable Ensemble Method}
fitensemble uses one of these algorithms to create an ensemble.
- For classification with two classes:
- 'AdaBoostM1'
- 'LogitBoost'
- 'GentleBoost'
- 'RobustBoost' (requires an Optimization Toolbox license)
- 'LPBoost' (requires an Optimization Toolbox license)
- 'TotalBoost' (requires an Optimization Toolbox license)
- 'RUSBoost'
- 'Subspace'
- 'Bag'
- For classification with three or more classes:
- 'AdaBoostM2'
- 'LPBoost' (requires an Optimization Toolbox license)
- 'TotalBoost' (requires an Optimization Toolbox license)
- 'RUSBoost'
- 'Subspace'
- 'Bag'
- For regression:
- 'LSBoost'
- 'Bag'
'Bag' applies to all methods. When using 'Bag', indicate whether you want a classifier or regressor with the type name-value pair set to 'classification' or 'regression'.

For descriptions of the various algorithms, see "Ensemble Algorithms" on page 15-145.

See "Suggestions for Choosing an Appropriate Ensemble Algorithm" on page 15-63.

This table lists characteristics of the various algorithms. In the table titles:
- Regress. - Regression
- Classif. - Classification
- Preds. - Predictors
- Imbalance - Good for imbalanced data (one class has many more observations than the other)
- Stop - Algorithm self-terminates
- Sparse - Requires fewer weak learners than other ensemble algorithms
\begin{tabular}{l|l|l|l|l|l|l|l}
\hline Algorithm & Regress. & \begin{tabular}{l}
Binary \\
Classif.
\end{tabular} & \begin{tabular}{l}
Binary \\
Classif. \\
Multi- \\
Level \\
Preds.
\end{tabular} & \begin{tabular}{l}
Classif. \\
3+ \\
Classes
\end{tabular} & \begin{tabular}{l}
Class \\
Imbalance
\end{tabular} & Stop & Sparse \\
\hline Bag & \(\times\) & \(\times\) & & \(\times\) & & & \\
\hline AdaBoostM1 & & \(\times\) & & & & & \\
\hline AdaBoostM2 & & & & \(\times\) & & & \\
\hline LogitBoost & & \(\times\) & \(\times\) & & & & \\
\hline GentleBoost & & \(\times\) & \(\times\) & & & & \\
\hline RobustBoost & & \(\times\) & & & & \(\times\) & \(\times\) \\
\hline LPBoost & & \(\times\) & & \(\times\) & & \(\times\) & \\
\hline TotalBoost & & \(\times\) & & \(\times\) & & & \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l|l|l|l|l}
\hline Algorithm & Regress. & \begin{tabular}{l}
Binary \\
Classif.
\end{tabular} & \begin{tabular}{l}
Binary \\
Classif. \\
Multi- \\
Level \\
Preds.
\end{tabular} & \begin{tabular}{l}
Classif. \\
3+ \\
Classes
\end{tabular} & \begin{tabular}{l}
Class \\
Imbalance
\end{tabular} & Stop & Sparse \\
\hline RUSBoost & & \(\times\) & & \(\times\) & \(\times\) & & \\
\hline LSBoost & \(\times\) & & & & & & \\
\hline Subspace & & \(\times\) & & \(\times\) & & & \\
\hline
\end{tabular}

RobustBoost, LPBoost, and TotalBoost require an Optimization Toolbox license. Try TotalBoost before LPBoost, as TotalBoost can be more robust.

\section*{Suggestions for Choosing an Appropriate Ensemble Algorithm.}
- Regression - Your choices are LSBoost or Bag. See "General Characteristics of Ensemble Algorithms" on page 15-64 for the main differences between boosting and bagging.
- Binary Classification - Try AdaBoostM1 first, with these modifications:
\begin{tabular}{l|l}
\hline Data Characteristic & Recommended Algorithm \\
\hline Many predictors & Subspace \\
\hline \begin{tabular}{l}
Skewed data (many more \\
observations of one class)
\end{tabular} & RUSBoost \\
\hline \begin{tabular}{l}
Categorical predictors with over 31 \\
levels
\end{tabular} & LogitBoost or GentleBoost \\
\hline \begin{tabular}{l}
Label noise (some training data has \\
the wrong class)
\end{tabular} & RobustBoost \\
\hline Many observations & \begin{tabular}{l}
Avoid LPBoost, TotalBoost, and \\
Bag
\end{tabular} \\
\hline
\end{tabular}
- Multiclass Classification - Try AdaBoostM2 first, with these modifications:
\begin{tabular}{l|l}
\hline Data Characteristic & Recommended Algorithm \\
\hline Many predictors & Subspace \\
\hline \begin{tabular}{l}
Skewed data (many more \\
observations of one class)
\end{tabular} & RUSBoost \\
\hline Many observations & \begin{tabular}{l}
Avoid LPBoost, TotalBoost, and \\
Bag
\end{tabular} \\
\hline
\end{tabular}

For details of the algorithms, see "Ensemble Algorithms" on page 15-145.

\section*{General Characteristics of Ensemble Algorithms.}
- Bag generally constructs deep trees. This construction is both time consuming and memory-intensive. This also leads to relatively slow predictions.
- Boost algorithms generally use very shallow trees. This construction uses relatively little time or memory. However, for effective predictions, boosted trees might need more ensemble members than bagged trees. Therefore it is not always clear which class of algorithms is superior.
- Bag can estimate the generalization error without additional cross validation. See oobLoss.
- Except for Subspace, all boosting and bagging algorithms are based on tree learners. Subspace can use either discriminant analysis or \(k\)-nearest neighbor learners.

For details of the characteristics of individual ensemble members, see "Characteristics of Algorithms" on page 15-7.

\section*{Set the Number of Ensemble Members}

Choosing the size of an ensemble involves balancing speed and accuracy.
- Larger ensembles take longer to train and to generate predictions.
- Some ensemble algorithms can become overtrained (inaccurate) when too large.

To set an appropriate size, consider starting with several dozen to several hundred members in an ensemble, training the ensemble, and then checking the ensemble quality, as in "Example: Test Ensemble Quality" on page 15-71. If it appears that you need more members, add them using the resume method (classification) or the resume method (regression). Repeat until adding more members does not improve ensemble quality.

Tip For classification, the LPBoost and TotalBoost algorithms are self-terminating, meaning you do not have to investigate the appropriate ensemble size. Try setting numberens to 500 . The algorithms usually terminate with fewer members.

\section*{Prepare the Weak Learners}

Currently the weak learner types are:
- 'Discriminant' (for Subspace ensemble)
- 'KNN' (for Subspace ensemble)
- 'Tree' (for any ensemble except Subspace)

There are two ways to set the weak learner type in the ensemble:
- To create an ensemble with default weak learner options, pass in the string as the weak learner. For example,
```

ens = fitensemble(X,Y,'AdaBoostM2',50,'Tree');
% or
ens = fitensemble(X,Y,'Subspace',50,'KNN');

```
- To create an ensemble with nondefault weak learner options, create a nondefault weak learner using the appropriate template method. For example, if you have missing data, and want to use trees with surrogate splits for better accuracy:
```

templ = ClassificationTree.template('Surrogate','all');
ens = fitensemble(X,Y,'AdaBoostM2',50,templ);

```

To grow trees with roughly 10 leaf nodes per tree:
```

templ = ClassificationTree.template('MinLeaf',size(X,1)/10);
ens = fitensemble(X,Y,'AdaBoostM2',50,templ);

```

While you can give fitensemble a cell array of learner templates, the most common usage is to give just one weak learner template.

For examples using a template, see "Example: Unequal Classification Costs" on page 15-84 and "Surrogate Splits" on page 15-94.

Decision trees can handle NaN values in X. Such values are called "missing." If you have some missing values in a row of \(X\), a decision tree finds optimal splits using nonmissing values only. If an entire row consists of NaN, fitensemble ignores that row. If you have data with a large fraction of missing values in \(X\), use surrogate decision splits. For examples of surrogate splits, see "Example: Unequal Classification Costs" on page 15-84 and "Surrogate Splits" on page 15-94.

\section*{Common Settings for Tree Weak Learners.}
- The depth of a weak learner tree makes a difference for training time, memory usage, and predictive accuracy. You control the depth with two parameters:
- MinLeaf - Each leaf has at least MinLeaf observations. Set small values of MinLeaf to get a deep tree.
- MinParent - Each branch node in the tree has at least MinParent observations. Set small values of MinParent to get a deep tree.

If you supply both MinParent and MinLeaf, the learner uses the setting that gives larger leaves:
```

MinParent = max(MinParent,2*MinLeaf)

```
- Surrogate - Grow decision trees with surrogate splits when Surrogate is ' on '. Use surrogate splits when your data has missing values.

Note Surrogate splits cause training to be slower and use more memory.

\section*{Call fitensemble}

The syntax of fitensemble is
ens = fitensemble(X, Y, model, numberens, learners)
- \(X\) is the matrix of data. Each row contains one observation, and each column contains one predictor variable.
- Y is the responses, with the same number of observations as rows in X .
- model is a string naming the type of ensemble.
- numberens is the number of weak learners in ens from each element of learners. So the number of elements in ens is numberens times the number of elements in learners.
- learners is a string naming a weak learner, a weak learner template, or a cell array of such strings and templates.

The result of fitensemble is an ensemble object, suitable for making predictions on new data. For a basic example of creating a classification ensemble, see "Create a Classification Ensemble" on page 15-68. For a basic example of creating a regression ensemble, see "Creating a Regression Ensemble" on page 15-69.

Where to Set Name-Value Pairs. There are several name-value pairs you can pass to fitensemble, and several that apply to the weak learners (ClassificationDiscriminant.template, ClassificationKNN.template, ClassificationTree.template and RegressionTree.template). To determine which option (name-value pair) is appropriate, the ensemble or the weak learner:
- Use template name-value pairs to control the characteristics of the weak learners.
- Use fitensemble name-value pairs to control the ensemble as a whole, either for algorithms or for structure.

For example, to have an ensemble of boosted classification trees with each tree deeper than the default, set the ClassificationTree.template name-value pairs (MinLeaf and MinParent) to smaller values than the defaults. This causes the trees to be leafier (deeper).

To name the predictors in the ensemble (part of the structure of the ensemble), use the PredictorNames name-value pair in fitensemble.

\section*{Basic Ensemble Examples}

\section*{Create a Classification Ensemble}

Create a classification tree ensemble for the Fisher iris data, and use it to predict the classification of a flower with average measurements.

1 Load the data:
load fisheriris
2 The predictor data \(X\) is the meas matrix.
3 The response data \(Y\) is the species cell array.
4 For classification trees with three or more classes, "Suggestions for Choosing an Appropriate Ensemble Algorithm" on page 15-63 suggests using an 'AdaBoostM2' ensemble.

5 For this example, arbitrarily take an ensemble of 100 trees.
6 Use a default tree template.
7 Create the ensemble:
```

ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree')
ens =
classreg.learning.classif.ClassificationEnsemble
PredictorNames: {'x1' 'x2' 'x3' 'x4'}
ResponseName: 'Y'
ClassNames: {'setosa' 'versicolor' 'virginica'}
ScoreTransform: 'none'
NObservations: 150
NTrained: 100
Method: 'AdaBoostM2'
LearnerNames: {'Tree'}

```
```

ReasonForTermination: [1x77 char]
FitInfo: [100x1 double]
FitInfoDescription: {2x1 cell}

```
Properties, Methods

8 Predict the classification of a flower with average measurements:
```

flower = predict(ens,mean(meas))

```
flower =
 'versicolor'

\section*{Creating a Regression Ensemble}

Create a regression ensemble to predict mileage of cars based on their horsepower and weight, trained on the carsmall data. Use the resulting ensemble to predict the mileage of a car with 150 horsepower weighing 2750 lbs.

1 Load the data:
load carsmall
2 Prepare the input data.
X = [Horsepower Weight];
3 The response data \(Y\) is MPG.
4 The only boosted regression ensemble type is 'LSBoost'.
5 For this example, arbitrarily take an ensemble of 100 trees.
6 Use a default tree template.
7 Create the ensemble:
ens = fitensemble(X,MPG,'LSBoost',100,'Tree')
ens \(=\)
```

classreg.learning.regr.RegressionEnsemble
PredictorNames: {'x1' 'x2'}
ResponseName: 'Y'
ResponseTransform: 'none'
NObservations: 94
NTrained: 100
Method: 'LSBoost'
LearnerNames: {'Tree'}
ReasonForTermination: [1x77 char]
FitInfo: [100x1 double]
FitInfoDescription: {2x1 cell}
Regularization: []
Properties, Methods

```

8 Predict the mileage of a car with 150 horsepower weighing 2750 lbs:
```

mileage = ens.predict([150 2750])

```
mileage =
22.4180

\section*{Test Ensemble Quality}

Usually you cannot evaluate the predictive quality of an ensemble based on its performance on training data. Ensembles tend to "overtrain," meaning they produce overly optimistic estimates of their predictive power. This means the result of resubLoss for classification (resubLoss for regression) usually indicates lower error than you get on new data.

To obtain a better idea of the quality of an ensemble, use one of these methods:
- Evaluate the ensemble on an independent test set (useful when you have a lot of training data).
- Evaluate the ensemble by cross validation (useful when you don't have a lot of training data).
- Evaluate the ensemble on out-of-bag data (useful when you create a bagged ensemble with fitensemble).

\section*{Example: Test Ensemble Quality}

This example uses a bagged ensemble so it can use all three methods of evaluating ensemble quality.

1 Generate an artificial dataset with 20 predictors. Each entry is a random number from 0 to 1 . The initial classification:
\[
\begin{aligned}
& Y=1 \text { when } X(1)+X(2)+X(3)+X(4)+X(5)>2.5 \\
& Y=0 \text { otherwise. }
\end{aligned}
\]
```

rng(1,'twister') % for reproducibility
X = rand(2000,20);
Y = sum(X(:,1:5),2) > 2.5;

```

In addition, to add noise to the results, randomly switch \(10 \%\) of the classifications:
```

idx = randsample(2000,200);
Y(idx) = ~Y(idx);

```

\section*{2 Independent Test Set}

Create independent training and test sets of data. Use \(70 \%\) of the data for a training set by calling cupartition using the holdout option:
```

cvpart = cvpartition(Y,'holdout',0.3);
Xtrain = X(training(cvpart),:);
Ytrain = Y(training(cvpart),:);
Xtest = X(test(cvpart),:);
Ytest = Y(test(cvpart),:);

```

3 Create a bagged classification ensemble of 200 trees from the training data:
```

bag = fitensemble(Xtrain,Ytrain,'Bag',200,'Tree',...
'type','classification')
bag =

```
```

classreg.learning.classif.ClassificationBaggedEnsemble
PredictorNames: {1x20 cell}
ResponseName: 'Y'
ClassNames: [0 1]
ScoreTransform: 'none'
NObservations: 1400
NTrained: 200
Method: 'Bag'
LearnerNames: {'Tree'}
ReasonForTermination: [1x77 char]
FitInfo: []
FitInfoDescription: 'None'
FResample: 1
Replace: 1
UseObsForLearner: [1400x200 logical]
Properties, Methods

```

4 Plot the loss (misclassification) of the test data as a function of the number of trained trees in the ensemble:
figure;
plot(loss(bag,Xtest,Ytest,'mode','cumulative'));
xlabel('Number of trees');
ylabel('Test classification error');

\section*{5 Cross Validation}

Generate a five-fold cross-validated bagged ensemble:
```

cv = fitensemble(X,Y,'Bag',200,'Tree',...
'type','classification','kfold',5)
cv =
classreg.learning.partition.ClassificationPartitionedEnsemble
CrossValidatedModel: 'Bag'
PredictorNames: {1x20 cell}
CategoricalPredictors: []

```
```

    ResponseName: 'Y'
    NObservations: 2000
                            KFold: 5
            Partition: [1x1 cvpartition]
    NTrainedPerFold: [200 200 200 200 200]
ClassNames: [0 1]
ScoreTransform: 'none'

```

\section*{Properties, Methods}

6 Examine the cross-validation loss as a function of the number of trees in the ensemble:
```

figure;
plot(loss(bag,Xtest,Ytest,'mode','cumulative'));
hold on;
plot(kfoldLoss(cv,'mode','cumulative'),'r.');
hold off;
xlabel('Number of trees');
ylabel('Classification error');
legend('Test','Cross-validation','Location','NE');

```


Cross validating gives comparable estimates to those of the independent set.

\section*{7 Out-of-Bag Estimates}

Generate the loss curve for out-of-bag estimates, and plot it along with the other curves:
figure;
plot(loss(bag,Xtest,Ytest,'mode','cumulative'));
hold on;
plot(kfoldLoss(cv,'mode','cumulative'),'r.');
plot(oobLoss(bag,'mode','cumulative'),'k--');
```

hold off;
xlabel('Number of trees');
ylabel('Classification error');
legend('Test','Cross-validation','Out of bag','Location','NE');

```


The out-of-bag estimates are again comparable to those of the other methods.

\section*{Classification with Imbalanced Data}

This example shows how to classify when one class has many more observations than another. Try the RUSBoost algorithm first, because it is designed to handle this case.

This example uses the "Cover type" data from the UCI machine learning archive, described in http://archive.ics.uci.edu/ml/datasets/Covertype. The data classifies types of forest (ground cover), based on predictors such as elevation, soil type, and distance to water. The data has over 500,000 observations and over 50 predictors, so training and using a classifier is time consuming.

Blackard and Dean [1] describe a neural net classification of this data. They quote a \(70.6 \%\) classification accuracy. RUSBoost obtains over \(76 \%\) classification accuracy; see steps 6 and 7 .

\section*{Step 1. Obtain the data.}
urlwrite('http://archive.ics.uci.edu/ml/machine-learning-databases/covtype/
Then, extract the data from the forestcover.gz file. The data is in the covtype.data file.

\section*{Step 2. Import the data and prepare it for classification.}

Import the data into your workspace. Extract the last data column into a variable named Y .
load covtype.data
Y = covtype(:,end);
covtype(:,end) = [];

\section*{Step 3. Examine the response data.}
tabulate(Y)
\begin{tabular}{rcc}
Value & Count & Percent \\
1 & 211840 & \(36.46 \%\) \\
2 & 283301 & \(48.76 \%\) \\
3 & 35754 & \(6.15 \%\) \\
4 & 2747 & \(0.47 \%\) \\
5 & 9493 & \(1.63 \%\) \\
6 & 17367 & \(2.99 \%\) \\
7 & 20510 & \(3.53 \%\)
\end{tabular}

There are hundreds of thousands of data points. Those of class 4 are less than \(0.5 \%\) of the total. This imbalance indicates that RUSBoost is an appropriate algorithm.

\section*{Step 4. Partition the data for quality assessment.}

Use half the data to fit a classifier, and half to examine the quality of the resulting classifier.
```

part = cvpartition(Y,'holdout',0.5);
istrain = training(part); % data for fitting
istest = test(part); % data for quality assessment
tabulate(Y(istrain))

```
\begin{tabular}{rll}
Value & Count & Percent \\
1 & 105920 & \(36.46 \%\) \\
2 & 141651 & \(48.76 \%\) \\
3 & 17877 & \(6.15 \%\) \\
4 & 1374 & \(0.47 \%\) \\
5 & 4746 & \(1.63 \%\) \\
6 & 8683 & \(2.99 \%\) \\
7 & 10255 & \(3.53 \%\)
\end{tabular}

\section*{Step 5. Create the ensemble.}

Use deep trees for higher ensemble accuracy. To do so, set the trees to have minimal leaf size of 5 . Set LearnRate to 0.1 in order to achieve higher accuracy as well. The data is large, and, with deep trees, creating the ensemble is time consuming.
```

t = ClassificationTree.template('minleaf',5);
tic
rusTree = fitensemble(covtype(istrain,:),Y(istrain),'RUSBoost',1000,t,...
'LearnRate',0.1,'nprint',100);
toc

```
Training RUSBoost...
Grown weak learners: 100
Grown weak learners: 200
Grown weak learners: 300
Grown weak learners: 400
```

Grown weak learners: 500
Grown weak learners: 600
Grown weak learners: 700
Grown weak learners: 800
Grown weak learners: 900
Grown weak learners: 1000
Elapsed time is 918.258401 seconds.

```

\section*{Step 6. Inspect the classification error.}

Plot the classification error against the number of members in the ensemble.
```

figure;
tic
plot(loss(rusTree,covtype(istest,:),Y(istest),'mode','cumulative'));
toc
grid on;
xlabel('Number of trees');
ylabel('Test classification error');
Elapsed time is 775.646935 seconds.

```


The ensemble achieves a classification error of under \(24 \%\) using 150 or more trees. It achieves the lowest error for 400 or more trees.

Examine the confusion matrix for each class as a percentage of the true class.
tic
Yfit = predict(rusTree, covtype(istest,:));
toc
tab = tabulate(Y(istest));
bsxfun(@rdivide, confusionmat(Y(istest), Yfit), tab(: 2))*100
Elapsed time is 427.293168 seconds.

Columns 1 through 6
\begin{tabular}{rrrrrr}
83.3771 & 7.4056 & 0.0736 & 0 & 1.7051 & 0.2681 \\
18.3156 & 66.4652 & 2.1193 & 0.0162 & 9.3435 & 2.8239 \\
0 & 0.0839 & 90.8038 & 2.3885 & 0.6545 & 6.0693 \\
0 & 0 & 2.4763 & 95.8485 & 0 & 1.6752 \\
0 & 0.2739 & 0.6530 & 0 & 98.6518 & 0.4213 \\
0 & 0.1036 & 3.8346 & 1.1400 & 0.4030 & 94.5187 \\
0.2340 & 0 & 0 & 0 & 0.0195 & 0
\end{tabular}

Column 7
7.1705
0.9163

0

0
0
0
99.7465

All classes except class 2 have over \(80 \%\) classification accuracy, and classes 3 through 7 have over \(90 \%\) accuracy. But class 2 makes up close to half the data, so the overall accuracy is not that high.

\section*{Step 7. Compact the ensemble.}

The ensemble is large. Remove the data using the compact method.
```

cmpctRus = compact(rusTree);
sz(1) = whos('rusTree');
sz(2) = whos('cmpctRus');
[sz(1).bytes sz(2).bytes]
ans =
1.0e+09 *
1.6947 0.9790

```

The compacted ensemble is about half the size of the original.
Remove half the trees from cmpctRus. This action is likely to have minimal effect on the predictive performance, based on the observation that 400 out of 1000 trees give nearly optimal accuracy.
```

cmpctRus = removeLearners(cmpctRus,[500:1000]);
sz(3) = whos('cmpctRus');
sz(3).bytes
ans =

```

475495669

The reduced compact ensemble takes about a quarter the memory of the full ensemble. Its overall loss rate is under \(24 \%\) :
```

L = loss(cmpctRus,covtype(istest,:),Y(istest))

```

L =
0.2326

The predictive accuracy on new data might differ, because the ensemble accuracy might be biased. The bias arises because the same data used for assessing the ensemble was used for reducing the ensemble size. To obtain an unbiased estimate of requisite ensemble size, you should use cross validation. However, that procedure is time consuming.

\section*{Classification: Imbalanced Data or Unequal Misclassification Costs}

In many real-world applications, you might prefer to treat classes in your data asymmetrically. For example, you might have data with many more observations of one class than of any other. Or you might work on a problem in which misclassifying observations of one class has more severe consequences than misclassifying observations of another class. In such situations, you can use two optional parameters for fitensemble: prior and cost.

By using prior, you set prior class probabilities (that is, class probabilities used for training). Use this option if some classes are under- or overrepresented in your training set. For example, you might obtain your training data by simulation. Because simulating class \(A\) is more expensive than class B, you opt to generate fewer observations of class A and more observations of class B. You expect, however, that class A and class B are mixed in a different proportion in the real world. In this case, set prior probabilities for class \(A\) and \(B\) approximately to the values you expect to observe in the real world. fitensemble normalizes prior probabilities to make them add up to 1 ; multiplying all prior probabilities by the same positive factor does not affect the result of classification.

If classes are adequately represented in the training data but you want to treat them asymmetrically, use the cost parameter. Suppose you want to classify benign and malignant tumors in cancer patients. Failure to identify a malignant tumor (false negative) has far more severe consequences than misidentifying benign as malignant (false positive). You should assign high cost to misidentifying malignant as benign and low cost to misidentifying benign as malignant.

You must pass misclassification costs as a square matrix with nonnegative elements. Element \(C(i, j)\) of this matrix is the cost of classifying an observation into class \(j\) if the true class is \(i\). The diagonal elements C(i,i) of the cost matrix must be 0 . For the previous example, you can choose malignant tumor to be class 1 and benign tumor to be class 2 . Then you can set the cost matrix to
\[
\left[\begin{array}{ll}
0 & c \\
1 & 0
\end{array}\right]
\]
where \(c>1\) is the cost of misidentifying a malignant tumor as benign. Costs are relative-multiplying all costs by the same positive factor does not affect the result of classification.

If you have only two classes, fitensemble adjusts their prior probabilities using \(\tilde{P}_{i}=C_{i j} P_{i}\) for class \(i=1,2\) and \(j \neq i\). \(P_{i}\) are prior probabilities either passed into fitensemble or computed from class frequencies in the training
data, and \(\tilde{P}_{i}\) are adjusted prior probabilities. Then fitensemble uses the default cost matrix
\(\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\)
and these adjusted probabilities for training its weak learners. Manipulating the cost matrix is thus equivalent to manipulating the prior probabilities.

If you have three or more classes, fitensemble also converts input costs into adjusted prior probabilities. This conversion is more complex. First, fitensemble attempts to solve a matrix equation described in Zhou and Liu [20]. If it fails to find a solution, fitensemble applies the "average cost" adjustment described in Breiman et al. [6]. For more information, see Zadrozny, Langford, and Abe [19].

\section*{Example: Unequal Classification Costs}

This example uses data on patients with hepatitis to see if they live or die as a result of the disease. The data is described at http://archive.ics.uci.edu/ml/datasets/Hepatitis.

1 Load the data into a file named hepatitis.txt:
```

s = urlread(['http://archive.ics.uci.edu/ml/' ...
'machine-learning-databases/hepatitis/hepatitis.data']);
fid = fopen('hepatitis.txt','w');
fwrite(fid,s);
fclose(fid);

```

2 Load the data hepatitis.txt into a dataset, with variable names describing the fields in the data:
```

VarNames = {'die_or_live' 'age' 'sex' 'steroid' 'antivirals' 'fatigue' ...
'malaise' 'anorexia' 'liver_big' 'liver_firm' 'spleen_palpable' ...
'spiders' 'ascites' 'varices' 'bilirubin' 'alk_phosphate' 'sgot' ...
'albumin' 'protime' 'histology'};
ds = dataset('file','hepatitis.txt','VarNames',VarNames,...
'Delimiter',',','ReadVarNames',false,'TreatAsEmpty','?',...
'Format',''%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f%f');
ds is a dataset with }155\mathrm{ observations and 20 variables:
size(ds)
ans =
155 20

```

3 Convert the data in the dataset to the format for ensembles: a numeric matrix of predictors, and a cell array with outcome names: 'Die' or 'Live'. The first field in the dataset has the outcomes.

X = double(ds(:,2:end));
ClassNames = \{'Die' 'Live'\};
Y = ClassNames(ds.die_or_live);

4 Inspect the data for missing values:

\section*{figure;}
bar(sum(isnan(X),1)/size(X,1));
xlabel('Predictor');
ylabel('Fraction of missing values');

Most predictors have missing values, and one has nearly \(45 \%\) of missing values. Therefore, use decision trees with surrogate splits for better accuracy. Because the dataset is small, training time with surrogate splits should be tolerable.

5 Create a classification tree template that uses surrogate splits:
```

rng(0,'twister') % for reproducibility
t = ClassificationTree.template('surrogate','all');

```

6 Examine the data or the description of the data to see which predictors are categorical:

X(1:5,:)
ans \(=\)

\section*{Columns 1 through 6}
\begin{tabular}{rrrrrr}
30.0000 & 2.0000 & 1.0000 & 2.0000 & 2.0000 & 2.0000 \\
50.0000 & 1.0000 & 1.0000 & 2.0000 & 1.0000 & 2.0000 \\
78.0000 & 1.0000 & 2.0000 & 2.0000 & 1.0000 & 2.0000 \\
31.0000 & 1.0000 & NaN & 1.0000 & 2.0000 & 2.0000 \\
34.0000 & 1.0000 & 2.0000 & 2.0000 & 2.0000 & 2.0000
\end{tabular}

Columns 7 through 12
\begin{tabular}{llllll}
2.0000 & 1.0000 & 2.0000 & 2.0000 & 2.0000 & 2.0000 \\
2.0000 & 1.0000 & 2.0000 & 2.0000 & 2.0000 & 2.0000 \\
2.0000 & 2.0000 & 2.0000 & 2.0000 & 2.0000 & 2.0000 \\
2.0000 & 2.0000 & 2.0000 & 2.0000 & 2.0000 & 2.0000 \\
2.0000 & 2.0000 & 2.0000 & 2.0000 & 2.0000 & 2.0000
\end{tabular}

Columns 13 through 18
\begin{tabular}{rrrrrr}
2.0000 & 1.0000 & 85.0000 & 18.0000 & 4.0000 & NaN \\
2.0000 & 0.9000 & 135.0000 & 42.0000 & 3.5000 & NaN \\
2.0000 & 0.7000 & 96.0000 & 32.0000 & 4.0000 & NaN \\
2.0000 & 0.7000 & 46.0000 & 52.0000 & 4.0000 & 80.0000 \\
2.0000 & 1.0000 & NaN & 200.0000 & 4.0000 & NaN
\end{tabular}

Column 19
1.0000
1.0000
1.0000
1.0000
1.0000

It appears that predictors 2 through 13 are categorical, as well as predictor 19. You can confirm this inference with the dataset description at http://archive.ics.uci.edu/ml/datasets/Hepatitis.

7 List the categorical variables:
```

ncat = [2:13,19];

```

8 Create a cross-validated ensemble using 150 learners and the GentleBoost algorithm:
```

a = fitensemble(X,Y,'GentleBoost',150,t,...
'PredictorNames',VarNames(2:end),'LearnRate',0.1,···
'CategoricalPredictors',ncat,'kfold',5);
figure;
plot(kfoldLoss(a,'mode','cumulative','lossfun','exponential'));
xlabel('Number of trees');
ylabel('Cross-validated exponential loss');

```


9 Inspect the confusion matrix to see which people the ensemble predicts correctly:
[Yfit,Sfit] = kfoldPredict(a); \% confusionmat(Y,Yfit, 'order', ClassNames)
```

11
112

```

Of the 123 people who live, the ensemble predicts correctly that 112 will live. But for the 32 people who die of hepatitis, the ensemble only predicts correctly that about half will die of hepatitis.

10 There are two types of error in the predictions of the ensemble:
- Predicting that the patient lives, but the patient dies
- Predicting that the patient dies, but the patient lives

Suppose you believe that the first error is five times worse than the second. Make a new classification cost matrix that reflects this belief:
```

cost.ClassNames = ClassNames;
cost.ClassificationCosts = [0 5; 1 0];

```

11 Create a new cross-validated ensemble using cost as misclassification cost, and inspect the resulting confusion matrix:
```

aC = fitensemble(X,Y,'GentleBoost',150,t,...
'PredictorNames',VarNames(2:end),'LearnRate',0.1,...
'CategoricalPredictors',ncat,'kfold',5,...
'cost',cost);
[YfitC,SfitC] = kfoldPredict(aC);
confusionmat(Y,YfitC,'order',ClassNames)
ans =
19 13
8 115

```

As expected, the new ensemble does a better job classifying the people who die. Somewhat surprisingly, the new ensemble also does a better job classifying the people who live, though the result is not statistically significantly better. The results of the cross validation are random, so this result is simply a statistical fluctuation. The result seems to indicate that the classification of people who live is not very sensitive to the cost.

\section*{Classification with Many Categorical Levels}

Generally, you cannot use classification with more than 31 levels in any categorical predictor. However, two boosting algorithms can classify data with many categorical predictor levels and binary responses: LogitBoost and GentleBoost. For details, see "LogitBoost" on page 15-152 and "GentleBoost" on page 15-152.

This example uses demographic data from the U.S. Census, available at http://archive.ics.uci.edu/ml/machine-learning-databases/adult/. The objective of the researchers who posted the data is predicting whether an individual makes more than \(\$ 50,000 /\) year, based on a set of characteristics. You can see details of the data, including predictor names, in the adult. names file at the site.

1 Load the 'adult.data' file from the UCI Machine Learning Repository:
```

s = urlread(['http://archive.ics.uci.edu/ml/' ...
'machine-learning-databases/adult/adult.data']);

```

2 'adult.data' represents missing data as '?'. Replace instances of missing data with the blank string ' ':
```

s = strrep(s,'?','');

```

3 Put the data into a MATLAB dataset array:
```

fid = fopen('adult.txt','w');
fwrite(fid,s);
fclose(fid);
clear s;
VarNames = {'age' 'workclass' 'fnlwgt' 'education' 'education_num' ...
'marital_status' 'occupation' 'relationship' 'race' ...
'sex' 'capital_gain' 'capital_loss' ...
'hours_per_week' 'native_country' 'income'};
ds = dataset('file','adult.txt','VarNames',VarNames,...
'Delimiter',',','ReadVarNames',false,'Format',...
'%u%s%u%s%u%S%s%s%s%s%u%u%u%s%s');
cat = ~datasetfun(@isnumeric,ds(:,1:end-1)); % Logical indices
% of categorical variables

```
```

catcol = find(cat); % indices of categorical variables

```

4 Many predictors in the data are categorical. Convert those fields in the dataset array to nominal:
```

ds.workclass = nominal(ds.workclass);
ds.education = nominal(ds.education);
ds.marital_status = nominal(ds.marital_status);
ds.occupation = nominal(ds.occupation);
ds.relationship = nominal(ds.relationship);
ds.race = nominal(ds.race);
ds.sex = nominal(ds.sex);
ds.native_country = nominal(ds.native_country);
ds.income = nominal(ds.income);

```

5 Convert the dataset array into numerical variables for fitensemble:
```

X = double(ds(:,1:end-1));
Y = ds.income;

```

6 Some variables have many levels. Plot the number of levels of each predictor:
```

ncat = zeros(1,numel(catcol));
for c=1:numel(catcol)
[~,gn] = grp2idx(X(:,catcol(c)));
ncat(c) = numel(gn);
end
figure;
bar(catcol,ncat);
xlabel('Predictor');
ylabel('Number of categories');

```


Predictor 14 ('native_country') has more than 40 categorical levels. For binary classification, ClassificationTree.fit uses a computational shortcut to find an optimal split for categorical predictors with many categories. For classification with more than two classes, you can choose a heuristic algorithm for finding a good split. See "Splitting Categorical Predictors" on page 15-55.

7 Create classification ensembles using both LogitBoost and GentleBoost:
```

lb = fitensemble(X,Y,'LogitBoost',300,'Tree','CategoricalPredictors',cat,...
'PredictorNames',VarNames(1:end-1),'ResponseName','income');
gb = fitensemble(X,Y,'GentleBoost',300,'Tree','CategoricalPredictors',cat,...
'PredictorNames',VarNames(1:end-1),'ResponseName','income');

```

8 Examine the resubstitution error for the two ensembles:
```

figure;
plot(resubLoss(lb,'mode','cumulative'));
hold on
plot(resubLoss(gb,'mode','cumulative'),'r--');
hold off
xlabel('Number of trees');
ylabel('Resubstitution error');

```
```

legend('LogitBoost','GentleBoost','Location','NE');

```


The GentleBoost algorithm has slightly smaller resubstitution error.
9 Estimate the generalization error for the two algorithms by cross validation.
```

lbcv = crossval(lb,'kfold',5);
gbcv = crossval(gb,'kfold',5);
figure;
plot(kfoldLoss(lbcv,'mode','cumulative'));
hold on
plot(kfoldLoss(gbcv,'mode','cumulative'),'r--');
hold off

```
```

xlabel('Number of trees');
ylabel('Cross-validated error');
legend('LogitBoost', 'GentleBoost','Location', 'NE');

```


The cross-validated loss is nearly the same as the resubstitution error.

\section*{Surrogate Splits}

When you have missing data, trees and ensembles of trees give better predictions when they include surrogate splits. Furthermore, estimates of predictor importance are often different with surrogate splits. Eliminating unimportant predictors can save time and memory for predictions, and can make predictions easier to understand.

This example shows the effects of surrogate splits for predictions for data containing missing entries in the test set.

1 Load sample data. Partition it into a training and test set.
load ionosphere;
rng(10) \% for reproducibility
cv = cvpartition(Y,'holdout', 0.3);
Xtrain = X(training(cv),:);
Ytrain = Y(training(cv));
Xtest = X(test(cv),:);
Ytest = Y(test(cv));
2 Bag decision trees with and without surrogate splits.
```

b = fitensemble(Xtrain,Ytrain,'Bag',50,'Tree',...
'type','class');
templS = ClassificationTree.template('surrogate','on');
bs = fitensemble(Xtrain,Ytrain,'Bag',50,templS,...
'type','class');

```

3 Suppose half of the values in the test set are missing.
```

Xtest(rand(size(Xtest))>0.5) = NaN;

```

4 Test accuracy with and without surrogate splits.
```

figure;
plot(loss(b,Xtest,Ytest,'mode','cumulative'));
hold on;
plot(loss(bs,Xtest,Ytest,'mode','cumulative'),'r--');
legend('Regular trees','Trees with surrogate splits');
xlabel('Number of trees');
ylabel('Test classification error');

```


5 Check the statistical significance of the difference in results with the McNemar test. Convert the labels to a nominal data type to make it easier to check for equality.
```

Yfit = nominal(predict(b,Xtest));
YfitS = nominal(predict(bs,Xtest));
N10 = sum(Yfit==nominal(Ytest) \& YfitS~=nominal(Ytest));
N01 = sum(Yfit~=nominal(Ytest) \& YfitS==nominal(Ytest));
mcnemar = (abs(N1O-N01) - 1)^2/(N10+NO1);
pval = 1 - chi2cdf(mcnemar,1)
pval =

```

\section*{\(1.7683 e-04\)}

The extremely low \(p\)-value indicates that the ensemble with surrogate splits is better in a statistically significant manner.

\section*{LPBoost and TotalBoost for Small Ensembles}

This example shows how to obtain the benefits of the LPBoost and TotalBoost algorithms. These algorithms share two beneficial characteristics:

They are self-terminating, so you don't have to guess how many members to include.

They produce ensembles with some very small weights, so you can safely remove ensemble members.

Caution The algorithms require an Optimization Toolbox license.

\section*{Step 1. Load the data.}

Load the ionosphere data.
load ionosphere

\section*{Step 2. Create the classification ensembles.}

Create ensembles for classifying the ionosphere data using the LPBoost, TotalBoost, and, for comparison, AdaBoostM1 algorithms. It is hard to know how many members to include in an ensemble. For LPBoost and TotalBoost, try using 500. For comparison, also use 500 for AdaBoostM1.
```

rng default % for reproducibility
T = 500;
adaStump = fitensemble(X,Y,'AdaBoostM1',T,'Tree');
totalStump = fitensemble(X,Y,'TotalBoost',T,'Tree');
lpStump = fitensemble(X,Y,'LPBoost',T,'Tree');
figure;
plot(resubLoss(adaStump,'mode','cumulative'));
hold on

```
```

plot(resubLoss(totalStump,'mode','cumulative'),'r');
plot(resubLoss(lpStump,'mode','cumulative'),'g');
hold off
xlabel('Number of stumps');
ylabel('Training error');
legend('AdaBoost','TotalBoost','LPBoost','Location','NE');

```


All three algorithms achieve perfect prediction on the training data after a while. Examine the number of members in all three ensembles.
[adaStump.NTrained totalStump.NTrained lpStump.NTrained]
ans \(=\)

\section*{500 52 67}

AdaBoostM1 trained all 500 members. The other two algorithms stopped training early.

\section*{Step 3. Cross validate the ensembles.}

Cross validate the ensembles to better determine ensemble accuracy.
```

cvlp = crossval(lpStump,'kfold',5);
cvtotal = crossval(totalStump,'kfold',5);
cvada = crossval(adaStump,'kfold',5);
figure;
plot(kfoldLoss(cvada,'mode','cumulative'));
hold on
plot(kfoldLoss(cvtotal,'mode','cumulative'),'r');
plot(kfoldLoss(cvlp,'mode','cumulative'),'g');
hold off
xlabel('Ensemble size');
ylabel('Cross-validated error');
legend('AdaBoost','TotalBoost','LPBoost','Location', 'NE');

```


It appears that each boosting algorithms achieves \(10 \%\) or lower loss with 50 ensemble members, and AdaBoostM1 achieves near \(6 \%\) error with 150 or more ensemble members.

\section*{Step 4. Compact and remove ensemble members.}

To reduce the ensemble sizes, compact them, and then use the removeLearners method. The question is, how many learners should you remove? The cross-validated loss curves give you one measure. For another, examine the learner weights for LPBoost and TotalBoost after compacting.
```

cada = compact(adaStump);
clp = compact(lpStump);

```
```

ctotal = compact(totalStump);
figure
subplot(2,1,1)
plot(clp.TrainedWeights)
title('LPBoost weights')
subplot(2,1,2)
plot(ctotal.TrainedWeights)
title('TotalBoost weights')

```


Both LPBoost and TotalBoost show clear points where the ensemble member weights become negligible.

Remove the unimportant ensemble members.
```

cada = removeLearners(cada,150:cada.NTrained);
clp = removeLearners(clp,60:clp.NTrained);
ctotal = removeLearners(ctotal,40:ctotal.NTrained);

```

Check that removing these learners does not affect ensemble accuracy on the training data.
```

[loss(cada,X,Y) loss(clp,X,Y) loss(ctotal,X,Y)]
ans =
0 0 0

```

Check the resulting compact ensemble sizes.
```

s(1) = whos('cada');
s(2) = whos('clp');
s(3) = whos('ctotal');
s.bytes
ans =
6 0 5 6 0 5
ans =
241375
ans =
1 6 0 4 3 5

```

The sizes of the compact ensembles are approximately proportional to the number of members in each.

\section*{Ensemble Regularization}

Regularization is a process of choosing fewer weak learners for an ensemble in a way that does not diminish predictive performance. Currently you can regularize regression ensembles. (You can also regularize a discriminant analysis classifier in a non-ensemble context; see "Regularize a Discriminant Analysis Classifier" on page 14-22.)

The regularize method finds an optimal set of learner weights \(a_{t}\) that minimize
\[
\sum_{n=1}^{N} w_{n} g\left(\left(\sum_{t=1}^{T} \alpha_{t} h_{t}\left(x_{n}\right)\right), y_{n}\right)+\lambda \sum_{t=1}^{T}\left|\alpha_{t}\right|
\]

\section*{Here}
- \(\lambda \geq 0\) is a parameter you provide, called the lasso parameter.
- \(h_{t}\) is a weak learner in the ensemble trained on \(N\) observations with predictors \(x_{n}\), responses \(y_{n}\), and weights \(w_{n}\).
- \(g(f, y)=(f-y)^{2}\) is the squared error.

The ensemble is regularized on the same \(\left(x_{n}, y_{n}, w_{n}\right)\) data used for training, so
\[
\sum_{n=1}^{N} w_{n} g\left(\left(\sum_{t=1}^{T} \alpha_{t} h_{t}\left(x_{n}\right)\right), y_{n}\right)
\]
is the ensemble resubstitution error. The error is measured by mean squared error (MSE).

If you use \(\lambda=0\), regularize finds the weak learner weights by minimizing the resubstitution MSE. Ensembles tend to overtrain. In other words, the resubstitution error is typically smaller than the true generalization error. By making the resubstitution error even smaller, you are likely to make the ensemble accuracy worse instead of improving it. On the other hand, positive values of \(\lambda\) push the magnitude of the \(\alpha_{t}\) coefficients to 0 . This often improves the generalization error. Of course, if you choose \(\lambda\) too large, all the optimal coefficients are 0 , and the ensemble does not have any accuracy. Usually you can find an optimal range for \(\lambda\) in which the accuracy of the regularized ensemble is better or comparable to that of the full ensemble without regularization.

A nice feature of lasso regularization is its ability to drive the optimized coefficients precisely to 0 . If a learner's weight \(\alpha_{t}\) is 0 , this learner can be
excluded from the regularized ensemble. In the end, you get an ensemble with improved accuracy and fewer learners.

\section*{Example: Regularizing a Regression Ensemble}

This example uses data for predicting the insurance risk of a car based on its many attributes.

1 Load the imports-85 data into the MATLAB workspace:
load imports-85;
2 Look at a description of the data to find the categorical variables and predictor names:

Description
```

Description =
1 9 8 5 Auto Imports Database from the UCI repository
http://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.names
Variables have been reordered to place variables with numeric values (referred
to as "continuous" on the UCI site) to the left and categorical values to the
right. Specifically, variables 1:16 are: symboling, normalized-losses,
wheel-base, length, width, height, curb-weight, engine-size, bore, stroke,
compression-ratio, horsepower, peak-rpm, city-mpg, highway-mpg, and price.
Variables 17:26 are: make, fuel-type, aspiration, num-of-doors, body-style,
drive-wheels, engine-location, engine-type, num-of-cylinders, and fuel-system.

```

The objective of this process is to predict the "symboling," the first variable in the data, from the other predictors. "symboling" is an integer from -3 (good insurance risk) to 3 (poor insurance risk). You could use a classification ensemble to predict this risk instead of a regression ensemble. As stated in "Steps in Supervised Learning (Machine Learning)" on page 15-2, when you have a choice between regression and classification, you should try regression first. Furthermore, this example is to show regularization, which currently works only for regression.

3 Prepare the data for ensemble fitting:
```

Y = X(:,1);
X(:,1) = [];
VarNames = {'normalized-losses' 'wheel-base' 'length' 'width' 'height' ...
'curb-weight' 'engine-size' 'bore' 'stroke' 'compression-ratio' ...
'horsepower' 'peak-rpm' 'city-mpg' 'highway-mpg' 'price' 'make' ...
'fuel-type' 'aspiration' 'num-of-doors' 'body-style' 'drive-wheels' ...
'engine-location' 'engine-type' 'num-of-cylinders' 'fuel-system'};
catidx = 16:25; % indices of categorical predictors

```

4 Create a regression ensemble from the data using 300 default trees:
```

ls = fitensemble(X,Y,'LSBoost',300,'Tree','LearnRate',0.1,...
'PredictorNames',VarNames,'ResponseName','symboling',...
'CategoricalPredictors',catidx)
ls =
classreg.learning.regr.RegressionEnsemble
PredictorNames: {1x25 cell}
ResponseName: 'symboling'
ResponseTransform: 'none'
NObservations: 205
NTrained: 300
Method: 'LSBoost'
LearnerNames: {'Tree'}
ReasonForTermination: [1x77 char]
FitInfo: [300x1 double]
FitInfoDescription: {2x1 cell}
Regularization: []

```

Properties, Methods
The final line, Regularization, is empty ([]). To regularize the ensemble, you have to use the regularize method.

5 Cross validate the ensemble, and inspect its loss curve.
```

cv = crossval(ls,'kfold',5);
figure;

```
```

plot(kfoldLoss(cv,'mode','cumulative'));
xlabel('Number of trees');
ylabel('Cross-validated MSE');
ylim([0.2,2])

```


It appears you might obtain satisfactory performance from a smaller ensemble, perhaps one containing from 50 to 100 trees.

6 Call the regularize method to try to find trees that you can remove from the ensemble. By default, regularize examines 10 values of the lasso (Lambda) parameter spaced exponentially.
```

ls = regularize(ls)
ls =
classreg.learning.regr.RegressionEnsemble
PredictorNames: {1x25 cell}

```
```

    ResponseName: 'symboling
    ResponseTransform: 'none'
    NObservations: 205
    NTrained: 300
                    Method: 'LSBoost
    LearnerNames: {'Tree'}
    ReasonForTermination: [1x77 char]
FitInfo: [300x1 double]
FitInfoDescription: {2x1 cell}
Regularization: [1x1 struct]

```

\section*{Properties, Methods}

The Regularization property is no longer empty.
7 Plot the resubstitution mean-squared error (MSE) and number of learners with nonzero weights against the lasso parameter. Separately plot the value at Lambda=0. Use a logarithmic scale because the values of Lambda are exponentially spaced.
```

figure;
semilogx(ls.Regularization.Lambda,ls.Regularization.ResubstitutionMSE);
line([1e-3 1e-3],[ls.Regularization.ResubstitutionMSE(1) ...
ls.Regularization.ResubstitutionMSE(1)],...
'marker','x','markersize',12,'color','b');
r0 = resubLoss(ls);
line([ls.Regularization.Lambda(2) ls.Regularization.Lambda(end)],...
[rO rO],'color','r','LineStyle','--');
xlabel('Lambda');
ylabel('Resubstitution MSE');
annotation('textbox',[0.5 0.22 0.5 0.05],'String','unregularized ensemble',...
'color','r','FontSize',14,'LineStyle','none');
figure;
loglog(ls.Regularization.Lambda,sum(ls.Regularization.TrainedWeights>0,1));
line([1e-3 1e-3],...
[sum(ls.Regularization.TrainedWeights(:,1)>0) ...
sum(ls.Regularization.TrainedWeights(:,1)>0)],...

```
```

    'marker','x','markersize',12,'color','b');
    line([ls.Regularization.Lambda(2) ls.Regularization.Lambda(end)],...
[ls.NTrained ls.NTrained],...
'color','r','LineStyle','--');
xlabel('Lambda');
ylabel('Number of learners');
annotation('textbox',[0.3 0.8 0.5 0.05],'String','unregularized ensemble',...
'color','r','FontSize',14,'LineStyle','none');

```


8 The resubstitution MSE values are likely to be overly optimistic. To obtain more reliable estimates of the error associated with various values of Lambda, cross validate the ensemble using cvshrink. Plot the resulting cross-validation loss (MSE) and number of learners against Lambda.
```

rng(0,'Twister') % for reproducibility
[mse,nlearn] = cvshrink(ls,'lambda',ls.Regularization.Lambda,'kfold',5);
figure;
semilogx(ls.Regularization.Lambda,ls.Regularization.ResubstitutionMSE);
hold;
semilogx(ls.Regularization.Lambda,mse,'r--');
hold off;
xlabel('Lambda');
ylabel('Mean squared error');
legend('resubstitution','cross-validation','Location','NW');

```
```

line([1e-3 1e-3],[ls.Regularization.ResubstitutionMSE(1) ...
ls.Regularization.ResubstitutionMSE(1)],...
'marker','x','markersize',12,'color','b');
line([1e-3 1e-3],[mse(1) mse(1)],'marker','o',...
'markersize',12,'color','r','LineStyle','--');
figure;
loglog(ls.Regularization.Lambda,sum(ls.Regularization.TrainedWeights>0,1));
hold;
loglog(ls.Regularization.Lambda,nlearn,'r--');
hold off;
xlabel('Lambda');
ylabel('Number of learners');
legend('resubstitution','cross-validation','Location','NE');
line([1e-3 1e-3],...
[sum(ls.Regularization.TrainedWeights(:,1)>0) ...
sum(ls.Regularization.TrainedWeights(:,1)>0)],...
'marker','x','markersize',12,'color','b');
line([1e-3 1e-3],[nlearn(1) nlearn(1)],'marker','o',...

```
'markersize', 12, 'color','r','LineStyle','--');

Examining the cross-validated error shows that the cross-validation MSE is almost flat for Lambda up to a bit over 1e-2.

9 Examine ls. Regularization. Lambda to find the highest value that gives MSE in the flat region (up to a bit over 1e-2):
jj = 1:length(ls.Regularization.Lambda);
[jj;ls.Regularization.Lambda]
ans \(=\)
Columns 1 through 6
1.0000
2.0000
3.0000
4.0000
5.0000
6.0000
\(\begin{array}{llllll}0 & 0.0014 & 0.0033 & 0.0077 & 0.0183 & 0.0435\end{array}\)

Columns 7 through 10
\begin{tabular}{rrrr}
7.0000 & 8.0000 & 9.0000 & 10.0000 \\
0.1031 & 0.2446 & 0.5800 & 1.3754
\end{tabular}

Element 5 of ls.Regularization.Lambda has value 0.0183, the largest in the flat range.

10 Reduce the ensemble size using the shrink method. shrink returns a compact ensemble with no training data. The generalization error for the new compact ensemble was already estimated by cross validation in mse (5).
cmp = shrink(ls,'weightcolumn',5)
cmp \(=\)
classreg.learning.regr.CompactRegressionEnsemble
PredictorNames: \{1x25 cell\}
ResponseName: 'symboling
ResponseTransform: 'none'
NTrained: 15

Properties, Methods
There are only 15 trees in the new ensemble, notably reduced from the 300 in ls.

11 Compare the sizes of the ensembles:
```

sz(1) = whos('cmp'); sz(2) = whos('ls');
[sz(1).bytes sz(2).bytes]
ans =

The reduced ensemble is about $5 \%$ the size of the original.
12 Compare the MSE of the reduced ensemble to that of the original ensemble:
figure;
plot(kfoldLoss(cv,'mode','cumulative'));
hold on

```
plot(cmp.NTrained,mse(5),'ro','MarkerSize',12);
xlabel('Number of trees');
ylabel('Cross-validated MSE');
legend('unregularized ensemble','regularized ensemble',...
 'Location','NE');
hold off
```



The reduced ensemble gives low loss while using many fewer trees.

## Tuning RobustBoost

The RobustBoost algorithm can make good classification predictions even when the training data has noise. However, the default RobustBoost parameters can produce an ensemble that does not predict well. This example shows one way of tuning the parameters for better predictive accuracy.

Note RobustBoost requires an Optimization Toolbox license.

1 Generate data with label noise. This example has twenty uniform random numbers per observation, and classifies the observation as 1 if the sum of the first five numbers exceeds 2.5 (so is larger than average), and 0 otherwise:

```
rng(0,'twister') % for reproducibility
Xtrain = rand(2000,20);
Ytrain = sum(Xtrain(:,1:5),2) > 2.5;
```

2 To add noise, randomly switch $10 \%$ of the classifications:

```
idx = randsample(2000,200);
Ytrain(idx) = ~Ytrain(idx);
```

3 Create an ensemble with AdaBoostM1 for comparison purposes:

```
ada = fitensemble(Xtrain,Ytrain,'AdaBoostM1',...
```

    300,'Tree','LearnRate', 0.1);
    4 Create an ensemble with RobustBoost. Because the data has $10 \%$ incorrect classification, perhaps an error goal of $15 \%$ is reasonable.

```
rb1 = fitensemble(Xtrain,Ytrain,'RobustBoost',300,...
 'Tree','RobustErrorGoal',0.15,'RobustMaxMargin',1);
```

5 Try setting a high value of the error goal, 0.6. You get an error:

```
rb2 = fitensemble(Xtrain,Ytrain,'RobustBoost',300,'Tree','RobustErrorGoal',0.6)
```

Error using RobustBoost>RobustBoost.RobustBoost
For the chosen values of 'RobustMaxMargin' and 'RobustMarginSigma', you must set 'RobustErrorGoal' to a value between 0 and 0.5.

6 Create an ensemble with very optimistic error goal, 0.01:

```
rb2 = fitensemble(Xtrain,Ytrain,'RobustBoost',300,...
 'Tree','RobustErrorGoal',0.01);
```

```
7 Compare the resubstitution error of the four ensembles:
```

```
figure
```

figure
plot(resubLoss(rb1,'mode','cumulative'));
plot(resubLoss(rb1,'mode','cumulative'));
hold on
hold on
plot(resubLoss(rb2,'mode','cumulative'),'r--');
plot(resubLoss(rb2,'mode','cumulative'),'r--');
plot(resubLoss(ada,'mode','cumulative'),'g.');
plot(resubLoss(ada,'mode','cumulative'),'g.');
hold off;
hold off;
xlabel('Number of trees');
xlabel('Number of trees');
ylabel('Resubstitution error');
ylabel('Resubstitution error');
legend('ErrorGoal=0.15','ErrorGoal=0.01',...
legend('ErrorGoal=0.15','ErrorGoal=0.01',...
'AdaBoostM1','Location','NE');

```
 'AdaBoostM1','Location','NE');
```



All the RobustBoost curves show lower resubstitution error than the AdaBoostM1 curve. The error goal of 0.15 curve shows the lowest resubstitution error over most of the range.

8 Generate test data to see the predictive power of the ensembles. Test the four ensembles:

```
Xtest = rand(2000,20);
Ytest = sum(Xtest(:,1:5),2) > 2.5;
idx = randsample(2000,200);
Ytest(idx) = ~Ytest(idx);
figure;
plot(loss(rb1,Xtest,Ytest,'mode','cumulative'));
hold on
plot(loss(rb2,Xtest,Ytest,'mode','cumulative'),'r--');
plot(loss(ada,Xtest,Ytest,'mode','cumulative'),'g.');
hold off;
xlabel('Number of trees');
ylabel('Test error');
legend('ErrorGoal=0.15','ErrorGoal=0.01',...
 'AdaBoostM1','Location','NE');
```



The error curve for error goal 0.15 is lowest (best) in the plotted range. AdaBoostM1 has higher error than the curve for error goal 0.15 . The curve for the too-optimistic error goal 0.01 remains substantially higher (worse) than the other algorithms for most of the plotted range.

## Random Subspace Classification

This example shows how to use a random subspace ensemble to increase the accuracy of classification. It also shows how to use cross validation to determine good parameters for both the weak learner template and the ensemble.

## 1. Load the data.

Load the ionosphere data. This data has 351 binary responses to 34 predictors.

```
load ionosphere;
[N,D] = size(X)
N =
 351
D =
 34
resp = unique(Y)
resp =
 'b'
 'g'
```


## 2. Choose the number of nearest neighbors.

Find a good choice for $k$, the number of nearest neighbors in the classifier, by cross validation. Choose the number of neighbors approximately evenly spaced on a logarithmic scale.

```
rng(8000,'twister') % for reproducibility
K = round(logspace(0,log10(N),10)); % number of neighbors
cvloss = zeros(numel(K),1);
for k=1:numel(K)
 knn = ClassificationKNN.fit(X,Y,...
 'NumNeighbors',K(k),'crossval','on');
 cvloss(k) = kfoldLoss(knn);
end
figure; % plot the accuracy versus k
semilogx(K,cvloss);
xlabel('Number of nearest neighbors');
ylabel('10 fold classification error');
title('k-NN classification');
```



The lowest cross-validation error occurs for $\mathrm{k}=2$.

## 3. Create the ensembles.

Create ensembles for 2-nearest neighbor classification with various numbers of dimensions, and examine the cross-validated loss of the resulting ensembles.

This step takes a long time. To keep track of the progress, print a message as each dimension finishes.

```
NPredToSample = round(linspace(1,D,10)); % linear spacing of dimensions
cvloss = zeros(numel(NPredToSample),1);
learner = ClassificationKNN.template('NumNeighbors',2);
```

```
for npred=1:numel(NPredToSample)
end
plot(NPredToSample,cvloss);
ylabel('10 fold classification error');
Random Subspace 1 done.
Random Subspace 2 done.
Random Subspace 3 done.
Random Subspace 4 done.
Random Subspace 5 done.
Random Subspace 6 done.
Random Subspace 7 done.
Random Subspace 8 done.
Random Subspace 9 done.
Random Subspace 10 done.
```

    subspace \(=\) fitensemble(X,Y,'subspace',200,learner,...
            'npredtosample',NPredToSample(npred), 'crossval', 'on');
    cvloss(npred) = kfoldLoss(subspace);
    fprintf('Random Subspace \%i done. \({ }^{\prime}\) ', npred);
    figure; \% plot the accuracy versus dimension
xlabel('Number of predictors selected at random');
title('k-NN classification with Random Subspace');


The ensemble with five predictors per learner has the lowest cross-validated error. The error rate, about 0.06 , is about half the amount for the individual learners, which was over 0.10.

## 4. Find a good ensemble size.

Find the smallest number of learners in the ensemble that still give good classification.

```
ens = fitensemble(X,Y,'subspace',200,learner,...
 'npredtosample',5,'crossval','on');
figure; % plot the accuracy versus number in ensemble
plot(kfoldLoss(ens,'mode','cumulative'))
xlabel('Number of learners in ensemble');
```

```
ylabel('10 fold classification error');
title('k-NN classification with Random Subspace');
```

k-NN classification with Random Subspace


There seems to be no advantage in an ensemble with more than 150 or so learners. It is not clear whether there is any advantage with more than 50 learners. It is possible that 25 learners gives good predictions.

## 5. Create a final ensemble.

Construct a final ensemble with 50 learners. Compact the ensemble and see if the compacted version saves an appreciable amount of memory.

```
ens = fitensemble(X,Y,'subspace',50,learner,...
 'npredtosample',5);
```

```
cens = compact(ens);
s1 = whos('ens');s2 = whos('cens');
[s1.bytes s2.bytes] % si.bytes = size in bytes
ans =
 2317803
 2087370
```

The compact ensemble is about $10 \%$ smaller than the full ensemble. Both give the same predictions.

## TreeBagger Examples

TreeBagger ensembles have more functionality than those constructed with fitensemble; see TreeBagger Features Not in fitensemble on page 15-150. Also, some property and method names differ from their fitensemble counterparts. This section contains examples of workflow for regression and classification that use this extra TreeBagger functionality.

## Workflow Example: Regression of Insurance Risk Rating for Car Imports with TreeBagger

In this example, use a database of 1985 car imports with 205 observations, 25 input variables, and one response variable, insurance risk rating, or "symboling." The first 15 variables are numeric and the last 10 are categorical. The symboling index takes integer values from -3 to 3 .

1 Load the dataset and split it into predictor and response arrays:

```
load imports-85;
```

$Y=X(:, 1)$;
$X=X(:, 2: e n d) ;$

2 Because bagging uses randomized data drawings, its exact outcome depends on the initial random seed. To reproduce the exact results in this example, use the random stream settings:

```
rng(1945,'twister')
```

Finding the Optimal Leaf Size. For regression, the general rule is to set leaf size to 5 and select one third of input features for decision splits at random. In the following step, verify the optimal leaf size by comparing mean-squared errors obtained by regression for various leaf sizes. oobError computes MSE versus the number of grown trees. You must set oobpred to 'on' to obtain out-of-bag predictions later.

```
leaf = [1 5 10 20 50 100];
col = 'rgbcmy';
figure(1);
for i=1:length(leaf)
 b = TreeBagger(50,X,Y,'method','r','oobpred','on',...
 'cat',16:25,'minleaf',leaf(i));
 plot(oobError(b),col(i));
 hold on;
end
xlabel('Number of Grown Trees');
ylabel('Mean Squared Error');
legend({'1' '5' '10' '20' '50' '100'},'Location','NorthEast');
hold off;
```



The red (leaf size 1) curve gives the lowest MSE values.

## Estimating Feature Importance.

1 In practical applications, you typically grow ensembles with hundreds of trees. Only 50 trees were used in "Finding the Optimal Leaf Size" on page 15-125 for faster processing. Now that you have estimated the optimal leaf size, grow a larger ensemble with 100 trees and use it for estimation of feature importance:
b = TreeBagger(100,X,Y,'method','r','oobvarimp','on',...
'cat',16:25,'minleaf',1);

2 Inspect the error curve again to make sure nothing went wrong during training:
figure(2);
plot(oobError(b));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Mean Squared Error');


Prediction ability should depend more on important features and less on unimportant features. You can use this idea to measure feature importance.

For each feature, you can permute the values of this feature across all of the observations in the data set and measure how much worse the mean-squared
error (MSE) becomes after the permutation. You can repeat this for each feature.

1 Using the following code, plot the increase in MSE due to permuting out-of-bag observations across each input variable. The OOBPermutedVarDeltaError array stores the increase in MSE averaged over all trees in the ensemble and divided by the standard deviation taken over the trees, for each variable. The larger this value, the more important the variable. Imposing an arbitrary cutoff at 0.65 , you can select the five most important features.

```
figure(3);
bar(b.00BPermutedVarDeltaError);
xlabel('Feature Number');
ylabel('Out-Of-Bag Feature Importance');
idxvar = find(b.O0BPermutedVarDeltaError>0.65)
idxvar =
```

    \(\begin{array}{lllll}1 & 2 & 4 & 16 & 19\end{array}\)
    

2 The 00BIndices property of TreeBagger tracks which observations are out of bag for what trees. Using this property, you can monitor the fraction of observations in the training data that are in bag for all trees. The curve starts at approximately $2 / 3$, the fraction of unique observations selected by one bootstrap replica, and goes down to 0 at approximately 10 trees.

```
finbag = zeros(1,b.NTrees);
for t=1:b.NTrees
 finbag(t) = sum(all(~b.OOBIndices(:,1:t),2));
end
finbag = finbag / size(X,1);
figure(4);
plot(finbag);
```

```
xlabel('Number of Grown Trees');
ylabel('Fraction of in-Bag Observations');
```



Growing Trees on a Reduced Set of Features. Using just the five most powerful features selected in "Estimating Feature Importance" on page $15-126$, determine if it is possible to obtain a similar predictive power. To begin, grow 100 trees on these features only. The first three of the five selected features are numeric and the last two are categorical.
b5v = TreeBagger(100,X(:,idxvar),Y,'method','r',...
'oobvarimp','on','cat',4:5,'minleaf',1);
figure(5);
plot(oobError(b5v));

```
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Mean Squared Error');
figure(6);
bar(b5v.00BPermutedVarDeltaError);
xlabel('Feature Index');
ylabel('Out-of-Bag Feature Importance');
```




These five most powerful features give the same MSE as the full set, and the ensemble trained on the reduced set ranks these features similarly to each other. Features 1 and 2 from the reduced set perhaps could be removed without a significant loss in the predictive power.

Finding Outliers. To find outliers in the training data, compute the proximity matrix using fillProximities:
b5v = fillProximities(b5v);
The method normalizes this measure by subtracting the mean outlier measure for the entire sample, taking the magnitude of this difference and dividing the result by the median absolute deviation for the entire sample:
figure(7);
hist(b5v.OutlierMeasure);
xlabel('Outlier Measure');
ylabel('Number of Observations');


Discovering Clusters in the Data. By applying multidimensional scaling to the computed matrix of proximities, you can inspect the structure of the input data and look for possible clusters of observations. The mdsProx method returns scaled coordinates and eigenvalues for the computed proximity matrix. If run with the colors option, this method makes a scatter plot of two scaled coordinates, first and second by default.
figure(8);
[~,e] = mdsProx(b5v,'colors','k');
xlabel('1st Scaled Coordinate');
ylabel('2nd Scaled Coordinate');


Assess the relative importance of the scaled axes by plotting the first 20 eigenvalues:

```
figure(9);
bar(e(1:20));
xlabel('Scaled Coordinate Index');
ylabel('Eigenvalue');
```



Saving the Ensemble Configuration for Future Use. To use the trained ensemble for predicting the response on unseen data, store the ensemble to disk and retrieve it later. If you do not want to compute predictions for out-of-bag data or reuse training data in any other way, there is no need to store the ensemble object itself. Saving the compact version of the ensemble would be enough in this case. Extract the compact object from the ensemble:

```
c = compact(b5v)
c =
Ensemble with 100 decision trees:
Method: regression
Nvars:
5
```

This object can be now saved in a *.mat file as usual.

## Workflow Example: Classifying Radar Returns for Ionosphere Data with TreeBagger

You can also use ensembles of decision trees for classification. For this example, use ionosphere data with 351 observations and 34 real-valued predictors. The response variable is categorical with two levels:

- 'g' for good radar returns
- 'b' for bad radar returns

The goal is to predict good or bad returns using a set of 34 measurements. The workflow resembles that for "Workflow Example: Regression of Insurance Risk Rating for Car Imports with TreeBagger" on page 15-124.

1 Fix the initial random seed, grow 50 trees, inspect how the ensemble error changes with accumulation of trees, and estimate feature importance. For classification, it is best to set the minimal leaf size to 1 and select the square root of the total number of features for each decision split at random. These are the default settings for a TreeBagger used for classification.

```
load ionosphere;
rng(1945,'twister')
b = TreeBagger(50,X,Y,'oobvarimp','on');
figure(10);
plot(oobError(b));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Classification Error');
```



2 The method trains ensembles with few trees on observations that are in bag for all trees. For such observations, it is impossible to compute the true
out-of-bag prediction, and TreeBagger returns the most probable class for classification and the sample mean for regression. You can change the default value returned for in-bag observations using the DefaultYfit property. If you set the default value to an empty string for classification, the method excludes in-bag observations from computation of the out-of-bag error. In this case, the curve is more variable when the number of trees is small, either because some observations are never out of bag (and are therefore excluded) or because their predictions are based on few trees.

```
b.DefaultYfit = '';
figure(11);
plot(oobError(b));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Error Excluding in-Bag Observations');
```



3 The OOBIndices property of TreeBagger tracks which observations are out of bag for what trees. Using this property, you can monitor the fraction of observations in the training data that are in bag for all trees. The curve starts at approximately $2 / 3$, the fraction of unique observations selected by one bootstrap replica, and goes down to 0 at approximately 10 trees.

```
finbag = zeros(1,b.NTrees);
for t=1:b.NTrees
 finbag(t) = sum(all(~b.OOBIndices(:,1:t),2));
```

```
end
finbag = finbag / size(X,1);
figure(12);
plot(finbag);
xlabel('Number of Grown Trees');
ylabel('Fraction of in-Bag Observations');
```



4 Estimate feature importance:

```
figure(13);
bar(b.OOBPermutedVarDeltaError);
xlabel('Feature Index');
ylabel('Out-of-Bag Feature Importance');
idxvar = find(b.OOBPermutedVarDeltaError>0.8)
idxvar =
 3
```



5 Having selected the five most important features, grow a larger ensemble on the reduced feature set. Save time by not permuting out-of-bag observations to obtain new estimates of feature importance for the reduced feature set (set oobvarimp to 'off'). You would still be interested in obtaining out-of-bag estimates of classification error (set oobpred to 'on ').

```
b5v = TreeBagger(100,X(:,idxvar),Y,'oobpred','on');
figure(14);
plot(oobError(b5v));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Classification Error');
```



6 For classification ensembles, in addition to classification error (fraction of misclassified observations), you can also monitor the average classification margin. For each observation, the margin is defined as the difference between the score for the true class and the maximal score for other classes predicted by this tree. The cumulative classification margin uses the scores averaged over all trees and the mean cumulative classification margin is the cumulative margin averaged over all observations. The oobMeanMargin method with the 'mode' argument set to 'cumulative' (default) shows how the mean cumulative margin changes as the ensemble grows: every new element in the returned array represents the cumulative margin obtained by including a new tree in the ensemble. If training is successful, you would expect to see a gradual increase in the mean classification margin.

For decision trees, a classification score is the probability of observing an instance of this class in this tree leaf. For example, if the leaf of a grown decision tree has five 'good' and three 'bad' training observations in it, the scores returned by this decision tree for any observation fallen on this leaf are $5 / 8$ for the 'good' class and $3 / 8$ for the 'bad' class. These probabilities are called 'scores' for consistency with other classifiers that might not have an obvious interpretation for numeric values of returned predictions.

```
figure(15);
plot(oobMeanMargin(b5v));
```

```
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Mean Classification Margin');
```



7 Compute the matrix of proximities and look at the distribution of outlier measures. Unlike regression, outlier measures for classification ensembles are computed within each class separately.

```
b5v = fillProximities(b5v);
figure(16);
hist(b5v.OutlierMeasure);
xlabel('Outlier Measure');
ylabel('Number of Observations');
```



8 All extreme outliers for this dataset come from the 'good ' class:

```
b5v.Y(b5v.OutlierMeasure>40)
ans =
'g'
'g'
'g'
'g'
'g''
```

9 As for regression, you can plot scaled coordinates, displaying the two classes in different colors using the colors argument of mdsProx. This argument takes a string in which every character represents a color. To find the order of classes used by the ensemble, look at the ClassNames property:
b5v.ClassNames
ans $=$
' g
b
'

The 'good' class is first and the 'bad' class is second. Display scaled coordinates using red for 'good ' and blue for 'bad' observations:

```
figure(17);
[s,e] = mdsProx(b5v,'colors','rb');
xlabel('1st Scaled Coordinate');
ylabel('2nd Scaled Coordinate');
```



10 Plot the first 20 eigenvalues obtained by scaling. The first eigenvalue in this case clearly dominates and the first scaled coordinate is most important.

```
figure(18);
bar(e(1:20));
xlabel('Scaled Coordinate Index');
ylabel('Eigenvalue');
```



Plotting a Classification Performance Curve. Another way of exploring the performance of a classification ensemble is to plot its Receiver Operating Characteristic (ROC) curve or another performance curve suitable for the current problem. First, obtain predictions for out-of-bag observations. For a classification ensemble, the oobPredict method returns a cell array of classification labels (' $g$ ' or ' $b$ ' for ionosphere data) as the first output argument and a numeric array of scores as the second output argument. The returned array of scores has two columns, one for each class. In this case, the first column is for the 'good ' class and the second column is for the 'bad ' class. One column in the score matrix is redundant because the scores represent class probabilities in tree leaves and by definition add up to 1 .
[Yfit,Sfit] = oobPredict(b5v);
Use the perfcurve utility (see "Performance Curves" on page 14-39) to compute a performance curve. By default, perfcurve returns the standard ROC curve, which is the true positive rate versus the false positive rate. perfcurve requires true class labels, scores, and the positive class label for input. In this case, choose the 'good' class as positive. The scores for this class are in the first column of Sfit.

```
[fpr,tpr] = perfcurve(b5v.Y,Sfit(:,1),'g');
figure(19);
plot(fpr,tpr);
```

```
xlabel('False Positive Rate');
ylabel('True Positive Rate');
```



Instead of the standard ROC curve, you might want to plot, for example, ensemble accuracy versus threshold on the score for the 'good' class. The ycrit input argument of perfcurve lets you specify the criterion for the $y$-axis, and the third output argument of perfcurve returns an array of thresholds for the positive class score. Accuracy is the fraction of correctly classified observations, or equivalently, 1 minus the classification error.

```
[fpr,accu,thre] = perfcurve(b5v.Y,Sfit(:,1),'g','ycrit','accu');
figure(20);
plot(thre,accu);
xlabel('Threshold for ''good'' Returns');
ylabel('Classification Accuracy');
```



The curve shows a flat region indicating that any threshold from 0.2 to 0.6 is a reasonable choice. By default, the function assigns classification labels using 0.5 as the boundary between the two classes. You can find exactly what accuracy this corresponds to:

```
i50 = find(accu>=0.50,1,'first')
accu(abs(thre-0.5)<eps)
returns
i50 =
 2
ans =
 0.9430
```

The maximal accuracy is a little higher than the default one:

```
[maxaccu,iaccu] = max(accu)
```

returns
maxaccu =
0.9459

```
iaccu =
 91
```

The optimal threshold is therefore:
thre(iaccu)
ans =
0.5056

## Ensemble Algorithms

- "AdaBoostM1" on page 15-145
- "AdaBoostM2" on page 15-147
- "Bag" on page 15-148
- "GentleBoost" on page 15-152
- "LogitBoost" on page 15-152
- "LPBoost" on page 15-154
- "LSBoost" on page 15-155
- "RobustBoost" on page 15-156
- "RUSBoost" on page 15-157
- "Subspace" on page 15-158
- "TotalBoost" on page 15-159


## AdaBoostM1

AdaBoostM1 is a very popular boosting algorithm for binary classification. The algorithm trains learners sequentially. For every learner with index $t$, AdaBoostM1 computes the weighted classification error

$$
\varepsilon_{t}=\sum_{n=1}^{N} d_{n}^{(t)} I\left(y_{n} \neq h_{t}\left(x_{n}\right)\right)
$$

where

- $x_{n}$ is a vector of predictor values for observation $n$.
- $y_{n}$ is the true class label.
- $h_{t}$ is the prediction of learner (hypothesis) with index $t$.
- I is the indicator function.
- $d_{n}^{(t)}$ is the weight of observation $n$ at step $t$.

AdaBoostM1 then increases weights for observations misclassified by learner $t$ and reduces weights for observations correctly classified by learner $t$. The next learner $t+1$ is then trained on the data with updated weights $d_{n}^{(t+1)}$.

After training finishes, AdaBoostM1 computes prediction for new data using

$$
f(x)=\sum_{t=1}^{T} \alpha_{t} h_{t}(x)
$$

where

$$
\alpha_{t}=\frac{1}{2} \log \frac{1-\varepsilon_{t}}{\varepsilon_{t}}
$$

are weights of the weak hypotheses in the ensemble.
Training by AdaBoostM1 can be viewed as stagewise minimization of the exponential loss

$$
\sum_{n=1}^{N} w_{n} \exp \left(-y_{n} f\left(x_{n}\right)\right)
$$

where

- $y_{n} \in\{-1,+1\}$ is the true class label.
- $w_{n}$ are observation weights normalized to add up to 1 .
- $f\left(x_{n}\right) \in(-\infty,+\infty)$ is the predicted classification score.

The observation weights $w_{n}$ are the original observation weights you passed to fitensemble.

The second output from the predict method of an AdaBoostM1 classification ensemble is an N -by- 2 matrix of classification scores for the two classes and $N$ observations. The second column in this matrix is always equal to minus the first column. predict returns two scores to be consistent with multiclass models, though this is redundant because the second column is always the negative of the first.

Most often AdaBoostM1 is used with decision stumps (default) or shallow trees. If boosted stumps give poor performance, try setting the minimal parent node size to one quarter of the training data.

By default, the learning rate for boosting algorithms is 1. If you set the learning rate to a lower number, the ensemble learns at a slower rate, but can converge to a better solution. 0.1 is a popular choice for the learning rate. Learning at a rate less than 1 is often called "shrinkage".

For examples using AdaBoostM1, see "Tuning RobustBoost" on page 15-114.
For references related to AdaBoostM1, see Freund and Schapire [9], Schapire et al. [15], Friedman, Hastie, and Tibshirani [11], and Friedman [10].

## AdaBoostM2

AdaBoostM2 is an extension of AdaBoostM1 for multiple classes. Instead of weighted classification error, AdaBoostM2 uses weighted pseudo-loss for $N$ observations and $K$ classes

$$
\varepsilon_{t}=\frac{1}{2} \sum_{n=1}^{N} \sum_{k \neq y_{n}} d_{n, k}^{(t)}\left(1-h_{t}\left(x_{n}, y_{n}\right)+h_{t}\left(x_{n}, k\right)\right),
$$

where

- $h_{t}\left(x_{n}, k\right)$ is the confidence of prediction by learner at step $t$ into class $k$ ranging from 0 (not at all confident) to 1 (highly confident).
- $d_{n, k}^{(t)}$ are observation weights at step $t$ for class $k$.
- $y_{n}$ is the true class label taking one of the $K$ values.
- The second sum is over all classes other than the true class $y_{n}$.

Interpreting the pseudo-loss is harder than classification error, but the idea is the same. Pseudo-loss can be used as a measure of the classification accuracy from any learner in an ensemble. Pseudo-loss typically exhibits the same behavior as a weighted classification error for AdaBoostM1: the first few learners in a boosted ensemble give low pseudo-loss values. After the first few training steps, the ensemble begins to learn at a slower pace, and the pseudo-loss value approaches 0.5 from below.

For examples using AdaBoostM2, see "Create a Classification Ensemble" on page 15-68.

For references related to AdaBoostM2, see Freund and Schapire [9].

## Bag

Bagging, which stands for "bootstrap aggregation," is a type of ensemble learning. To bag a weak learner such as a decision tree on a dataset, generate many bootstrap replicas of this dataset and grow decision trees on these replicas. Obtain each bootstrap replica by randomly selecting $N$ observations out of $N$ with replacement, where $N$ is the dataset size. To find the predicted response of a trained ensemble, take an average over predictions from individual trees.

Bagged decision trees were introduced in MATLAB R2009a as TreeBagger. The fitensemble function lets you bag in a manner consistent with boosting. An ensemble of bagged trees, either ClassificationBaggedEnsemble or RegressionBaggedEnsemble, returned by fitensemble offers almost the same functionally as TreeBagger. Discrepancies between TreeBagger and the new framework are described in detail in TreeBagger Features Not in fitensemble on page 15-150.

Bagging works by training learners on resampled versions of the data. This resampling is usually done by bootstrapping observations, that is, selecting $N$ out of $N$ observations with replacement for every new learner. In addition, every tree in the ensemble can randomly select predictors for decision splits-a technique known to improve the accuracy of bagged trees.

By default, the minimal leaf sizes for bagged trees are set to 1 for classification and 5 for regression. Trees grown with the default leaf size are usually very deep. These settings are close to optimal for the predictive power of an ensemble. Often you can grow trees with larger leaves without losing predictive power. Doing so reduces training and prediction time, as well as memory usage for the trained ensemble.

Another important parameter is the number of predictors selected at random for every decision split. This random selection is made for every split, and every deep tree involves many splits. By default, this parameter is set to a square root of the number of predictors for classification, and one third of predictors for regression.

Several features of bagged decision trees make them a unique algorithm. Drawing N out of N observations with replacement omits on average $37 \%$ of observations for each decision tree. These are "out-of-bag" observations. You can use them to estimate the predictive power and feature importance. For each observation, you can estimate the out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this observation is out of bag. You can then compare the computed prediction against the observed response for this observation. By comparing the out-of-bag predicted responses against the observed responses for all observations used for training, you can estimate the average out-of-bag error. This out-of-bag average is an unbiased estimator of the true ensemble error. You can also obtain out-of-bag estimates of feature importance by randomly permuting out-of-bag data across one variable or column at a time and estimating the increase in the out-of-bag error due to this permutation. The larger the increase, the more important the feature. Thus, you need not supply test data for bagged ensembles because you obtain reliable estimates of the predictive power and feature importance in the process of training, which is an attractive feature of bagging.

Another attractive feature of bagged decision trees is the proximity matrix. Every time two observations land on the same leaf of a tree, their proximity
increases by 1. For normalization, sum these proximities over all trees in the ensemble and divide by the number of trees. The resulting matrix is symmetric with diagonal elements equal to 1 and off-diagonal elements ranging from 0 to 1 . You can use this matrix for finding outlier observations and discovering clusters in the data through multidimensional scaling.

For examples using bagging, see:

- "Example: Test Ensemble Quality" on page 15-71
- "Surrogate Splits" on page 15-94
- "Workflow Example: Regression of Insurance Risk Rating for Car Imports with TreeBagger" on page 15-124
- "Workflow Example: Classifying Radar Returns for Ionosphere Data with TreeBagger" on page 15-133

For references related to bagging, see Breiman [3], [4], and [5].
Comparison of TreeBagger and Bagged Ensembles. fitensemble produces bagged ensembles that have most, but not all, of the functionality of TreeBagger objects. Additionally, some functionality has different names in the new bagged ensembles.

## TreeBagger Features Not in fitensemble

| Feature | TreeBagger Property | TreeBagger Merhod |
| :--- | :--- | :--- |
| Computation of proximity <br> matrix | Proximity | fillProximities, mdsProx |
| Computation of outliers | OutlierMeasure | N/A |
| Out-of-bag estimates of <br> predictor importance | O0BPermutedVarDeltaError, <br> 00BPermutedVarDeltaMeanMargin, <br> 00BPermutedVarCountRaiseMargin | N/A |
| Merging two ensembles <br> trained separately | N/A | append |
| Parallel computation for <br> creating ensemble | Set the UseParallel name-value <br> pair to true | N/A |

## Differing Names Between TreeBagger and Bagged Ensembles

| Feature | TreeBagger | Bagged Ensembles |
| :--- | :--- | :--- |
| Split criterion contributions <br> for each predictor | DeltaCritDecisionSplit <br> property | First output of <br> predictorImportance <br> (classification) or <br> predictorImportance <br> (regression) |
| Predictor associations | VarAssoc property | Second output of <br> predictorImportance <br> (classification) or <br> predictorImportance <br> (regression) |
| Error (misclassification <br> probability or mean-squared <br> error) | error and oobError methods | loss and oobLoss methods <br> (classification); loss and <br> oobLoss methods (regression) |
| Train additional trees and add <br> to ensemble | growTrees method | resume method (classification); <br> resume method (regression) |
| Mean classification margin <br> per tree | meanMargin and <br> oobMeanMargin methods | edge and oobEdge methods <br> (classification) |

In addition, two important changes were made to training and prediction for bagged classification ensembles:

- If you pass a misclassification cost matrix to TreeBagger, it passes this matrix along to the trees. If you pass a misclassification cost matrix to fitensemble, it uses this matrix to adjust the class prior probabilities. fitensemble then passes the adjusted prior probabilities and the default cost matrix to the trees. The default cost matrix is ones (K) -eye (K) for K classes.
- Unlike the loss and edge methods in the new framework, the TreeBagger error and meanMargin methods do not normalize input observation weights of the prior probabilities in the respective class.


## GentleBoost

GentleBoost (also known as Gentle AdaBoost) combines features of AdaBoostM1 and LogitBoost. Like AdaBoostM1, GentleBoost minimizes the exponential loss. But its numeric optimization is set up differently. Like LogitBoost, every weak learner fits a regression model to response values $y_{n} \in\{-1,+1\}$. This makes GentleBoost another good candidate for binary classification of data with multilevel categorical predictors.
fitensemble computes and stores the mean-squared error in the FitInfo property of the ensemble object. The mean-squared error is

$$
\sum_{n=1}^{N} d_{n}^{(t)}\left(\tilde{y}_{n}-h_{t}\left(x_{n}\right)\right)^{2}
$$

where

- $d_{n}^{(t)}$ are observation weights at step $t$ (the weights add up to 1 ).
- $h_{t}\left(x_{n}\right)$ are predictions of the regression model $h_{t}$ fitted to response values $y_{n}$.

As the strength of individual learners weakens, the weighted mean-squared error approaches 1 .

For examples using GentleBoost, see "Example: Unequal Classification Costs" on page 15-84 and "Classification with Many Categorical Levels" on page 15-90.

For references related to GentleBoost, see Friedman, Hastie, and Tibshirani [11].

## LogitBoost

LogitBoost is another popular algorithm for binary classification. LogitBoost works similarly to AdaBoostM1, except it minimizes binomial deviance

$$
\sum_{n=1}^{N} w_{n} \log \left(1+\exp \left(-2 y_{n} f\left(x_{n}\right)\right)\right)
$$

where

- $y_{n} \epsilon\{-1,+1\}$ is the true class label.
- $w_{n}$ are observation weights normalized to add up to 1 .
- $f\left(x_{n}\right) \in(-\infty,+\infty)$ is the predicted classification score.

Binomial deviance assigns less weight to badly misclassified observations (observations with large negative values of $y_{n} f\left(x_{n}\right)$ ). LogitBoost can give better average accuracy than AdaBoostM1 for data with poorly separable classes.

Learner $t$ in a LogitBoost ensemble fits a regression model to response values

$$
\tilde{y}_{n}=\frac{y_{n}^{*}-p_{t}\left(x_{n}\right)}{p_{t}\left(x_{n}\right)\left(1-p_{t}\left(x_{n}\right)\right)},
$$

where

- $y^{*}{ }_{n} \epsilon\{0,+1\}$ are relabeled classes ( 0 instead of -1 ).
- $p_{t}\left(x_{n}\right)$ is the current ensemble estimate of the probability for observation $x_{n}$ to be of class 1 .

Fitting a regression model at each boosting step turns into a great computational advantage for data with multilevel categorical predictors. Take a categorical predictor with $L$ levels. To find the optimal decision split on such a predictor, classification tree needs to consider $2^{L-1}-1$ splits. A regression tree needs to consider only $L-1$ splits, so the processing time can be much shorter. LogitBoost is recommended for categorical predictors with many levels.
fitensemble computes and stores the mean-squared error in the FitInfo property of the ensemble object. The mean-squared error is

$$
\sum_{n=1}^{N} d_{n}^{(t)}\left(\tilde{y}_{n}-h_{t}\left(x_{n}\right)\right)^{2}
$$

where

- $d_{n}^{(t)}$ are observation weights at step $t$ (the weights add up to 1 ).
- $h_{t}\left(x_{n}\right)$ are predictions of the regression model $h_{t}$ fitted to response values $\tilde{y}_{n}$.

Values $y_{n}$ can range from $-\infty$ to $+\infty$, so the mean-squared error does not have well-defined bounds.

For examples using LogitBoost, see "Classification with Many Categorical Levels" on page 15-90.

For references related to LogitBoost, see Friedman, Hastie, and Tibshirani [11].

## LPBoost

LPBoost (linear programming boost), like TotalBoost, performs multiclass classification by attempting to maximize the minimal margin in the training set. This attempt uses optimization algorithms, namely linear programming for LPBoost. So you need an Optimization Toolbox license to use LPBoost or TotalBoost.

The margin of a classification is the difference between the predicted soft classification score for the true class, and the largest score for the false classes. For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node. For more information, see "Definitions" on page 20-1485 in margin.

Why maximize the minimal margin? For one thing, the generalization error (the error on new data) is the probability of obtaining a negative margin. Schapire and Singer [16] establish this inequality on the probability of obtaining a negative margin:

$$
P_{\text {test }}(m \leq 0) \leq P_{\text {train }}(m \leq \theta)+O\left(\frac{1}{\sqrt{N}} \sqrt{\frac{V \log ^{2}(N / V)}{\theta^{2}}+\log (1 / \delta)}\right)
$$

Here $m$ is the margin, $\theta$ is any positive number, $V$ is the Vapnik-Chervonenkis dimension of the classifier space, $N$ is the size of the training set, and $\delta$ is a small positive number. The inequality holds with probability $1-\delta$ over many i.i.d. training and test sets. This inequality says: To obtain a low generalization error, minimize the number of observations below margin $\theta$ in the training set.

LPBoost iteratively maximizes the minimal margin through a sequence of linear programming problems. Equivalently, by duality, LPBoost minimizes the maximal edge, where edge is the weighted mean margin (see "Definitions" on page 20-651). At each iteration, there are more constraints in the problem. So, for large problems, the optimization problem becomes increasingly constrained, and slow to solve.

LPBoost typically creates ensembles with many learners having weights that are orders of magnitude smaller than those of other learners. Therefore, to better enable you to remove the unimportant ensemble members, the compact method reorders the members of an LPBoost ensemble from largest weight to smallest. Therefore, you can easily remove the least important members of the ensemble using the removeLearners method.

For examples using LPBoost, see "LPBoost and TotalBoost for Small Ensembles" on page 15-97.

For references related to LPBoost, see Warmuth, Liao, and Ratsch [18].

## LSBoost

LSBoost (least squares boosting) fits regression ensembles. At every step, the ensemble fits a new learner to the difference between the observed response and the aggregated prediction of all learners grown previously. The ensemble fits to minimize mean-squared error.

You can use LSBoost with shrinkage by passing in the LearnRate parameter. By default this parameter is set to 1 , and the ensemble learns at the maximal speed. If you set LearnRate to a value from 0 to 1 , the ensemble fits every new learner to $y_{n}-\eta f\left(x_{n}\right)$, where

- $y_{n}$ is the observed response.
- $f\left(x_{n}\right)$ is the aggregated prediction from all weak learners grown so far for observation $x_{n}$.
- $\eta$ is the learning rate.

For examples using LSBoost, see "Creating a Regression Ensemble" on page 15-69 and "Example: Regularizing a Regression Ensemble" on page 15-104.

For references related to LSBoost, see Hastie, Tibshirani, and Friedman [12], Chapters 7 (Model Assessment and Selection) and 15 (Random Forests).

## RobustBoost

Boosting algorithms such as AdaBoostM1 and LogitBoost increase weights for misclassified observations at every boosting step. These weights can become very large. If this happens, the boosting algorithm sometimes concentrates on a few misclassified observations and neglects the majority of training data. Consequently the average classification accuracy suffers.

In this situation, you can try using RobustBoost. This algorithm does not assign almost the entire data weight to badly misclassified observations. It can produce better average classification accuracy.

Unlike AdaBoostM1 and LogitBoost, RobustBoost does not minimize a specific loss function. Instead, it maximizes the number of observations with the classification margin above a certain threshold.

RobustBoost trains based on time evolution. The algorithm starts at $t=0$. At every step, RobustBoost solves an optimization problem to find a positive step in time $\Delta t$ and a corresponding positive change in the average margin for training data $\Delta m$. RobustBoost stops training and exits if at least one of these three conditions is true:

- Time $t$ reaches 1.
- RobustBoost cannot find a solution to the optimization problem with positive updates $\Delta t$ and $\Delta m$.
- RobustBoost grows as many learners as you requested.

Results from RobustBoost can be usable for any termination condition. Estimate the classification accuracy by cross validation or by using an independent test set.

To get better classification accuracy from RobustBoost, you can adjust three parameters in fitensemble: RobustErrorGoal, RobustMaxMargin, and RobustMarginSigma. Start by varying values for RobustErrorGoal from 0 to 1. The maximal allowed value for RobustErrorGoal depends on the two other parameters. If you pass a value that is too high, fitensemble produces an error message showing the allowed range for RobustErrorGoal.

For examples using RobustBoost, see "Tuning RobustBoost" on page 15-114.
For references related to RobustBoost, see Freund [8].

## RUSBoost

RUSBoost is especially effective at classifying imbalanced data, meaning some class in the training data has many fewer members than another. RUS stands for Random Under Sampling. The algorithm takes $N$, the number of members in the class with the fewest members in the training data, as the basic unit for sampling. Classes with more members are under sampled by taking only $N$ observations of every class. In other words, if there are $K$ classes, then, for each weak learner in the ensemble, RUSBoost takes a subset of the data with $N$ observations from each of the $K$ classes. The boosting procedure follows the procedure in "AdaBoostM2" on page 15-147 for reweighting and constructing the ensemble.

When you construct a RUSBoost ensemble, there is an optional name-value pair called RatioToSmallest. Give a vector of $K$ values, each value representing the multiple of $N$ to sample for the associated class. For example, if the smallest class has $N=100$ members, then RatioToSmallest $=$ [ $2,3,4$ ] means each weak learner has 200 members in class 1,300 in class 2 , and 400 in class 3 . If RatioToSmallest leads to a value that is larger than the number of members in a particular class, then RUSBoost samples the members with replacement. Otherwise, RUSBoost samples the members without replacement.

For examples using RUSBoost, see "Classification with Imbalanced Data" on page 15-76.

For references related to RUSBoost, see Seiffert et al. [17].

## Subspace

Use random subspace ensembles (Subspace) to improve the accuracy of discriminant analysis (ClassificationDiscriminant) or $k$-nearest neighbor (ClassificationKNN) classifiers. Subspace ensembles also have the advantage of using less memory than ensembles with all predictors, and can handle missing values ( NaNs ).

The basic random subspace algorithm uses these parameters.

- $m$ is the number of dimensions (variables) to sample in each learner. Set $m$ using the NPredToSample name-value pair.
- $d$ is the number of dimensions in the data, which is the number of columns (predictors) in the data matrix X .
- $n$ is the number of learners in the ensemble. Set $n$ using the NLearn input.

The basic random subspace algorithm performs the following steps:
1 Choose without replacement a random set of $m$ predictors from the $d$ possible values.

2 Train a weak learner using just the $m$ chosen predictors.
3 Repeat steps 1 and 2 until there are $n$ weak learners.
4 Predict by taking an average of the score prediction of the weak learners, and classify the category with the highest average score.

You can choose to create a weak learner for every possible set of $m$ predictors from the $d$ dimensions. To do so, set $n$, the number of learners, to 'AllPredictorCombinations'. In this case, there are nchoosek(size ( $\mathrm{X}, 2$ ) , NPredToSample) weak learners in the ensemble.
fitensemble downweights predictors after choosing them for a learner, so subsequent learners have a lower chance of using a predictor that was previously used. This weighting tends to make predictors more evenly distributed among learners than in uniform weighting.

For examples using Subspace, see "Random Subspace Classification" on page 15-118.

For references related to random subspace ensembles, see Ho [13].

## TotalBoost

TotalBoost, like linear programming boost (LPBoost), performs multiclass classification by attempting to maximize the minimal margin in the training set. This attempt uses optimization algorithms, namely quadratic programming for TotalBoost. So you need an Optimization Toolbox license to use LPBoost or TotalBoost.

The margin of a classification is the difference between the predicted soft classification score for the true class, and the largest score for the false classes. For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node. For more information, see "Definitions" on page 20-1485 in margin.

Why maximize the minimal margin? For one thing, the generalization error (the error on new data) is the probability of obtaining a negative margin. Schapire and Singer [16] establish this inequality on the probability of obtaining a negative margin:

$$
P_{\text {test }}(m \leq 0) \leq P_{\text {train }}(m \leq \theta)+O\left(\frac{1}{\sqrt{N}} \sqrt{\frac{V \log ^{2}(N / V)}{\theta^{2}}+\log (1 / \delta)}\right)
$$

Here $m$ is the margin, $\theta$ is any positive number, $V$ is the Vapnik-Chervonenkis dimension of the classifier space, $N$ is the size of the training set, and $\delta$ is a small positive number. The inequality holds with probability $1-\delta$ over many i.i.d. training and test sets. This inequality says: To obtain a low generalization error, minimize the number of observations below margin $\theta$ in the training set.

TotalBoost minimizes a proxy of the Kullback-Leibler divergence between the current weight distribution and the initial weight distribution, subject to
the constraint that the edge (the weighted margin) is below a certain value. The proxy is a quadratic expansion of the divergence:

$$
D\left(W, W_{0}\right)=\sum_{n=1}^{N} \log \frac{W(n)}{W_{0}(n)} \approx \sum_{n=1}^{N}\left(1+\frac{W(n)}{W_{0}(n)}\right) \Delta+\frac{1}{2 W(n)} \Delta^{2},
$$

where $\Delta$ is the difference between $W(n)$, the weights at the current and next iteration, and $W_{0}$, the initial weight distribution, which is uniform. This optimization formulation keeps weights from becoming zero. At each iteration, there are more constraints in the problem. So, for large problems, the optimization problem becomes increasingly constrained, and slow to solve.

TotalBoost typically creates ensembles with many learners having weights that are orders of magnitude smaller than those of other learners. Therefore, to better enable you to remove the unimportant ensemble members, the compact method reorders the members of a TotalBoost ensemble from largest weight to smallest. Therefore you can easily remove the least important members of the ensemble using the removeLearners method.

For examples using TotalBoost, see "LPBoost and TotalBoost for Small Ensembles" on page 15-97.

For references related to TotalBoost, see Warmuth, Liao, and Ratsch [18].

## Support Vector Machines (SVM)

In this section...<br>"Understanding Support Vector Machines" on page 15-161<br>"Using Support Vector Machines" on page 15-167<br>"Nonlinear Classifier with Gaussian Kernel" on page 15-169<br>"SVM Classification with Cross Validation" on page 15-173

## Understanding Support Vector Machines

- "Separable Data" on page 15-161
- "Nonseparable Data" on page 15-164
- "Nonlinear Transformation with Kernels" on page 15-166


## Separable Data

You can use a support vector machine (SVM) when your data has exactly two classes. An SVM classifies data by finding the best hyperplane that separates all data points of one class from those of the other class. The best hyperplane for an SVM means the one with the largest margin between the two classes. Margin means the maximal width of the slab parallel to the hyperplane that has no interior data points.

The support vectors are the data points that are closest to the separating hyperplane; these points are on the boundary of the slab. The following figure illustrates these definitions, with + indicating data points of type 1 , and indicating data points of type -1 .


Mathematical Formulation: Primal. This discussion follows Hastie, Tibshirani, and Friedman [12] and Christianini and Shawe-Taylor [7].

The data for training is a set of points (vectors) $x_{i}$ along with their categories $y_{i}$. For some dimension $d$, the $x_{i} \in R^{d}$, and the $y_{i}= \pm 1$. The equation of a hyperplane is

$$
<w, x>+b=0,
$$

where $w \in R^{d},\langle w, x\rangle$ is the inner (dot) product of $w$ and $x$, and $b$ is real.
The following problem defines the best separating hyperplane. Find $w$ and $b$ that minimize $||w||$ such that for all data points $\left(x_{i}, y_{i}\right)$,

$$
y_{i}\left(<w, x_{i}>+b\right) \geq 1 .
$$

The support vectors are the $x_{i}$ on the boundary, those for which $y_{i}\left(<w, x_{i}>+b\right)=1$.

For mathematical convenience, the problem is usually given as the equivalent problem of minimizing $\langle w, w\rangle / 2$. This is a quadratic programming problem. The optimal solution $w, b$ enables classification of a vector $z$ as follows:

$$
\operatorname{class}(z)=\operatorname{sign}(<w, z>+b) .
$$

Mathematical Formulation: Dual. It is computationally simpler to solve the dual quadratic programming problem. To obtain the dual, take positive Lagrange multipliers $a_{i}$ multiplied by each constraint, and subtract from the objective function:

$$
L_{P}=\frac{1}{2}\langle w, w\rangle-\sum_{i} \alpha_{i}\left(y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)-1\right),
$$

where you look for a stationary point of $L_{P}$ over $w$ and $b$. Setting the gradient of $L_{P}$ to 0, you get

$$
\begin{align*}
w & =\sum_{i} \alpha_{i} y_{i} x_{i} \\
0 & =\sum_{i} \alpha_{i} y_{i} . \tag{15-1}
\end{align*}
$$

Substituting into $L_{P}$, you get the dual $L_{D}$ :

$$
L_{D}=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle,
$$

which you maximize over $a_{i} \geq 0$. In general, many $a_{i}$ are 0 at the maximum. The nonzero $a_{i}$ in the solution to the dual problem define the hyperplane, as seen in Equation 15-1, which gives $w$ as the sum of $a_{i} y_{i} x_{i}$. The data points $x_{i}$ corresponding to nonzero $a_{i}$ are the support vectors.

The derivative of $L_{D}$ with respect to a nonzero $\alpha_{i}$ is 0 at an optimum. This gives

$$
\left.y_{i}\left(<w, x_{i}\right\rangle+b\right)-1=0 .
$$

In particular, this gives the value of $b$ at the solution, by taking any $i$ with nonzero $a_{i}$.

The dual is a standard quadratic programming problem. For example, the Optimization Toolbox quadprog solver solves this type of problem.

## Nonseparable Data

Your data might not allow for a separating hyperplane. In that case, SVM can use a soft margin, meaning a hyperplane that separates many, but not all data points.

There are two standard formulations of soft margins. Both involve adding slack variables $s_{i}$ and a penalty parameter $C$.

- The $L^{1}$-norm problem is:

$$
\min _{w, b, s}\left(\frac{1}{2}\langle w, w\rangle+C \sum_{i} s_{i}\right)
$$

such that

$$
\begin{aligned}
y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right) & \geq 1-s_{i} \\
s_{i} & \geq 0 .
\end{aligned}
$$

The $L^{1}$-norm refers to using $s_{i}$ as slack variables instead of their squares. The SMO svmtrain method minimizes the $L^{1}$-norm problem.

- The $L^{2}$-norm problem is:

$$
\min _{w, b, s}\left(\frac{1}{2}\langle w, w\rangle+C \sum_{i} s_{i}^{2}\right)
$$

subject to the same constraints. The QP svmtrain method minimizes the $L^{2}$-norm problem.

In these formulations, you can see that increasing $C$ places more weight on the slack variables $s_{i}$, meaning the optimization attempts to make a stricter separation between classes. Equivalently, reducing $C$ towards 0 makes misclassification less important.

Mathematical Formulation: Dual. For easier calculations, consider the $L^{1}$ dual problem to this soft-margin formulation. Using Lagrange multipliers $\mu_{i}$, the function to minimize for the $L^{1}$-norm problem is:

$$
L_{P}=\frac{1}{2}\langle w, w\rangle+C \sum_{i} s_{i}-\sum_{i} \alpha_{i}\left(y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)-\left(1-s_{i}\right)\right)-\sum_{i} \mu_{i} s_{i}
$$

where you look for a stationary point of $L_{P}$ over $w, b$, and positive $s_{i}$. Setting the gradient of $L_{P}$ to 0 , you get

$$
\begin{aligned}
b & =\sum_{i} \alpha_{i} y_{i} x_{i} \\
\sum_{i} \alpha_{i} y_{i} & =0 \\
\alpha_{i} & =C-\mu_{i} \\
\alpha_{i}, \mu_{i}, s_{i} & \geq 0 .
\end{aligned}
$$

These equations lead directly to the dual formulation:

$$
\max _{\alpha} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle
$$

subject to the constraints

$$
\begin{aligned}
& \sum_{i} y_{i} \alpha_{i}=0 \\
& 0 \leq \alpha_{i} \leq C .
\end{aligned}
$$

The final set of inequalities, $0 \leq a_{i} \leq C$, shows why $C$ is sometimes called a box constraint. $C$ keeps the allowable values of the Lagrange multipliers $\alpha_{i}$ in a "box", a bounded region.

The gradient equation for $b$ gives the solution $b$ in terms of the set of nonzero $a_{i}$, which correspond to the support vectors.

You can write and solve the dual of the $L^{2}$-norm problem in an analogous manner. For details, see Christianini and Shawe-Taylor [7], Chapter 6.
svmtrain Implementation. Both dual soft-margin problems are quadratic programming problems. Internally, svmtrain has several different algorithms for solving the problems. The default Sequential Minimal Optimization (SMO) algorithm minimizes the one-norm problem. SMO is a relatively fast algorithm. If you have an Optimization Toolbox license, you can choose to use quadprog as the algorithm. quadprog minimizes the $L^{2}$-norm problem. quadprog uses a good deal of memory, but solves quadratic programs to a high degree of precision (see Bottou and Lin [2]). For details, see the svmtrain function reference page.

## Nonlinear Transformation with Kernels

Some binary classification problems do not have a simple hyperplane as a useful separating criterion. For those problems, there is a variant of the mathematical approach that retains nearly all the simplicity of an SVM separating hyperplane.

This approach uses these results from the theory of reproducing kernels:

- There is a class of functions $K(x, y)$ with the following property. There is a linear space $S$ and a function $\varphi$ mapping $x$ to $S$ such that

$$
K(x, y)=\langle\varphi(x), \varphi(y)\rangle .
$$

The dot product takes place in the space $S$.

- This class of functions includes:
- Polynomials: For some positive integer $d$,

$$
K(x, y)=(1+<x, y>)^{d} .
$$

- Radial basis function: For some positive number $\sigma$,

$$
K(x, y)=\exp \left(-<(x-y),(x-y)>/\left(2 \sigma^{2}\right)\right) .
$$

- Multilayer perceptron (neural network): For a positive number $p_{1}$ and a negative number $p_{2}$,

$$
K(x, y)=\tanh \left(p_{1}<x, y>+p_{2}\right) .
$$

Note Not every set of $p_{1}$ and $p_{2}$ gives a valid reproducing kernel.

The mathematical approach using kernels relies on the computational method of hyperplanes. All the calculations for hyperplane classification use nothing more than dot products. Therefore, nonlinear kernels can use identical calculations and solution algorithms, and obtain classifiers that are nonlinear. The resulting classifiers are hypersurfaces in some space $S$, but the space $S$ does not have to be identified or examined.

## Using Support Vector Machines

As with any supervised learning model, you first train a support vector machine, then use the trained machine to classify (predict) new data. In addition, to obtain satisfactory predictive accuracy, you can use various SVM kernel functions, and you must tune the parameters of the kernel functions.

- "Training an SVM Classifier" on page 15-167
- "Classifying New Data with an SVM Classifier" on page 15-168
- "Tuning an SVM Classifier" on page 15-168


## Training an SVM Classifier

Train an SVM classifier with the svmtrain function. The most common syntax is:

```
SVMstruct = svmtrain(data,groups,'Kernel_Function','rbf');
```

The inputs are:

- data - Matrix of data points, where each row is one observation, and each column is one feature.
- groups - Column vector with each row corresponding to the value of the corresponding row in data. groups should have only two types of entries. So groups can have logical entries, or can be a double vector or cell array with two values.
- Kernel_Function - The default value of 'linear' separates the data by a hyperplane. The value 'rbf' uses a Gaussian radial basis function. Hsu, Chang, and Lin [14] suggest using 'rbf' as your first try.

The resulting structure, SVMstruct, contains the optimized parameters from the SVM algorithm, enabling you to classify new data.

For more name-value pairs you can use to control the training, see the svmtrain reference page.

## Classifying New Data with an SVM Classifier

Classify new data with the svmclassify function. The syntax for classifying new data with a SVMstruct structure is:

```
newClasses = svmclassify(SVMstruct,newData)
```

The resulting vector, newClasses, represents the classification of each row in newData.

## Tuning an SVM Classifier

Hsu, Chang, and Lin [14] recommend tuning parameters of your classifier according to this scheme:

- Start with Kernel_Function set to 'rbf' and default parameters.
- Try different parameters for training, and check via cross validation to obtain the best parameters.

The most important parameters to try changing are:

- boxconstraint - One strategy is to try a geometric sequence of the box constraint parameter. For example, take 11 values, from $1 e-5$ to $1 e 5$ by a factor of 10 .
- rbf_sigma - One strategy is to try a geometric sequence of the RBF sigma parameter. For example, take 11 values, from $1 e-5$ to 1 e 5 by a factor of 10 .

For the various parameter settings, try cross validating the resulting classifier. Use crossval with 5 -way or the default 10 -way cross validation.

After obtaining a reasonable initial parameter, you might want to refine your parameters to obtain better accuracy. Start with your initial parameters and perform another cross validation step, this time using a factor of 1.2. Alternatively, optimize your parameters with fminsearch, as shown in "SVM Classification with Cross Validation" on page 15-173.

## Nonlinear Classifier with Gaussian Kernel

This example generates one class of points inside the unit disk in two dimensions, and another class of points in the annulus from radius 1 to radius 2. It then generates a classifier based on the data with the Gaussian radial basis function kernel. The default linear classifier is obviously unsuitable for this problem, since the model is circularly symmetric. Set the box constraint parameter to Inf to make a strict classification, meaning no misclassified training points.

Note Other kernel functions might not work with this strict box constraint, since they might be unable to provide a strict classification. Even though the rbf classifier can separate the classes, the result can be overtrained.

1 Generate 100 points uniformly distributed in the unit disk. To do so, generate a radius $r$ as the square root of a uniform random variable, generate an angle $t$ uniformly in $(0,2 \pi)$, and put the point at $(r \cos (t), r \sin (t)$.

```
r = sqrt(rand(100,1)); % radius
t = 2*pi*rand(100,1); % angle
data1 = [r.*cos(t), r.*sin(t)]; % points
```

2 Generate 100 points uniformly distributed in the annulus. The radius is again proportional to a square root, this time a square root of the uniform distribution from 1 through 4.

```
r2 = sqrt(3*rand(100,1)+1); % radius
t2 = 2*pi*rand(100,1); % angle
data2 = [r2.*cos(t2), r2.*sin(t2)]; % points
```

3 Plot the points, and plot circles of radii 1 and 2 for comparison:

```
plot(data1(:,1),data1(:,2),'r.')
```

```
hold on
plot(data2(:,1),data2(:,2),'b.')
ezpolar(@(x)1);ezpolar(@(x)2);
axis equal
hold off
```



4 Put the data in one matrix, and make a vector of classifications:

```
data3 = [data1;data2];
theclass = ones(200,1);
theclass(1:100) = -1;
```

5 Train an SVM classifier with:

- Kernel_Function set to 'rbf'
- boxconstraint set to Inf

```
cl = svmtrain(data3,theclass,'Kernel_Function','rbf',...
 'boxconstraint',Inf,'showplot',true);
hold on
axis equal
ezpolar(@(x)1)
hold off
```


svmtrain generates a classifier that is close to a circle of radius 1 . The difference is due to the random training data.

6 Training with the default parameters makes a more nearly circular classification boundary, but one that misclassifies some training data.

```
cl = svmtrain(data3,theclass,'Kernel_Function','rbf',...
 'showplot',true);
hold on
axis equal
ezpolar(@(x)1)
hold off
```



## SVM Classification with Cross Validation

This example classifies points from a Gaussian mixture model. The model is described in Hastie, Tibshirani, and Friedman [12], page 17. It begins with generating 10 base points for a "green" class, distributed as 2-D independent normals with mean ( 1,0 ) and unit variance. It also generates 10 base points for a "red" class, distributed as 2-D independent normals with mean $(0,1)$ and unit variance. For each class (green and red), generate 100 random points as follows:

1 Choose a base point $m$ of the appropriate color uniformly at random.
2 Generate an independent random point with 2-D normal distribution with mean $m$ and variance $\mathrm{I} / 5$, where I is the 2 -by- 2 identity matrix.

After generating 100 green and 100 red points, classify them using svmtrain, and tune the classification using cross validation.

To generate the points and classifier:
1 Generate the 10 base points for each class:

```
grnpop = mvnrnd([1,0],eye(2),10);
redpop = mvnrnd([0,1],eye(2),10);
```

2 View the base points:

```
plot(grnpop(:,1),grnpop(:,2),'go')
hold on
plot(redpop(:,1),redpop(:,2),'ro')
hold off
```

Since many red base points are close to green base points, it is difficult to classify the data points.


3 Generate the 100 data points of each class:

```
redpts = zeros(100,2);grnpts = redpts;
for i = 1:100
 grnpts(i,:) = mvnrnd(grnpop(randi(10),:),eye(2)*0.2);
 redpts(i,:) = mvnrnd(redpop(randi(10),:),eye(2)*0.2);
end
```

4 View the data points:
figure
plot(grnpts(:,1),grnpts(:,2),'go')
hold on

```
plot(redpts(:,1),redpts(:,2),'ro')
hold off
```



5 Put the data into one matrix, and make a vector grp that labels the class of each point:

```
cdata = [grnpts;redpts];
grp = ones(200,1);
% green label 1, red label -1
grp(101:200) = -1;
```

6 Check the basic classification of all the data using the default parameters:

```
svmStruct = svmtrain(cdata,grp,'Kernel_Function','rbf',...
```

```
'showplot',true);
```



7 Write a function called crossfun to calculate the predicted classification yfit from a test vector xtest, when the SVM is trained on a sample xtrain that has classification ytrain. Since you want to find the best parameters rbf_sigma and boxconstraint, include those in the function.

```
function yfit = ...
crossfun(xtrain,ytrain,xtest,rbf_sigma,boxconstraint)
```

\% Train the model on xtrain, ytrain, \% and get predictions of class of xtest svmStruct $=$ svmtrain(xtrain,ytrain, 'Kernel_Function','rbf',...

```
 'rbf_sigma',rbf_sigma,'boxconstraint',boxconstraint);
yfit = svmclassify(svmStruct,xtest);
```

8 Set up a partition for cross validation. This step causes the cross validation to be fixed. Without this step, the cross validation is random, so a minimization procedure can find a spurious local minimum.
c = cvpartition(200,'kfold', 10);
9 Set up a function that takes an input z=[rbf_sigma, boxconstraint], and returns the cross-validation value of $\exp (z)$. The reason to take $\exp (z)$ is twofold:

- rbf_sigma and boxconstraint must be positive.
- You should look at points spaced approximately exponentially apart.

This function handle computes the cross validation at parameters exp([rbf_sigma,boxconstraint]):

```
minfn = @(z)crossval('mcr',cdata,grp,'Predfun', ...
 @(xtrain,ytrain,xtest)crossfun(xtrain,ytrain,...
 xtest, exp(z(1)), exp(z(2))),'partition',c);
```

10 Search for the best parameters [rbf_sigma, boxconstraint] with fminsearch, setting looser tolerances than the defaults.

Tip If you have a Global Optimization Toolbox license, use patternsearch for faster, more reliable minimization. Give bounds on the components of $z$ to keep the optimization in a sensible region, such as [-5,5], and give a relatively loose TolMesh tolerance.

```
opts = optimset('TolX',5e-4,'TolFun',5e-4);
[searchmin fval] = fminsearch(minfn,randn(2,1),opts)
searchmin =
 0.9758
 -0.1569
```

```
fval =
 0.3350
```

The best parameters [rbf_sigma; boxconstraint] in this run are:

```
z = exp(searchmin)
z =
 2.6534
 0.8548
```

11 Since the result of fminsearch can be a local minimum, not a global minimum, try again with a different starting point to check that your result is meaningful:

```
[searchmin fval] = fminsearch(minfn,randn(2,1),opts)
```

searchmin =
0.2778
0.6395
fval =
0.3100

The best parameters [rbf_sigma; boxconstraint] in this run are:

```
z = exp(searchmin)
z =
 1.3202
 1.8956
```

12 Try another search:

```
[searchmin fval] = fminsearch(minfn,randn(2,1),opts)
```

searchmin =
-0.0749
0.6085
fval =
0.2850

The third search obtains the lowest function value. The final parameters are:

```
z = exp(searchmin)
Z =
 0.9278
 1.8376
```

The default parameters [1,1] are close to optimal for this data and partition.
13 Use the z parameters to train a new SVM classifier:
svmStruct = svmtrain(cdata,grp,'Kernel_Function','rbf',...
'rbf_sigma', z(1), 'boxconstraint', z(2), 'showplot', true);


14 Generate and classify some new data points:

```
grnobj = gmdistribution(grnpop,.2*eye(2));
redobj = gmdistribution(redpop,.2*eye(2));
newData = random(grnobj,10);
newData = [newData;random(redobj,10)];
grpData = ones(20,1);
grpData(11:20) = -1; % red = -1
v = svmclassify(svmStruct,newData,'showplot',true);
```



15 See which new data points are correctly classified. Circle the correctly classified points in red, and the incorrectly classified points in black.

```
mydiff = (v == grpData); % classified correctly
hold on
for ii = mydiff % plot red circles around correct pts
 plot(newData(ii, 1), newData(ii, 2),'ro','MarkerSize', 12)
end
for ii = not(mydiff) % plot black circles around incorrect pts
 plot(newData(ii,1),newData(ii,2),'ko','MarkerSize', 12)
end
hold off
```



## Bibliography

[1] Blackard, J. A. and D. J. Dean. Comparative accuracies of artificial neural networks and discriminant analysis in predicting forest cover types from cartographic variables. Computers and Electronics in Agriculture 24, pp. 131-151, 1999.
[2] Bottou, L., and Chih-Jen Lin. Support Vector Machine Solvers. Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.4209 \&rep=rep1\&type=pdf.
[3] Breiman, L. Bagging Predictors. Machine Learning 26, pp. 123-140, 1996.
[4] Breiman, L. Random Forests. Machine Learning 45, pp. 5-32, 2001.
[5] Breiman, L. http://www.stat.berkeley.edu/~breiman/RandomForests/
[6] Breiman, L., et al. Classification and Regression Trees. Chapman \& Hall, Boca Raton, 1993.
[7] Christianini, N., and J. Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge, UK, 2000.
[8] Freund, Y. A more robust boosting algorithm. arXiv:0905.2138v1, 2009.
[9] Freund, Y. and R. E. Schapire. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. of Computer and System Sciences, Vol. 55, pp. 119-139, 1997.
[10] Friedman, J. Greedy function approximation: A gradient boosting machine. Annals of Statistics, Vol. 29, No. 5, pp. 1189-1232, 2001.
[11] Friedman, J., T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. Annals of Statistics, Vol. 28, No. 2, pp. 337-407, 2000.
[12] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, second edition. Springer, New York, 2008.
[13] Ho, T. K. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 8, pp. 832-844, 1998.
[14] Hsu, Chih-Wei, Chih-Chung Chang, and Chih-Jen Lin. $A$
Practical Guide to Support Vector Classification. Available at http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
[15] Schapire, R. E. et al. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, Vol. 26, No. 5, pp. 1651-1686, 1998.
[16] Schapire, R., and Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, Vol. 37, No. 3, pp. 297-336, 1999.
[17] Seiffert, C., T. Khoshgoftaar, J. Hulse, and A. Napolitano. RUSBoost: Improving clasification performance when training data is skewed. 19th International Conference on Pattern Recognition, pp. 1-4, 2008.
[18] Warmuth, M., J. Liao, and G. Ratsch. Totally corrective boosting algorithms that maximize the margin. Proc. 23rd Int'l. Conf. on Machine Learning, ACM, New York, pp. 1001-1008, 2006.
[19] Zadrozny, B., J. Langford, and N. Abe. Cost-Sensitive Learning by Cost-Proportionate Example Weighting. CiteSeerX. [Online] 2003. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.9780
[20] Zhou, Z.-H. and X.-Y. Liu. On Multi-Class Cost-Sensitive Learning. CiteSeerX. [Online] 2006. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.9999

## Markov Models

- "Introduction to Markov Models" on page 16-2
- "Markov Chains" on page 16-3
- "Hidden Markov Models (HMM)" on page 16-5


## Introduction to Markov Models

Markov processes are examples of stochastic processes-processes that generate random sequences of outcomes or states according to certain probabilities. Markov processes are distinguished by being memoryless-their next state depends only on their current state, not on the history that led them there. Models of Markov processes are used in a wide variety of applications, from daily stock prices to the positions of genes in a chromosome.

## Markov Chains

A Markov model is given visual representation with a state diagram, such as the one below.


## State Diagram for a Markov Model

The rectangles in the diagram represent the possible states of the process you are trying to model, and the arrows represent transitions between states. The label on each arrow represents the probability of that transition. At each step of the process, the model may generate an output, or emission, depending on which state it is in, and then make a transition to another state. An important characteristic of Markov models is that the next state depends only on the current state, and not on the history of transitions that lead to the current state.

For example, for a sequence of coin tosses the two states are heads and tails. The most recent coin toss determines the current state of the model and each subsequent toss determines the transition to the next state. If the coin is fair, the transition probabilities are all $1 / 2$. The emission might simply be the current state. In more complicated models, random processes at each state will generate emissions. You could, for example, roll a die to determine the emission at any step.

Markov chains are mathematical descriptions of Markov models with a discrete set of states. Markov chains are characterized by:

- A set of states $\{1,2, \ldots, M\}$
- An $M$-by- $M$ transition matrix $T$ whose $i, j$ entry is the probability of a transition from state $i$ to state $j$. The sum of the entries in each row of $T$ must be 1 , because this is the sum of the probabilities of making a transition from a given state to each of the other states.
- A set of possible outputs, or emissions, $\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}$. By default, the set of emissions is $\{1,2, \ldots, N\}$, where $N$ is the number of possible emissions, but you can choose a different set of numbers or symbols.
- An $M$-by- $N$ emission matrix $E$ whose $i, k$ entry gives the probability of emitting symbol $s_{\mathrm{k}}$ given that the model is in state $i$.

Markov chains begin in an initial state $i_{0}$ at step 0 . The chain then transitions to state $i_{1}$ with probability $T_{1 i_{1}}$, and emits an output $s_{k_{1}}$ with probability
$E_{i_{1} k_{1}}$. Consequently, the probability of observing the sequence of states $i_{1} i_{2} \ldots i_{r}$ and the sequence of emissions $s_{k_{1}} s_{k_{2}} \ldots s_{k_{r}}$ in the first $r$ steps, is

$$
T_{1 i_{1}} E_{i_{1} k_{1}} T_{i_{1} i_{2}} E_{i_{2} k_{2}} \ldots T_{i_{r-1} i_{r}} E_{i_{r} k}
$$

## Hidden Markov Models (HMM)

In this section...<br>"Introduction to Hidden Markov Models (HMM)" on page 16-5<br>"Analyzing Hidden Markov Models" on page 16-7

## Introduction to Hidden Markov Models (HMM)

A hidden Markov model (HMM) is one in which you observe a sequence of emissions, but do not know the sequence of states the model went through to generate the emissions. Analyses of hidden Markov models seek to recover the sequence of states from the observed data.

As an example, consider a Markov model with two states and six possible emissions. The model uses:

- A red die, having six sides, labeled 1 through 6.
- A green die, having twelve sides, five of which are labeled 2 through 6 , while the remaining seven sides are labeled 1.
- A weighted red coin, for which the probability of heads is .9 and the probability of tails is .1.
- A weighted green coin, for which the probability of heads is .95 and the probability of tails is .05 .

The model creates a sequence of numbers from the set $\{1,2,3,4,5,6\}$ with the following rules:

- Begin by rolling the red die and writing down the number that comes up, which is the emission.
- Toss the red coin and do one of the following:
- If the result is heads, roll the red die and write down the result.
- If the result is tails, roll the green die and write down the result.
- At each subsequent step, you flip the coin that has the same color as the die you rolled in the previous step. If the coin comes up heads, roll the same die as in the previous step. If the coin comes up tails, switch to the other die.

The state diagram for this model has two states, red and green, as shown in the following figure.


You determine the emission from a state by rolling the die with the same color as the state. You determine the transition to the next state by flipping the coin with the same color as the state.

The transition matrix is:

$$
T=\left[\begin{array}{ll}
0.9 & 0.1 \\
0.05 & 0.95
\end{array}\right]
$$

The emissions matrix is:

$$
E=\left[\begin{array}{cccccc}
\frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
\frac{7}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12} & \frac{1}{12}
\end{array}\right]
$$

The model is not hidden because you know the sequence of states from the colors of the coins and dice. Suppose, however, that someone else is generating
the emissions without showing you the dice or the coins. All you see is the sequence of emissions. If you start seeing more 1 s than other numbers, you might suspect that the model is in the green state, but you cannot be sure because you cannot see the color of the die being rolled.

Hidden Markov models raise the following questions:

- Given a sequence of emissions, what is the most likely state path?
- Given a sequence of emissions, how can you estimate transition and emission probabilities of the model?
- What is the forward probability that the model generates a given sequence?
- What is the posterior probability that the model is in a particular state at any point in the sequence?


## Analyzing Hidden Markov Models

- "Generating a Test Sequence" on page 16-8
- "Estimating the State Sequence" on page 16-8
- "Estimating Transition and Emission Matrices" on page 16-9
- "Estimating Posterior State Probabilities" on page 16-11
- "Changing the Initial State Distribution" on page 16-12

Statistics Toolbox functions related to hidden Markov models are:

- hmmgenerate - Generates a sequence of states and emissions from a Markov model
- hmmestimate - Calculates maximum likelihood estimates of transition and emission probabilities from a sequence of emissions and a known sequence of states
- hmmtrain - Calculates maximum likelihood estimates of transition and emission probabilities from a sequence of emissions
- hmmviterbi - Calculates the most probable state path for a hidden Markov model
- hmmdecode - Calculates the posterior state probabilities of a sequence of emissions

This section shows how to use these functions to analyze hidden Markov models.

## Generating a Test Sequence

The following commands create the transition and emission matrices for the model described in the "Introduction to Hidden Markov Models (HMM)" on page 16-5:

```
TRANS = [.9 .1; .05 .95;];
EMIS = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...
7/12, 1/12, 1/12, 1/12, 1/12, 1/12];
```

To generate a random sequence of states and emissions from the model, use hmmgenerate:

```
[seq,states] = hmmgenerate(1000,TRANS,EMIS);
```

The output seq is the sequence of emissions and the output states is the sequence of states.
hmmgenerate begins in state 1 at step 0 , makes the transition to state $i_{1}$ at step 1 , and returns $i_{1}$ as the first entry in states. To change the initial state, see "Changing the Initial State Distribution" on page 16-12.

## Estimating the State Sequence

Given the transition and emission matrices TRANS and EMIS, the function hmmviterbi uses the Viterbi algorithm to compute the most likely sequence of states the model would go through to generate a given sequence seq of emissions:
likelystates = hmmviterbi(seq, TRANS, EMIS);
likelystates is a sequence the same length as seq.
To test the accuracy of hmmviterbi, compute the percentage of the actual sequence states that agrees with the sequence likelystates.

```
sum(states==likelystates)/1000
ans =
 0.8200
```

In this case, the most likely sequence of states agrees with the random sequence $82 \%$ of the time.

## Estimating Transition and Emission Matrices

- "Using hmmestimate" on page 16-9
- "Using hmmtrain" on page 16-10

The functions hmmestimate and hmmtrain estimate the transition and emission matrices TRANS and EMIS given a sequence seq of emissions.

Using hmmestimate. The function hmmestimate requires that you know the sequence of states states that the model went through to generate seq.

The following takes the emission and state sequences and returns estimates of the transition and emission matrices:
[TRANS_EST, EMIS_EST] = hmmestimate(seq, states)
TRANS EST =
$0.8989 \quad 0.1011$
$0.0585 \quad 0.9415$

EMIS_EST =

| 0.1721 | 0.1721 | 0.1749 | 0.1612 | 0.1803 | 0.1393 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.5836 | 0.0741 | 0.0804 | 0.0789 | 0.0726 | 0.1104 |

You can compare the outputs with the original transition and emission matrices, TRANS and EMIS:

TRANS
TRANS =
$0.9000 \quad 0.1000$
$0.0500 \quad 0.9500$

EMIS

| EMIS $=$ |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.1667 | 0.1667 | 0.1667 | 0.1667 | 0.1667 | 0.1667 |
| 0.5833 | 0.0833 | 0.0833 | 0.0833 | 0.0833 | 0.0833 |

Using hmmtrain. If you do not know the sequence of states states, but you have initial guesses for TRANS and EMIS, you can still estimate TRANS and EMIS using hmmtrain.

Suppose you have the following initial guesses for TRANS and EMIS.

```
TRANS_GUESS = [.85 .15; .1 .9];
EMIS_GUESS = [.17 .16 .17 .16 .17 .17;.6 . 08 . 08 . 08 . 08 08];
```

You estimate TRANS and EMIS as follows:
[TRANS_EST2, EMIS_EST2] = hmmtrain(seq, TRANS_GUESS, EMIS_GUESS)
TRANS_EST2 =
$0.2286 \quad 0.7714$
$0.0032 \quad 0.9968$

EMIS_EST2 =

| 0.1436 | 0.2348 | 0.1837 | 0.1963 | 0.2350 | 0.0066 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.4355 | 0.1089 | 0.1144 | 0.1082 | 0.1109 | 0.1220 |

hmmtrain uses an iterative algorithm that alters the matrices TRANS_GUESS and EMIS_GUESS so that at each step the adjusted matrices are more likely to generate the observed sequence, seq. The algorithm halts when the matrices in two successive iterations are within a small tolerance of each other.

If the algorithm fails to reach this tolerance within a maximum number of iterations, whose default value is 100 , the algorithm halts. In this case, hmmtrain returns the last values of TRANS_EST and EMIS_EST and issues a warning that the tolerance was not reached.

If the algorithm fails to reach the desired tolerance, increase the default value of the maximum number of iterations with the command:

```
hmmtrain(seq,TRANS_GUESS,EMIS_GUESS,'maxiterations',maxiter)
```

where maxiter is the maximum number of steps the algorithm executes.

Change the default value of the tolerance with the command:
hmmtrain(seq, TRANS_GUESS, EMIS_GUESS, 'tolerance', tol)
where tol is the desired value of the tolerance. Increasing the value of tol makes the algorithm halt sooner, but the results are less accurate.

Two factors reduce the reliability of the output matrices of hmmtrain:

- The algorithm converges to a local maximum that does not represent the true transition and emission matrices. If you suspect this, use different initial guesses for the matrices TRANS_EST and EMIS_EST.
- The sequence seq may be too short to properly train the matrices. If you suspect this, use a longer sequence for seq.


## Estimating Posterior State Probabilities

The posterior state probabilities of an emission sequence seq are the conditional probabilities that the model is in a particular state when it generates a symbol in seq, given that seq is emitted. You compute the posterior state probabilities with hmmdecode:

PSTATES = hmmdecode(seq,TRANS,EMIS)
The output PSTATES is an $M$-by- $L$ matrix, where $M$ is the number of states and $L$ is the length of seq. $\operatorname{PSTATES}(i, j)$ is the conditional probability that the model is in state $i$ when it generates the $j$ th symbol of seq, given that seq is emitted.
hmmdecode begins with the model in state 1 at step 0 , prior to the first emission. $\operatorname{PSTATES}(i, 1)$ is the probability that the model is in state $i$ at the following step 1. To change the initial state, see "Changing the Initial State Distribution" on page 16-12.

To return the logarithm of the probability of the sequence seq, use the second output argument of hmmdecode:
[PSTATES,logpseq] = hmmdecode(seq,TRANS,EMIS)
The probability of a sequence tends to 0 as the length of the sequence increases, and the probability of a sufficiently long sequence becomes less
than the smallest positive number your computer can represent. hmmdecode returns the logarithm of the probability to avoid this problem.

## Changing the Initial State Distribution

By default, Statistics Toolbox hidden Markov model functions begin in state 1. In other words, the distribution of initial states has all of its probability mass concentrated at state 1 . To assign a different distribution of probabilities, $p=$ [ $p_{1}, p_{2}, \ldots, p_{M}$ ], to the $M$ initial states, do the following:

1 Create an $M+1$-by- $M+1$ augmented transition matrix, $\hat{T}$ of the following form:

$$
\hat{T}=\left[\begin{array}{ll}
0 & p \\
0 & T
\end{array}\right]
$$

where $T$ is the true transition matrix. The first column of $\hat{T}$ contains $M+1$ zeros. $p$ must sum to 1 .

2 Create an $M+1$-by- $N$ augmented emission matrix, $\hat{E}$, that has the following form:

$$
\hat{E}=\left[\begin{array}{l}
0 \\
E
\end{array}\right]
$$

If the transition and emission matrices are TRANS and EMIS, respectively, you create the augmented matrices with the following commands:

```
TRANS_HAT = [0 p; zeros(size(TRANS,1),1) TRANS];
EMIS_HAT = [zeros(1,size(EMIS,2)); EMIS];
```


## Design of Experiments

- "Design of Experiments" on page 17-2
- "Full Factorial Designs" on page 17-3
- "Fractional Factorial Designs" on page 17-5
- "Response Surface Designs" on page 17-9
- "D-Optimal Designs" on page 17-15


## Design of Experiments

Passive data collection leads to a number of problems in statistical modeling. Observed changes in a response variable may be correlated with, but not caused by, observed changes in individual factors (process variables). Simultaneous changes in multiple factors may produce interactions that are difficult to separate into individual effects. Observations may be dependent, while a model of the data considers them to be independent.

Designed experiments address these problems. In a designed experiment, the data-producing process is actively manipulated to improve the quality of information and to eliminate redundant data. A common goal of all experimental designs is to collect data as parsimoniously as possible while providing sufficient information to accurately estimate model parameters.

For example, a simple model of a response $y$ in an experiment with two controlled factors $x_{1}$ and $x_{2}$ might look like this:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}+\varepsilon
$$

Here $\varepsilon$ includes both experimental error and the effects of any uncontrolled factors in the experiment. The terms $\beta_{1} x_{1}$ and $\beta_{2} x_{2}$ are main effects and the term $\beta_{3} x_{1} x_{2}$ is a two-way interaction effect. A designed experiment would systematically manipulate $x_{1}$ and $x_{2}$ while measuring $y$, with the objective of accurately estimating $\beta_{0}, \beta_{1}, \beta_{2}$, and $\beta_{3}$.

## Full Factorial Designs

In this section...<br>"Multilevel Designs" on page 17-3<br>"Two-Level Designs" on page 17-4

## Multilevel Designs

To systematically vary experimental factors, assign each factor a discrete set of levels. Full factorial designs measure response variables using every treatment (combination of the factor levels). A full factorial design for $n$ factors with $N_{1}, \ldots, N_{n}$ levels requires $N_{1} \times \ldots \times N_{n}$ experimental runs-one for each treatment. While advantageous for separating individual effects, full factorial designs can make large demands on data collection.

As an example, suppose a machine shop has three machines and four operators. If the same operator always uses the same machine, it is impossible to determine if a machine or an operator is the cause of variation in production. By allowing every operator to use every machine, effects are separated. A full factorial list of treatments is generated by the Statistics Toolbox function fullfact:

```
dFF = fullfact([3,4])
dFF =
 1
 2 1
 3 1
 2
 2
 3
 3
 2 3
 3 3
 4
 2 4
 3 4
```

Each of the $3 \times 4=12$ rows of dFF represent one machine/operator combination.

## Two-Level Designs

Many experiments can be conducted with two-level factors, using two-level designs. For example, suppose the machine shop in the previous example always keeps the same operator on the same machine, but wants to measure production effects that depend on the composition of the day and night shifts. The Statistics Toolbox function ff2n generates a full factorial list of treatments:

| dFF 2 | $=f f 2 n(4)$ |  |  |
| ---: | :--- | :--- | :--- |
| dFF 2 | $=$ |  |  |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |
| 1 | 1 | 1 | 1 |

Each of the $2^{4}=16$ rows of dFF2 represent one schedule of operators for the day (0) and night (1) shifts.

## Fractional Factorial Designs

In this section...<br>"Introduction to Fractional Factorial Designs" on page 17-5<br>"Plackett-Burman Designs" on page 17-5<br>"General Fractional Designs" on page 17-6

## Introduction to Fractional Factorial Designs

Two-level designs are sufficient for evaluating many production processes. Factor levels of $\pm 1$ can indicate categorical factors, normalized factor extremes, or simply "up" and "down" from current factor settings. Experimenters evaluating process changes are interested primarily in the factor directions that lead to process improvement.

For experiments with many factors, two-level full factorial designs can lead to large amounts of data. For example, a two-level full factorial design with 10 factors requires $2^{10}=1024$ runs. Often, however, individual factors or their interactions have no distinguishable effects on a response. This is especially true of higher order interactions. As a result, a well-designed experiment can use fewer runs for estimating model parameters.

Fractional factorial designs use a fraction of the runs required by full factorial designs. A subset of experimental treatments is selected based on an evaluation (or assumption) of which factors and interactions have the most significant effects. Once this selection is made, the experimental design must separate these effects. In particular, significant effects should not be confounded, that is, the measurement of one should not depend on the measurement of another.

## Plackett-Burman Designs

Plackett-Burman designs are used when only main effects are considered significant. Two-level Plackett-Burman designs require a number of experimental runs that are a multiple of 4 rather than a power of 2 . The MATLAB function hadamard generates these designs:

```
dPB = hadamard(8)
```

```
dPB =
\begin{tabular}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{tabular}
```

Binary factor levels are indicated by $\pm 1$. The design is for eight runs (the rows of dPB ) manipulating seven two-level factors (the last seven columns of dPB). The number of runs is a fraction $8 / 2^{7}=0.0625$ of the runs required by a full factorial design. Economy is achieved at the expense of confounding main effects with any two-way interactions.

## General Fractional Designs

At the cost of a larger fractional design, you can specify which interactions you wish to consider significant. A design of resolution $R$ is one in which no $n$-factor interaction is confounded with any other effect containing less than $R-n$ factors. Thus, a resolution III design does not confound main effects with one another but may confound them with two-way interactions (as in "Plackett-Burman Designs" on page 17-5), while a resolution IV design does not confound either main effects or two-way interactions but may confound two-way interactions with each other.

Specify general fractional factorial designs using a full factorial design for a selected subset of basic factors and generators for the remaining factors. Generators are products of the basic factors, giving the levels for the remaining factors. Use the Statistics Toolbox function fracfact to generate these designs:

```
dfF = fracfact('a b c d bcd acd')
dfF =
\begin{tabular}{rrrrrr}
-1 & -1 & -1 & -1 & -1 & -1 \\
-1 & -1 & -1 & 1 & 1 & 1 \\
-1 & -1 & 1 & -1 & 1 & 1 \\
-1 & -1 & 1 & 1 & -1 & -1 \\
-1 & 1 & -1 & -1 & 1 & -1
\end{tabular}
```

| -1 | 1 | -1 | 1 | -1 | 1 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| -1 | 1 | 1 | -1 | -1 | 1 |
| -1 | 1 | 1 | 1 | 1 | -1 |
| 1 | -1 | -1 | -1 | -1 | 1 |
| 1 | -1 | -1 | 1 | 1 | -1 |
| 1 | -1 | 1 | -1 | 1 | -1 |
| 1 | -1 | 1 | 1 | -1 | 1 |
| 1 | 1 | -1 | -1 | 1 | 1 |
| 1 | 1 | -1 | 1 | -1 | -1 |
| 1 | 1 | 1 | -1 | -1 | -1 |
| 1 | 1 | 1 | 1 | 1 | 1 |

This is a six-factor design in which four two-level basic factors (a, b, c, and $d$ in the first four columns of dfF) are measured in every combination of levels, while the two remaining factors (in the last three columns of dfF) are measured only at levels defined by the generators bcd and acd, respectively. Levels in the generated columns are products of corresponding levels in the columns that make up the generator.

The challenge of creating a fractional factorial design is to choose basic factors and generators so that the design achieves a specified resolution in a specified number of runs. Use the Statistics Toolbox function fracfactgen to find appropriate generators:

```
generators = fracfactgen('a b c d e f',4,4)
generators =
 'a'
 'b'
 'c'
 'd'
 'bcd'
 'acd'
```

These are generators for a six-factor design with factors a through f, using $2^{4}$ $=16$ runs to achieve resolution IV. The fracfactgen function uses an efficient search algorithm to find generators that meet the requirements.

An optional output from fracfact displays the confounding pattern of the design:
[dfF, confounding] = fracfact(generators);

```
confounding
confounding =
 'Term' 'Generator' 'Confounding'
 'X1' 'a' 'X1'
 'X2' 'b' 'X2'
 'X3' 'c' 'X3'
 'X4' 'd' 'X4'
 'X5' 'bcd' 'X5'
 'X6' 'acd' 'X6'
 'X1*X2' 'ab' 'X1*X2 + X5*X6'
 'X1*X3' 'ac' 'X1*X3 + X4*X6'
 'X1*X4' 'ad' 'X1*X4 + X3*X6'
 'X1*X5' 'abcd' 'X1*X5 + X2*X6'
 'X1*X6' 'cd' 'X1*X6 + X2*X5 + X3*X4'
 'X2*X3' 'bc' 'X2*X3 + X4*X5'
 'X2*X4' 'bd' 'X2*X4 + X3*X5'
 'X2*X5' 'cd' 'X1*X6 + X2*X5 + X3*X4'
 'X2*X6' 'abcd' 'X1*X5 + X2*X6'
 'X3*X4' 'cd' 'X1*X6 + X2*X5 + X3*X4'
 'X3*X5' 'bd' 'X2*X4 + X3*X5'
 'X3*X6' 'ad' 'X1*X4 + X3*X6'
 'X4*X5' 'bc' 'X2*X3 + X4*X5'
 'X4*X6' 'ac' 'X1*X3 + X4*X6'
 'X5*X6' 'ab' 'X1*X2 + X5*X6'
```

The confounding pattern shows that main effects are effectively separated by the design, but two-way interactions are confounded with various other two-way interactions.

## Response Surface Designs

```
In this section...
"Introduction to Response Surface Designs" on page 17-9
"Central Composite Designs" on page 17-9
"Box-Behnken Designs" on page 17-13
```


## Introduction to Response Surface Designs

Quadratic response surfaces are simple models that provide a maximum or minimum without making additional assumptions about the form of the response. Quadratic models can be calibrated using full factorial designs with three or more levels for each factor, but these designs generally require more runs than necessary to accurately estimate model parameters. This section discusses designs for calibrating quadratic models that are much more efficient, using three or five levels for each factor, but not using all combinations of levels.

## Central Composite Designs

Central composite designs (CCDs), also known as Box-Wilson designs, are appropriate for calibrating full quadratic models. There are three types of CCDs-circumscribed, inscribed, and faced-pictured below:



Each design consists of a factorial design (the corners of a cube) together with center and star points that allow for estimation of second-order effects. For a full quadratic model with $n$ factors, CCDs have enough design points to estimate the $(n+2)(n+1) / 2$ coefficients in a full quadratic model with $n$ factors.

The type of CCD used (the position of the factorial and star points) is determined by the number of factors and by the desired properties of the design. The following table summarizes some important properties. A design is rotatable if the prediction variance depends only on the distance of the design point from the center of the design.

| Design | Rotatable | Factor <br> Levels | Uses Points <br> Outside $\mathbf{1}$ | Accuracy of <br> Estimates |
| :--- | :--- | :--- | :--- | :--- |
| Circumscribed <br> (CCC) | Yes | 5 | Yes | Good over entire <br> design space |
| Inscribed <br> (CCI) | Yes | 5 | No | Good over central <br> subset of design space |
| Faced (CCF) | No | 3 | No | Fair over entire <br> design space; poor <br> for pure quadratic <br> coefficients |

Generate CCDs with the Statistics Toolbox function ccdesign:

```
dCC = ccdesign(3,'type','circumscribed')
dCC =
 -1.0000 -1.0000 1.0000
 -1.0000 1.0000 -1.0000
 -1.0000 1.0000 1.0000
 1.0000 -1.0000 -1.0000
 1.0000 -1.0000 1.0000
 1.0000 1.0000 -1.0000
 1.0000 1.0000 1.0000
 -1.6818 0 0
 1.6818 0 0
 0 -1.6818 0
 0 1.6818 0
 0 0 -1.6818
 0 0 1.6818
 0 0 0
 0 0 0
 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0 0
 0 0
```

The repeated center point runs allow for a more uniform estimate of the prediction variance over the entire design space.

## Box-Behnken Designs

Like the designs described in "Central Composite Designs" on page 17-9, Box-Behnken designs are used to calibrate full quadratic models. Box-Behnken designs are rotatable and, for a small number of factors (four or less), require fewer runs than CCDs. By avoiding the corners of the design space, they allow experimenters to work around extreme factor combinations. Like an inscribed CCD, however, extremes are then poorly estimated.

The geometry of a Box-Behnken design is pictured in the following figure.


Design points are at the midpoints of edges of the design space and at the center, and do not contain an embedded factorial design.

Generate Box-Behnken designs with the Statistics Toolbox function bbdesign:

| $\mathrm{dBB}=$ |  |  |
| ---: | :--- | ---: |
| dBB | $=$ |  |
|  | bbdesign (3) |  |
| -1 | -1 | 0 |
| -1 | 1 | 0 |
| 1 | -1 | 0 |
| 1 | 1 | 0 |
| -1 | 0 | -1 |
| -1 | 0 | 1 |
| 1 | 0 | -1 |
| 1 | 0 | 1 |
| 0 | -1 | -1 |
| 0 | -1 | 1 |
| 0 | 1 | -1 |
| 0 | 1 | 1 |
| 0 | 0 | 0 |
| 0 | 0 | 0 |
| 0 | 0 | 0 |

Again, the repeated center point runs allow for a more uniform estimate of the prediction variance over the entire design space.

## D-Optimal Designs

In this section...<br>"Introduction to D-Optimal Designs" on page 17-15<br>"Generate D-Optimal Designs" on page 17-16<br>"Augment D-Optimal Designs" on page 17-19<br>"Specify Fixed Covariate Factors" on page 17-20<br>"Specify Categorical Factors" on page 17-21<br>"Specify Candidate Sets" on page 17-21

## Introduction to D-Optimal Designs

Traditional experimental designs ("Full Factorial Designs" on page 17-3, "Fractional Factorial Designs" on page 17-5, and "Response Surface Designs" on page 17-9) are appropriate for calibrating linear models in experimental settings where factors are relatively unconstrained in the region of interest. In some cases, however, models are necessarily nonlinear. In other cases, certain treatments (combinations of factor levels) may be expensive or infeasible to measure. D-optimal designs are model-specific designs that address these limitations of traditional designs.

A D-optimal design is generated by an iterative search algorithm and seeks to minimize the covariance of the parameter estimates for a specified model. This is equivalent to maximizing the determinant $D=\left|X^{T} X\right|$, where $X$ is the design matrix of model terms (the columns) evaluated at specific treatments in the design space (the rows). Unlike traditional designs, D-optimal designs do not require orthogonal design matrices, and as a result, parameter estimates may be correlated. Parameter estimates may also be locally, but not globally, D-optimal.

There are several Statistics Toolbox functions for generating D-optimal designs:

| Function | Description |
| :--- | :--- |
| candexch | Uses a row-exchange algorithm to generate a D-optimal design <br> with a specified number of runs for a specified model and a <br> specified candidate set. This is the second component of the <br> algorithm used by rowexch. |
| candgen | Generates a candidate set for a specified model. This is the <br> first component of the algorithm used by rowexch. |
| cordexch | Uses a coordinate-exchange algorithm to generate a D-optimal <br> design with a specified number of runs for a specified model. |
| daugment | Uses a coordinate-exchange algorithm to augment an existing <br> D-optimal design with additional runs to estimate additional <br> model terms. |
| dcovary | Uses a coordinate-exchange algorithm to generate a D-optimal <br> design with fixed covariate factors. |
| rowexch | Uses a row-exchange algorithm to generate a D-optimal design <br> with a specified number of runs for a specified model. The <br> algorithm calls candgen and then candexch. (Call candexch <br> separately to specify a candidate set.) |

The following sections explain how to use these functions to generate D-optimal designs.

Note The Statistics Toolbox function rsmdemo generates simulated data for experimental settings specified by either the user or by a D-optimal design generated by cordexch. It uses the rstool interface to visualize response surface models fit to the data, and it uses the nlintool interface to visualize a nonlinear model fit to the data.

## Generate D-Optimal Designs

Two Statistics Toolbox algorithms generate D-optimal designs:

- The cordexch function uses a coordinate-exchange algorithm
- The rowexch function uses a row-exchange algorithm

Both cordexch and rowexch use iterative search algorithms. They operate by incrementally changing an initial design matrix $X$ to increase $D=\left|X^{T} X\right|$ at each step. In both algorithms, there is randomness built into the selection of the initial design and into the choice of the incremental changes. As a result, both algorithms may return locally, but not globally, D-optimal designs. Run each algorithm multiple times and select the best result for your final design. Both functions have a 'tries' parameter that automates this repetition and comparison.

At each step, the row-exchange algorithm exchanges an entire row of $X$ with a row from a design matrix $C$ evaluated at a candidate set of feasible treatments. The rowexch function automatically generates a $C$ appropriate for a specified model, operating in two steps by calling the candgen and candexch functions in sequence. Provide your own $C$ by calling candexch directly. In either case, if $C$ is large, its static presence in memory can affect computation.

The coordinate-exchange algorithm, by contrast, does not use a candidate set. (Or rather, the candidate set is the entire design space.) At each step, the coordinate-exchange algorithm exchanges a single element of $X$ with a new element evaluated at a neighboring point in design space. The absence of a candidate set reduces demands on memory, but the smaller scale of the search means that the coordinate-exchange algorithm is more likely to become trapped in a local minimum than the row-exchange algorithm.

For example, suppose you want a design to estimate the parameters in the following three-factor, seven-term interaction model:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{12} x_{1} x_{2}+\beta_{13} x_{1} x_{3}+\beta_{23} x_{2} x_{3}+\varepsilon
$$

Use cordexch to generate a D-optimal design with seven runs:

```
nfactors = 3;
nruns = 7;
[dCE,X] = cordexch(nfactors,nruns,'interaction','tries',10)
dCE =
 -1 1 1
 -1
 1 1 1
 -1 1
 1 -1 1
```

$\mathrm{X}=$| 1 | -1 | -1 |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -1 | -1 | 1 |  |  |  |  |
|  |  |  |  |  |  |  |
| 1 | -1 | 1 | 1 | -1 | -1 | 1 |
| 1 | -1 | -1 | -1 | 1 | 1 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | -1 | 1 | -1 | -1 | 1 | -1 |
| 1 | 1 | -1 | 1 | -1 | 1 | -1 |
| 1 | 1 | -1 | -1 | -1 | -1 | 1 |
| 1 | -1 | -1 | 1 | 1 | -1 | -1 |

Columns of the design matrix $X$ are the model terms evaluated at each row of the design dCE. The terms appear in order from left to right:

1 Constant term
2 Linear terms (1, 2, 3)
3 Interaction terms (12, 13, 23)
Use $X$ in a linear regression model fit to response data measured at the design points in dCE.

Use rowexch in a similar fashion to generate an equivalent design:

```
[dRE,X] = rowexch(nfactors,nruns,'interaction','tries',10)
```

dRE =

| -1 | -1 | 1 |  |  |  |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | -1 | 1 |  |  |  |
| 1 | -1 | -1 |  |  |  |
| 1 | 1 | 1 |  |  |  |
| -1 | -1 | -1 |  |  |  |
| -1 | 1 | -1 |  |  |  |
| -1 | 1 | 1 |  |  |  |
|  |  |  |  |  |  |
| 1 | -1 | -1 | 1 | 1 | -1 |
| 1 | 1 | -1 | 1 | -1 | 1 |
| 1 | 1 | -1 | -1 | -1 | -1 |
| 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | -1 | -1 | -1 | 1 | 1 |
| 1 | -1 | 1 | -1 | -1 | 1 |


| 1 | -1 | 1 | 1 | -1 | -1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Augment D-Optimal Designs

In practice, you may want to add runs to a completed experiment to learn more about a process and estimate additional model coefficients. The daugment function uses a coordinate-exchange algorithm to augment an existing D-optimal design.

For example, the following eight-run design is adequate for estimating main effects in a four-factor model:


To estimate the six interaction terms in the model, augment the design with eight additional runs:

```
dCEinteraction = daugment(dCEmain,8,'interaction')
dCEinteraction =
\begin{tabular}{rrrr}
1 & -1 & -1 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & 1 & -1 & 1 \\
1 & 1 & 1 & -1 \\
1 & 1 & 1 & 1 \\
-1 & 1 & -1 & -1 \\
1 & -1 & -1 & -1 \\
-1 & -1 & 1 & -1 \\
-1 & 1 & 1 & 1 \\
-1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
-1 & 1 & 1 & -1
\end{tabular}
```

| 1 | 1 | -1 | -1 |
| ---: | ---: | ---: | ---: |
| 1 | -1 | 1 | 1 |
| 1 | 1 | 1 | -1 |

The augmented design is full factorial, with the original eight runs in the first eight rows.

The 'start' parameter of the candexch function provides the same functionality as daugment, but uses a row exchange algorithm rather than a coordinate-exchange algorithm.

## Specify Fixed Covariate Factors

In many experimental settings, certain factors and their covariates are constrained to a fixed set of levels or combinations of levels. These cannot be varied when searching for an optimal design. The dcovary function allows you to specify fixed covariate factors in the coordinate exchange algorithm.

For example, suppose you want a design to estimate the parameters in a three-factor linear additive model, with eight runs that necessarily occur at different times. If the process experiences temporal linear drift, you may want to include the run time as a variable in the model. Produce the design as follows:

```
time = linspace(-1,1,8)';
[dCV,X] = dcovary(3,time,'linear')
dCV =
\begin{tabular}{rrrrr}
-1.0000 & 1.0000 & 1.0000 & -1.0000 & \\
1.0000 & -1.0000 & -1.0000 & -0.7143 & \\
-1.0000 & -1.0000 & -1.0000 & -0.4286 & \\
1.0000 & -1.0000 & 1.0000 & -0.1429 & \\
1.0000 & 1.0000 & -1.0000 & 0.1429 & \\
-1.0000 & 1.0000 & -1.0000 & 0.4286 & \\
1.0000 & 1.0000 & 1.0000 & 0.7143 & \\
-1.0000 & -1.0000 & 1.0000 & 1.0000 & \\
& & & & \\
1.0000 & -1.0000 & 1.0000 & 1.0000 & -1.0000 \\
1.0000 & 1.0000 & -1.0000 & -1.0000 & -0.7143 \\
1.0000 & -1.0000 & -1.0000 & -1.0000 & -0.4286 \\
1.0000 & 1.0000 & -1.0000 & 1.0000 & -0.1429
\end{tabular}
```

| 1.0000 | 1.0000 | 1.0000 | -1.0000 | 0.1429 |
| ---: | ---: | ---: | ---: | ---: |
| 1.0000 | -1.0000 | 1.0000 | -1.0000 | 0.4286 |
| 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.7143 |
| 1.0000 | -1.0000 | -1.0000 | 1.0000 | 1.0000 |

The column vector time is a fixed factor, normalized to values between $\pm 1$. The number of rows in the fixed factor specifies the number of runs in the design. The resulting design dCV gives factor settings for the three controlled model factors at each time.

## Specify Categorical Factors

Categorical factors take values in a discrete set of levels. Both cordexch and rowexch have a 'categorical' parameter that allows you to specify the indices of categorical factors and a 'levels' parameter that allows you to specify a number of levels for each factor.

For example, the following eight-run design is for a linear additive model with five factors in which the final factor is categorical with three levels:

```
dCEcat = cordexch(5,8,'linear','categorical',5,'levels',3)
dCEcat =
\begin{tabular}{rrrrr}
-1 & -1 & 1 & 1 & 2 \\
-1 & -1 & -1 & -1 & 3 \\
1 & 1 & 1 & 1 & 3 \\
1 & 1 & -1 & -1 & 2 \\
1 & -1 & -1 & 1 & 3 \\
-1 & 1 & -1 & 1 & 1 \\
-1 & 1 & 1 & -1 & 3 \\
1 & -1 & 1 & -1 & 1
\end{tabular}
```


## Specify Candidate Sets

The row-exchange algorithm exchanges rows of an initial design matrix $X$ with rows from a design matrix $C$ evaluated at a candidate set of feasible treatments. The rowexch function automatically generates a $C$ appropriate for a specified model, operating in two steps by calling the candgen and candexch functions in sequence. Provide your own $C$ by calling candexch directly.

For example, the following uses rowexch to generate a five-run design for a two-factor pure quadratic model using a candidate set that is produced internally:

```
dRE1 = rowexch(2,5,'purequadratic','tries',10)
dRE1 =
 -1 1
 0
 -1
 1 0
 1
```

The same thing can be done using candgen and candexch in sequence:

```
[dC,C] = candgen(2,'purequadratic') % Candidate set, C
dC =
 -1 -1
 0 -1
 1 -1
 -1 0
 0
 1 0
 -1 1
 0
C =
 1
 1 0
 1
 1
 1 0}00
 1
 1
 1
treatments = candexch(C,5,'tries',10) % D-opt subset
treatments =
 2
 1
 7
 3
```

```
 4
dRE2 = dC(treatments,:) % Display design
dRE2 =
 0 -1
 -1 -1
 -1 1
 1 -1
 -1 0
```

You can replace C in this example with a design matrix evaluated at your own candidate set. For example, suppose your experiment is constrained so that the two factors cannot have extreme settings simultaneously. The following produces a restricted candidate set:

```
constraint = sum(abs(dC),2) < 2; % Feasible treatments
my_dC = dC(constraint,:)
my_dC =
 0 -1
 -1 0
 0
 0
 0 1
```

Use the x2fx function to convert the candidate set to a design matrix:

```
my_C = x2fx(my_dC,'purequadratic')
my_C =
\begin{tabular}{lllll}
1 & 0 & -1 & 0 & 1
\end{tabular}
 1
 1 0}00
 1 1 1 0
 1 0
```

Find the required design in the same manner:

```
my_treatments = candexch(my_C,5,'tries',10) % D-opt subset
my_treatments =
 2
 4
 5
 1
```

```
 3
my_dRE = my_dC(my_treatments,:) % Display design
my_dRE =
 -1 0
 0
 0 1
 0 -1
 0
```


## Statistical Process Control

- "Introduction to Statistical Process Control" on page 18-2
- "Control Charts" on page 18-3
- "Capability Studies" on page 18-6


## Introduction to Statistical Process Control

Statistical process control (SPC) refers to a number of different methods for monitoring and assessing the quality of manufactured goods. Combined with methods from the design of experiments, SPC is used in programs that define, measure, analyze, improve, and control development and production processes. These programs are often implemented using "Design for Six Sigma" methodologies.

## Control Charts

A control chart displays measurements of process samples over time. The measurements are plotted together with user-defined specification limits and process-defined control limits. The process can then be compared with its specifications-to see if it is in control or out of control.

The chart is just a monitoring tool. Control activity might occur if the chart indicates an undesirable, systematic change in the process. The control chart is used to discover the variation, so that the process can be adjusted to reduce it.

Control charts are created with the controlchart function. Any of the following chart types may be specified:

- Xbar or mean
- Standard deviation
- Range
- Exponentially weighted moving average
- Individual observation
- Moving range of individual observations
- Moving average of individual observations
- Proportion defective
- Number of defectives
- Defects per unit
- Count of defects

Control rules are specified with the controlrules function.
For example, the following commands create an xbar chart, using the "Western Electric 2" rule (2 of 3 points at least 2 standard errors above the center line) to mark out of control measurements:
load parts;
st = controlchart(runout,'rules','we2');

```
x = st.mean;
cl = st.mu;
se = st.sigma./sqrt(st.n);
hold on
plot(cl+2*se,'m')
```

XBAR control chart


Measurements that violate the control rule can then be identified:
R = controlrules('we2', x, cl, se);
I = find(R)

I =
21
23
24
25

## Capability Studies

Before going into production, many manufacturers run a capability study to determine if their process will run within specifications enough of the time. Capability indices produced by such a study are used to estimate expected percentages of defective parts.

Capability studies are conducted with the capability function. The following capability indices are produced:

- mu - Sample mean
- sigma - Sample standard deviation
- P - Estimated probability of being within the lower (L) and upper (U) specification limits
- Pl - Estimated probability of being below L
- Pu - Estimated probability of being above U
- $\mathrm{Cp}-(\mathrm{U}-\mathrm{L}) /(6 *$ sigma)
- Cpl-(mu-L)./(3.*sigma)
- Cpu - (U-mu). /(3.*sigma)
- Cpk - min(Cpl,Cpu)

As an example, simulate a sample from a process with a mean of 3 and a standard deviation of 0.005 :

```
data = normrnd(3,0.005,100,1);
```

Compute capability indices if the process has an upper specification limit of 3.01 and a lower specification limit of 2.99:

```
S = capability(data,[2.99 3.01])
S =
 mu: 3.0006
 sigma: 0.0047
 P: 0.9669
 Pl: 0.0116
 Pu: 0.0215
```

$$
\begin{array}{rr}
\text { Cp: } & 0.7156 \\
\text { Cpl: } & 0.7567 \\
\text { Cpu: } & 0.6744 \\
\text { Cpk: } & 0.6744
\end{array}
$$

Visualize the specification and process widths:

```
capaplot(data,[2.99 3.01]);
```

grid on

Probability Between Limits $=0.96688$


## Parallel Statistics

- "Quick Start Parallel Computing for Statistics Toolbox" on page 19-2
- "Concepts of Parallel Computing in Statistics Toolbox" on page 19-7
- "When to Run Statistical Functions in Parallel" on page 19-8
- "Working with parfor" on page 19-10
- "Reproducibility in Parallel Statistical Computations" on page 19-13
- "Examples of Parallel Statistical Functions" on page 19-19


## Quick Start Parallel Computing for Statistics Toolbox

Note To use parallel computing as described in this chapter, you must have a Parallel Computing Toolbox license.

```
In this section...
"What Is Parallel Statistics Functionality?" on page 19-2
"How To Compute in Parallel" on page 19-3
"Parallel Treebagger" on page 19-5
```


## What Is Parallel Statistics Functionality?

You can use any of the Statistics Toolbox functions with Parallel Computing Toolbox constructs such as parfor and spmd. However, some functions, such as those with interactive displays, can lose functionality in parallel. In particular, displays and interactive usage are not effective on workers (see "Vocabulary for Parallel Computation" on page 19-7).

Additionally, the following functions are enhanced to use parallel computing internally. These functions use parfor internally to parallelize calculations.

- bootci
- bootstrp
- candexch
- cordexch
- crossval
- daugment
- dcovary
- jackknife
- lasso
- lassoglm
- nnmf
- plsregress
- rowexch
- sequentialfs
- TreeBagger
- TreeBagger.growTrees

This chapter gives the simplest way to use these enhanced functions in parallel. For more advanced topics, including the issues of reproducibility and nested parfor loops, see the other sections in this chapter.

For information on parallel statistical computing at the command line, enter help parallelstats

## How To Compute in Parallel

To have a function compute in parallel:
l "Open matlabpool" on page 19-3
2 "Set the UseParallel Option to true" on page 19-5
3 "Call the Function Using the Options Structure" on page 19-5

## Open matlabpool

To run a statistical computation in parallel, first set up a parallel environment.

Note Setting up a parallel environment can take several seconds.

Multicore. For a multicore machine, enter the following at the MATLAB command line:
matlabpool open $n$
$n$ is the number of workers you want to use.

Network. If you have multiple processors on a network, use Parallel Computing Toolbox functions and MATLAB Distributed Computing Server ${ }^{\text {TM }}$ software to establish parallel computation. Make sure that your system is configured properly for parallel computing.

Many parallel statistical functions call a function that can be one you define in a file. For example, jackknife calls a function (jackfun) that can be a built-in MATLAB function such as corr, but can also be a function you define. Built-in functions are available to all workers. However, you must take extra steps to enable workers to access a function file that you define.

To place a function file on the path of all workers, and check that it is accessible:

1 At the command line, enter

```
matlabpool open conf
or
matlabpool open conf n
```

where conf is your configuration, and $n$ is the number of processors you want to use.

2 If network_file_path is the network path to your function file, enter pctRunOnAll('addpath network_file_path')
so the worker processors can access your function file.
3 Check whether the file is on the path of every worker by entering:

```
pctRunOnAll('which filename')
```

If any worker does not have a path to the file, it reports:

```
filename not found.
```


## Set the UseParallel Option to true

Create an options structure with the statset function. To run in parallel, set the UseParallel option to true:

```
paroptions = statset('UseParallel',true);
```


## Call the Function Using the Options Structure

Call your function with syntax that uses the options structure. For example:

```
% Run crossval in parallel
cvMse = crossval('mse',x,y,'predfun',regf,'Options',paroptions);
% Run bootstrp in parallel
sts = bootstrp(100,@(x)[mean(x) std(x)],y,'Options',paroptions);
% Run TreeBagger in parallel
b = TreeBagger(50,meas,spec,'OOBPred','on','Options',paroptions);
For more complete examples of parallel statistical functions, see "Parallel Treebagger" on page 19-5 and "Examples of Parallel Statistical Functions" on page 19-19.
```

After you have finished computing in parallel, close the parallel environment:
matlabpool close

Tip To save time, keep the pool open if you expect to compute in parallel again soon.

## Parallel Treebagger

To run the example "Workflow Example: Regression of Insurance Risk Rating for Car Imports with TreeBagger" on page 15-124 in parallel:

1 Set up the parallel environment to use two cores:

```
matlabpool open 2
```

Starting matlabpool using the 'local' configuration ...
connected to 2 labs.

2 Set the options to use parallel processing:

```
paroptions = statset('UseParallel',true);
```

3 Load the problem data and separate it into input and response:

```
load imports-85;
Y = X(:,1);
X = X(:,2:end);
```

4 Estimate feature importance using leaf size 1 and 1000 trees in parallel. Time the function for comparison purposes:

```
tic
b = TreeBagger(1000,X,Y,'Method','r','OOBVarImp','on',...
 'cat',16:25,'MinLeaf',1,'Options',paroptions);
toc
Elapsed time is 37.357930 seconds.
```

5 Perform the same computation in serial for timing comparison:

```
tic
b = TreeBagger(1000,X,Y,'Method','r','OOBVarImp','on',...
 'cat',16:25,'MinLeaf',1); % No options gives serial
toc
Elapsed time is 63.921864 seconds.
```

Computing in parallel took less than $60 \%$ of the time of computing serially.

# Concepts of Parallel Computing in Statistics Toolbox 

In this section...<br>"Subtleties in Parallel Computing" on page 19-7<br>"Vocabulary for Parallel Computation" on page 19-7

## Subtleties in Parallel Computing

There are two main subtleties in parallel computations:

- Nested parallel evaluations (see "No Nested parfor Loops" on page 19-11). Only the outermost parfor loop runs in parallel, the others run serially.
- Reproducible results when using random numbers (see "Reproducibility in Parallel Statistical Computations" on page 19-13). How can you get exactly the same results when repeatedly running a parallel computation that uses random numbers?


## Vocabulary for Parallel Computation

- worker - An independent MATLAB session that runs code distributed by the client.
- client - The MATLAB session with which you interact, and that distributes jobs to workers.
- parfor - A Parallel Computing Toolbox function that distributes independent code segments to workers (see "Working with parfor" on page 19-10).
- random stream - A pseudorandom number generator, and the sequence of values it generates. MATLAB implements random streams with the RandStream class.
- reproducible computation - A computation that can be exactly replicated, even in the presence of random numbers (see "Reproducibility in Parallel Statistical Computations" on page 19-13).


# When to Run Statistical Functions in Parallel 

In this section...<br>"Why Run in Parallel?" on page 19-8<br>"Factors Affecting Speed" on page 19-8<br>"Factors Affecting Results" on page 19-9

## Why Run in Parallel?

The main reason to run statistical computations in parallel is to gain speed, meaning to reduce the execution time of your program or functions. "Factors Affecting Speed" on page 19-8 discusses the main items affecting the speed of programs or functions. "Factors Affecting Results" on page 19-9 discusses details that can cause a parallel run to give different results than a serial run.

## Factors Affecting Speed

Some factors that can affect the speed of execution of parallel processing are:

- Parallel environment setup. It takes time to run matlabpool to begin computing in parallel. If your computation is fast, the setup time can exceed any time saved by computing in parallel.
- Parallel overhead. There is overhead in communication and coordination when running in parallel. If function evaluations are fast, this overhead could be an appreciable part of the total computation time. Thus, solving a problem in parallel can be slower than solving the problem serially. For an example, see Improving Optimization Performance with Parallel Computing in MATLAB Digest, March 2009.
- No nested parfor loops. This is described in "Working with parfor" on page 19-10. parfor does not work in parallel when called from within another parfor loop. If you have programmed your custom functions to take advantage of parallel processing, the limitation of no nested parfor loops can cause a parallel function to run slower than expected.
- When executing serially, parfor loops run slightly slower than for loops.
- Passing parameters. Parameters are automatically passed to worker sessions during the execution of parallel computations. If there are many
parameters, or they take a large amount of memory, passing parameters can slow the execution of your computation.
- Contention for resources: network and computing. If the pool of workers has low bandwidth or high latency, parallel computation can be slow.


## Factors Affecting Results

Some factors can affect results when using parallel processing. There are several caveats related to parfor listed in "Limitations" in the Parallel Computing Toolbox documentation. Some important factors are:

- Persistent or global variables. If any functions use persistent or global variables, these variables can take different values on different worker processors. Furthermore, they might not be cleared properly on the worker processors.
- Accessing external files. External files can be accessed unpredictably during a parallel computation. The order of computations is not guaranteed during parallel processing, so external files can be accessed in unpredictable order, leading to unpredictable results. Furthermore, if multiple processors try to read an external file simultaneously, the file can become locked, leading to a read error, and halting function execution.
- Noncomputational functions, such as input, plot, and keyboard, can behave badly when used in your custom functions. When called in a parfor loop, these functions are executed on worker machines. This can cause a worker to become nonresponsive, since it is waiting for input.
- parfor does not allow break or return statements.
- The random numbers you use can affect the results of your computations. See "Reproducibility in Parallel Statistical Computations" on page 19-13.


## Working with parfor

In this section...<br>"How Statistical Functions Use parfor" on page 19-10<br>"Characteristics of parfor" on page 19-11

## How Statistical Functions Use parfor

parfor is a Parallel Computing Toolbox function similar to a for loop. Parallel statistical functions call parfor internally. parfor distributes computations to worker processors.


## Characteristics of parfor

More caveats related to parfor appear in "Limitations" in the Parallel Computing Toolbox documentation.

## No Nested parfor Loops

parfor does not work in parallel when called from within another parfor loop, or from an spmd block. Parallelization occurs only at the outermost level.

Suppose, for example, you want to apply jackknife to your function userfcn, which calls parfor, and you want to call jackknife in a loop. The following figure shows three cases:

1 The outermost loop is parfor. Only that loop runs in parallel.
2 The outermost parfor loop is in jackknife. Only jackknife runs in parallel.

3 The outermost parfor loop is in userfon. userfon uses parfor in parallel.

Bold indicates the function that runs in parallel


end
(3) for $i=1: 10$ If UseParallel = 'never' userfen can use parfor in parallel
(3)
$x(\mathrm{i})=\mathrm{jackknife}$ (@userfcn,...)
end

## When parfor Runs in Parallel

## Reproducibility in Parallel Statistical Computations

In this section...<br>"Issues and Considerations in Reproducing Parallel Computations" on page 19-13<br>"Running Reproducible Parallel Computations" on page 19-14<br>"Parallel Statistical Computation Using Random Numbers" on page 19-15

## Issues and Considerations in Reproducing Parallel Computations

A reproducible computation is one that gives the same results every time it runs. Reproducibility is important for:

- Debugging - To correct an anomalous result, you need to reproduce the result.
- Confidence - When you can reproduce results, you can investigate and understand them.
- Modifying existing code - When you change existing code, you want to ensure that you do not break anything.

Generally, you do not need to ensure reproducibility for your computation. Often, when you want reproducibility, the simplest technique is to run in serial instead of in parallel. In serial computation you can simply call the rng function as follows:

```
s = rng % Obtain the current state of the random stream
% run the statistical function
rng(s) % Reset the stream to the previous state
% run the statistical function again, obtain identical results
```

This section addresses the case when your function uses random numbers, and you want reproducible results in parallel. This section also addresses the case when you want the same results in parallel as in serial.

## Running Reproducible Parallel Computations

To run a Statistics Toolbox function reproducibly:
1 Set the UseSubstreams option to true.
2 Set the Streams option to a type that supports substreams: 'mlfg6331_64' or 'mrg32k3a'. For information on these streams, see "Choosing a Random Number Generator" in the MATLAB Mathematics documentation.

3 To compute in parallel, set the UseParallel option to true.
4 Call the function with the options structure.
5 To reproduce the computation, reset the stream, then call the function again.

To understand why this technique gives reproducibility, see "How Substreams Enable Reproducible Parallel Computations" on page 19-15.

For example, to use the 'mlfg6331_64' stream for reproducible computation:
1 Create an appropriate options structure:

```
s = RandStream('mlfg6331_64');
options = statset('UseParallel',true, ...
 'Streams',s,'UseSubstreams',true);
```

2 Run your parallel computation. For instructions, see "Quick Start Parallel Computing for Statistics Toolbox" on page 19-2.

3 Reset the random stream:

```
reset(s);
```

4 Rerun your parallel computation. You obtain identical results.
For an example of a parallel computation run this reproducible way, see "Reproducible Parallel Bootstrap" on page 19-23.

## Parallel Statistical Computation Using Random Numbers

## What Are Substreams?

A substream is a portion of a random stream that RandStream can access quickly. There is a number $M$ such that for any positive integer $k$, RandStream can go the kMth pseudorandom number in the stream. From that point, RandStream can generate the subsequent entries in the stream. Currently, RandStream has $M=2^{72}$, about 5e21, or more.


The entries in different substreams have good statistical properties, similar to the properties of entries in a single stream: independence, and lack of $k$-way correlation at various lags. The substreams are so long that you can view the substreams as being independent streams, as in the following picture.

| Substream 1 |
| :--- |
| Random Number 1 |
| Random Number 2 |
| Random Number 3 |
| $\ldots$ |




Two RandStream stream types support substreams: 'mlfg6331_64' and 'mrg32k3a'.

## How Substreams Enable Reproducible Parallel Computations

When MATLAB performs computations in parallel with parfor, each worker receives loop iterations in an unpredictable order. Therefore, you cannot
predict which worker gets which iteration, so cannot determine the random numbers associated with each iteration.

Substreams allow MATLAB to tie each iteration to a particular sequence of random numbers. parfor gives each iteration an index. The iteration uses the index as the substream number. Since the random numbers are associated with the iterations, not with the workers, the entire computation is reproducible.

To obtain reproducible results, simply reset the stream, and all the substreams generate identical random numbers when called again. This method succeeds when all the workers use the same stream, and the stream supports substreams. This concludes the discussion of how the procedure in "Running Reproducible Parallel Computations" on page 19-14 gives reproducible parallel results.

## Random Numbers on the Client or Workers

A few functions generate random numbers on the client before distributing them to parallel workers. The workers do not use random numbers, so operate purely deterministically. For these functions, you can run a parallel computation reproducibly using any random stream type.

The functions that operate this way include:

- crossval
- plsregress
- sequentialfs

To obtain identical results, reset the random stream on the client, or the random stream you pass to the client. For example:

```
s = rng % Obtain the current state of the random stream
% run the statistical function
rng(s) % Reset the stream to the previous state
% run the statistical function again, obtain identical results
```

While this method enables you to run reproducibly in parallel, the results can differ from a serial computation. The reason for the difference is parfor loops run in reverse order from for loops. Therefore, a serial computation can
generate random numbers in a different order than a parallel computation. For unequivocal reproducibility, use the technique in "Running Reproducible Parallel Computations" on page 19-14.

## Distributing Streams Explicitly

For testing or comparison using particular random number algorithms, you must set the random number generators. How do you set these generators in parallel, or initialize streams on each worker in a particular way? Or you might want to run a computation using a different sequence of random numbers than any other you have run. How can you ensure the sequence you use is statistically independent?

Parallel Statistics Toolbox functions allow you to set random streams on each worker explicitly. For information on creating multiple streams, enter help RandStream/create at the command line. To create four independent streams using the 'mrg32k3a' generator:

```
s = RandStream.create('mrg32k3a','NumStreams',4,...
 'CellOutput',true);
```

Pass these streams to a statistical function using the Streams option. For example:

```
matlabpool open 4 % if you have at least 4 cores
s = RandStream.create('mrg32k3a','NumStreams',4,...
 'CellOutput',true); % create 4 independent streams
paroptions = statset('UseParallel',true,...
 'Streams',s); % set the 4 different streams
x = [randn(700,1); 4 + 2*randn(300,1)];
latt = -4:0.01:12;
myfun = @(X) ksdensity(X,latt);
pdfestimate = myfun(x);
B = bootstrp(200,myfun,x,'Options',paroptions);
```

See "Parallel Bootstrap" on page 19-21 for a plot of the results of this computation.

This method of distributing streams gives each worker a different stream for the computation. However, it does not allow for a reproducible computation, because the workers perform the 200 bootstraps in an unpredictable order. If
you want to perform a reproducible computation, use substreams as described in "Running Reproducible Parallel Computations" on page 19-14.

If you set the UseSubstreams option to true, then set the Streams option to a single random stream of the type that supports substreams ('mlfg6331_64' or 'mrg32k3a'). This setting gives reproducible computations.

## Examples of Parallel Statistical Functions

## In this section...

"Parallel Jackknife" on page 19-19
"Parallel Cross Validation" on page 19-20
"Parallel Bootstrap" on page 19-21

## Parallel Jackknife

This example is from the jackknife function reference page, but runs in parallel.

```
matlabpool open
opts = statset('UseParallel',true);
sigma = 5;
y = normrnd(0,sigma,100,1);
m = jackknife(@var, y,1,'Options',opts);
n = length(y);
bias = -sigma^2 / n % known bias formula
jbias = (n - 1)*(mean(m)-var(y,1)) % jackknife bias estimate
bias =
 -0.2500
jbias =
 -0.2698
```

This simple example is not a good candidate for parallel computation:

```
% How long to compute in serial?
tic;m = jackknife(@var,y,1);toc
Elapsed time is 0.023852 seconds.
```

\% How long to compute in parallel?
tic;m = jackknife(@var,y,1,'Options',opts);toc
Elapsed time is 1.911936 seconds.
jackknife does not use random numbers, so gives the same results every time, whether run in parallel or serial.

## Parallel Cross Validation

- "Simple Parallel Cross Validation" on page 19-20
- "Reproducible Parallel Cross Validation" on page 19-20


## Simple Parallel Cross Validation

This example is the same as the first in the crossval function reference page, but runs in parallel.

```
matlabpool open
opts = statset('UseParallel',true);
load('fisheriris');
y = meas(:,1);
X = [ones(size(y,1),1),meas(:,2:4)];
regf=@(XTRAIN,ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN));
cvMse = crossval('mse',X,y,'Predfun',regf,'Options',opts)
cvMse =
 0.0999
```

This simple example is not a good candidate for parallel computation:

```
% How long to compute in serial?
tic;cvMse = crossval('mse',X,y,'Predfun',regf);toc
Elapsed time is 0.046005 seconds.
% How long to compute in parallel?
tic;cvMse = crossval('mse',X,y,'Predfun',regf,...
 'Options',opts);toc
Elapsed time is 1.333021 seconds.
```


## Reproducible Parallel Cross Validation

To run crossval in parallel in a reproducible fashion, set the options and reset the random stream appropriately (see "Running Reproducible Parallel Computations" on page 19-14).
matlabpool open

```
s = RandStream('mlfg6331_64');
options = statset('UseParallel',true,...
 'Streams',s,'UseSubstreams',true);
load('fisheriris');
y = meas(:,1);
X = [ones(size(y,1),1),meas(:,2:4)];
regf=@(XTRAIN,ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN));
cvMse = crossval('mse',X,y,'Predfun',regf,'Options',opts)
cvMse =
 0.1020
```

Reset the stream and the result is identical:

```
reset(s)
cvMse = crossval('mse',X,y,'Predfun',regf,'Options',opts)
cvMse =
 0.1020
```


## Parallel Bootstrap

- "Bootstrap in Serial and Parallel" on page 19-21
- "Reproducible Parallel Bootstrap" on page 19-23


## Bootstrap in Serial and Parallel

Here is an example timing a bootstrap in parallel versus in serial. The example generates data from a mixture of two Gaussians, constructs a nonparametric estimate of the resulting data, and uses a bootstrap to get a sense of the sampling variability.

1 Generate the data:

```
% Generate a random sample of size 1000,
% from a mixture of two Gaussian distributions
x = [randn(700,1); 4 + 2*randn(300,1)];
```

2 Construct a nonparametric estimate of the density from the data:

```
latt = -4:0.01:12;
myfun = @(X) ksdensity(X,latt);
pdfestimate = myfun(x);
```

3 Bootstrap the estimate to get a sense of its sampling variability. Run the bootstrap in serial for timing comparison.

```
tic;B = bootstrp(200,myfun,x);toc
Elapsed time is 17.455586 seconds.
```

4 Run the bootstrap in parallel for timing comparison:

```
matlabpool open
Starting matlabpool using the 'local' configuration ...
connected to 2 labs.
opt = statset('UseParallel',true);
tic;B = bootstrp(200,myfun,x,'Options',opt);toc
Elapsed time is 9.984345 seconds.
```

Computing in parallel is nearly twice as fast as computing in serial for this example.

Overlay the ksdensity density estimate with the 200 bootstrapped estimates obtained in the parallel bootstrap. You can get a sense of how to assess the accuracy of the density estimate from this plot.

```
hold on
```

for $i=1:$ size $(B, 1)$,
plot(latt, B(i,:),'c:')
end
plot(latt,pdfestimate);
xlabel('x');ylabel('Density estimate')


## Reproducible Parallel Bootstrap

To run the example in parallel in a reproducible fashion, set the options appropriately (see "Running Reproducible Parallel Computations" on page 19-14). First set up the problem and parallel environment as in "Bootstrap in Serial and Parallel" on page 19-21. Then set the options to use substreams along with a stream that supports substreams.

```
s = RandStream('mlfg6331_64'); % has substreams
opts = statset('UseParallel',true,...
 'Streams',s,'UseSubstreams',true);
B2 = bootstrp(200,myfun,x,'Options',opts);
```

To rerun the bootstrap and get the same result:

```
reset(s) % set the stream to initial state
B3 = bootstrp(200,myfun,x,'Options',opts);
isequal(B2,B3) % check if same results
ans =
 1
```

Functions - Alphabetical
List

Purpose Added variable plot

Syntax $\quad$| addedvarplot $(X, y, n u m, i n m o d e l)$ |
| :--- |
| addedvarplot $(X, y, n u m, i n m o d e l, ~ s t a t s) ~$ |

Description
addedvarplot ( $\mathrm{X}, \mathrm{y}$, num, inmodel) displays an added variable plot using the predictive terms in X , the response values in y , the added term in column num of $X$, and the model with current terms specified by inmodel. X is an $n$-by- $p$ matrix of $n$ observations of $p$ predictive terms. y is vector of $n$ response values. num is a scalar index specifying the column of X with the term to be added. inmodel is a logical vector of $p$ elements specifying the columns of $X$ in the current model. By default, all elements of inmodel are false.

Note addedvarplot automatically includes a constant term in all models. Do not enter a column of 1 s directly into $X$.
addedvarplot ( $\mathrm{X}, \mathrm{y}$, num, inmodel, stats) uses the stats output from the stepwisefit function to improve the efficiency of repeated calls to addedvarplot. Otherwise, this syntax is equivalent to the previous syntax.
Added variable plots are used to determine the unique effect of adding a new term to a multilinear model. The plot shows the relationship between the part of the response unexplained by terms already in the model and the part of the new term unexplained by terms already in the model. The "unexplained" parts are measured by the residuals of the respective regressions. A scatter of the residuals from the two regressions forms the added variable plot.

In addition to the scatter of residuals, the plot produced by addedvarplot shows $95 \%$ confidence intervals on predictions from the fitted line. The fitted line has intercept zero because, under typical linear model assumptions, both of the plotted variables have mean zero. The slope of the fitted line is the coefficient that the new term would have if it were added to the model with terms inmodel.

Added variable plots are sometimes known as partial regression leverage plots.

Examples Load the data in hald.mat, which contains observations of the heat of reaction of various cement mixtures:

| load hald <br> whos <br> Name | Size | Bytes | Class |
| :--- | :--- | ---: | :--- | Attributes

Create an added variable plot to investigate the addition of the third column of ingredients to a model consisting of the first two columns:

```
inmodel = [true true false false];
addedvarplot(ingredients, heat,3,inmodel)
```

Added variable plot for X 3 Adjusted for $\mathrm{X} 1, \mathrm{X} 2$


The wide scatter and the low slope of the fitted line are evidence against the statistical significance of adding the third column to the model.

## Purpose Add levels to categorical array <br> Syntax $\quad B=\operatorname{addlevels}(A$, newlevels $)$

Description $\quad B=$ addlevels ( $A$, newlevels) adds new levels to the categorical array A. newlevels is a cell array of strings or a 2-D character matrix that specifies the levels to add. addlevels adds the new levels at the end of the list of possible categorical levels in A, but does not modify the value of any element. B does not contain elements at the new levels.

## Examples Example 1

Add levels for additional species in Fisher's iris data:

```
load fisheriris
species = nominal(species,...
 {'Species1','Species2','Species3'},...
 {'setosa','versicolor','virginica'});
species = addlevels(species,{'Species4','Species5'});
getlabels(species)
ans =
 'Species1' 'Species2' 'Species3' 'Species4' 'Species5'
```


## Example 2

1 Load patient data from the CSV file hospital. dat and store the information in a dataset array with observation names given by the first column in the data (patient identification):

```
patients = dataset('file','hospital.dat',...
 'delimiter',',',...
 'ReadObsNames',true);
```

2 Make the $\{0,1\}$-valued variable smoke nominal, and change the labels to 'No' and 'Yes':

```
patients.smoke = nominal(patients.smoke,{'No','Yes'});
```

3 Add new levels to smoke as placeholders for more detailed histories of smokers:

```
patients.smoke = addlevels(patients.smoke,...
 {'0-5 Years','5-10 Years','LongTerm'});
```

4 Assuming the nonsmokers have never smoked, relabel the 'No' level:

```
patients.smoke = setlabels(patients.smoke,'Never','No');
```

5 Drop the undifferentiated 'Yes' level from smoke:

```
patients.smoke = droplevels(patients.smoke,'Yes');
Warning: OLDLEVELS contains categorical levels that
were present in A, caused some array elements to have
undefined levels.
```

Note that smokers now have an undefined level.
6 Set each smoker to one of the new levels, by observation name:

```
patients.smoke('YPL-320') = '5-10 Years';
```

See Also
droplevels | getlabels | islevel | mergelevels | reorderlevels

## Purpose Add listener for event

```
Syntax
el = addlistener(hsource,'eventname',callback)
el = addlistener(hsource,property,'eventname',callback)
```

Description
el = addlistener(hsource,'eventname',callback) creates a listener for the event named eventname, the source of which is handle object hsource. If hsource is an array of source handles, the listener responds to the named event on any handle in the array. callback is a function handle that is invoked when the event is triggered.
el = addlistener(hsource,property,'eventname',callback) adds a listener for a property event. eventname must be one of the strings 'PreGet', 'PostGet', 'PreSet', and 'PostSet'. property must be either a property name or cell array of property names, or a meta.property or array of meta.property. The properties must belong to the class of hsource. If hsource is scalar, property can include dynamic properties.

For all forms, addlistener returns an event.listener. To remove a listener, delete the object returned by addlistener. For example, delete(el) calls the handle class delete method to remove the listener and delete it from the workspace.

[^2]
## GeneralizedLinearModel.addTerms

## Purpose Add terms to generalized linear model

Syntax mdl1 = addTerms(mdl,terms)

Description

Input
Arguments
mdl1 = addTerms(mdl,terms) returns a generalized linear model the same as mdl but with additional terms.
mdl
Generalized linear model, as constructed by GeneralizedLinearModel.fit or GeneralizedLinearModel.stepwise.

## terms

Terms to add to the mdl regression model. Specify as either a:

- Text string representing one or more terms to add. For details, see "Wilkinson Notation" on page 20-9.
- Row or rows in the terms matrix (see modelspec in LinearModel.fit). For example, if there are three variables $\mathrm{A}, \mathrm{B}$, and C :
[0 0 0] represents a constant term or intercept
[0 100$]$ represents $B$; equivalently, $A^{\wedge} 0$ * $B^{\wedge 1}$ * $C^{\wedge} 0$
$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ represents $A^{*} C$
[2 0 0 0 ] represents $A^{\wedge} 2$
[0 102$]$ represents $B^{*}\left(C^{\wedge} 2\right)$


## Output <br> mdll

Arguments
Generalized linear model, the same as mdl but with additional terms given in terms. You can set mdl1 equal to mdl to overwrite mdl.

## GeneralizedLinearModel.addTerms

## Definitions

## Examples

## Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

| Wilkinson Notation | Factors in Standard Notation |
| :--- | :--- |
| 1 | Constant (intercept) term |
| $A^{\wedge} k$, where $k$ is a positive integer | $A, A^{2}, \ldots, A^{k}$ |
| $A+B$ | $A, B$ |
| $A * B$ | $A, B, A * B$ |
| $A: B$ | $A * B$ only |
| $-B$ | Do not include $B$ |
| $A * B+C$ | $A, B, C, A * B$ |
| $A+B+C+A: B$ | $A, B, C, A * B$ |
| $A * B * C-A: B: C$ | $A, B, C, A * B, A * C, B * C$ |
| $A *(B+C)$ | $A, B, C, A * B, A * C$ |

Statistics Toolbox notation always includes a constant term unless you explicitly remove the term using - 1 .
For details, see Wilkinson and Rogers [1].

## Add a term to a generalized linear regression model

Create a model using just one predictor, then add a second.
Generate artificial data for the model, Poisson random numbers with two underlying predictors $\mathrm{X}(1)$ and $\mathrm{X}(2)$.

```
rng('default') % for reproducibility
rndvars = randn(100,2);
X = [2+rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
```


## GeneralizedLinearModel.addTerms

```
y = poissrnd(mu);
Create a generalized linear regression model of Poisson data. Use just the first predictor in the model.
mdl = GeneralizedLinearModel.fit(X,y,...
 'y ~ x1','distr','poisson')
mdl =
Generalized Linear regression model:
 log(y) ~ 1 + x1
 Distribution = Poisson
Estimated Coefficients:
\begin{tabular}{llrrl}
& Estimate & \multicolumn{1}{l}{ SE } & tStat & pValue \\
(Intercept) & 2.7784 & 0.014043 & 197.85 & 0 \\
x1 & 1.1732 & 0.0033653 & 348.6 & 0
\end{tabular}
100 observations, 98 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.25e+05, p-value = 0
```

Add the second predictor to the model.

```
mdl1 = addTerms(mdl,'x2')
mdl1 =
Generalized Linear regression model:
 log(y) ~ 1 + x1 + x2
 Distribution = Poisson
Estimated Coefficients:
\begin{tabular}{lccll}
& Estimate & SE & tStat & pValue \\
(Intercept) & 1.0405 & 0.022122 & 47.034 & 0 \\
x1 & 0.9968 & 0.003362 & 296.49 & 0 \\
x2 & 1.987 & 0.0063433 & 313.24 & 0
\end{tabular}
```


## GeneralizedLinearModel.addTerms

```
100 observations, }97\mathrm{ error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0
```

References [1] Wilkinson, G. N., and C. E. Rogers. Symbolic description of factorial models for analysis of variance. J. Royal Statistics Society 22, pp. 392-399, 1973.
Alternatives step adds or removes terms from a model using a greedy one-step algorithm.
See Also GeneralizedLinearModel | removeTerms | step | GeneralizedLinearModel.stepwise |
Concepts

## LinearModel.addTerms

## Purpose Add terms to linear regression model

Syntax mdl1 = addTerms(mdl,terms)

Description

Input
Arguments

## Output

 Arguments
## Definitions

mdl1 = addTerms(mdl,terms) returns a linear model the same as mdl but with additional terms.
mdl
Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.

## terms

Terms to add to the mdl regression model. Specify as either a:

- Text string representing one or more terms to add. For details, see "Wilkinson Notation" on page 20-12.
- Row or rows in the terms matrix (see modelspec in LinearModel.fit). For example, if there are three variables $\mathrm{A}, \mathrm{B}$, and C :
[0 0 0] represents a constant term or intercept
[0 100$]$ represents $B$; equivalently, $A^{\wedge} 0$ * $\mathrm{B}^{\wedge 1}$ * $\mathrm{C}^{\wedge} 0$
$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ represents $A^{*} C$
[2 0 0 0 ] represents $A^{\wedge} 2$
[0 102 ] represents $\mathrm{B}^{*}\left(\mathrm{C}^{\wedge} 2\right)$
mdl 1
Linear model, the same as mdl but with additional terms given in terms. You can set mdl1 equal to mdl to overwrite mdl.


## Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

## LinearModel.addTerms

| Wilkinson Notation | Factors in Standard Notation |
| :--- | :--- |
| 1 | Constant (intercept) term |
| $A \wedge k$, where $k$ is a positive integer | $A, A^{2}, \ldots, A^{k}$ |
| $A+B$ | $A, B$ |
| $A * B$ | $A, B, A * B$ |
| $A: B$ | $A * B$ only |
| $-B$ | Do not include $B$ |
| $A * B+C$ | $A, B, C, A * B$ |
| $A+B+C+A: B$ | $A, B, C, A * B$ |
| $A * B * C-A: B: C$ | $A, B, C, A * B, A * C, B * C$ |
| $A *(B+C)$ | $A, B, C, A * B, A * C$ |

Statistics Toolbox notation always includes a constant term unless you explicitly remove the term using - 1 .

For details, see Wilkinson and Rogers [1].

## Examples Add a Term to a Model

Create a model of the carsmall data without any interactions, then add an interaction term.

Load the carsmall data and make a model of the MPG as a function of weight and model year.

```
load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);
mdl = LinearModel.fit(ds,'MPG ~ Year + Weight^2');
```

Add an interaction term to mdl.

```
terms = 'Year*Weight';
mdl1 = addTerms(mdl,terms)
```


## LinearModel.addTerms



## References

Alternatives

See Also
How To
[1] Wilkinson, G. N., and C. E. Rogers. Symbolic description of factorial models for analysis of variance. J. Royal Statistics Society 22, pp. 392-399, 1973.

## Purpose Anderson-Darling test

Syntax

```
h = adtest(x)
h = adtest(x,Name,Value)
[h,p] = adtest(___)
[h,p,adstat,cv] = adtest(___)
```

Description

## Input Arguments

$\mathrm{h}=$ adtest $(\mathrm{x})$ returns a test decision for the null hypothesis that the data in vector x is from a population with a normal distribution, using the Anderson-Darling test. The alternative hypothesis is that x is not from a population with a normal distribution. The result h is 1 if the test rejects the null hypothesis at the $5 \%$ significance level, or 0 otherwise.
$\mathrm{h}=$ adtest(x,Name, Value) returns a test decision for the Anderson-Darling test with additional options specified by one or more name-value pair arguments. For example, you can specify a null distribution other than normal, or select an alternative method for calculating the $p$-value.
[ $\mathrm{h}, \mathrm{p}$ ] = adtest (__ ) also returns the $p$-value, p , of the Anderson-Darling test, using any of the input arguments from the previous syntaxes.
[h, p, adstat, cv] = adtest (__ ) also returns the test statistic, adstat, and the critical value, cv, for the Anderson-Darling test.

## x-Sample data

vector
Sample data, specified as a vector. Missing observations in x , indicated by NaN , are ignored.

Data Types
single | double

## adtest

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'Alpha',0.01,'MCTol', 0.01 conducts the hypothesis test at the $1 \%$ significance level, and determines the p-value, $p$, using a Monte Carlo simulation with a maximum Monte Carlo standard error for $p$ of 0.01 .

## 'Distribution' - Hypothesized distribution <br> 'norm' (default) | 'exp' | 'ev' | 'logn' | 'weibull' | probability distribution object

Hypothesized distribution of data vector $x$, specified as the comma-separated pair consisting of 'Distribution' and one of the following.

```
'norm' Normal distribution
'exp' Exponential distribution
'ev' Extreme value distribution
'logn' Lognormal distribution
'weibull' Weibull distribution
```

In this case, you do not need to specify population parameters. Instead, adtest estimates the distribution parameters from the sample data and tests x against a composite hypothesis that it comes from the selected distribution family with parameters unspecified.
Alternatively, you can specify any continuous probability distribution object for the null distribution. In this case, you must specify all the distribution parameters, and adtest tests $x$ against a simple hypothesis that it comes from the given distribution with its specified parameters.

## Example: 'Distribution','exp'

## 'Alpha' - Significance level

```
0.05 (default) | scalar value in the range (0,1)
```

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range $(0,1)$.

Example: 'Alpha', 0.01
Data Types
single | double
'MCTol' - Maximum Monte Carlo standard error
positive scalar value
Maximum Monte Carlo standard error for the $p$-value, p , specified as the comma-separated pair consisting of 'MCTol' and a positive scalar value. If you use MCTol, adtest determines p using a Monte Carlo simulation, and the name-value pair argument Asymptotic must have the value false.

Example: 'MCTol',0.01

## Data Types

single | double

## 'Asymptotic' - Method for calculating p-value <br> false (default) | true

Method for calculating the $p$-value of the Anderson-Darling test, specified as the comma-separated pair consisting of 'Asymptotic' and either true or false. If you specify 'true', adtest estimates the $p$-value using the limiting distribution of the Anderson-Darling test statistic. If you specify false, adtest calculates the $p$-value based on an analytical formula. For sample sizes greater than 120, the limiting distribution estimate is likely to be more accurate than the small sample size approximation method.

## adtest

- If you specify a distribution family with unknown parameters for the Distribution name-value pair, Asymptotic must be false.
- If you use MCTol to calculate the $p$-value using a Monte Carlo simulation, Asymptotic must be false.
Example: 'Asymptotic', true


## Data Types

logical

## Output <br> Arguments

h - Hypothesis test result

## 1 | 0

Hypothesis test result, returned as a logical value.

- If $\mathrm{h}=1$, this indicates the rejection of the null hypothesis at the Alpha significance level.
- If $\mathrm{h}=0$, this indicates a failure to reject the null hypothesis at the Alpha significance level.


## p-p-value

## scalar value in the range $[0,1]$

$p$-value of the Anderson-Darling test, returned as a scalar value in the range $[0,1] . p$ is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. p is calculated using one of these methods:

- If the hypothesized distribution is a fully specified probability distribution object, adtest calculates $p$ analytically. If 'Asymptotic' is true, adtest uses the asymptotic distribution of the test statistic. If you specify a value for 'MCTol', adtest uses a Monte Carlo simulation.
- If the hypothesized distribution is specified as a distribution family with unknown parameters, adtest retrieves the critical value from a table and uses inverse interpolation to determine the $p$-value. If you specify a value for 'MCTol', adtest uses a Monte Carlo simulation.


## adstat - Test statistic

scalar value
Test statistic for the Anderson-Darling test, returned as a scalar value.

- If the hypothesized distribution is a fully specified probability distribution object, adtest computes adstat using specified parameters.
- If the hypothesized distribution is specified as a distribution family with unknown parameters, adtest computes adstat using parameters estimated from the sample data.


## cv-Critical value

## scalar value

Critical value for the Anderson-Darling test at the significance level Alpha, returned as a scalar value. adtest determines cv by interpolating into a table based on the specified Alpha significance level.

## Examples Test for a Normal Distribution

Load the data set. Create a vector containing the first column of the students' exam grades data.

```
load examgrades;
x = grades(:,1);
```

Test the null hypothesis that the exam grades come from a normal distribution. You do not need to specify values for the population parameters.

```
[h,p,adstat,cv] = adtest(x);
h =
 0
p =
 0.1854
```


## adtest

```
adstat =
 0.5194
CV =
 0.7470
```

The returned value of $\mathrm{h}=0$ indicates that adtest fails to reject the null hypothesis at the default $5 \%$ significance level.

## Test for an Extreme Value Distribution

Load the data set. Create a vector containing the first column of the students' exam grades data.
load examgrades;
$x=\operatorname{grades}(:, 1)$;
Test the null hypothesis that the exam grades come from an extreme value distribution. You do not need to specify values for the population parameters.

```
[h,p] = adtest(x,'Distribution','ev')
h =
 0
p =
 0.0714
```

The returned value of $\mathrm{h}=0$ indicates that adtest fails to reject the null hypothesis at the default $5 \%$ significance level.

## Specify the Hypothesized Distribution Using a Probability Distribution Object

Load the data set. Create a vector containing the first column of the students' exam grades data.
load examgrades;

```
x = grades(:,1);
Create a normal probability distribution object with mean mu = 75 and
standard deviation sigma = 10.
dist = makedist('normal','mu',75,'sigma', 10)
dist =
 prob.NormalDistribution
 Package: prob
 Normal distribution
 mu = 75
 sigma = 10
 Properties, Methods
```

Test the null hypothesis that x comes from the hypothesized normal distribution.

```
[h,p] = adtest(x,'Distribution',dist)
```

$\mathrm{h}=$
0
p =
0.4687

The returned value of $h=0$ indicates that adtest fails to reject the null hypothesis at the default $5 \%$ significance level.

## Definitions Anderson-Darling Test

The Anderson-Darling test is commonly used to test whether a data sample comes from a normal distribution. However, it can be used to test for another hypothesized distribution, even if you do not fully specify the distribution parameters. Instead, the test estimates any unknown parameters from the data sample.

## adtest

The test statistic belongs to the family of quadratic empirical distribution function statistics, which measure the distance between the hypothesized distribution, $F(x)$ and the empirical cdf, $F_{n}(x)$ as

$$
n \int_{-\infty}^{\infty}\left(F_{n}(x)-F(x)\right)^{2} w(x) d F(x)
$$

over the ordered sample values $x_{1}<x_{2}<\ldots<x_{n}$, where $w(x)$ is a weight function and $n$ is the number of data points in the sample.

The weight function for the Anderson-Darling test is

$$
w(x)=[F(x)(1-F(x))]^{-1},
$$

which places greater weight on the observations in the tails of the distribution, thus making the test more sensitive to outliers and better at detecting departure from normality in the tails of the distribution.

The Anderson-Darling test statistic is

$$
A_{n}^{2}=-n-\sum_{i=1}^{n} \frac{2 i-1}{n}\left[\ln \left(F\left(X_{i}\right)\right)+\ln \left(1-F\left(X_{n+1-i}\right)\right)\right],
$$

where $\left\{X_{1}<\ldots<X_{n}\right\}$ are the ordered sample data points and $n$ is the number of data points in the sample.

In adtest, the decision to reject or not reject the null hypothesis is based on comparing the $p$-value for the hypothesis test with the specified significance level, not on comparing the test statistic with the critical value.

## Monte Carlo Standard Error

The Monte Carlo standard error is calculated as

$$
S E=\sqrt{\frac{(\hat{\mathrm{p}})(1-\hat{\mathrm{p}})}{\mathrm{mcreps}}},
$$

where $\hat{\mathrm{p}}$ is the estimated $p$-value of the hypothesis test, and moreps is the number of Monte Carlo replications performed.
adtest chooses the number of Monte Carlo replications, mcreps, large enough to make the Monte Carlo standard error for $\hat{p}$ less than the value specified for MCTol.

See Also kstest | jbtest

## gmdistribution.AIC property

Purpose Akaike Information Criterion
Description The Akaike Information Criterion: $2 * \mathrm{NlogL}+2 * \mathrm{~m}$, where m is the number of estimated parameters.

Note This property applies only to gmdistribution objects constructed with fit.

## Purpose <br> Syntax <br> Description

Andrews plot
andrewsplot(X)
andrewsplot(X,...,'Standardize',standopt)
andrewsplot(X,...,'Quantile', alpha)
andrewsplot( $\mathrm{X}, \ldots$, , $\mathrm{Group}^{\prime}$, group)
andrewsplot(X,...,'PropName', PropVal,...)
$\mathrm{h}=$ andrewsplot $(\mathrm{X}, \ldots$ )
andrewsplot ( X ) creates an Andrews plot of the multivariate data in the matrix $X$. The rows of $X$ correspond to observations, the columns to variables. Andrews plots represent each observation by a function $f(t)$ of a continuous dummy variable $t$ over the interval $[0,1] . f(t)$ is defined for the $i$ th observation in X as

$$
f(t)=X(i, 1) / \sqrt{2}+X(i, 2) \sin (2 \pi t)+X(i, 3) \cos (2 \pi t)+\ldots
$$

andrewsplot treats NaN values in X as missing values and ignores the corresponding rows.
andrewsplot (X,...,'Standardize',standopt) creates an Andrews plot where standopt is one of the following:

- ' on' - scales each column of $X$ to have mean 0 and standard deviation 1 before making the plot.
- 'PCA' - creates an Andrews plot from the principal component scores of $X$, in order of decreasing eigenvalue. (See pca.)
- 'PCAStd ' - creates an Andrews plot using the standardized principal component scores. (See pca.)
andrewsplot (X,...,'Quantile', alpha) plots only the median and the alpha and ( $1-$ alpha) quantiles of $f(t)$ at each value of $t$. This is useful if $X$ contains many observations.
andrewsplot ( $\mathrm{X}, \ldots$, ' 'Group ', group) plots the data in different groups with different colors. Groups are defined by group, a numeric array containing a group index for each observation. group can also be a


## andrewsplot

categorical array, character matrix, or cell array of strings containing a group name for each observation.
andrewsplot(X,...,'PropName',PropVal,...) sets optional lineseries object properties to the specified values for all lineseries objects created by andrewsplot. (See lineseriesproperties.)
$\mathrm{h}=$ andrewsplot $(\mathrm{X}, \ldots$ ) returns a column vector of handles to the lineseries objects created by andrewsplot, one handle per row of X. If you use the 'Quantile' input parameter, h contains one handle for each of the three lineseries objects created. If you use both the 'Quantile' and the 'Group' input parameters, $h$ contains three handles for each group.

## Examples Make a grouped plot of the Fisher iris data:

load fisheriris
andrewsplot(meas,'group',species)


Plot only the median and quartiles of each group:

```
andrewsplot(meas,'group',species,'quantile',.25)
```



See Also parallelcoords | glyphplot
How To

- "Grouping Variables" on page 2-51


## Purpose Analysis of variance for linear model

Syntax<br>\section*{Description}

tbl = anova(mdl)
tbl = anova(mdl,anovatype)
tbl = anova(mdl,anovatype,sstype)

## Input Arguments

 statistics. type. using the chosen type of sum of squares.
## mdl

tbl = anova(mdl) returns a dataset array with summary ANOVA
tbl = anova(mdl, anovatype) returns ANOVA statistics of the chosen
tbl = anova(mdl, anovatype,sstype) computes ANOVA statistics

Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.

## anovatype

ANOVA type:

- 'component ' - tbl displays a 'components' ANOVA table, with sums of squares and $F$ tests attributable to each term in the model except the constant term.
- ' summary ' — tbl displays a summary ANOVA table with an $F$ test for the model as a whole.
- If there are both linear and higher-order terms, there is also an $F$ test for the higher-order terms as a group.
- If there are replications (multiple observations sharing the same predictor values), there is also an $F$ test for lack-of-fit computed by decomposing the residual sum of squares into a sum of squares for the replicated observations and the remaining sum of squares.


## LinearModel.anova

Default: 'component'

## sstype

When anovatype is 'component ', choose the sum of squares type:

- 1
- 2
- 3
- 'h'

For details, see "Sum of Squares" on page 20-46.
Default: ' h '

## Output Arguments

## tbl

Dataset array containing summary ANOVA statistics. tbl depends on anovatype:

- 'component':
- Sum of squares
- Degrees of freedom
- Mean squares
- $F$ statistic
- $p$-value
- Formula used for model
- 'summary':
- Total Sum of Squares
- Model Sum of Squares


## LinearModel.anova

- Linear Sum of Squares (present if model has powers or interactions)
- Nonlinear Sum of Squares (present if model has powers or interactions)
- Residual Sum of Squares
- Lack-of-fit Sum of Squares (present if model has replicates)
- Pure error Sum of Squares (present if model has replicates)


## Examples Component ANOVA Table

Create a component ANOVA table from a model of the carsmall data.
Load the carsmall data and make a model of the MPG as a function of weight and model year.

```
load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);
mdl = LinearModel.fit(ds,'MPG ~ Year + Weight^2');
```

Create an ANOVA table.

```
tbl = anova(mdl)
```

tbl =

|  | SumSq | DF | MeanSq | F | pValue |
| :--- | :--- | ---: | ---: | :--- | :--- |
| Weight | 2050.2 | 1 | 2050.2 | 265.11 | $1.9885 \mathrm{e}-28$ |
| Year | 849.55 | 2 | 424.77 | 54.927 | $2.9042 \mathrm{e}-16$ |
| Weight^2 | 76.688 | 1 | 76.688 | 9.9164 | 0.0022303 |
| Error | 688.27 | 89 | 7.7334 |  |  |

## Summary ANOVA Table

Create a summary ANOVA table from a model of the carsmall data.

## LinearModel.anova

Load the carsmall data and make a model of the MPG as a function of weight and model year.
load carsmall
ds = dataset(MPG, Weight);
ds.Year = ordinal(Model_Year);
mdl = LinearModel.fit(ds,'MPG ~ Year + Weight^2');

Create a summary ANOVA table.

```
tbl = anova(mdl,'summary')
```

tbl =

|  | SumSq | DF | MeanSq | F | pValue |
| :--- | ---: | ---: | ---: | :--- | ---: |
| Total | 6005.3 | 93 | 64.573 |  |  |
| Model | 5317 | 4 | 1329.3 | 171.88 | $5.5208 \mathrm{e}-41$ |
| . Linear | 5240.3 | 3 | 1746.8 | 225.87 | $1.7302 \mathrm{e}-41$ |
| . Nonlinear | 76.688 | 1 | 76.688 | 9.9164 | 0.0022303 |
| Residual | 688.27 | 89 | 7.7334 |  |  |
| . Lack of fit | 663.77 | 86 | 7.7183 | 0.9451 | 0.62874 |
| . Pure error | 24.5 | 3 | 8.1667 |  |  |

The summary ANOVA table shows tests for groups of terms. The nonlinear group consists of just the Weight^2 term, so it has the same $p$-value as that term in "Component ANOVA Table" on page 20-31. The $F$ statistic comparing the residual sum of squares to a "pure error" estimate from replicated observations shows no evidence of lack of fit.and anovan functions.
See Also ..... LinearModel
Tutorials ..... - "ANOVA" on page 9-22
How To - "Linear Regression" on page 9-11
Alternatives More complete ANOVA statistics are available in the anova1, anova2,

One-way analysis of variance

```
\(p\) = anova1 (X)
p = anova1 (X,group)
p = anova1(X,group,displayopt)
[p,table] = anova1(...)
[p,table,stats] = anova1(...)
```

$\mathrm{p}=$ anova1(X) performs balanced one-way ANOVA for comparing the means of two or more columns of data in the matrix $X$, where each column represents an independent sample containing mutually independent observations. The function returns the $p$-value under the null hypothesis that all samples in $X$ are drawn from populations with the same mean.

If $p$ is near zero, it casts doubt on the null hypothesis and suggests that at least one sample mean is significantly different than the other sample means. Common significance levels are 0.05 or 0.01 .

The anova1 function displays two figures, the standard ANOVA table and a box plot of the columns of $X$.

The standard ANOVA table divides the variability of the data into two parts:

- Variability due to the differences among the column means (variability between groups)
- Variability due to the differences between the data in each column and the column mean (variability within groups)

The standard ANOVA table has six columns:
1 The source of the variability.
2 The sum of squares (SS) due to each source.
3 The degrees of freedom (df) associated with each source.
4 The mean squares (MS) for each source, which is the ratio SS/df.

5 The $F$-statistic, which is the ratio of the mean squares.
6 The $p$-value, which is derived from the cdf of $F$.
The box plot of the columns of X suggests the size of the $F$-statistic and the $p$-value. Large differences in the center lines of the boxes correspond to large values of $F$ and correspondingly small values of $p$.
anova1 treats NaN values as missing, and disregards them.
p = anova1(X,group) performs ANOVA by group. For more information on grouping variables, see "Grouping Variables" on page 2-51.

If $X$ is a matrix, anova1 treats each column as a separate group, and evaluates whether the population means of the columns are equal. This form of anova1 is appropriate when each group has the same number of elements (balanced ANOVA). group can be a character array or a cell array of strings, with one row per column of X , containing group names. Enter an empty array ([ ]) or omit this argument if you do not want to specify group names.

If $X$ is a vector, group must be a categorical variable, vector, string array, or cell array of strings with one name for each element of X. X values corresponding to the same value of group are placed in the same group. This form of anova1 is appropriate when groups have different numbers of elements (unbalanced ANOVA).

If group contains empty or NaN -valued cells or strings, the corresponding observations in X are disregarded.
p = anova1(X,group,displayopt) enables the ANOVA table and box plot displays when displayopt is 'on' (default) and suppresses the displays when displayopt is 'off'. Notches in the boxplot provide a test of group medians (see boxplot) different from the $F$ test for means in the ANOVA table.
[p,table] = anova1(...) returns the ANOVA table (including column and row labels) in the cell array table. Copy a text version of the ANOVA table to the clipboard using the Copy Text item on the Edit menu.
[p,table,stats] = anova1(...) returns a structure stats used to perform a follow-up multiple comparison test. anova1 evaluates the hypothesis that the samples all have the same mean against the alternative that the means are not all the same. Sometimes it is preferable to perform a test to determine which pairs of means are significantly different, and which are not. Use the multcompare function to perform such tests by supplying the stats structure as input.

## Assumptions

The ANOVA test makes the following assumptions about the data in X :

- All sample populations are normally distributed.
- All sample populations have equal variance.
- All observations are mutually independent.

The ANOVA test is known to be robust with respect to modest violations of the first two assumptions.

## Examples Example 1

Create X with columns that are constants plus random normal disturbances with mean zero and standard deviation one:


Perform one-way ANOVA:
$p=\operatorname{anova1}(X)$
$p=$
$7.9370 e-006$



The very small $p$ value indicates that differences between column means are highly significant. The probability of this outcome under the null hypothesis (that samples drawn from the same population would have means differing by the amounts seen in X ) is equal to the $p$-value.

## Example 2

The following example is from a study of the strength of structural beams in Hogg. The vector strength measures deflections of beams in thousandths of an inch under 3,000 pounds of force. The vector alloy identifies each beam as steel ('st'), alloy 1 ('al1'), or alloy 2 ('al2'). (Although alloy is sorted in this example, grouping variables do not need to be sorted.) The null hypothesis is that steel beams are equal in strength to beams made of the two more expensive alloys.

```
strength = [82 86 79 83 84 85 86 87 74 82 ...
 78 75 76 77 79 79 77 78 82 79];
alloy = {'st','st','st','st','st','st','st','st',\ldots.
 'al1','al1','al1','al1','al1','al1',...
 'al2','al2','al2','al2','al2','al2'};
p = anova1(strength,alloy)
p =
 1.5264e-004
```


## ANOVA Table

| Source | SS | df | MS | F | Prob>F | $\Delta$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $-------------------------------------------~$ |  |  |  |  |  |  |
| Columns | 184.8 | 2 | 92.4 | 15.4 | 0.0002 |  |
| Error | 102 | 17 | 6 |  |  |  |
| Total | 286.8 | 19 |  |  |  |  |



The $p$-value suggests rejection of the null hypothesis. The box plot shows that steel beams deflect more than beams made of the more expensive alloys.

## References

See Also
anova2 | anovan | boxplot | manova1 | multcompare
How To

- "Grouping Variables" on page 2-51


## Purpose Two-way analysis of variance

## Syntax

```
p = anova2(X,reps)
p = anova2(X,reps,displayopt)
[p,table] = anova2(...)
[p,table,stats] = anova2(...)
```

p = anova2(X,reps) performs a balanced two-way ANOVA for comparing the means of two or more columns and two or more rows of the observations in X. The data in different columns represent changes in factor $A$. The data in different rows represent changes in factor $B$. If there is more than one observation for each combination of factors, input reps indicates the number of replicates in each position, which must be constant. (For unbalanced designs, use anovan.)

The matrix below shows the format for a set-up where column factor A has two levels, row factor B has three levels, and there are two replications (reps $=2$ ). The subscripts indicate row, column, and replicate, respectively.

$$
\begin{aligned}
& A=1 \quad A=2 \\
& \left.\left.\begin{array}{l}
{\left[\begin{array}{ll}
x_{111} & x_{121} \\
x_{112} & x_{122} \\
x_{211} & x_{221} \\
x_{212} & x_{222} \\
x_{311} & x_{321} \\
x_{312} & x_{322}
\end{array}\right]}
\end{array}\right\} B=1 \begin{array}{l}
B=1
\end{array}\right\} B=3
\end{aligned}
$$

When reps is 1 (default), anova2 returns two $p$-values in vector $p$ :
1 The $p$ value for the null hypothesis, $\mathrm{H}_{0 \mathrm{~A}}$, that all samples from factor A (i.e., all column-samples in X ) are drawn from the same population

2 The $p$ value for the null hypothesis, $\mathrm{H}_{0 \mathrm{~B}}$, that all samples from factor $B$ (i.e., all row-samples in $X$ ) are drawn from the same population

When reps is greater than 1 , anova2 returns a third $p$ value in vector p:

3 The $p$ value for the null hypothesis, $\mathrm{H}_{0 \mathrm{AB}}$, that the effects due to factors A and B are additive (i.e., that there is no interaction between factors A and B)

If any $p$ value is near zero, this casts doubt on the associated null hypothesis. A sufficiently small $p$ value for $\mathrm{H}_{0 \mathrm{~A}}$ suggests that at least one column-sample mean is significantly different that the other column-sample means; i.e., there is a main effect due to factor A. A sufficiently small $p$ value for $\mathrm{H}_{0 \mathrm{~B}}$ suggests that at least one row-sample mean is significantly different than the other row-sample means; i.e., there is a main effect due to factor B. A sufficiently small $p$ value for $\mathrm{H}_{0 A B}$ suggests that there is an interaction between factors A and B . The choice of a limit for the $p$ value to determine whether a result is "statistically significant" is left to the researcher. It is common to declare a result significant if the $p$ value is less than 0.05 or 0.01 .
anova2 also displays a figure showing the standard ANOVA table, which divides the variability of the data in X into three or four parts depending on the value of reps:

- The variability due to the differences among the column means
- The variability due to the differences among the row means
- The variability due to the interaction between rows and columns (if reps is greater than its default value of one)
- The remaining variability not explained by any systematic source

The ANOVA table has five columns:

- The first shows the source of the variability.
- The second shows the Sum of Squares (SS) due to each source.
- The third shows the degrees of freedom (df) associated with each source.
- The fourth shows the Mean Squares (MS), which is the ratio SS/df.
- The fifth shows the $F$ statistics, which is the ratio of the mean squares.
$\mathrm{p}=$ anova2(X,reps, displayopt) enables the ANOVA table display when displayopt is 'on' (default) and suppresses the display when displayopt is 'off'.
[ $p$, table] = anova2(...) returns the ANOVA table (including column and row labels) in cell array table. (Copy a text version of the ANOVA table to the clipboard by using the Copy Text item on the Edit menu.)
[ $p$,table,stats] $=$ anova2(...) returns a stats structure that you can use to perform a follow-up multiple comparison test.
The anova2 test evaluates the hypothesis that the row, column, and interaction effects are all the same, against the alternative that they are not all the same. Sometimes it is preferable to perform a test to determine which pairs of effects are significantly different, and which are not. Use the multcompare function to perform such tests by supplying the stats structure as input.


## Examples

The data below come from a study of popcorn brands and popper type (Hogg 1987). The columns of the matrix popcorn are brands (Gourmet, National, and Generic). The rows are popper type (Oil and Air.) The study popped a batch of each brand three times with each popper. The values are the yield in cups of popped popcorn.
$\left.\begin{array}{l}\text { load popcorn } \\ \begin{array}{l}\text { popcorn } \\ \text { popcorn }= \\ 5.5000\end{array} \\ 5.5000\end{array}\right] 3.5000$

```
p = anova2(popcorn,3)
p =
 0.0000 0.0001 0.7462
```

| ANOVA Table |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Source | 55 | df | MS | F | Prob>F | ) |
| Columns | 15.75 | 2 | 7.875 | 56.7 | 0 |  |
| Rows | 4.5 | 1 | 4.5 | 32.4 | 0.0001 |  |
| Interaction | 0.0833 | 2 | 0.04167 | 0.3 | 0.7462 |  |
| Error | 1.6667 | 12 | 0.13889 |  |  |  |
| Total | 22 | 17 |  |  |  |  |

The vector p shows the $p$-values for the three brands of popcorn, 0.0000 , the two popper types, 0.0001 , and the interaction between brand and popper type, 0.7462 . These values indicate that both popcorn brand and popper type affect the yield of popcorn, but there is no evidence of a synergistic (interaction) effect of the two.

The conclusion is that you can get the greatest yield using the Gourmet brand and an Air popper (the three values popcorn(4:6,1)).

## References

See Also
[1] Hogg, R. V., and J. Ledolter. Engineering Statistics. New York: MacMillan, 1987.
anova1 | anovan

| Purpose | $N$-way analysis of variance |
| :--- | :--- |
| Syntax | $p=\operatorname{anovan}(y$, group $)$ |
|  | $p=\operatorname{anovan}(y$, group, param, val $)$ |
|  | $[p$, table $=$ anovan $(y$, group, param, val $)$ |
|  | $[p$, table, stats $]=$ anovan $(y$, group, param, val $)$ |
|  | $[p$, table, stats, terms $]=\operatorname{anovan}(y$, group, param, val $)$ |

Description
$\mathrm{p}=$ anovan(y,group) performs multiway (n-way) analysis of variance (ANOVA) for testing the effects of multiple factors on the mean of the vector $y$. This test compares the variance explained by factors to the left over variance that cannot be explained. The factors and factor levels of the observations in y are assigned by the cell array group. Each of the cells in the cell array group contains a list of factor levels identifying the observations in $y$ with respect to one of the factors. The list within each cell can be a categorical array, numeric vector, character matrix, or single-column cell array of strings, and must have the same number of elements as $y$. The fitted ANOVA model includes the main effects of each grouping variable. All grouping variables are treated as fixed effects by default. The result $p$ is a vector of $p$-values, one per term. For an example, see "Example of Three-Way ANOVA" on page 20-47.
$p=\operatorname{anovan}(y$, group, param, val) specifies one or more of the parameter name/value pairs described in the following table.

| Parameter | Value |
| :--- | :--- |
| 'alpha' | A number between 0 and 1 requesting 100(1- <br> alpha)\% confidence bounds (default 0.05 for 95\% <br> confidence) |
| 'continuous ' | A vector of indices indicating which grouping <br> variables should be treated as continuous predictors <br> rather than as categorical predictors. |
| 'display' | 'on' displays an ANOVA table (the default) <br> 'off ' omits the display |


| Parameter | Value |
| :--- | :--- |
| 'model' | The type of model used. See "Model Type" on page <br> $20-45$ for a description of this parameter. |
| 'nested' | A matrix M of 0's and 1's specifying the nesting <br> relationships among the grouping variables. M(i,j) is <br> 1 if variable i is nested in variable j. |
| 'random' | A vector of indices indicating which grouping <br> variables are random effects (all are fixed by default). <br> See "ANOVA with Random Effects" on page 8-19 for <br> an example of how to use 'random '. |
| 'sstype' | $1,2,3$ (default), or h specifies the type of sum of <br> squares. See "Sum of Squares" on page 20-46 for a <br> description of this parameter. |
| 'varnames' ' | A character matrix or a cell array of strings specifying <br> names of grouping variables, one per grouping <br> variable. When you do not specify 'varnames', the <br> default labels 'X1', 'X2', 'X3', ..., 'XN' are used. <br> See "ANOVA with Random Effects" on page 8-19 for <br> an example of how to use 'varnames'. |

[p,table] = anovan(y,group, param, val) returns the ANOVA table (including factor labels) in cell array table. (Copy a text version of the ANOVA table to the clipboard by using the Copy Text item on the Edit menu.)
[p,table,stats] = anovan(y,group,param,val) returns a stats structure that you can use to perform a follow-up multiple comparison test with the multcompare function. See "The Stats Structure" on page 20-50The Stats Structure for more information.
[p,table, stats,terms] = anovan(y, group, param, val) returns the main and interaction terms used in the ANOVA computations. The terms are encoded in the output matrix terms using the same format described above for input 'model'. When you specify 'model' itself in this matrix format, the matrix returned in terms is identical.

## Model Type

This section explains how to use the argument 'model' with the syntax:

```
[...] = anovan(y,group,'model',modeltype)
```

The argument model type, which specifies the type of model the function uses, can be any one of the following:

- 'linear' - The default 'linear' model computes only the $p$-values for the null hypotheses on the $N$ main effects.
- 'interaction' - The 'interaction' model computes the $p$-values
for null hypotheses on the $N$ main effects and the $\binom{N}{2}$ two-factor
interactions.
- 'full' - The 'full' model computes the $p$-values for null hypotheses on the $N$ main effects and interactions at all levels.
- An integer - For an integer value of modeltype, $k(k \leq N)$, anovan computes all interaction levels through the kth level. For example, the value 3 means main effects plus two- and three-factor interactions. The values $\mathrm{k}=1$ and $\mathrm{k}=2$ are equivalent to the 'linear' and 'interaction' specifications, respectively, while the value $k=N$ is equivalent to the 'full' specification.
- A matrix of term definitions having the same form as the input to the x2fx function. All entries must be 0 or 1 (no higher powers).

For more precise control over the main and interaction terms that anovan computes, modeltype can specify a matrix containing one row for each main or interaction term to include in the ANOVA model. Each row defines one term using a vector of $N$ zeros and ones. The table below illustrates the coding for a 3 -factor ANOVA.

| Matrix Row | ANOVA Term |
| :--- | :--- | :--- |
| $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ | Main term A |
| $\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$ | Main term B |


| Matrix Row | ANOVA Term |
| :--- | :--- |
| $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$ | Main term C |
| $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]$ | Interaction term AB |
| $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ | Interaction term AC |
| $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$ | Interaction term BC |
| $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ | Interaction term ABC |

For example, if modeltype is the matrix $\left[\begin{array}{lllllll}0 & 1 & 0 ; 0 & 0 & 1 ; 0 & 1 & 1\end{array}\right]$, the output vector $p$ contains the $p$-values for the null hypotheses on the main effects $B$ and $C$ and the interaction effect $B C$, in that order. $A$ simple way to generate the modeltype matrix is to modify the terms output, which codes the terms in the current model using the format described above. If anovan returns [ $010 ; 001 ; 0111]$ for terms, for example, and there is no significant result for interaction BC , you can recompute the ANOVA on just the main effects B and C by specifying [0 1 0;0 0 1] for modeltype.

## Sum of Squares

This section explains how to use the argument 'sstype' with the syntax:

$$
[\ldots]=\operatorname{anovan}(y, \text { group,'sstype',type) }
$$

This syntax computes the ANOVA using the type of sum of squares specified by type, which can be $1,2,3$, or h . While the numbers $1-3$ designate Type 1, Type 2, or Type 3 sum of squares, respectively, h represents a hierarchical model similar to type 2 , but with continuous as well as categorical factors used to determine the hierarchy of terms. The default value is 3 . For a model containing main effects but no interactions, the value of type only influences computations on unbalanced data.

The sum of squares for any term is determined by comparing two models. The Type 1 sum of squares for a term is the reduction in residual sum of squares obtained by adding that term to a fit that already includes the terms listed before it. The Type 2 sum of squares is
the reduction in residual sum of squares obtained by adding that term to a model consisting of all other terms that do not contain the term in question. The Type 3 sum of squares is the reduction in residual sum of squares obtained by adding that term to a model containing all other terms, but with their effects constrained to obey the usual "sigma restrictions" that make models estimable.

Suppose you are fitting a model with two factors and their interaction, and that the terms appear in the order $A, B, A B$. Let $R(\cdot)$ represent the residual sum of squares for a model, so for example $R(A, B, A B)$ is the residual sum of squares fitting the whole model, $R(A)$ is the residual sum of squares fitting just the main effect of $A$, and $R(1)$ is the residual sum of squares fitting just the mean. The three types of sums of squares are as follows:

| Term | Type 1 Sum of Squares | Type 2 Sum of <br> Squares | Type 3 Sum of <br> Squares |
| :--- | :--- | :--- | :--- |
| $A$ | $R(1)-R(A)$ | $R(B)-R(A, B)$ | $R(B, A B)-R(A, B, A B)$ |
| $B$ | $R(A)-R(A, B)$ | $R(A)-R(A, B)$ | $R(A, A B)-R(A, B, A B)$ |
| $A B$ | $R(A, B)-R(A, B, A B)$ | $R(A, B)-R(A, B, A B)$ | $R(A, B)-R(A, B, A B)$ |

The models for Type 3 sum of squares have sigma restrictions imposed. This means, for example, that in fitting $R(B, A B)$, the array of $A B$ effects is constrained to sum to 0 over $A$ for each value of $B$, and over $B$ for each value of $A$.

## Example of Three-Way ANOVA

As an example of three-way ANOVA, consider the vector y and group inputs below.

```
y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';
g1 = [1 2 1 2 1 2 1 2];
g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'};
g3 = {'may';'may';'may';'may';'june';'june';'june';'june'};
```

This defines a three-way ANOVA with two levels of each factor. Every observation in $y$ is identified by a combination of factor levels. If the factors are $A, B$, and $C$, then observation $y(1)$ is associated with

- Level 1 of factor A
- Level 'hi' of factor B
- Level 'may' of factor C

Similarly, observation y (6) is associated with

- Level 2 of factor A
- Level 'hi' of factor B
- Level 'june' of factor C

To compute the ANOVA, enter
$p=\operatorname{anovan}(y,\{g 1$ g2 g3 $\}$ )
$p=$
0.4174
0.0028
0.9140

Output vector p contains $p$-values for the null hypotheses on the N main effects. Element $p(1)$ contains the $p$ value for the null hypotheses, $\mathrm{H}_{0 \mathrm{~A}}$, that samples at all levels of factor A are drawn from the same population; element $\mathrm{p}(2)$ contains the $p$ value for the null hypotheses, $\mathrm{H}_{0 \mathrm{~B}}$, that samples at all levels of factor B are drawn from the same population; and so on.

If any $p$ value is near zero, this casts doubt on the associated null hypothesis. For example, a sufficiently small $p$ value for $\mathrm{H}_{0 \mathrm{~A}}$ suggests that at least one A-sample mean is significantly different from the other A-sample means; that is, there is a main effect due to factor A. You need to choose a bound for the $p$ value to determine whether a result is statistically significant. It is common to declare a result significant if the $p$ value is less than 0.05 or 0.01 .
anovan also displays a figure showing the standard ANOVA table, which by default divides the variability of the data in $x$ into

- The variability due to differences between the levels of each factor accounted for in the model (one row for each factor)
- The remaining variability not explained by any systematic source

The ANOVA table has six columns:

- The first shows the source of the variability.
- The second shows the sum of squares (SS) due to each source.
- The third shows the degrees of freedom (df) associated with each source.
- The fourth shows the mean squares (MS), which is the ratio SS/df.
- The fifth shows the $F$ statistics, which are the ratios of the mean squares.
- The sixth shows the $p$-values for the $F$ statistics.

The table is shown in the following figure:

| Analysis of Variance |  |  |  |  |  |  |
| :---: | ---: | :---: | :---: | :---: | :---: | :---: |
| Source | Sum Sq. | d.f. | Mean Sq. | F | Prob $>$ F |  |
| X1 | 3.781 | 1 | 3.781 | 0.82 | 0.4174 |  |
| X2 | 199.001 | 1 | 199.001 | 42.95 | 0.0028 |  |
| X3 | 0.061 | 1 | 0.061 | 0.01 | 0.914 |  |
| Error | 18.535 | 4 | 4.634 |  |  |  |
| Total | 221.379 | 7 |  |  |  |  |
|  |  |  |  |  |  |  |

Constrained (Type III) sums of squares.

## Two-Factor Interactions

By default, anovan computes $p$-values just for the three main effects. To also compute $p$-values for the two-factor interactions, $\mathrm{X} 1 * \mathrm{X} 2, \mathrm{X} 1 * \mathrm{X} 3$, and $\mathrm{X} 2 * \times 3$, add the name/value pair 'model', 'interaction' as input arguments.

```
p = anovan(y,{g1 g2 g3},'model','interaction')
p =
 0.0347
 0.0048
 0.2578
 0.0158
 0.1444
 0.5000
```

The first three entries of p are the $p$-values for the main effects. The last three entries are the $p$-values for the two-factor interactions. You can determine the order in which the two-factor interactions occur from the ANOVAN table shown in the following figure.

| Analysis of Variance |  |  |  |  |  |  |
| :---: | ---: | ---: | :---: | ---: | ---: | ---: |
| Source | Sum Sq. | d.f. | Mean Sq. | F | Prob $>\mathrm{F}$ |  |
| X1 | 3.781 | 1 | 3.781 | 336.11 | 0.0347 |  |
| X2 | 199.001 | 1 | 199.001 | 17689 | 0.0048 |  |
| X3 | 0.061 | 1 | 0.061 | 5.44 | 0.2578 |  |
| X1*X2 | 18.301 | 1 | 18.301 | 1626.78 | 0.0158 |  |
| X1*X3 | 0.211 | 1 | 0.211 | 18.78 | 0.1444 |  |
| X2*X3 | 0.011 | 1 | 0.011 | 1 | 0.5 |  |
| Error | 0.011 | 1 | 0.011 |  |  |  |
| Total | 221.379 | 7 |  |  |  |  |

Constrained (Type III) sums of squares.

## The Stats Structure

The anovan test evaluates the hypothesis that the different levels of a factor (or more generally, a term) have the same effect, against the alternative that they do not all have the same effect. Sometimes it is preferable to perform a test to determine which pairs of levels are significantly different, and which are not. Use the multcompare function to perform such tests by supplying the stats structure as input.

The stats structure contains the fields listed below, in addition to a number of other fields required for doing multiple comparisons using the multcompare function:

| Field | Description |
| :--- | :--- |
| coeffs | Estimated coefficients |
| coeffnames | Name of term for each coefficient |
| vars | Matrix of grouping variable values for each term |
| resid | Residuals from the fitted model |

The stats structure also contains the following fields if there are random effects:

| Field | Description |
| :--- | :--- |
| ems | Expected mean squares |
| denom | Denominator definition |
| rtnames | Names of random terms |
| varest | Variance component estimates (one per random term) |
| varci | Confidence intervals for variance components |

## Examples

"Example: Two-Way ANOVA" on page 8-10 shows how to use anova2 to analyze the effects of two factors on a response in a balanced design. For a design that is not balanced, use anovan instead.
The data in carbig.mat gives measurements on 406 cars. Use anonvan to study how the mileage depends on where and when the cars were made:

```
load carbig
```

p = anovan(MPG,\{org when\},'model',2,'sstype',3,...
'varnames',\{'Origin';'Mfg date'\})
$p=$

```
 0
 0
0.3059
```

| Analysis of Variance |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Source | Sum Sq. |  | Mean Sq | F | Prob>F |
| Origin | 5727.2 | 2 | 2863.58 | 115.09 | 0 |
| Mfg date | 4710.3 | 2 | 2355.15 | 94.65 | 0 |
| Origin*Mfg date | 120.5 | 4 | 30.12 | 1.21 | 0.3059 |
| Error | 9679.1 |  | 24.88 |  |  |
| Total | 24252.6 | 397 |  |  |  |

Constrained (Type III) sums of squares.
The $p$ value for the interaction term is not small, indicating little evidence that the effect of the year or manufacture (when) depends on where the car was made (org). The linear effects of those two factors, however, are significant.

## References

See Also
[1] Hogg, R. V., and J. Ledolter. Engineering Statistics. New York: MacMillan, 1987.
anova1 | anova2 | multcompare

| Purpose | Ansari-Bradley test |
| :--- | :--- |
| Syntax | $h=$ ansaribradley $(x, y)$ |
|  | $h=$ ansaribradley $(x, y$, Name, Value $)$ |
|  | $[h, p]=$ ansaribradley $(\square)$ |
|  | $[h, p$, stats $]=$ ansaribradley $(\ldots \ldots)$ |

Description

## Input Arguments

$\mathrm{h}=$ ansaribradley $(\mathrm{x}, \mathrm{y})$ returns a test decision for the null hypothesis that the data in vectors $x$ and $y$ comes from the same distribution, using the Ansari-Bradley test. The alternative hypothesis is that the data in $x$ and $y$ comes from distributions with the same median and shape but different dispersions (e.g., variances). The result h is 1 if the test rejects the null hypothesis at the $5 \%$ significance level, or 0 otherwise.
$\mathrm{h}=$ ansaribradley ( $\mathrm{x}, \mathrm{y}$, Name, Value) returns a test decision for the Ansari-Bradley test with additional options specified by one or more name-value pair arguments. For example, you can change the significance level, conduct a one-sided test, or use a normal approximation to calculate the value of the test statistic.
[h, p] = ansaribradley (__ ) also returns the $p$-value, p , of the test, using any of the input arguments in the previous syntaxes.
[h,p,stats] = ansaribradley( __ ) also returns the structure stats containing information about the test statistic.

## x-Sample data

vector | matrix | multidimensional array
Sample data, specified as a vector, matrix, or multidimensional array.

- If $x$ and $y$ are specified as vectors, they do not need to be the same length.
- If $x$ and $y$ are specified as matrices, they must have the same number of columns. ansaribradley performs separate tests along each column and returns a vector of results.
- If $x$ and $y$ are specified as multidimensional arrays, ansaribradley works along the first nonsingleton dimension. $x$ and $y$ must have the same size along all remaining dimensions.


## Data Types

single | double

## $y$-Sample data

vector | matrix | multidimensional array
Sample data, specified as a vector, matrix, or multidimensional array.

- If $x$ and $y$ are specified as vectors, they do not need to be the same length.
- If $x$ and $y$ are specified as matrices, they must have the same number of columns. ansaribradley performs separate tests along each column and returns a vector of results.
- If $x$ and $y$ are specified as multidimensional arrays, ansaribradley works along the first nonsingleton dimension. $x$ and $y$ must have the same size along all remaining dimensions.


## Data Types <br> single | double

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
Example: 'Tail', 'right', 'Alpha', 0.01 specifies a right-tailed hypothesis test at the $1 \%$ significance level.

## 'Alpha' - Significance level

### 0.05 (default) | scalar value in the range $(0,1)$

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range $(0,1)$.

Example: 'Alpha',0.01

## Data Types

single | double

## 'Dim' - Dimension

first nonsingleton dimension (default) | positive integer value
Dimension of the input matrix along which to test the means, specified as the comma-separated pair consisting of 'Dim' and a positive integer value. For example, specifying 'Dim', 1 tests the column means, while 'Dim' , 2 tests the row means.

## Example: 'Dim',2

```
Data Types
single | double
```


## 'Tail' - Type of alternative hypothesis

'both' (default) | 'left' | 'right'
Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of 'Tail' and one of the following.

| 'both' | Test the alternative hypothesis that the dispersion <br> parameters of $x$ and $y$ are not equal. |
| :--- | :--- |
| 'right' | Test the alternative hypothesis that the dispersion <br> parameter of $x$ is greater than that of $y$. |
| 'left' | Test the alternative hypothesis that the dispersion <br> parameter of $x$ is less than that of $y$. |

Example: 'Tail','right'
'Method' - Computation method

## ansaribradley

'exact' | 'approximate'
Computation method for the test statistic, specified as the comma-separated pair consisting of 'Method' and one of the following.
> 'exact' Compute p using an exact calculation of the distribution of the test statistic W. This is the default if $n$, the total number of rows in X and y , is 25 or less. Note that $n$ is computed before any NaN values (representing missing data) are removed.
> 'approximate 'Compute p using a normal approximation for the statistic $\mathrm{W}^{*}$. This is the default if $n$, the total number of rows in $x$ and $y$, is greater than 25 .

Example: 'Method','exact'

## Output Arguments <br> h - Hypothesis test result <br> 1 | 0

Hypothesis test result, returned as a logical value.

- If $\mathrm{h}=1$, this indicates the rejection of the null hypothesis at the Alpha significance level.
- If $\mathrm{h}=0$, this indicates a failure to reject the null hypothesis at the Alpha significance level.


## p-p-value

scalar value in the range $(0,1)$
$p$-value of the test, returned as a scalar value in the range $(0,1) . \mathrm{p}$ is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of $p$ cast doubt on the validity of the null hypothesis.

## stats - Test statistics

structure

Test statistics for the Ansari-Bradley test, returned as a structure containing:

- W-Value of the test statistic, which is the sum of the Ansari-Bradley ranks for the x sample.
- Wstar - Approximate normal statistic W*.


## Examples Test for Equal Variances

Load the sample data. Create data vectors of miles per gallon (MPG) measurements for the model years 1982 and 1976.

```
load carsmall;
x = MPG(Model_Year==82);
y = MPG(Model_Year==76);
```

Test the null hypothesis that the miles per gallon measured in cars from 1982 and 1976 have equal variances.

```
[h,p,stats] = ansaribradley(x,y)
h =
 0
p =
 0.8426
stats =
 W: 526.9000
 Wstar: 0.1986
```

The returned value of $h=0$ indicates that ansaribradley does not reject the null hypothesis at the default $5 \%$ significance level.

## One-Sided Hypothesis Test

Load the sample data. Create data vectors of miles per gallon (MPG) measurements for the model years 1982 and 1976.

## ansaribradley

```
load carsmall;
x = MPG(Model_Year==82);
y = MPG(Model_Year==76);
```

Test the null hypothesis that the miles per gallon measured in cars from 1982 and 1976 have equal variances, against the alternative hypothesis that the variance of cars from 1982 is greater than that of cars from 1976.

```
[h,p,stats] = ansaribradley(x,y,'Tail','right')
h =
 0
p =
 0.5787
stats =
 W: 526.9000
 Wstar: 0.1986
```

The returned value of $\mathrm{h}=0$ indicates that ansaribradley does not reject the null hypothesis that the variance in miles per gallon is the same for the two model years, when the alternative is that the variance of cars from 1982 is greater than that of cars from 1976.

## Definitions <br> Ansari-Bradley Test

The Ansari-Bradley test is a nonparametric alternative to the two-sample $F$-test of equal variances. It does not require the assumption that x and y come from normal distributions. The dispersion of a distribution is generally measured by its variance or standard deviation, but the Ansari-Bradley test can be used with samples from distributions that do not have finite variances.

This test requires that the samples have equal medians. Under that assumption, and if the distributions of the samples are continuous and identical, the test is independent of the distributions. If the samples
do not have the same medians, the results can be misleading. In that case, Ansari and Bradley recommend subtracting the median, but then the distribution of the resulting test under the null hypothesis is no longer independent of the common distribution of $x$ and $y$. If you want to perform the tests with medians subtracted, you should subtract the medians from $x$ and $y$ before calling ansaribradley.

## Multidimensional Array

A multidimensional array has more than two dimensions. For example, if $x$ is a 1-by- 3 -by- 4 array, then $x$ is a three-dimensional array.

## First Nonsingleton Dimension

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1 . For example, if x is a 1 -by- 2 -by- 3 -by- 4 array, then the second dimension is the first nonsingleton dimension of $x$.

See Also<br>vartest2 | vartestn | ttest2

Purpose Interactive analysis of covariance
Syntax

```
aoctool(x,y,group)
aoctool(x,y,group,alpha)
aoctool(x,y,group,alpha, xname, yname,gname)
aoctool(x,y,group, alpha, xname, yname, gname,displayopt)
aoctool(x,y,group, alpha, xname, yname, gname, displayopt,model)
h = aoctool(...)
[h,atab,ctab] = aoctool(...)
[h,atab,ctab,stats] = aoctool(...)
```


## Description

aoctool( $x, y$, group) fits a separate line to the column vectors, $x$ and $y$, for each group defined by the values in the array group. group may be a categorical variable, vector, character array, or cell array of strings. These types of models are known as one-way analysis of covariance (ANOCOVA) models. The output consists of three figures:

- An interactive graph of the data and prediction curves
- An ANOVA table
- A table of parameter estimates

You can use the figures to change models and to test different parts of the model. More information about interactive use of the aoctool function appears in "Analysis of Covariance Tool" on page 8-27.
aoctool( $x, y$, group, alpha) determines the confidence levels of the prediction intervals. The confidence level is 100(1-alpha)\%. The default value of alpha is 0.05 .
aoctool( $x, y$, group, alpha, xname, yname, gname) specifies the name to use for the $x, y$, and $g$ variables in the graph and tables. If you enter simple variable names for the $\mathrm{x}, \mathrm{y}$, and g arguments, the aoctool function uses those names. If you enter an expression for one of these arguments, you can specify a name to use in place of that expression by supplying these arguments. For example, if you enter $m(:, 2)$ as the $x$ argument, you might choose to enter 'Col 2 ' as the xname argument.
aoctool(x,y,group, alpha, xname, yname, gname, displayopt) enables the graph and table displays when displayopt is 'on' (default) and suppresses those displays when displayopt is 'off'.
aoctool(x,y,group, alpha, xname, yname, gname, displayopt, model) specifies the initial model to fit. The value of model can be any of the following:

- 'same mean' - Fit a single mean, ignoring grouping
- 'separate means' - Fit a separate mean to each group
- 'same line' - Fit a single line, ignoring grouping
- 'parallel lines' - Fit a separate line to each group, but constrain the lines to be parallel
- 'separate lines' - Fit a separate line to each group, with no constraints
$\mathrm{h}=\operatorname{aoctool}(\ldots)$ returns a vector of handles to the line objects in the plot.
[h,atab, ctab] = aoctool(...) returns cell arrays containing the entries in ANOVA table (atab) and the table of coefficient estimates (ctab). (You can copy a text version of either table to the clipboard by using the Copy Text item on the Edit menu.)
[h,atab,ctab,stats] = aoctool(...) returns a stats structure that you can use to perform a follow-up multiple comparison test. The ANOVA table output includes tests of the hypotheses that the slopes or intercepts are all the same, against a general alternative that they are not all the same. Sometimes it is preferable to perform a test to determine which pairs of values are significantly different, and which are not. You can use the multcompare function to perform such tests by supplying the stats structure as input. You can test either the slopes, the intercepts, or population marginal means (the heights of the curves at the mean $x$ value).

Examples This example illustrates how to fit different models non-interactively. After loading the smaller car data set and fitting a separate-slopes model, you can examine the coefficient estimates.
load carsmall

```
[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...
 '','','','off','separate lines');
c(:,1:2)
ans =
 'Term' 'Estimate'
 'Intercept' [45.97983716833132]
 ' 70' [-8.58050531454973]
 ' 76' [-3.89017396094922]
 ' 82' [12.47067927549897]
 'Slope' [-0.00780212907455]
 ' 70' [0.00195840368824]
 ' 76' [0.00113831038418]
 ' 82' [-0.00309671407243]
```

Roughly speaking, the lines relating MPG to Weight have an intercept close to 45.98 and a slope close to -0.0078 . Each group's coefficients are offset from these values somewhat. For instance, the intercept for the cars made in 1970 is $45.98-8.58=37.40$.

Next, try a fit using parallel lines. (The ANOVA table shows that the parallel-lines fit is significantly worse than the separate-lines fit.)

```
[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...
 '','','','off','parallel lines');
c(:,1:2)
ans =
 'Term' 'Estimate'
 'Intercept' [43.38984085130596]
 ' 70' [-3.27948192983761]
 ' 76' [-1.35036234809006]
```

```
82' [4.62984427792768]
'Slope ' [-0.00664751826198]
```

Again, there are different intercepts for each group, but this time the slopes are constrained to be the same.

See Also<br>anova1 | multcompare | polytool

## TreeBagger.append

Purpose Append new trees to ensemble
Syntax $\quad B=\operatorname{append}(B$, other $)$
Description $B=$ append $(B, o t h e r)$ appends the trees from the other ensemble to those in B. This method checks for consistency of the $X$ and $Y$ properties of the two ensembles, as well as consistency of their compact objects and out-of-bag indices, before appending the trees. The output ensemble B takes training parameters such as FBoot, Prior, Cost, and other from the B input. There is no attempt to check if these training parameters are consistent between the two objects.

See Also<br>CompactTreeBagger.combine

## ProbDistKernel.BandWidth property

| Purpose | Read-only value specifying bandwidth of kernel smoothing function <br> for ProbDistKernel object |
| :--- | :--- |
| Description | BandWidth is a read-only property of the ProbDistKernel class. <br> BandWidth is a value specifying the width of the kernel smoothing <br> function used to compute a nonparametric estimate of the probability <br> distribution when creating a ProbDistKernel object. |
| Values | For a distribution specified to cover only the positive numbers or only <br> a finite interval, the data are transformed before the kernel density is <br> applied, and the bandwidth is on the scale of the transformed data. |
| See Also | Use this information to view and compare the width of the kernel <br> smoothing function used to create distributions. |
| ksdensity |  |

## barttest

## Purpose Bartlett's test

```
Syntax
ndim = barttest(X,alpha)
[ndim,prob,chisquare] = barttest(X,alpha)
```

ndim = barttest(X, alpha) returns the number of dimensions necessary to explain the nonrandom variation in the data matrix $X$, using the significance probability alpha. The dimension is determined by a series of hypothesis tests. The test for ndim=1 tests the hypothesis that the variances of the data values along each principal component are equal, the test for ndim=2 tests the hypothesis that the variances along the second through last components are equal, and so on.
[ndim, prob, chisquare] = barttest(X, alpha) returns the number of dimensions, the significance values for the hypothesis tests, and the $\chi^{2}$ values associated with the tests.

```
Examples }\quad\textrm{X}=\textrm{mvnrnd([0 0],[1 0.99; 0.99 1],20);
X(:,3:4) = mvnrnd([0 0],[1 0.99; 0.99 1],20);
X(:,5:6) = mvnrnd([0 0],[1 0.99; 0.99 1],20);
[ndim, prob] = barttest(X,0.05)
ndim =
 3
prob =
 0
 0
 0
 0.5081
 0.6618
```

See Also pca \| pcacov \| pcares

## bbdesign

## Purpose

Box-Behnken design
Syntax
$\mathrm{dBB}=$ bbdesign( n )
[dBB,blocks] = bbdesign(n)
[...] = bbdesign(n,param,val)

## Description

$d B B=b b d e s i g n(n)$ generates a Box-Behnken design for $n$ factors. $n$ must be an integer 3 or larger. The output matrix $d B B$ is $m$-by- $n$, where $m$ is the number of runs in the design. Each row represents one run, with settings for all factors represented in the columns. Factor values are normalized so that the cube points take values between -1 and 1 .
[dBB,blocks] = bbdesign(n) requests a blocked design. The output blocks is an $m$-by- 1 vector of block numbers for each run. Blocks indicate runs that are to be measured under similar conditions to minimize the effect of inter-block differences on the parameter estimates.
[...] = bbdesign(n, param,val) specifies one or more optional parameter/value pairs for the design. The following table lists valid parameter/value pairs.

| Parameter | Description | Values |
| :--- | :--- | :--- |
| 'center' | Number of <br> center points. | Integer. The default depends on <br> n. |
| 'blocksize' | Maximum <br> number of <br> points per block. | Integer. The default is Inf. |

Examples The following creates a 3 -factor Box-Behnken design:

```
dBB = bbdesign(3)
dBB =
\begin{tabular}{rrr}
-1 & -1 & 0 \\
-1 & 1 & 0 \\
1 & -1 & 0
\end{tabular}
```


## bbdesign

| 1 | 1 | 0 |
| ---: | ---: | ---: |
| -1 | 0 | -1 |
| -1 | 0 | 1 |
| 1 | 0 | -1 |
| 1 | 0 | 1 |
| 0 | -1 | -1 |
| 0 | -1 | 1 |
| 0 | 1 | -1 |
| 0 | 1 | 1 |
| 0 | 0 | 0 |
| 0 | 0 | 0 |
| 0 | 0 | 0 |

The center point is run 3 times to allow for a more uniform estimate of the prediction variance over the entire design space.

Visualize the design as follows:

```
plot3(dBB(:,1),dBB(:,2),dBB(:,3),'ro',...
 'MarkerFaceColor','b')
X = [1 -1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1; ...
 1 1 1 1 -1 1 1 1 1 1 - 1 1 1 1 -1 -1];
Y = [-1 -1 1 1 -1 - -1 -1 1 1 -1 1 1-1 1 - 1; ...
 1 -1 1 1 1 1 1 - - 1 1 1 1 1 - - 1 1 - 1];
Z = [11 1 1 1 1 - - 1 -1 -1 -1 - 1 - 1 -1 -1; ...
 1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 1];
line(X,Y,Z,'Color','b')
axis square equal
```



See Also
ccdesign

## prob.BetaDistribution

Superclasses ToolboxFittableParametricDistribution

## Purpose Beta probability distribution object

Description prob.BetaDistribution is an object consisting of parameters, a model description, and sample data for a beta probability distribution.

Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

## Construction

pd = makedist('Beta') creates a beta probability distribution object using the default parameter values.
pd = makedist('Beta','a', a, 'b', b) creates a beta probability distribution object using the specified parameter values.

## Input Arguments

## a - First shape parameter

## 1 (default) | positive scalar value

First shape parameter of the beta distribution, specified as a positive scalar value.

```
Data Types
single | double
b - Second shape parameter
1 (default) | positive scalar value
```

Second shape parameter of the beta distribution, specified as a positive scalar value.

## Data Types

single | double

## Properties

## a

First shape parameter of the beta distribution, stored as a positive scalar value.

```
Data Types
single | double
b
```

Second shape parameter of the beta distribution, stored as a positive scalar value.

## Data Types

single | double

## DistributionName

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

## Data Types

char

## InputData

Data used for distribution fitting, stored as a structure containing the following:

- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.

## Data Types

single | double

## IsTruncated

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated. If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

## Data Types

logical

## prob.BetaDistribution

## NumParameters

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

Data Types<br>single | double

## ParameterCovariance

Covariance matrix of the parameter estimates, stored as a $p$-by- $p$ matrix, where $p$ is the number of parameters in the distribution. The ( $i, j$ ) element is the covariance between the estimates of the $i$ ith parameter and the $j$ th parameter. The ( $i, i$ ) element is the estimated variance of the ith parameter. If parameter $i$ is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

## Data Types

single | double

## ParameterDescription

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

## Data Types <br> char

## ParameterlsFixed

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

Data Types

logical

## ParameterNames

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

## Data Types

char

## ParameterValues

Values of distribution parameters, stored as a vector. This property is read-only.

## Data Types

single | double

## Truncation

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

```
Data Types
single | double
```


## Methods Inherited Methods

| cdf | Cumulative distribution function <br> of probability distribution object |
| :--- | :--- |
| icdf | Inverse cumulative distribution <br> function of probability <br> distribution object |
| iqr | Interquartile range of probability <br> distribution object |
| median | Median of probability distribution <br> object |
| pdf | Probability density function of <br> probability distribution object |

## prob.BetaDistribution

| random | Generate random numbers from <br> probability distribution object |
| :--- | :--- |
| truncate | Truncate probability distribution <br> object |
| mean | Mean of probability distribution <br> object |
| negloglik | Negative loglikelihood of <br> probability distribution object |
| paramci | Confidence intervals for <br> probability distribution <br> parameters |
| proflik | Profile likelihood function for <br> probability distribution object |
| std | Standard deviation of probability <br> distribution object |
| var | Variance of probability <br> distribution object |

## Definitions

## Beta Distribution

The beta distribution describes a family of curves that are unique in that they are nonzero only on the interval $(0,1)$. A more general version of the distribution assigns parameters to the endpoints of the interval.

The beta distribution uses the following parameters.

| Parameter | Description | Support |
| :--- | :--- | :--- |
| a | First shape parameter | $a>0$ |
| b | Second shape parameter | $b>0$ |

The probability density function (pdf) is

$$
f(x \mid a, b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} \quad ; \quad 0<x<1,
$$

where $B(\cdot)$ is the beta function.

## Examples Create a Beta Distribution Object Using Default Parameters

Create a beta distribution object using the default parameter values.

```
pd = makedist('Beta')
pd =
```

    BetaDistribution
    Beta distribution
        \(\mathrm{a}=1\)
        \(b=1\)
    
## Create a Beta Distribution Object Using Specified Parameters

Create a beta distribution object by specifying the parameter values.

```
pd = makedist('Beta','a',2,'b',4)
pd =
```


## BetaDistribution

Beta distribution
$a=2$
$\mathrm{b}=4$
Compute the mean of the distribution.
$\mathrm{m}=\mathrm{mean}(\mathrm{pd})$
m =

## prob.BetaDistribution

0.3333

See Also makedist | fitdist | dfittool<br>Concepts • "Beta Distribution" on page B-4<br>- Class Attributes<br>- Property Attributes

## Purpose

Beta cumulative distribution function

## Syntax <br> $p=\operatorname{betacdf}(X, A, B)$

$p=\operatorname{betacdf}(X, A, B)$ returns the beta cdf at each of the values in $X$ using the corresponding parameters in $A$ and $B . X, A$, and $B$ can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in A and B must all be positive, and the values in $X$ must lie on the interval [0,1].

The beta cdf for a given value $x$ and given pair of parameters $a$ and $b$ is

$$
p=F(x \mid a, b)=\frac{1}{B(a, b)} \int_{0}^{x} t^{a-1}(1-t)^{b-1} d t
$$

where $B(\cdot)$ is the Beta function.

## Examples

```
x = 0.1:0.2:0.9;
a = 2;
b = 2;
p = betacdf(\(x, a, b)\)
\(\mathrm{p}=\)
 \(\begin{array}{lllll}0.0280 & 0.2160 & 0.5000 & 0.7840 & 0.9720\end{array}\)
```

$a=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] ;$
$p=\operatorname{betacdf}(0.5, a, a)$
p $=$
$0.5000 \quad 0.5000 \quad 0.5000$

See Also cdf | betapdf | betainv | betastat | betalike | betarnd | betafit
How To . "Beta Distribution" on page B-4

## Purpose Beta parameter estimates

Syntax phat = betafit(data)
[phat,pci] = betafit(data,alpha)

Description

Examples
phat $=$ betafit(data) computes the maximum likelihood estimates of the beta distribution parameters $a$ and $b$ from the data in the vector data and returns a column vector containing the $a$ and $b$ estimates, where the beta cdf is given by

$$
F(x \mid a, b)=\frac{1}{B(a, b)} \int_{0}^{x} t^{a-1}(1-t)^{b-1} d t
$$

and $B(\cdot)$ is the Beta function. The elements of data must lie in the open interval $(0,1)$, where the beta distribution is defined. However, it is sometimes also necessary to fit a beta distribution to data that include exact zeros or ones. For such data, the beta likelihood function is unbounded, and standard maximum likelihood estimation is not possible. In that case, betafit maximizes a modified likelihood that incorporates the zeros or ones by treating them as if they were values that have been left-censored at sqrt (realmin) or right-censored at 1 -eps/2, respectively.
[phat,pci] = betafit(data,alpha) returns confidence intervals on the $a$ and $b$ parameters in the 2 -by- 2 matrix pci. The first column of the matrix contains the lower and upper confidence bounds for parameter $a$, and the second column contains the confidence bounds for parameter $b$. The optional input argument alpha is a value in the range $[0,1]$ specifying the width of the confidence intervals. By default, alpha is 0.05 , which corresponds to $95 \%$ confidence intervals. The confidence intervals are based on a normal approximation for the distribution of the logs of the parameter estimates.

This example generates 100 beta distributed observations. The true $a$ and $b$ parameters are 4 and 3 , respectively. Compare these to the
values returned in $p$ by the beta fit. Note that the columns of ci both bracket the true parameters.

```
data = betarnd(4,3,100,1);
[p,ci] = betafit(data,0.01)
p =
 5.5328 3.8097
ci =
 3.6538 2.6197
 8.3781 5.5402
```


## References

See Also
How To . "Beta Distribution" on page B-4

Purpose Beta inverse cumulative distribution function

## Syntax $\quad X=\operatorname{betainv}(P, A, B)$

Description

## Algorithms

## Examples

$X=$ betainv ( $\mathrm{P}, \mathrm{A}, \mathrm{B}$ ) computes the inverse of the beta cdf with parameters specified by $A$ and $B$ for the corresponding probabilities in $P$. $P, A$, and $B$ can be vectors, matrices, or multidimensional arrays that are all the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in $A$ and $B$ must all be positive, and the values in P must lie on the interval $[0,1]$.

The inverse beta cdf for a given probability $p$ and a given pair of parameters $a$ and $b$ is

$$
x=F^{-1}(p \mid a, b)=\{x: F(x \mid a, b)=p\}
$$

where

$$
p=F(x \mid a, b)=\frac{1}{B(a, b)} \int_{0}^{x} t^{a-1}(1-t)^{b-1} d t
$$

and $B(\cdot)$ is the Beta function. Each element of output X is the value whose cumulative probability under the beta cdf defined by the corresponding parameters in $A$ and $B$ is specified by the corresponding value in $P$.

The betainv function uses Newton's method with modifications to constrain steps to the allowable range for $x$, i.e., [ $\left.\begin{array}{ll}1 & 1\end{array}\right]$.

```
p = [0.01 0.5 0.99];
x = betainv(p,10,5)
x =
 0.3726 0.6742 0.8981
```

According to this result, for a beta cdf with $a=10$ and $b=5$, a value less than or equal to 0.3726 occurs with probability 0.01 . Similarly,
values less than or equal to 0.6742 and 0.8981 occur with respective probabilities 0.5 and 0.99 .

See Also<br>icdf | betapdf | betafit | betainv | betastat | betalike | betarnd | betacdf<br>How To . "Beta Distribution" on page B-4

Purpose Beta negative log-likelihood

| Syntax | nlogL $=$ betalike $($ params, data $)$ |
| :--- | :--- |
| $[n \log L, A V A R]$ |  |$=$ betalike $($ params, data $)$.

Description nlogL = betalike(params, data) returns the negative of the beta log-likelihood function for the beta parameters $a$ and $b$ specified in vector params and the observations specified in the column vector data.
The elements of data must lie in the open interval $(0,1)$, where the beta distribution is defined. However, it is sometimes also necessary to fit a beta distribution to data that include exact zeros or ones. For such data, the beta likelihood function is unbounded, and standard maximum likelihood estimation is not possible. In that case, betalike computes a modified likelihood that incorporates the zeros or ones by treating them as if they were values that have been left-censored at sqrt (realmin) or right-censored at $1-\mathrm{eps} / 2$, respectively.
[nlogL,AVAR] = betalike(params,data) also returns AVAR, which is the asymptotic variance-covariance matrix of the parameter estimates if the values in params are the maximum likelihood estimates. AVAR is the inverse of Fisher's information matrix. The diagonal elements of AVAR are the asymptotic variances of their respective parameters.
betalike is a utility function for maximum likelihood estimation of the beta distribution. The likelihood assumes that all the elements in the data sample are mutually independent. Since betalike returns the negative beta log-likelihood function, minimizing betalike using fminsearch is the same as maximizing the likelihood.

Examples This example continues the betafit example, which calculates estimates of the beta parameters for some randomly generated beta distributed data.
$r=\operatorname{betarnd}(4,3,100,1)$;
[nlogl,AVAR] = betalike(betafit(r), r)
nlogl =
$-27.5996$

$$
\begin{aligned}
& \text { AVAR }= \\
& \\
& 0.2783 \\
& 0.1316
\end{aligned}
$$

## See Also

betapdf | betafit | betainv | betastat | betarnd | betacdf
How To - "Beta Distribution" on page B-4

Purpose Beta probability density function
Syntax $\quad Y=\operatorname{betapdf}(X, A, B)$
Description
$Y=$ betapdf( $X, A, B$ ) computes the beta pdf at each of the values in $X$ using the corresponding parameters in $A$ and $B . X, A$, and $B$ can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions of the other inputs. The parameters in A and B must all be positive, and the values in X must lie on the interval [ 0,1 ].

The beta probability density function for a given value $x$ and given pair of parameters $a$ and $b$ is

$$
y=f(x \mid a, b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} I_{(0,1)}(x)
$$

where $B(\cdot)$ is the Beta function. The indicator function $I_{(0,1)}(x)$ ensures that only values of $x$ in the range ( 01 ) have nonzero probability. The uniform distribution on (01) is a degenerate case of the beta pdf where $a=1$ and $b=1$.

A likelihood function is the pdf viewed as a function of the parameters. Maximum likelihood estimators (MLEs) are the values of the parameters that maximize the likelihood function for a fixed value of $x$.

## Examples

```
a = [0.5 1; 2 4]
a =
 0.5000 1.0000
 2.0000 4.0000
y = betapdf(0.5,a,a)
y =
 0.6366 1.0000
 1.5000 2.1875
```

See Also pdf | betafit | betainv | betastat | betalike | betarnd | betacdf

How To

- "Beta Distribution" on page B-4


## betarnd

## Purpose Beta random numbers

Syntax $\quad$| $R$ | $=\operatorname{betarnd}(A, B)$ |
| ---: | :--- |
| $R$ | $=\operatorname{betarnd}(A, B, m, n, \ldots)$ |
| $R$ | $=\operatorname{betarnd}(A, B,[m, n, \ldots])$ |

$R=$ betarnd $(A, B)$ generates random numbers from the beta distribution with parameters specified by A and B. A and B can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of R. A scalar input for A or B is expanded to a constant array with the same dimensions as the other input.
$R=\operatorname{betarnd}(A, B, m, n, \ldots)$ or $R=$ betarnd(A,B,[m,n,...]) generates an $m$-by-n-by-... array containing random numbers from the beta distribution with parameters A and B. A and B can each be scalars or arrays of the same size as R.

## Examples

```
a = [1 1;2 2];
b = [1 2;1 2];
r = betarnd(a,b)
r =
 0.6987 0.6139
 0.9102 0.8067
r = betarnd(10,10,[1 5])
r =
 0.5974 0.4777 0.5538
r = betarnd(4,2,2,3)
r =
 0.3943 0.6101 0.5768
 0.5990 0.2760 0.5474
```

See Also random | betapdf | betafit | betainv | betastat | betalike |
betacdf

How To . "Beta Distribution" on page B-4

## betastat

Purpose Beta mean and variance

## Syntax $\quad[M, V]=\operatorname{betastat}(A, B)$

Description $[M, V]=$ betastat $(A, B)$, with $A>0$ and $B>0$, returns the mean of and variance for the beta distribution with parameters specified by $A$ and B. A and B can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of M and V . A scalar input for $A$ or $B$ is expanded to a constant array with the same dimensions as the other input.

The mean of the beta distribution with parameters $a$ and $b$ is $a /(a+b)$ and the variance is

$$
\frac{a b}{(a+b+1)(a+b)^{2}}
$$

## Examples

If parameters $a$ and $b$ are equal, the mean is $1 / 2$.

```
a = 1:6;
[m,v] = betastat(a,a)
m =
 0.5000}00.5000 0.5000 0.5000 0.5000 0.5000
v =
 0.0833 0.0500
```

See Also
betapdf | betafit | betainv | betalike | betarnd | betacdf
How To • "Beta Distribution" on page B-4

Purpose Bayes Information Criterion
Description The Bayes Information Criterion: $2 * N \log L+m * \log (n)$, where $n$ is the number of observations and m is the number of estimated parameters.

## prob.BinomialDistribution

Superclasses ToolboxFittableParametricDistribution
Purpose Binomial probability distribution object
Description prob.BinomialDistribution is an object consisting of parameters, a model description, and sample data for a binomial probability distribution.

Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

## Construction

pd = makedist('Binomial') creates a binomial probability distribution object using the default parameter values.
pd = makedist('Binomial', 'N', $n$, ' p ', p ) creates a binomial probability distribution object using the specified parameter values.

## Input Arguments

## n - Number of trials

1 (default) | positive integer value
Number of trials for the binomial distribution, specified as a positive integer value.

```
Data Types
single | double
```


## p - Probability of success

0.5 (default) | positive scalar value in the range [0,1]

Probability of success of any individual trial for the binomial distribution, specified as a positive scalar value in the range $[0,1]$.

Data Types<br>single | double

## Properties

 NNumber of trials for the binomial distribution, stored as a positive integer value.

## Data Types

single | double

## p

Probability of success of any individual trial for the binomial distribution, stored as a positive scalar value in the range $[0,1]$.

## Data Types

single | double

## DistributionName

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

## Data Types

char

## InputData

Data used for distribution fitting, stored as a structure containing the following:

- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.
Data Types
single | double
IsTruncated
Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated.

## prob.BinomialDistribution

If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

## Data Types

logical

## NumParameters

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

## Data Types <br> single | double

## ParameterCovariance

Covariance matrix of the parameter estimates, stored as a $p$-by- $p$ matrix, where $p$ is the number of parameters in the distribution. The ( $\mathrm{i}, \mathrm{j}$ ) element is the covariance between the estimates of the $i$ th parameter and the $j$ th parameter. The ( $i, i$ ) element is the estimated variance of the ith parameter. If parameter $i$ is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

## Data Types

single | double

## ParameterDescription

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

## Data Types <br> char

## Parameterlsfixed

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

## Data Types

logical

## ParameterNames

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

## Data Types

char

## ParameterValues

Values of distribution parameters, stored as a vector. This property is read-only.

## Data Types

single | double

## Truncation

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

## Data Types

single | double

## Methods Inherited Methods

| cdf | Cumulative distribution function <br> of probability distribution object |
| :--- | :--- |
| icdf | Inverse cumulative distribution <br> function of probability <br> distribution object |
| iqr | Interquartile range of probability <br> distribution object |
| median | Median of probability distribution <br> object |

## prob.BinomialDistribution

$\left.\left.\begin{array}{ll}\text { pdf } & \begin{array}{l}\text { Probability density function of } \\ \text { probability distribution object }\end{array} \\ \text { random } & \begin{array}{l}\text { Generate random numbers from } \\ \text { probability distribution object }\end{array} \\ \text { truncate } & \begin{array}{l}\text { Truncate probability distribution } \\ \text { object }\end{array} \\ \text { mean } & \begin{array}{l}\text { Mean of probability distribution } \\ \text { object }\end{array} \\ \text { negloglik } & \begin{array}{l}\text { Negative loglikelihood of } \\ \text { probability distribution object } \\ \text { Confidence intervals for } \\ \text { probability distribution }\end{array} \\ \text { parameters }\end{array} \quad \begin{array}{l}\text { parafile likelihood function for } \\ \text { proflik }\end{array} \quad \begin{array}{l}\text { probability distribution object }\end{array}\right\} \begin{array}{l}\text { Standard deviation of probability } \\ \text { distribution object }\end{array}\right\}$

## Definitions Binomial Distribution

The binomial distribution models the total number of successes in repeated trials from an infinite population under the following conditions:

- Only two outcomes are possible for each of $n$ trials.
- The probability of success for each trial is constant.
- All trials are independent of each other.

The binomial distribution uses the following parameters.

| Parameter | Description | Support |
| :--- | :--- | :--- |
| N | Number of trials | positive integer |
| p | Probability of success | $0 \leq p \leq 1$ |

The probability density function (pdf) is

$$
f(x \mid n, p)=\binom{n}{x} p^{x}(1-p)^{n-x} \quad ; \quad x=0,1,2, \ldots, n
$$

where $x$ is the number of successes in $n$ trials of a Bernoulli process with probability of success $p$.

## Examples

## Create a Binomial Distribution Object Using Default Parameters

Create a binomial distribution object using the default parameter values.

```
pd = makedist('Binomial')
pd =
```


## BinomialDistribution

Binomial distribution
$\mathrm{N}=1$
$p=0.5$

## Create a Binomial Distribution Object Using Specified Parameters

Create a binomial distribution object by specifying the parameter values.

```
pd = makedist('Binomial','N',30,'p',0.25)
pd =
```


## prob.BinomialDistribution

```
BinomialDistribution
Binomial distribution
 N = 30
 p = 0.25
```

Compute the mean of the distribution.
$m=\operatorname{mean}(p d)$
m =
7.5000
See Also makedist | fitdist | dfittool

## Concepts <br> - "Binomial Distribution" on page B-7

- "Bernoulli Distribution" on page B-3
- Class Attributes
- Property Attributes


## Purpose

## Syntax

Description

## Examples

Binomial cumulative distribution function
$Y=\operatorname{binocdf}(X, N, P)$
$Y=\operatorname{binocdf}(X, N, P)$ computes a binomial cdf at each of the values in $X$ using the corresponding number of trials in $N$ and probability of success for each trial in P. X, N, and P can be vectors, matrices, or multidimensional arrays that are all the same size. A scalar input is expanded to a constant array with the same dimensions of the other inputs. The values in $N$ must all be positive integers, the values in $X$ must lie on the interval $[0, N]$, and the values in $P$ must lie on the interval $[0,1]$.

The binomial cdf for a given value $x$ and a given pair of parameters $n$ and $p$ is

$$
y=F(x \mid n, p)=\sum_{i=0}^{x}\binom{n}{i} p^{i}(1-p)^{(n-i)} I_{(0,1, \ldots, n)}(i)
$$

The result, $y$, is the probability of observing up to $x$ successes in $n$ independent trials, where the probability of success in any given trial is $p$. The indicator function $I_{(0,1, \ldots, n)}(i)$ ensures that $x$ only adopts values of $0,1, \ldots, n$.

If a baseball team plays 162 games in a season and has a 50-50 chance of winning any game, then the probability of that team winning more than 100 games in a season is:

1 - binocdf(100,162,0.5)
The result is 0.001 (i.e., $1-0.999$ ). If a team wins 100 or more games in a season, this result suggests that it is likely that the team's true probability of winning any game is greater than 0.5 .

[^3]
## binocdf

How To . "Binomial Distribution" on page B-7

Purpose
Syntax

Description

Binomial parameter estimates
phat = binofit(x, n)
[phat,pci] = binofit(x,n)
[phat,pci] = binofit(x, n,alpha)
phat $=$ binofit $(x, n)$ returns a maximum likelihood estimate of the probability of success in a given binomial trial based on the number of successes, $x$, observed in $n$ independent trials. If $x=(x(1), x(2)$, $\ldots x(k))$ is a vector, binofit returns a vector of the same size as x whose ith entry is the parameter estimate for $\mathrm{x}(\mathrm{i})$. All k estimates are independent of each other. If $n=(n(1), n(2), \ldots, n(k))$ is a vector of the same size as $x$, the binomial fit, binofit, returns a vector whose ith entry is the parameter estimate based on the number of successes $x$ (i) in $n(i)$ independent trials. A scalar value for $x$ or $n$ is expanded to the same size as the other input.
[phat, pci] = binofit(x,n) returns the probability estimate, phat, and the $95 \%$ confidence intervals, pci. binofit uses the Clopper-Pearson method to calculate confidence intervals.
[phat,pci] = binofit(x,n,alpha) returns the 100(1-alpha)\% confidence intervals. For example, alpha $=0.01$ yields $99 \%$ confidence intervals.

Note binofit behaves differently than other Statistics Toolbox functions that compute parameter estimates, in that it returns independent estimates for each entry of $x$. By comparison, expfit returns a single parameter estimate based on all the entries of $x$.

Unlike most other distribution fitting functions, the binofit function treats its input $x$ vector as a collection of measurements from separate samples. If you want to treat $x$ as a single sample and compute a single parameter estimate for it, you can use binofit (sum (x), sum(n)) when n is a vector, and binofit (sum ( X$), \mathrm{N} *$ length $(\mathrm{X})$ ) when n is a scalar.

## binofit

```
Examples This example generates a binomial sample of 100 elements, where the probability of success in a given trial is 0.6 , and then estimates this probability from the outcomes in the sample.
\(r=\) binornd(100,0.6);
[phat,pci] = binofit(r,100)
phat \(=\)
0.5800
pci \(=\)
\(0.4771 \quad 0.6780\)
```

The $95 \%$ confidence interval, pci, contains the true value, 0.6 .

References [1] Johnson, N. L., S. Kotz, and A. W. Kemp. Univariate Discrete Distributions. Hoboken, NJ: Wiley-Interscience, 1993.

## See Also <br> mle | binopdf | binocdf | binoinv | binostat | binornd <br> How To . "Binomial Distribution" on page B-7

| Purpose | Binomial inverse cumulative distribution function | | |
|---|---|---|---|
| Syntax | $X=$ binoinv $(Y, N, P)$ |
| Description | $X=$ binoinv $(Y, N, P)$ returns the smallest integer $X$ such that the <br> binomial cdf evaluated at $X$ is equal to or exceeds $Y$. You can think of <br> $Y$ as the probability of observing $X$ successes in $N$ independent trials <br> where $P$ is the probability of success in each trial. Each $X$ is a positive <br> integer less than or equal to $N$. |
|  | $Y, N$, and $P$ can be vectors, matrices, or multidimensional arrays that |
| all have the same size. A scalar input is expanded to a constant array |  |
| with the same dimensions as the other inputs. The parameters in $N$ |  |
| must be positive integers, and the values in both $P$ and $Y$ must lie on |  |
| the interval $[01]$. |  | | If a baseball team has a $50-50$ chance of winning any game, what is a |
| :--- |
| reasonable range of games this team might win over a season of 162 |
| games? |
| binoinv ( $[0.050 .95], 162,0.5)$ <br> ans $=$ <br> 71$\quad 91$ |

This result means that in $90 \%$ of baseball seasons, a . 500 team should win between 71 and 91 games.

```
See Also icdf | binopdf | binocdf | binofit | binostat | binornd
```

How To . "Binomial Distribution" on page B-7

## binopdf

## Purpose Binomial probability density function

## Syntax $\quad Y=\operatorname{binopdf}(X, N, P)$

Description

Examples
$Y=$ binopdf( $X, N, P$ ) computes the binomial pdf at each of the values in $X$ using the corresponding number of trials in $N$ and probability of success for each trial in P. Y, N, and P can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions of the other inputs.

The parameters in $N$ must be positive integers, and the values in $P$ must lie on the interval $[0,1]$.

The binomial probability density function for a given value $x$ and given pair of parameters $n$ and $p$ is

$$
y=f(x \mid n, p)=\binom{n}{x} p^{x} q^{(n-x)} I_{(0,1, \ldots, n)}(x)
$$

where $q=1-p$. The result, $y$, is the probability of observing $x$ successes in $n$ independent trials, where the probability of success in any given trial is $p$. The indicator function $I_{(0,1, \ldots, n)}(x)$ ensures that $x$ only adopts values of $0,1, \ldots, n$.

A Quality Assurance inspector tests 200 circuit boards a day. If $2 \%$ of the boards have defects, what is the probability that the inspector will find no defective boards on any given day?
binopdf(0,200, 0.02)
ans =
0.0176

What is the most likely number of defective boards the inspector will find?
defects=0:200;
y = binopdf(defects,200,.02);

## binopdf

```
[x,i]=max(y);
defects(i)
ans =
 4
```

See Also
pdf | binoinv | binocdf | binofit | binostat | binornd
How To . "Binomial Distribution" on page B-7

## binornd

Purpose Binomial random numbers

Syntax $\quad$| $R$ | $=\operatorname{binornd}(N, P)$ |
| ---: | :--- |
| $R$ | $=\operatorname{binornd}(N, P, m, n, \ldots)$ |
| $R$ | $=\operatorname{binornd}(N, P,[m, n, \ldots])$ |

Description

Algorithms

Examples
n = 10:10:60;
$r 1=$ binornd(n,1./n)
$r 1=$
$\begin{array}{llllll}2 & 1 & 0 & 1 & 1 & 2\end{array}$
$r 2=\operatorname{binornd}\left(n, 1 . / n,\left[\begin{array}{ll}16\end{array}\right]\right)$
r2 =
$\begin{array}{llllll}0 & 1 & 2 & 1 & 3 & 1\end{array}$
$r 3=\operatorname{binornd}(n, 1 . / n, 1,6)$
r3 =
$\begin{array}{llllll}0 & 1 & 1 & 1 & 0 & 3\end{array}$
See Also random | binoinv | binocdf | binofit | binostat | binopdf

## binornd

How To - "Binomial Distribution" on page B-7

## binostat

Purpose Binomial mean and variance

$$
\text { Syntax } \quad[M, V]=\text { binostat }(N, P)
$$

Description
$[M, V]=$ binostat $(N, P)$ returns the mean of and variance for the binomial distribution with parameters specified by the number of trials, N , and probability of success for each trial, P. N and P can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of M and V . A scalar input for N or P is expanded to a constant array with the same dimensions as the other input.

The mean of the binomial distribution with parameters $n$ and $p$ is $n p$. The variance is $n p q$, where $q=1-p$.

```
Examples }n=logspace(1,5,5
n =
 10}100010001000010000
[m,v] = binostat(n,1./n)
m =
 1 1 1 1 1 1 1
v =
```



```
[m,v] = binostat(n,1/2)
m =
 5 50 500 5000 50000
v =
 1.0e+04 *
 0.0003 0.0025 0.0250 0.2500 2.5000
See Also binoinv | binocdf | binofit | binornd | binopdf
How To . "Binomial Distribution" on page B-7
```


## Purpose Biplot

$\begin{array}{ll}\text { Syntax } & \text { biplot(coefs) } \\ & h=\operatorname{biplot}(\operatorname{coefs}, \text { 'Name' }, \text { Value })\end{array}$
Description

Input
Arguments
biplot (coefs) creates a biplot of the coefficients in the matrix coefs. The biplot is 2-D if coefs has two columns or 3-D if it has three columns. coefs usually contains principal component coefficients created with pca, pcacov, or factor loadings estimated with factoran. The axes in the biplot represent the principal components or latent factors (columns of coefs), and the observed variables (rows of coefs) are represented as vectors.

A biplot allows you to visualize the magnitude and sign of each variable's contribution to the first two or three principal components, and how each observation is represented in terms of those components.
biplot imposes a sign convention, forcing the element with largest magnitude in each column of coefs to be positive. This flips some of the vectors in coefs to the opposite direction, but often makes the plot easier to read. Interpretation of the plot is unaffected, because changing the sign of a coefficient vector does not change its meaning.
biplot scales the scores so that they fit on the plot: It divides each score by the maximum absolute value of all scores, and multiplies by the maximum coefficient length of coefs. Then biplot changes the sign of score coordinates according to the sign convention for the coefs.
h = biplot(coefs,'Name', Value) specifies one or more name/value input pairs and returns a column vector of handles to the graphics objects created by biplot. The h contains, in order, handles corresponding to variables (line handles, followed by marker handles, followed by text handles), to observations (if present, marker handles followed by text handles), and to the axis lines.

## Name-Value Pair Arguments

## 'Scores'

## biplot

Plots both coefs and the scores in the matrix scores in the biplot. scores usually contains principal component scores created with pca or factor scores estimated with factoran. Each observation (row of scores) is represented as a point in the biplot.

## 'VarLabels'

Labels each vector (variable) with the text in the character array or cell array varlabels.

## 'ObsLabels'

Uses the text in the character array or cell array obslabels as observation names when displaying data cursors.

## 'Positive'

- 'true ' - restricts the biplot to the positive quadrant (in 2-D) or octant (in 3-D).
- 'false' - makes the biplot over the range +/- max (coefs(:)) for all coordinates.


## Default: false

## 'PropertyName'

Specifies optional property name/value pairs for all line graphics objects created by biplot.

## Examples

Perform a principal component analysis of the data in carsmall.mat:

```
load carsmall
x = [Acceleration Displacement Horsepower MPG Weight];
x = x(all(~isnan(x),2),:);
[coefs,score] = pca(zscore(x));
```

View the data and the original variables in the space of the first three principal components:

```
vbls = {'Accel','Disp','HP','MPG','Wgt'};
biplot(coefs(:,1:3),'scores',score(:,1:3),\ldots
```



Component 2
Component 1

See Also
factoran | nnmf | pca | pcacov | rotatefactors

## prob.BirnbaumSaundersDistribution

Superclasses ToolboxFittableParametricDistribution
Purpose Birnbaum-Saunders probability distribution object
Description prob.BirnbaumSaundersDistribution is an object consisting of parameters, a model description, and sample data for a Birnbaum-Saunders probability distribution.
Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

## Construction

pd = makedist('BirnbaumSaunders') creates a Birnbaum-Saunders probability distribution object using the default parameter values.
pd = makedist('BirnbaumSaunders','beta', beta, 'gamma', gamma) creates a Birnbaum-Saunders distribution object using the specified parameter values.

## Input Arguments

## beta-Scale parameter

1 (default) | positive scalar value
Scale parameter of the Birnbaum-Saunders distribution, specified as a positive scalar value.
Data Types
single | double
gamma-Shape parameter
1 (default) | nonnegative scalar value
Shape parameter of the Birnbaum-Saunders distribution, specified as a nonnegative scalar value.

Data Types<br>single | double

## Properties

## beta

Scale parameter of the Birnbaum-Saunders distribution, stored as a positive scalar value.

## Data Types

single | double

## gamma

Shape parameter of the Birnbaum-Saunders distribution, stored as a nonnegative scalar value.

## Data Types

single | double

## DistributionName

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

## Data Types

char

## InputData

Data used for distribution fitting, stored as a structure containing the following:

- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.

## Data Types

single | double

## IsTruncated

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated.

## prob.BirnbaumSaundersDistribution

If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

## Data Types

logical

## NumParameters

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

## Data Types <br> single | double

## ParameterCovariance

Covariance matrix of the parameter estimates, stored as a $p$-by- $p$ matrix, where $p$ is the number of parameters in the distribution. The ( $\mathrm{i}, \mathrm{j}$ ) element is the covariance between the estimates of the $i$ th parameter and the $j$ th parameter. The ( $i, i$ ) element is the estimated variance of the ith parameter. If parameter $i$ is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

## Data Types

single | double

## ParameterDescription

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

## Data Types <br> char

## Parameterlsfixed

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

# prob.BirnbaumSaundersDistribution 

## Data Types

logical

## ParameterNames

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

## Data Types

char

## ParameterValues

Values of distribution parameters, stored as a vector. This property is read-only.

## Data Types

single | double

## Truncation

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

## Data Types

single | double

## Methods Inherited Methods

| cdf | Cumulative distribution function <br> of probability distribution object |
| :--- | :--- |
| icdf | Inverse cumulative distribution <br> function of probability <br> distribution object |
| iqr | Interquartile range of probability <br> distribution object |
| median | Median of probability distribution <br> object |

## prob.BirnbaumSaundersDistribution

| pdf | Probability density function of <br> probability distribution object |
| :--- | :--- |
| random | Generate random numbers from <br> probability distribution object |
| truncate | Truncate probability distribution <br> object |
| mean | Mean of probability distribution <br> object |
| negloglik | Negative loglikelihood of <br> probability distribution object <br> Confidence intervals for |
| paramci | probability distribution <br> parameters |
| proflik | Profile likelihood function for <br> probability distribution object |
| std | Standard deviation of probability <br> distribution object |
| var | Variance of probability <br> distribution object |

## Definitions Birnbaum-Saunders Distribution

The Birnbaum-Saunders distribution was originally proposed as a lifetime model for materials subject to cyclic patterns of stress and strain, where the ultimate failure of the material comes from the growth of a prominent flaw. It is also called the fatigue life distribution.

The Birnbaum-Saunders distribution uses the following parameters.

# prob.BirnbaumSaundersDistribution 

| Parameter | Description | Support |
| :--- | :--- | :--- |
| beta | Scale parameter | $\beta>0$ |
| gamma | Shape parameter | $\gamma \geq 0$ |

The probability density function (pdf) is

$$
f(x \mid \beta, \gamma)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{\left(\sqrt{\frac{x}{\beta}}-\sqrt{\frac{\beta}{x}}\right)^{2}}{2 \gamma^{2}}\right\}\left(\left(\frac{\left(\sqrt{\frac{x}{\beta}}-\sqrt{\frac{\beta}{x}}\right)}{2 \gamma x}\right) ; x>0 .\right.
$$

## Examples Create a Birnbaum-Saunders Distribution Object Using Default Parameters

Create a Birnbaum-Saunders distribution object using the default parameter values.

```
pd = makedist('BirnbaumSaunders')
```

pd $=$
BirnbaumSaundersDistribution
Birnbaum-Saunders distribution
beta = 1 gamma $=1$

## Create a Birnbaum-Saunders Distribution Object Using Specified Parameter Values

Create a Birnbaum-Saunders distribution object by specifying the parameter values.

```
pd = makedist('BirnbaumSaunders','beta',2,'gamma',5)
```


## prob.BirnbaumSaundersDistribution

$\mathrm{pd}=$

BirnbaumSaundersDistribution

```
Birnbaum-Saunders distribution
 beta = 2
 gamma = 5
```

Compute the mean of the distribution.
$m=\operatorname{mean}(p d)$
$m=$

27
See Also makedist | fitdist | dfittool
Concepts - "Birnbaum-Saunders Distribution" on page B-10

- Class Attributes
- Property Attributes

| Purpose | Bootstrap confidence interval |
| :---: | :---: |
| Syntax | ```ci = bootci(nboot,bootfun,...) ci = bootci(nboot,{bootfun,...},'alpha',alpha) ci = bootci(nboot,{bootfun,...},...,'type',type) ci = bootci(nboot,{bootfun,...},...,'type','student', 'nbootstd',nbootstd) ci = bootci(nboot,{bootfun,...},...,'type','student','stderr', stderr) ci = bootci(nboot,{bootfun,...},...,'Weights',weights) ci = bootci(nboot,{bootfun,...},...,'Options',options) [ci,bootstat] = bootci(...)``` |
| Description | ci $=$ bootci(nboot, bootfun,...) computes the $95 \%$ bootstrap confidence interval of the statistic computed by the function bootfun. nooot is a positive integer indicating the number of bootstrap samples used in the computation. bootfun is a function handle specified with @. The third and later input arguments to bootci are data (scalars, column vectors, or matrices) that are used to create inputs to bootfun. bootci creates each bootstrap sample by sampling with replacement from the rows of the non-scalar data arguments (these must have the same number of rows). Scalar data are passed to bootfun unchanged. |
|  | If bootfun returns a scalar, ci is a vector containing the lower and upper bounds of the confidence interval. If bootfun returns a vector of length $m$, ci is an array of size 2 -by- $m$, where $\mathrm{ci}(1,:)$ are lower bounds and $\mathrm{ci}(2,:)$ are upper bounds. If bootfun returns an array of size $m$-by- $n$-by- $p$-by-..., ci is an array of size 2 -by- $m$-by- $n$-by- $p$-by-..., where $\mathrm{ci}(1,:,:,:, \ldots)$ is an array of lower bounds and ci(2,:,:,:,,..) is an array of upper bounds. |
|  | ci $=$ bootci(nboot, \{bootfun, $\ldots$, ,'alpha', alpha) computes the 100* ( 1 -alpha) bootstrap confidence interval of the statistic defined by the function bootfun. bootfun and the data that bootci passes to it are contained in a single cell array. alpha is a scalar between 0 and 1 . The default value of alpha is 0.05 . |

ci = bootci(nboot,\{bootfun,...\},...,'type',type) computes the bootstrap confidence interval of the statistic defined by the function bootfun. type is the confidence interval type, chosen from among the following strings:

- 'norm' or 'normal' - Normal approximated interval with bootstrapped bias and standard error.
- 'per' or 'percentile' - Basic percentile method.
- 'cper' or 'corrected percentile' - Bias corrected percentile method.
- 'bca' - Bias corrected and accelerated percentile method. This is the default.
- 'stud' or 'student' - Studentized confidence interval.
ci $=$
bootci(nboot,\{bootfun,...\},..., 'type','student', 'nbootstd', nbootstd)
computes the studentized bootstrap confidence interval of the statistic
defined by the function bootfun. The standard error of the
bootstrap statistics is estimated using bootstrap, with nbootstd bootstrap data samples. nbootstd is a positive integer value. The default value of nbootstd is 100 .
ci $=$
bootci(nboot, \{bootfun,...\},...,'type','student', 'stderr',stderr)
computes the studentized bootstrap confidence interval of statistics
defined by the function bootfun. The standard error of the bootstrap statistics is evaluated by the function stderr. stderr is a function handle. stderr takes the same arguments as bootfun and returns the standard error of the statistic computed by bootfun.
ci = bootci(nboot,\{bootfun, ...\},...,'Weights', weights) specifies observation weights. weights must be a vector of non-negative numbers with at least one positive element. The number of elements in weights must be equal to the number of rows in non-scalar input arguments to bootfun. To obtain one bootstrap replicate, bootstrp samples $N$ out of $N$ with replacement using these weights as multinomial sampling probabilities.
ci = bootci(nboot,\{bootfun,...\},...,'Options',options) specifies options that govern the computation of bootstrap iterations. One option requests that bootci perform bootstrap iterations using multiple processors, if the Parallel Computing Toolbox is available. Two options specify the random number streams to be used in bootstrap resampling. This argument is a struct that you can create with a call to statset. You can retrieve values of the individual fields with a call to statget. Applicable statset parameters are:
- 'UseParallel' - If true and if a matlabpool of the Parallel Computing Toolbox is open, compute bootstrap iterations in parallel. If the Parallel Computing Toolbox is not installed, or a matlabpool is not open, computation occurs in serial mode. Default is false, or serial computation.
- UseSubstreams - Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.
- Streams - A RandStream object or cell array of such objects. If you do not specify Streams, bootci uses the default stream or streams. If you choose to specify Streams, use a single object except in the case
- You have an open MATLAB pool
- UseParallel is true
- UseSubstreams is false

In that case, use a cell array the same size as the MATLAB pool.
[ci,bootstat] = bootci(...) also returns the bootstrapped statistic computed for each of the nboot bootstrap replicate samples. Each row of bootstat contains the results of applying bootfun to one bootstrap sample. If bootfun returns a matrix or array, then this output is converted to a row vector for storage in bootstat.

## Examples

Compute the confidence interval for the capability index in statistical process control:

[^4]
## bootci

```
LSL = -3; USL = 3; % Process specifications
capable = @(x)(USL-LSL)./(6* std(x)); % Process capability
ci = bootci(2000,capable,y) % BCa confidence interval
Ci =
 0.8122
 1.2657
sci = bootci(2000,{capable,y},'type','student') % Studentized ci
sci =
 0.7739
 1.2707
```

See Also
bootstrp | jackknife | statget | statset | randsample | parfor

Bootstrap sampling

```
bootstat = bootstrp(nboot,bootfun,d1,...)
[bootstat,bootsam] = bootstrp(...)
bootstat = bootstrp(...,'Name',Value)
```

bootstat $=$ bootstrp(nboot, bootfun, d1, ...) draws nboot bootstrap data samples, computes statistics on each sample using bootfun, and returns the results in the matrix bootstat. nboot must be a positive integer. bootfun is a function handle specified with @. Each row of bootstat contains the results of applying bootfun to one bootstrap sample. If bootfun returns a matrix or array, then this output is converted to a row vector for storage in bootstat.

The third and later input arguments ( $\mathrm{d} 1, \ldots$ ) are data (scalars, column vectors, or matrices) used to create inputs to bootfun. bootstrp creates each bootstrap sample by sampling with replacement from the rows of the non-scalar data arguments (these must have the same number of rows). bootfun accepts scalar data unchanged.
[bootstat, bootsam] = bootstrp(...) returns an n-by-nboot matrix of bootstrap indices, bootsam. Each column in bootsam contains indices of the values that were drawn from the original data sets to constitute the corresponding bootstrap sample. For example, if $\mathrm{d} 1, \ldots$ each contain 16 values, and nboot $=4$, then bootsam is a 16 -by- 4 matrix. The first column contains the indices of the 16 values drawn from $\mathrm{d} 1, \ldots$, for the first of the four bootstrap samples, the second column contains the indices for the second of the four bootstrap samples, and so on. (The bootstrap indices are the same for all input data sets.) To get the output samples bootsam without applying a function, set bootfun to empty ([]).
bootstat $=$ bootstrp(...,'Name', Value) uses additional arguments specified by one or more Name, Value pair arguments. The name-value pairs must appear after the data arguments. The available name-value pairs:

- 'Weights' - Observation weights. The weights value must be a vector of nonnegative numbers with at least one positive element.

The number of elements in weights must be equal to the number of rows in non-scalar input arguments to bootstrp. To obtain one bootstrap replicate, bootstrp samples $N$ out of $N$ with replacement using these weights as multinomial sampling probabilities.

- 'Options' - The value is a structure that contains options specifying whether to compute bootstrap iterations in parallel, and specifying how to use random numbers during the bootstrap sampling. Create the options structure with statset. Applicable statset parameters are:
- 'UseParallel' - If true and if a matlabpool of the Parallel Computing Toolbox is open, compute bootstrap iterations in parallel. If the Parallel Computing Toolbox is not installed, or a matlabpool is not open, computation occurs in serial mode. Default is false, meaning serial computation.
- UseSubstreams - Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.
- Streams - A RandStream object or cell array of such objects. If you do not specify Streams, bootstrp uses the default stream or streams. If you choose to specify Streams, use a single object except in the case
- You have an open MATLAB pool
- UseParallel is true
- UseSubstreams is false

In that case, use a cell array the same size as the MATLAB pool.

## Examples

## Bootstrapping a Correlation Coefficient Standard Error

Load a data set containing the LSAT scores and law-school GPA for 15 students. These 15 data points are resampled to create 1000 different data sets, and the correlation between the two variables is computed for each data set.

```
load lawdata
[bootstat,bootsam] = bootstrp(1000,@corr,lsat,gpa);
```

Display the first 5 bootstrapped correlation coefficients.

```
bootstat(1:5,:)
ans =
 0.6600
 0.7969
 0.5807
 0.8766
 0.9197
```

Display the indices of the data selected for the first 5 bootstrap samples.

| 9 | 8 | 15 | 11 | 15 |
| :---: | :---: | :---: | :---: | :---: |
| 14 | 7 | 6 | 7 | 14 |
| 4 | 6 | 10 | 3 | 11 |
| 3 | 10 | 11 | 9 | 2 |
| 15 | 4 | 13 | 4 | 14 |
| 9 | 4 | 5 | 2 | 10 |
| 8 | 5 | 4 | 3 | 13 |
| 1 | 9 | 1 | 15 | 11 |
| 10 | 8 | 6 | 12 | 3 |
| 1 | 4 | 5 | 2 | 8 |
| 1 | 1 | 10 | 6 | 2 |
| 3 | 10 | 15 | 10 | 8 |
| 14 | 6 | 10 | 3 | 8 |
| 13 | 12 | 1 | 2 | 4 |
| 12 | 6 | 4 | 9 | 8 |
| hist(bo | stat |  |  |  |

## bootstrp



The histogram shows the variation of the correlation coefficient across all the bootstrap samples. The sample minimum is positive, indicating that the relationship between LSAT score and GPA is not accidental.

Finally, compute a bootstrap standard of error for the estimated correlation coefficient.

```
se = std(bootstat)
se =
 0.1327
```


## Estimating the Density of Bootstrapped Statistic

Compute a sample of 100 bootstrapped means of random samples taken from the vector Y , and plot an estimate of the density of these bootstrapped means:

```
y = exprnd(5,100,1);
m = bootstrp(100,@mean,y);
[fi,xi] = ksdensity(m);
plot(xi,fi);
```



## bootstrp

## Bootstrapping More Than One Statistic

Compute a sample of 100 bootstrapped means and standard deviations of random samples taken from the vector Y , and plot the bootstrap estimate pairs:

```
y = exprnd(5,100,1);
stats = bootstrp(100,@(x)[mean(x) std(x)],y);
plot(stats(:,1),stats(:,2),'o')
```



## Bootstrapping a Regression Model

Estimate the standard errors for a coefficient vector in a linear regression by bootstrapping residuals:

```
load hald
x = [ones(size(heat)),ingredients];
y = heat;
b = regress(y,x);
yfit = x*b;
resid = y - yfit;
se = std(bootstrp(...
 1000,@(bootr)regress(yfit+bootr,x),resid));
```

See Also hist | bootci | ksdensity | parfor | random | randsample | RandStream | statget | statset

## boxplot

| Purpose | Box plot |
| :--- | :--- |
| Syntax | boxplot $(X)$ <br>  <br> boxplot $(X, G)$ <br>  <br>  <br>  <br>  <br>  <br>  <br>  |

boxplot $(X)$ produces a box plot of the data in $X$. If $X$ is a matrix, there is one box per column; if $X$ is a vector, there is just one box. On each box, the central mark is the median, the edges of the box are the 25th and 75 th percentiles, the whiskers extend to the most extreme data points not considered outliers, and outliers are plotted individually. For controlling how much the whiskers extend, see the 'whiskers' name-value pair argument.
boxplot $(X, G)$ specifies one or more grouping variables $G$, producing a separate box for each set of $X$ values sharing the same $G$ value or values. Grouping variables must have one row per element of $X$, or one row per column of $X$. Specify a single grouping variable in $G$ using a vector, a character array, a cell array of strings, or a vector categorical array; specify multiple grouping variables in $G$ using a cell array of these variable types, such as \{G1 G2 G3\}, or by using a matrix. If multiple grouping variables are used, they must all be the same length. Groups that contain a NaN value or an empty string in a grouping variable are omitted, and are not counted in the number of groups considered by other parameters.

By default, character and string grouping variables are sorted in the order they initially appear in the data, categorical grouping variables are sorted by the order of their levels, and numeric grouping variables are sorted in numeric order. To control the order of groups, do one of the following:

- Use categorical variables in $G$ and specify the order of their levels.
- Use the 'grouporder' parameter described below.
- Pre-sort your data.
boxplot (axes, $\mathrm{X}, \ldots$ ) creates the plot in the axes with handle axes.


## boxplot

boxplot(..., 'Name', value) specifies one or more optional parameter name/value pairs, as described in the following table. Specify Name in single quotes.

| Name | Value |
| :---: | :---: |
| plotstyle' | - 'traditional' - Traditional box style. This is the default. <br> - 'compact' - Box style designed for plots with many groups. This style changes the defaults for some other parameters, as described in the following table. |
| 'boxstyle' | - 'outline' - Draws an unfilled box with dashed whiskers. This is the default. <br> - 'filled ' - Draws a narrow filled box with lines for whiskers. |
| 'colorgroup ' | One or more grouping variables, of the same type as permitted for $G$, specifying that the box color should change when the specified variables change. The default is [ ] for no box color change. |
| 'colors' | Colors for boxes, specified as a single color (such as ' $r$ ' or [ $\left.\begin{array}{lll}1 & 0 & 0\end{array}\right]$ ) or multiple colors (such as 'rgbm' or a three-column matrix of RGB values). The sequence is replicated or truncated as required, so for example 'rb' gives boxes that alternate in color. The default when no 'colorgroup' is specified is to use the same color scheme for all boxes. The default when 'colorgroup' is specified is a modified hsv colormap. |

## boxplot

| Name | Value |
| :--- | :--- |
| 'datalim' | A two-element vector containing lower and <br> upper limits, used by 'extrememode' to <br> determine which points are extreme. The <br> default is [ - Inf Inf]. |
| 'extrememode' | - 'clip' - Moves data outside the datalim <br> limits to the limit. This is the default. <br> - ' compress' - Evenly distributes data <br> outside the datalim limits in a region just <br> outside the limit, retaining the relative <br> order of the points. |
| A dotted line marks the limit if any points |  |
| are outside it, and two gray lines mark |  |
| the compression region if any points are |  |
| compressed. Values at +/-Inf can be clipped |  |
| or compressed, but NaN values still do not |  |
| appear on the plot. Box notches are drawn to |  |
| scale and may extend beyond the bounds if the |  |
| median is inside the limit; they are not drawn |  |
| if the median is outside the limits. |  |

## boxplot

| Name | Value <br> 'fullfactors' <br> - 'off' — One group for each unique row of <br> - 'on' — Create a group for each possible <br> combination of group variable values, <br> including combinations that do not appear <br> in the data. |
| :--- | :--- |
| 'factorseparator' | Specifies which factors should have their <br> values separated by a grid line. The value <br> may be 'auto' or a vector of grouping variable <br> numbers. For example, [1 2] adds a separator <br> line when the first or second grouping variable <br> changes value. 'auto' is [ ] for one grouping <br> variable and [1] for two or more grouping <br> variables. The default is [ ]. |
| 'factorgap' | Specifies an extra gap to leave between boxes <br> when the corresponding grouping factor <br> changes value, expressed as a percentage of <br> the width of the plot. For example, with [3 1], <br> the gap is 3\% of the width of the plot between <br> groups with different values of the first <br> grouping variable, and 1\% between groups <br> with the same value of the first grouping <br> variable but different values for the second. <br> 'auto' specifies that boxplot should choose a <br> gap automatically. The default is [ ]. |
| 'grouporder' | Order of groups for plotting, specified as a <br> cell array of strings. With multiple grouping <br> variables, separate values within each string <br> with a comma. Using categorical arrays as <br> grouping variables is an easier way to control <br> the order of the boxes. The default is [ ], which <br> does not reorder the boxes. |

## boxplot

| Name | Value |
| :---: | :---: |
| 'jitter' | Maximum distance $d$ to displace outliers along the factor axis by a uniform random amount, in order to make duplicate points visible. A $d$ of 1 makes the jitter regions just touch between the closest adjacent groups. The default is 0 . |
| 'labels' | A character array, cell array of strings, or numeric vector of box labels. There may be one label per group or one label per X value. Multiple label variables may be specified via a numeric matrix or a cell array containing any of these types. |
|  | Tip To remove labels from a plot, use the following command: <br> set(gca,'XTickLabel', \{' '\}) |
| 'labelorientation' | - 'inline ' - Rotates the labels to be vertical. This is the default when plotstyle is 'compact'. <br> - 'horizontal' - Leaves the labels horizontal. This is the default when plotstyle has the default value of 'traditional'. <br> When the labels are on the $y$ axis, both settings leave the labels horizontal. |


| Name | Value |
| :---: | :---: |
| 'labelverbosity' | - 'all' - Displays every label. This is the default. <br> - 'minor' - Displays a label for a factor only when that factor has a different value from the previous group. <br> - 'majorminor' - Displays a label for a factor when that factor or any factor major to it has a different value from the previous group. |
| 'medianstyle' | - 'line ' - Draws a line for the median. This is the default. <br> - 'target' - Draws a black dot inside a white circle for the median. |
| 'notch ' | - 'on' - Draws comparison intervals using notches when plotstyle is 'traditional', or triangular markers when plotstyle is 'compact'. <br> - 'marker' - Draws comparison intervals using triangular markers. <br> - 'off' - Omits notches. This is the default. <br> Two medians are significantly different at the $5 \%$ significance level if their intervals do not overlap. Interval endpoints are the extremes of the notches or the centers of the triangular markers. The extremes correspond to $q_{2}-1.57\left(q_{3}-q_{1}\right) / \operatorname{sqrt}(n)$ and $q_{2}+1.57\left(q_{3}\right.$ $\left.-q_{1}\right) / \operatorname{sqrt}(n)$, where $q_{2}$ is the median (50th percentile), $q_{1}$ and $q_{3}$ are the 25 th and 75 th percentiles, respectively, and $n$ is the number of observations without any NaN values. When |

## boxplot

| Name | Value |
| :---: | :---: |
|  | the sample size is small, notches may extend beyond the end of the box. |
| 'orientation' | - 'vertical' - Plots X on the $y$ axis. This is the default. <br> - 'horizontal' - Plots X on the $x$ axis. |
| 'outliersize' | Size of the marker used for outliers, in points. The default is 6 ( $6 / 72$ inch). |
| 'positions' | Box positions specified as a numeric vector with one entry per group or X value. The default is 1 : numGroups, where numGroups is the number of groups. |
| 'symbol' | Symbol and color to use for outliers, using the same values as the LineSpec parameter in plot. The default is ' $r+$ '. If the symbol is omitted then the outliers are invisible; if the color is omitted then the outliers have the same color as their corresponding box. |
| 'whisker' | Maximum whisker length $w$. The default is a $w$ of 1.5. Points are drawn as outliers if they are larger than $q_{3}+w\left(q_{3}-q_{1}\right)$ or smaller than $q_{1}-w\left(q_{3}-q_{1}\right)$, where $q_{1}$ and $q_{3}$ are the 25th and 75 th percentiles, respectively. The default of 1.5 corresponds to approximately $+/-2.7 \sigma$ and 99.3 coverage if the data are normally distributed. The plotted whisker extends to the adjacent value, which is the most extreme data value that is not an outlier. Set whisker to 0 to give no whiskers and to make every point outside of $q_{1}$ and $q_{3}$ an outlier. |
| 'widths' | A scalar or vector of box widths for when boxstyle is 'outline'. The default is half of the minimum separation between boxes, |

## boxplot

| Name | Value |
| :--- | :--- |
|  | which is 0.5 when the positions argument <br> takes its default value. The list of values is <br> replicated or truncated as necessary. |

When the plotstyle parameter takes the value 'compact', the following default values for other parameters apply.

| Parameter | Default when plotstyle is 'compact' |
| :--- | :--- |
| 'boxstyle' | 'filled' |
| 'factorseparator' | 'auto' |
| 'factorgap' | 'auto' |
| 'jitter' | 0.5 |
| 'labelorientation' | 'inline' |
| 'labelverbosity' | 'majorminor' |
| 'medianstyle' | 'target' |
| 'outliersize' | 4 |
| 'symbol' | 'o' |

You can see data values and group names using the data cursor in the figure window. The cursor shows the original values of any points affected by the datalim parameter. You can label the group to which an outlier belongs using the gname function.

To modify graphics properties of a box plot component, use findobj with the Tag property to find the component's handle. Tag values for box plot components depend on parameter settings, and are listed in the table below.

## boxplot

| Parameter Settings | Tag Values |
| :---: | :---: |
| All settings | - 'Box' <br> - 'Outliers' |
| When 'plotstyle' is 'traditional' | - 'Median' <br> - 'Upper Whisker' <br> - 'Lower Whisker' <br> - 'Upper Adjacent Value' <br> - 'Lower Adjacent Value' |
| When 'plotstyle' is 'compact' | - 'Whisker' <br> - 'MedianOuter' <br> - 'MedianInner' |
| When 'notch' is 'marker' | - 'NotchLo' <br> - 'NotchHi' |

## Examples Example 1

Create a box plot of car mileage, grouped by country:
load carsmall
boxplot(MPG,Origin)


## Example 2

Create notched box plots for two groups of sample data:
$\mathrm{x} 1=\operatorname{normrnd}(5,1,100,1)$;
x2 = normrnd(6,1,100,1);
boxplot([x1, x2],'notch','on')

## boxplot



The difference between the medians of the two groups is approximately 1. Since the notches in the box plot do not overlap, you can conclude, with $95 \%$ confidence, that the true medians do differ.

The following figure shows the box plot for the same data with the length of the whiskers specified as 1.0 times the interquartile range. Points beyond the whiskers are displayed using +.

```
boxplot([x1,x2],'notch','on','whisker',1)
```



## Example 3

A plotstyle of 'compact' is useful for large numbers of groups:
X = randn(100,25);
subplot (2, 1, 1)
boxplot(X)
subplot (2, 1, 2)
boxplot(X,'plotstyle','compact')

## boxplot




## References

[1] McGill, R., J. W. Tukey, and W. A. Larsen. "Variations of Boxplots." The American Statistician. Vol. 32, No. 1, 1978, pp. 12-16.
[2] Velleman, P.F., and D.C. Hoaglin. Applications, Basics, and Computing of Exploratory Data Analysis. Pacific Grove, CA: Duxbury Press, 1981.
[3] Nelson, L. S. "Evaluating Overlapping Confidence Intervals." Journal of Quality Technology. Vol. 21, 1989, pp. 140-141.

See Also anova1 | axes_props | kruskalwallis | multcompare

## piecewisedistribution.boundary

```
Purpose Piecewise distribution boundaries
Syntax \(\quad \begin{aligned} & {[p, q]=\text { boundary }(o b j)} \\ & {[p, q]=\operatorname{boundary}(o b j, i)}\end{aligned}\)
Description \([p, q]=\) boundary \((o b j)\) returns the boundary points between
segments of the piecewise distribution object, obj. p is a vector of
cumulative probabilities at each boundary. \(q\) is a vector of quantiles at
each boundary.
\([p, q]=\) boundary (obj,i) returns \(p\) and \(q\) for the \(i\) th boundary.
Examples \(\quad\) Fit Pareto tails to a \(t\) distribution at cumulative probabilities 0.1 and
0.9:
\(\mathrm{t}=\operatorname{trnd}(3,100,1)\);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj)
\(p=\)
 0.1000
 0.9000
q \(=\)
 -1.7766
 1.8432
See Also paretotails | cdf | icdf | nsegments
```


## Superclasses ToolboxFittableParametricDistribution

## Purpose

Burr probability distribution object
Description prob.BurrDistribution is an object consisting of parameters, a model description, and sample data for a Burr probability distribution.

Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

## Construction

pd = makedist('Burr') creates a Burr probability distribution object
using the default parameter values.
pd = makedist('Burr','alpha',alpha,'c', c,'k',k) creates a Burr probability distribution object using the specified parameter values.

## Input Arguments

## alpha-Scale parameter

1 (default) | positive scalar value
Scale parameter of the Burr distribution, specified as a positive scalar value.

## Data Types

single | double

## c- First shape parameter

1 (default) | positive scalar value
First shape parameter of the Burr distribution, specified as a positive scalar value.

## Data Types

single | double
k - Second shape parameter
1 (default) | positive scalar value

## prob.BurrDistribution

Second shape parameter of the Burr distribution, specified as a positive scalar value.

Data Types<br>single | double

## Properties

## alpha

Scale parameter of the Burr distribution, stored as a positive scalar value.

```
Data Types
single | double
```

c
First shape parameter of the Burr distribution, stored as a positive scalar value.

## Data Types <br> single | double

k
Second shape parameter of the Burr distribution, stored as a positive scalar value.

## Data Types <br> single | double

## DistributionName

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

## Data Types <br> char

## InputData

Data used for distribution fitting, stored as a structure containing the following:

- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.

## Data Types

single | double

## IsTruncated

Logical flag for truncated distribution, stored as a logical value.
If IsTruncated equals 0 , the distribution is not truncated.
If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

## Data Types

logical

## NumParameters

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

## Data Types

single | double

## ParameterCovariance

Covariance matrix of the parameter estimates, stored as a $p$-by- $p$ matrix, where $p$ is the number of parameters in the distribution. The ( $\mathrm{i}, \mathrm{j}$ ) element is the covariance between the estimates of the ith parameter and the $j$ th parameter. The ( $i, i$ ) element is the estimated variance of the ith parameter. If parameter $i$ is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

## Data Types

single | double

## ParameterDescription

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

## Data Types <br> char

## ParameterlsFixed

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

## Data Types

logical

## ParameterNames

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

## Data Types <br> char <br> ParameterValues

Values of distribution parameters, stored as a vector. This property is read-only.

## Data Types

single | double

## Truncation

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

Data Types<br>single | double

| Methods | Inherited Methods |  |
| :---: | :---: | :---: |
|  | cdf | Cumulative distribution function of probability distribution object |
|  | icdf | Inverse cumulative distribution function of probability distribution object |
|  | iqr | Interquartile range of probability distribution object |
|  | median | Median of probability distribution object |
|  | pdf | Probability density function of probability distribution object |
|  | random | Generate random numbers from probability distribution object |
|  | truncate | Truncate probability distribution object |
|  | mean | Mean of probability distribution object |
|  | negloglik | Negative loglikelihood of probability distribution object |
|  | paramci | Confidence intervals for probability distribution parameters |
|  | proflik | Profile likelihood function for probability distribution object |
|  | std | Standard deviation of probability distribution object |
|  | var | Variance of probability distribution object |

## prob.BurrDistribution

## Definitions

## Burr Distribution

The Burr distribution is a three-parameter family of distributions on the positive real line. It can fit a wide range of empirical data, and is used in various fields such as finance, hydrology, and reliability to model a variety of data types.

The Burr distribution uses the following parameters.

| Parameter | Description | Support |
| :--- | :--- | :--- |
| alpha | Scale parameter | $\alpha>0$ |
| c | First shape <br> parameter | $c>0$ |
| k | Second shape <br> parameter | $k>0$ |

The probability density function (pdf) is

$$
f(x \mid \alpha, c, k)=\frac{\frac{k c}{\alpha}\left(\frac{x}{\alpha}\right)^{c-1}}{\left(1+\left(\frac{x}{\alpha}\right)^{c}\right)^{k+1}} ; x>0 .
$$

## Examples Create a Burr Distribution Object Using Default Parameters

Create a Burr distribution object using the default parameter values.
pd = makedist('Burr')
pd $=$

BurrDistribution

```
Burr distribution
 alpha = 1
 c = 1
 k = 1
```


## Create a Burr Distribution Object Using Specified Parameters

Create a Burr distribution object by specifying parameter values.

```
pd = makedist('Burr','alpha',1,'c',2,'k',5)
pd =
```

    BurrDistribution
    Burr distribution
        alpha = 1
            \(c=2\)
            \(k=5\)
    Compute the mean of the distribution.
$\mathrm{m}=\mathrm{mean}(\mathrm{pd})$
$\mathrm{m}=$
0.4295
See Also makedist | fitdist | dfittool

## Concepts <br> - "Burr Type XII Distribution" on page B-12

- Class Attributes
- Property Attributes

Purpose $\quad D$-optimal design from candidate set using row exchanges

```
Syntax
rlist = candexch(C,nrows)
rlist = candexch(C, nrows, Name, Value)
```

Description rlist $=$ candexch(C, nrows) uses a row-exchange algorithm to select a $D$-optimal design from the candidate set C .
rlist $=$ candexch (C, nrows, Name, Value) generates a $D$-optimal design with additional options specified by one or more Name, Value pair arguments.

## Input <br> Arguments

## C

N -by- P matrix containing the values of P model terms at each of N points.

## nrows

The desired number of rows in the design.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

## 'display'

When 'on ', displays iteration number. Disable the display by setting to 'off'.

Default: ' on ', except when the UseParallel option is true

## 'init'

nrows-by-P matrix giving an initial design.
Default: A random subset of the rows of C

## 'maxiter'

Maximum number of iterations, a positive integer.
Default: 10

## 'options'

A structure that specifies whether to run in parallel, and specifies the random stream or streams. Create the options structure with statset. Option fields:

- UseParallel - Set to true to compute in parallel. Default is false.
- UseSubstreams - Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.
- Streams - A RandStream object or cell array of such objects. If you do not specify Streams, candexch uses the default stream or streams. If you choose to specify Streams, use a single object except in the case
- You have an open MATLAB pool
- UseParallel is true
- UseSubstreams is false

In that case, use a cell array the same size as the MATLAB pool.

## Default: []

## 'start'

An nobs-by- $p$ matrix of factor settings, specifying a set of nobs fixed design points to include in the design. candexch finds nrows additional rows to add to the start design. The parameter provides the same functionality as the daugment function, using a row-exchange algorithm rather than a coordinate-exchange algorithm.

Default: []

## 'tries'

Number of times to try to generate a design from a new starting point. The algorithm uses random points for each try, except possibly the first.

## Default: 1

## Output Arguments

## Examples

## rlist

Vector of length nrows listing the selected rows.

This example shows how to generate a $D$-optimal design when there is a restriction on the candidate set, so the rowexch function isn't appropriate.

```
F = (fullfact([5 5 5])-1)/4; % factor settings in unit cube
T = sum(F,2)<=1.51; % find rows matching a restriction
F = F(T,:); % take only those rows
C = [ones(size(F,1),1) F F.^2];
 % compute model terms including
 % a constant and all squared terms
R = candexch(C,12); % find a D-optimal 12-point subset
X = F(R,:); % get factor settings
```

candexch selects a starting design $X$ at random, and uses a row-exchange algorithm to iteratively replace rows of $X$ by rows of $C$ in an attempt to improve the determinant of $\mathrm{X}^{\prime *} \mathrm{X}$.

## Algorithms

Alternatives

See AlsoAlternatives

The rowexch function also generates $D$-optimal designs using a row-exchange algorithm, but it automatically generates a candidate set that is appropriate for a specified model. The daugment function augments a set of fixed design points using a coordinate-exchange algorithm; the 'start' parameter provides the same functionality using the row exchange algorithm.

```
candgen | rowexch | cordexch | daugment | x2fx
```

Tutorials . "Specify Candidate Sets" on page 17-21<br>How To - "D-Optimal Designs" on page 17-15

Purpose Candidate set generation

```
Syntax dC = candgen(nfactors,'model')
[dC,C] = candgen(nfactors,'model')
[...] = candgen(nfactors,'model','Name',value)
```


## Description

dC = candgen(nfactors,'model') generates a candidate set dC of treatments appropriate for estimating the parameters in the model with nfactors factors. dC has nfactors columns and one row for each candidate treatment. model is one of the following strings, specified inside single quotes:

- linear - Constant and linear terms. This is the default.
- interaction - Constant, linear, and interaction terms
- quadratic - Constant, linear, interaction, and squared terms
- purequadratic - Constant, linear, and squared terms

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In this case, model should have one column for each factor and one row for each term in the model. The entries in any row of model are powers for the factors in the columns. For example, if a model has factors $\mathrm{X} 1, \mathrm{X} 2$, and X 3 , then a row [ $0 \begin{array}{ll}0 & 1\end{array} 2$ ] in model specifies the term (X1.^0) .* (X2.^1) .* (X3.^2). A row of all zeros in model specifies a constant term, which can be omitted.
[dC, C] = candgen(nfactors,'model') also returns the design matrix $C$ evaluated at the treatments in $d C$. The order of the columns of $C$ for a full quadratic model with $n$ terms is:

1 The constant term
2 The linear terms in order $1,2, \ldots, n$
3 The interaction terms in order (1, 2), (1, 3), $\ldots,(1, n),(2,3), \ldots,(n-1, n)$
4 The squared terms in order $1,2, \ldots, n$

Other models use a subset of these terms, in the same order.
Pass C to candexch to generate a $D$-optimal design using a coordinate-exchange algorithm.
[...] = candgen(nfactors,'model','Name',value) specifies one or more optional name/value pairs for the design. Valid parameters and their values are listed in the following table. Specify Name inside single quotes.

| Name | Value |
| :--- | :--- |
| bounds | Lower and upper bounds for each factor, specified as <br> a 2-by-nfactors matrix. Alternatively, this value <br> can be a cell array containing nfactors elements, <br> each element specifying the vector of allowable <br> values for the corresponding factor. |
| categorical | Indices of categorical predictors. |
| levels | Vector of number of levels for each factor. |

Note The rowexch function automatically generates a candidate set using candgen, and then creates a $D$-optimal design from that candidate set using candexch. Call candexch separately to specify your own candidate set to the row-exchange algorithm.

## Examples

The following example uses rowexch to generate a five-run design for a two-factor pure quadratic model using a candidate set that is produced internally:

```
dRE1 = rowexch(2,5,'purequadratic','tries',10)
dRE1 =
 -1 1
 0
 1 -1
 0
```

$1 \quad 1$

The same thing can be done using candgen and candexch in sequence:

```
[dC,C] = candgen(2,'purequadratic') % Candidate set, C
dC =
 -1 -1
 0 -1
 1 -1
 -1 0
 0
 0
 -1 1
 0 1
 1 1
C =
\begin{tabular}{rrrrr}
1 & -1 & -1 & 1 & 1 \\
1 & 0 & -1 & 0 & 1 \\
1 & 1 & -1 & 1 & 1 \\
1 & -1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
1 & -1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 1
\end{tabular}
treatments = candexch(C,5,'tries',10) % Find D-opt subset
treatments =
 2
 1
 7
 3
 4
dRE2 = dC(treatments,:) % Display design
dRE2 =
 0 -1
 -1 -1
 -1 1
```

| 1 | -1 |
| ---: | ---: |
| -1 | 0 |

See Also candexch | rowexch

| Purpose | Canonical correlation |
| :--- | :--- |
| Syntax | $[A, B]=$ canoncorr $(X, Y)$ |
|  | $[A, B, r]=$ canoncorr $(X, Y)$ |
|  | $[A, B, r, U, V]=$ canoncorr $(X, Y)$ |
|  | $[A, B, r, U, V$, stats $]=$ canoncorr $(X, Y)$ |

## Description

$[A, B]=$ canoncorr $(X, Y)$ computes the sample canonical coefficients for the $n$-by-d1 and $n$-by-d2 data matrices $X$ and $Y$. $X$ and $Y$ must have the same number of observations (rows) but can have different numbers of variables (columns). A and B are d1-by-d and d2-by-d matrices, where $d=\min (\operatorname{rank}(X), \operatorname{rank}(Y))$. The $j$ th columns of $A$ and $B$ contain the canonical coefficients, i.e., the linear combination of variables making up the $j$ th canonical variable for $X$ and $Y$, respectively. Columns of $A$ and $B$ are scaled to make the covariance matrices of the canonical variables the identity matrix (see $U$ and $V$ below). If $X$ or $Y$ is less than full rank, canoncorr gives a warning and returns zeros in the rows of A or $B$ corresponding to dependent columns of $X$ or $Y$.
$[A, B, r]=$ canoncorr $(X, Y)$ also returns a 1-by-d vector containing the sample canonical correlations. The $j$ th element of $r$ is the correlation between the $j$ th columns of $U$ and $V$ (see below).
$[A, B, r, U, V]=$ canoncorr $(X, Y)$ also returns the canonical variables, scores. $U$ and $V$ are $n$-by- $d$ matrices computed as
$U=(X-r e p m a t(m e a n(X), N, 1)) * A$
$V=(Y$-repmat $(\operatorname{mean}(Y), N, 1)) * B$
$[\mathrm{A}, \mathrm{B}, \mathrm{r}, \mathrm{U}, \mathrm{V}, \mathrm{stats}]=$ canoncorr$(\mathrm{X}, \mathrm{Y})$ also returns a structure stats containing information relating to the sequence of $d$ null
hypotheses $H_{0}^{(k)}$, that the ( $\mathrm{k}+1$ ) st through dth correlations are all zero, for $k=0:(d-1)$. stats contains seven fields, each a 1-by-d vector with elements corresponding to the values of $k$, as described in the following table:

| Field | Description |
| :--- | :--- |
| Wilks | Wilks' lambda (likelihood ratio) statistic |
| chisq | Bartlett's approximate chi-squared statistic for $H_{0}^{(k)}$ <br> with Lawley's modification |
| pChisq | Right-tail significance level for chisq |
| F | Rao's approximate $F$ statistic for $H_{0}^{(k)}$ |
| pF | Right-tail significance level for $F$ |
| df1 | Degrees of freedom for the chi-squared statistic, and <br> the numerator degrees of freedom for the $F$ statistic |
| df2 | Denominator degrees of freedom for the $F$ statistic |

```
Examples load carbig;
X = [Displacement Horsepower Weight Acceleration MPG];
nans = sum(isnan(X),2) > 0;
[A B r U V] = canoncorr(X(~nans,1:3),X(~nans,4:5));
plot(U(:,1),V(:,1),'.')
xlabel('0.0025*Disp+0.020*HP-0.000025*Wgt')
ylabel('-0.17*Accel-0.092*MPG')
```



## References <br> [1] Krzanowski, W. J. Principles of Multivariate Analysis: A User's

Perspective. New York: Oxford University Press, 1988.
[2] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley \& Sons, Inc., 1984.

See Also

manova1 | pca

## Purpose

Process capability indices
Syntax $\quad S=$ capability (data, specs)
Description
$S=$ capability(data, specs) estimates capability indices for measurements in data given the specifications in specs. data can be either a vector or a matrix of measurements. If data is a matrix, indices are computed for the columns. specs can be either a two-element vector of the form [ $\mathrm{L}, \mathrm{U}$ ] containing lower and upper specification limits, or (if data is a matrix) a two-row matrix with the same number of columns as data. If there is no lower bound, use - Inf as the first element of specs. If there is no upper bound, use Inf as the second element of specs.

The output S is a structure with the following fields:

- mu - Sample mean
- sigma - Sample standard deviation
- P — Estimated probability of being within limits
- Pl - Estimated probability of being below L
- Pu - Estimated probability of being above U
- Cp - (U-L)/(6*sigma)
- Cpl-(mu-L)./(3.*sigma)
- Cpu - (U-mu)./(3.*sigma)
- Cpk - min (Cpl, Cpu)

Indices are computed under the assumption that data values are independent samples from a normal population with constant mean and variance.

Indices divide a "specification width" (between specification limits) by a "process width" (between control limits). Higher ratios indicate a process with fewer measurements outside of specification.

Examples Simulate a sample from a process with a mean of 3 and a standard deviation of 0.005 :
data $=$ normrnd (3, 0.005, 100, 1);
Compute capability indices if the process has an upper specification limit of 3.01 and a lower specification limit of 2.99:

```
S = capability(data,[2.99 3.01])
S =
 mu: 3.0006
 sigma: 0.0047
 P: 0.9669
 Pl: 0.0116
 Pu: 0.0215
 Cp: 0.7156
 Cpl: 0.7567
 Cpu: 0.6744
 Cpk: 0.6744
```

Visualize the specification and process widths:

```
capaplot(data,[2.99 3.01]);
grid on
```



## References <br> [1] Montgomery, D. Introduction to Statistical Quality Control. Hoboken, NJ: John Wiley \& Sons, 1991, pp. 369-374.

## See Also

capaplot | histfit

Purpose Process capability plot

| Syntax | $p=$ capaplot(data, specs) |
| :--- | :--- |
| $[p, h]=\operatorname{capaplot}($ data, $s p e c s)$ |  |

Description
$p=$ capaplot(data, specs) estimates the mean of and variance for the observations in input vector data, and plots the pdf of the resulting T distribution. The observations in data are assumed to be normally distributed. The output, $p$, is the probability that a new observation from the estimated distribution will fall within the range specified by the two-element vector specs. The portion of the distribution between the lower and upper bounds specified in specs is shaded in the plot.
[ $p, h$ ] = capaplot(data, specs) additionally returns handles to the plot elements in $h$.
capaplot treats NaN values in data as missing, and ignores them.

## Examples

Simulate a sample from a process with a mean of 3 and a standard deviation of 0.005 :

```
data = normrnd(3,0.005,100,1);
```

Compute capability indices if the process has an upper specification limit of 3.01 and a lower specification limit of 2.99:

```
S = capability(data,[2.99 3.01])
S =
 mu: 3.0006
 sigma: 0.0047
 P: 0.9669
 Pl: 0.0116
 Pu: 0.0215
 Cp: 0.7156
 Cpl: 0.7567
 Cpu: 0.6744
 Cpk: 0.6744
```

Visualize the specification and process widths:

```
capaplot(data,[2.99 3.01]);
grid on
```

Probability Between Limits $=0.96688$


See Also
capability | histfit

Purpose Read case names from file

```
Syntax names = caseread('filename')
names = caseread
```

names $=$ caseread('filename') reads the contents of filename and returns a string matrix of names. filename is the name of a file in the current folder, or the complete path name of any file elsewhere. caseread treats each line as a separate case.
names $=$ caseread displays the Select File to Open dialog box for interactive selection of the input file.

## Examples <br> Read the file months. dat created using the casewrite function.

type months.dat

January
February
March
April
May
names $=$ caseread('months.dat')
names =
January
February
March
April
May
See Also casewrite | gname | tdfread | tblread
Purpose Write case names to file
Syntax casewrite(strmat,'filename') casewrite(strmat)
Description casewrite(strmat, 'filename') writes the contents of string matrixstrmat to filename. Each row of strmat represents one case name.filename is the name of a file in the current folder, or the completepath name of any file elsewhere. casewrite writes each name to aseparate line in filename.
casewrite(strmat) displays the Select File to Write dialog box for interactive specification of the output file.
Examples
strmat = char('January','February',...
'March','April','May')
strmat =
January
February
March
April
May
casewrite(strmat,'months.dat')type months.dat
January
February
March
April
May
See Also ..... gname | caseread | tblwrite | tdfread

Purpose Concatenate categorical arrays

$$
\text { Syntax } \quad c=\operatorname{cat}(\operatorname{dim}, A, B, \ldots)
$$

Description $\quad c=\operatorname{cat}(\operatorname{dim}, A, B, \ldots)$ concatenates the categorical arrays $A, B, \ldots$ along dimension dim. All inputs must have the same size except along dimension dim. The set of categorical levels for C is the sorted union of the sets of levels of the inputs, as determined by their labels.

See Also
cat | horzcat | vertcat

## Purpose <br> Description

## Construction

categorical
addlevels
cat
cellstr
char
circshift
ctranspose
disp
display
double
droplevels
end

Create categorical array

Add levels to categorical array Concatenate categorical arrays Convert categorical array to cell array of strings

Convert categorical array to character array

Shift categorical array circularly
Transpose categorical matrix
Display categorical array
Display categorical array
Convert categorical array to double array
Drop levels
Last index in indexing expression for categorical array

| flipdim | Flip categorical array along <br> specified dimension |
| :--- | :--- |
| fliplr | Flip categorical matrix in <br> left/right direction |
| flipud | Flip categorical matrix in <br> up/down direction |
| getlabels | Access categorical array labels |
| getlevels | Get categorical array levels |
| hist | Plot histogram of categorical data |
| horzcat | Horizontal concatenation for <br> categorical arrays |
| int16 | Convert categorical array to <br> signed 16-bit integer array |
| int32 | Convert categorical array to <br> signed 32-bit integer array |
| int64 | Convert categorical array to <br> signed 64-bit integer array |
| int8 | Convert categorical array to <br> signed 8-bit integer array |
| intersect | Set intersection for categorical <br> arrays |
| ipermute | Inverse permute dimensions of <br> categorical array |
| isempty | True for empty categorical array |
| isequal | True if categorical arrays are <br> equal |
| islevel | Test for levels |
| ismember | True for elements of categorical <br> array in set |


| isscalar | True if categorical array is scalar |
| :--- | :--- |
| isundefined | Test for undefined elements |
| isvector | True if categorical array is vector |
| length | Length of categorical array <br> levelcounts <br> ndims |
| Element counts by level |  |
| numel | Number of dimensions of <br> categorical array |
| permute | Number of elements in categorical <br> array |
| reorderlevels | Permute dimensions of <br> categorical array |
| repmat | Reorder levels |
| reshape | Replicate and tile categorical <br> array |
| rot90 | Resize categorical array |
| setdiff | Rotate categorical matrix 90 <br> degrees |
| setlabels | Set difference for categorical <br> arrays |
| setxor | Label levels <br> Set exclusive-or for categorical |
| shiftdim | arrays <br> Shift dimensions of categorical <br> array |
| single | Convert categorical array to <br> single array <br> Size of categorical array |
| size |  |


|  | squeeze | Squeeze singleton dimensions from categorical array |
| :---: | :---: | :---: |
|  | subsasgn | Subscripted assignment for categorical array |
|  | subsindex | Subscript index for categorical array |
|  | subsref | Subscripted reference for categorical array |
|  | summary | Summary statistics for categorical array |
|  | times | Product of categorical arrays |
|  | transpose | Transpose categorical matrix |
|  | uint16 | Convert categorical array to unsigned 16-bit integers |
|  | uint32 | Convert categorical array to unsigned 32 -bit integers |
|  | uint64 | Convert categorical array to unsigned 64-bit integers |
|  | uint8 | Convert categorical array to unsigned 8-bit integers |
|  | union | Set union for categorical arrays |
|  | unique | Unique values in categorical array |
|  | vertcat | Vertical concatenation for categorical arrays |
| Properties | labels | Text labels for levels |
|  | undeflabel | Text label for undefined levels |

Copy
Semantics

How To

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes in the MATLAB Object-Oriented Programming documentation.

- "Categorical Arrays" on page 2-41

Purpose Create categorical array
Description $\begin{aligned} & \text { categorical is an abstract class, and you cannot create instances of it } \\ & \text { directly. You must create nominal or ordinal arrays. }\end{aligned}$
See Also nominal | ordinal

Purpose Concatenate dataset arrays

$$
\text { Syntax } \quad d s=\text { cat (dim, ds1, ds2, ...) }
$$

Description ds = cat(dim, ds1, ds2, ...) concatenates the dataset arrays ds1, ds2, ... along dimension dim by calling the dataset/horzcat or dataset/vertcat method. dim must be 1 or 2 .

See Also horzcat | vertcat

## classregtree.catsplit

Purpose Categorical splits used for branches in decision tree

```
Syntax
v=catsplit(t)
v=catsplit(t,j)
```

Description
v=catsplit(t) returns an n-by-2 cell array v. Each row in v gives left and right values for a categorical split. For each branch node $j$ based on a categorical predictor variable $z$, the left child is chosen if $z$ is in $v(j, 1)$ and the right child is chosen if $z$ is in $v(j, 2)$. The splits are in the same order as nodes of the tree. Nodes for these splits can be found by running cuttype and selecting 'categorical' cuts from top to bottom. $\mathrm{v}=\mathrm{catsplit}(\mathrm{t}, \mathrm{j})$ takes an array j of rows and returns the splits for the specified rows.

See Also<br>classregtree

## Purpose

Cumulative distribution function for Gaussian mixture distribution

## Syntax <br> $y=\operatorname{cdf}(o b j, X)$

$y=\operatorname{cdf}(o b j, X)$ returns a vector $y$ of length $n$ containing the values of the cumulative distribution function (cdf) for the gmdistribution object obj, evaluated at the $n$-by- $d$ data matrix X , where $n$ is the number of observations and $d$ is the dimension of the data. obj is an object created by gmdistribution or fit. $\mathrm{y}(\mathrm{I})$ is the cdf of observation I.

Examples Create a gmdistribution object defining a two-component mixture of bivariate Gaussian distributions:

```
MU = [1 2;-3 -5];
SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]);
p = ones(1,2)/2;
obj = gmdistribution(MU,SIGMA,p);
ezsurf(@(x,y)cdf(obj,[x y]),[-10 10],[-10 10])
```


## gmdistribution.cdf



## See Also

gmdistribution | fit | pdf | mvncdf

Purpose
Central composite design
Syntax

```
dCC = ccdesign(n)
[dCC,blocks] = ccdesign(n)
[...] = ccdesign(n,'Name',value)
```


## Description

dCC $=\operatorname{ccdesign}(\mathrm{n})$ generates a central composite design for n factors. n must be an integer 2 or larger. The output matrix dCC is $m$-by-n, where $m$ is the number of runs in the design. Each row represents one run, with settings for all factors represented in the columns. Factor values are normalized so that the cube points take values between -1 and 1 .
[dCC,blocks] = ccdesign(n) requests a blocked design. The output blocks is an $m$-by- 1 vector of block numbers for each run. Blocks indicate runs that are to be measured under similar conditions to minimize the effect of inter-block differences on the parameter estimates.
[...] = ccdesign(n, 'Name', value) specifies one or more optional name/value pairs for the design. Valid parameters and their values are listed in the following table. Specify Name in single quotes.

| Parameter | Description | Values | Value <br> Description |
| :--- | :--- | :--- | :--- |
| center | Number of <br> center points. | Integer | Number of center <br> points to include. |
|  |  | 'uniform' | Select number <br> of center points <br> to give uniform <br> precision. |
|  |  | 'orthogonal' | Select number of <br> center points to <br> give an orthogonal <br> design. This is the <br> default. |


| Parameter | Description | Values | Value Description |
| :---: | :---: | :---: | :---: |
| fraction | Fraction of full-factorial cube, expressed as an exponent of $1 / 2$. | 0 | Whole design. Default when $\mathrm{n} \leq$ 4. |
|  |  | 1 | 1/2 fraction. Default when $4<n \leq 7$ or $n>11$. |
|  |  | 2 | 1/4 fraction. Default when $7<\mathrm{n} \leq 9$ |
|  |  | 3 | 1/8 fraction. Default when $\mathrm{n}=10$. |
|  |  | 4 | 1/16 fraction. Default when n $=11$. |
| type | Type of CCD. | 'circumscrib | dCircumscribed (CCC). This is the default. |
|  |  | 'inscribed' | Inscribed (CCI). |
|  |  | 'faced' | Faced (CCF). |
| blocksize | Maximum number of points per block. | Integer | The default is Inf. |

Examples The following creates a 2 -factor CCC:

```
dCC = ccdesign(2,'type','circumscribed')
dCC =
 -1.0000 -1.0000
```

| -1.0000 | 1.0000 |
| ---: | ---: |
| 1.0000 | -1.0000 |
| 1.0000 | 1.0000 |
| -1.4142 | 0 |
| 1.4142 | 0 |
| 0 | -1.4142 |
| 0 | 1.4142 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |

The center point is run 8 times to reduce the correlations among the coefficient estimates.

Visualize the design as follows:

```
plot(dCC(:,1),dCC(:,2),'ro','MarkerFaceColor','b')
X = [1 -1 -1 -1; 1 1 1 -1];
Y = [-1 -1 1 -1; 1 -1 1 1];
line(X,Y,'Color','b')
axis square equal
```



See Also
bbdesign

## Purpose Cumulative distribution functions

Syntax $\quad Y=\operatorname{cdf}\left(\right.$ ' $^{\prime}$ name $\left.{ }^{\prime}, X, A\right)$
$Y=c d f(' n a m e ', X, A, B)$
$Y=\operatorname{cdf}('$ name', $X, A, B, C)$

## Description

$Y=\operatorname{cdf}($ ' name', $X, A)$ computes the cumulative distribution function for the one-parameter family of distributions specified by name. A contains parameter values for the distribution. The cumulative distribution function is evaluated at the values in $X$ and its values are returned in Y .

If $X$ and $A$ are arrays, they must be the same size. If $X$ is a scalar, it is expanded to a constant matrix the same size as $A$. If A is a scalar, it is expanded to a constant matrix the same size as $X$.
$Y$ is the common size of $X$ and $A$ after any necessary scalar expansion.
$Y=\operatorname{cdf}($ ' name' $, X, A, B)$ computes the cumulative distribution function for two-parameter families of distributions, where parameter values are given in $A$ and $B$.

If $X, A$, and $B$ are arrays, they must be the same size. If $X$ is a scalar, it is expanded to a constant matrix the same size as $A$ and $B$. If either $A$ or $B$ are scalars, they are expanded to constant matrices the same size as $X$.
$Y$ is the common size of $X, A$, and $B$ after any necessary scalar expansion.
$Y=\operatorname{cdf}($ ' $n a m e ', X, A, B, C)$ computes the cumulative distribution function for three-parameter families of distributions, where parameter values are given in $A, B$, and $C$.

If $X, A, B$, and $C$ are arrays, they must be the same size. If $X$ is a scalar, it is expanded to a constant matrix the same size as $A, B$, and $C$. If any of $A, B$ or $C$ are scalars, they are expanded to constant matrices the same size as $X$.
$Y$ is the common size of $X, A, B$, and $C$ after any necessary scalar expansion.
Acceptable strings for name (specified in single quotes) are:

| name | Distribution | Input Parameter A | Input Parameter B | Input Parameter C |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 'beta' or } \\ & \text { 'Beta' } \end{aligned}$ | "Beta Distribution" on page B-4 | a | b | - |
| 'bino' or 'Binomial | "Binomial Distribution" on page B-7 | n: number of trials | p : probability of success for each trial | - |
| 'birnbaumsaunde | r"Birnbaum-Saunders Distribution" on page B-10 | $\beta$ | $\gamma$ | - |
| $\begin{aligned} & \text { 'burr' or } \\ & \text { 'Burr' } \end{aligned}$ | "Burr Type XII Distribution" on page B-12 | a: scale parameter | c: shape parameter | k: shape parameter |
| chi2' or 'Chisquare' | "Chi-Square Distribution" on page B-25 | $v$ : degrees of freedom | - | - |
| $\begin{aligned} & \text { 'exp' or } \\ & \text { 'Exponential' } \end{aligned}$ | "Exponential Distribution" on page B-29 | $\mu$ : mean | - | - |
| 'ev' or 'Extreme Value' | "Extreme Value Distribution" on page B-32 | $\mu$ : location parameter | $\sigma$ : scale parameter | - |
| 'f'or 'F' | "F Distribution" on page B-38 | $v 1$ : <br> numerator degrees of freedom | $v 2$ : <br> denominator degrees of freedom | - |
| 'gam' or 'Gamma' | "Gamma Distribution" on page B-40 | a: shape parameter | b: scale parameter | - |
| ```'gev' or 'Generalized Extreme Value'``` | "Generalized Extreme Value Distribution" on page B-45 | k: shape parameter | $\sigma$ : scale parameter | $\mu$ : location parameter |


| name | Distribution | Input Parameter A | Input Parameter B | Input Parameter C |
| :---: | :---: | :---: | :---: | :---: |
| 'gp' or <br> 'Generalized <br> Pareto' | "Generalized Pareto Distribution" on page B-50 | k: tail index (shape) parameter | $\sigma$ : scale parameter | $\mu$ : <br> threshold <br> (location) parameter |
| 'geo' or 'Geometric' | "Geometric Distribution" on page B-54 | p: probability parameter | - | - |
| 'hyge' or 'Hypergeometri | "Hypergeometric Distribution" on page B-56 | M: size of the population | K: number of items with the desired characteristic in the population | n: number of samples drawn |
| 'inversegaussi | n'Inverse Gaussian Distribution" on page B-58 | $\mu$ | $\lambda$ | - |
| 'logistic' | "Logistic Distribution" on page B-62 | $\mu$ | $\sigma$ | - |
| 'loglogistic' | "Loglogistic Distribution" on page B-63 | $\mu$ | $\sigma$ | - |
| 'logn' or <br> 'Lognormal' | "Lognormal Distribution" on page B-64 | $\mu$ | $\sigma$ | - |
| 'nakagami' | "Nakagami Distribution" on page B-83 | $\mu$ | $\omega$ | - |
| 'nbin' or 'Negative Binomial' | "Negative Binomial Distribution" on page B-85 | $r$ : number of successes | p : <br> probability of success in a single trial | - |


| name | Distribution | Input Parameter A | Input Parameter B | Input <br> Parameter <br> C |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 'ncf' or } \\ & \text { 'Noncentral } \\ & \text { F' } \end{aligned}$ | "Noncentral F Distribution" on page B-91 | $v 1$ : <br> numerator degrees of freedom | $v 2$ : <br> denominator degrees of freedom | $\delta:$ noncentrality parameter |
| ```'nct' or 'Noncentral t'``` | "Noncentral t Distribution" on page B-93 | $v$ : degrees of freedom | $\begin{array}{l\|} \hline \delta: \\ \text { noncentrality } \\ \text { parameter } \\ \hline \end{array}$ | - |
| ncx2' or 'Noncentral Chi-square' | "Noncentral Chi-Square Distribution" on page B-89 | $v$ : degrees of freedom | $\begin{array}{\|l\|} \hline \delta: \\ \text { noncentrality } \\ \text { parameter } \\ \hline \end{array}$ | - |
| 'norm' or 'Normal' | "Normal Distribution" on page B-96 | $\mu$ : mean | $\sigma$ : <br> standard deviation | - |
| 'poiss' or 'Poisson' | "Poisson Distribution" on page B-102 | $\lambda:$ mean | - | - |
| 'rayl' or 'Rayleigh' | "Rayleigh Distribution" on page B-104 | b: scale parameter | - | - |
| 'rician' | "Rician Distribution" on page B-106 | s: <br> noncentralit parameter | $\sigma$ : scale yparameter | - |
| 't'or 'T' | "Student's t Distribution" on page B-108 | $v$ : degrees of freedom | - | - |
| 'tlocationscale | "t Location-Scale Distribution" on page B-110 | $\mu$ : location parameter | $\sigma$ : scale parameter | $v$ : shape parameter |
| 'unif' or 'Uniform' | "Uniform Distribution (Continuous)" on page B-112 | a: lower endpoint (minimum) | b: upper endpoint (maximum) | - |


| name | Distribution | Input <br> Parameter <br> A | Input <br> Parameter <br> B | Input <br> Parameter <br> C |
| :--- | :--- | :--- | :--- | :--- |
| 'unid' or <br> 'Discrete <br> Uniform' | "Uniform Distribution <br> (Discrete)" on page B-114 | N: <br> maximum <br> observable <br> value | - | - |
| 'wbl' or <br> 'Weibull' | "Weibull Distribution" on page <br> B-116 | a: scale <br> parameter | b: shape <br> parameter | - |

## Examples

Compute the cdf of the normal distribution with mean 0 and standard deviation 1 at inputs $-2,-1,0,1,2$ :

```
p1 = cdf('Normal',-2:2,0,1)
p1 =
 0.0228
```

The order of the parameters is the same as for normcdf.
Compute the cdfs of Poisson distributions with rate parameters $0,1, \ldots$, 4 at inputs $1,2, \ldots, 5$, respectively:

```
p2 = cdf('Poisson',0:4,1:5)
p2 =
 0.3679
```

The order of the parameters is the same as for poisscdf.

## See Also

pdf | icdf

## piecewisedistribution.cdf

Purpose Cumulative distribution function for piecewise distribution

$$
\text { Syntax } \quad P=\operatorname{cdf}(o b j, x)
$$

Description $\quad P=c d f(o b j, X)$ returns an array $P$ of values of the cumulative distribution function for the piecewise distribution object obj, evaluated at the values in the array $X$.

Examples $\quad$ Fit Pareto tails to a $t$ distribution at cumulative probabilities 0.1 and 0.9:

```
t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj)
p =
 0.1000
 0.9000
q =
 -1.7766
 1.8432
cdf(obj,q)
ans =
 0.1000
 0.9000
```

See Also paretotails \| pdf | icdf

## Purpose

Return cumulative distribution function (CDF) for ProbDist object
Syntax $\quad Y=\operatorname{cdf}(P D, X)$
Description
$Y=\operatorname{cdf}(P D, X)$ returns $Y$, an array containing the cumulative distribution function (CDF) for the ProbDist object PD, evaluated at values in $X$.

## Input <br> Arguments

## Output <br> Arguments

## See Also

cdf

An object of the class ProbDistUnivParam or ProbDistUnivKernel.

A numeric array of values where you want to evaluate the CDF.

An array containing the cumulative distribution function (CDF) for the ProbDist object $P D$.

## prob.TruncatableDistribution.cdf

Purpose Cumulative distribution function of probability distribution object
Syntax $\quad y=\operatorname{cdf}(p d, x)$
Description $\quad y=\operatorname{cdf}(p d, x)$ returns the cumulative distribution function (cdf) of the probability distribution $p d$ at the values in $x$.

Input
Arguments

## Output Arguments

## Examples

pd - Probability distribution

probability distribution object
Probability distribution, specified as a probability distribution object. Create a probability distribution object with specified parameter values using makedist. Alternatively, for fittable distributions, create a probability distribution object by fitting it to data using fitdist or dfittool.

## $\mathbf{x}$ - Values at which to calculate cdf

array
Values at which to calculate the cdf, specified as an array.

```
Data Types
single | double
```


## y-Cumulative distribution function

array
Cumulative distribution function of the specified probability distribution, evaluated at the values in $x$, returned as a array. $y$ has the same dimensions as x .

Plot the cdf of a Standard Normal Distribution
Create a standard normal distribution object.

```
pd = makedist('Normal')
pd =
```

NormalDistribution

```
Normal distribution
 mu = 0
 sigma = 1
```

Specify the x values and compute the cdf.
$x=-3: .1: 3 ;$
cdf_normal = cdf(pd,x);
Plot the cdf of the standard normal distribution.
plot(x,cdf_normal,'LineWidth', 2)


## Plot the cdf of a Gamma Distribution

Create three gamma distribution objects. The first uses the default parameter values. The second specifies $a=1$ and $b=2$. The third specifies $\mathrm{a}=2$ and $\mathrm{b}=1$.
pd_gamma = makedist('Gamma')
pd_gamma =

```
 GammaDistribution
 Gamma distribution
 a = 1
 b = 1
pd_12 = makedist('Gamma','a',1,'b',2)
pd_12 =
 GammaDistribution
 Gamma distribution
 a = 1
 b = 2
pd_21 = makedist('Gamma','a',2,'b',1)
pd_21 =
```


## GammaDistribution

```
Gamma distribution
\(a=2\)
b \(=1\)
```

Specify the $x$ values and compute the cdf for each distribution.

```
x = 0:.1:5;
cdf_gamma = cdf(pd_gamma,x);
cdf_12 = cdf(pd_12,x);
cdf_21 = cdf(pd_21,x);
```

Create a plot to visualize how the cdf of the gamma distribution changes when you specify different values for the shape parameters a and b .
figure; J = plot(x,cdf_gamma)

```
hold on;
K = plot(x,cdf_gamma_12,'r--')
L = plot(x,cdf_gamma_21,'k-.')
set(J,'LineWidth',2);
set(K,'LineWidth',2);
legend([J K L],'a = 1, b = 1','a = 1, b = 2','a = 2, b = 1','Location','s
hold off;
```



See Also
makedist | fitdist | cdf | icdf | pdf | dfittool

Purpose Empirical cumulative distribution function plot
Syntax
cdfplot(X)
h = cdfplot (X)
[h,stats] = cdfplot(X)

## Description

## Examples

cdfplot( $X$ ) displays a plot of the empirical cumulative distribution function (cdf) for the data in the vector $X$. The empirical $\operatorname{cdf} F(x)$ is defined as the proportion of X values less than or equal to $x$.
This plot, like those produced by hist and normplot, is useful for examining the distribution of a sample of data. You can overlay a theoretical cdf on the same plot to compare the empirical distribution of the sample to the theoretical distribution.

The kstest, kstest2, and lillietest functions compute test statistics that are derived from the empirical cdf. You may find the empirical cdf plot produced by cdfplot useful in helping you to understand the output from those functions.
$\mathrm{h}=\operatorname{cdfplot}(\mathrm{X})$ returns a handle to the cdf curve.
[h,stats] = cdfplot(X) also returns a stats structure with the following fields.

| Field | Description |
| :--- | :--- |
| stats.min | Minimum value |
| stats.max | Maximum value |
| stats.mean | Sample mean |
| stats.median | Sample median (50th percentile) |
| stats.std | Sample standard deviation |

The following example compares the empirical cdf for a sample from an extreme value distribution with a plot of the cdf for the sampling distribution. In practice, the sampling distribution would be unknown, and would be chosen to match the empirical cdf.

```
y = evrnd(0,3,100,1);
cdfplot(y)
hold on
x = -20:0.1:10;
f = evcdf(x,0,3);
plot(x,f,'m')
legend('Empirical','Theoretical','Location','NW')
```



See Also
ecdf

## Purpose Convert cell array to dataset array

Syntax $\quad$| ds | $=$ cell2dataset $(C)$ |
| ---: | :--- |
| ds | $=$ cell2dataset $(C$, Name, Value $)$ |

Description $\quad d s=$ cell2dataset ( $C$ ) converts a cell array to a dataset array.
ds = cell2dataset(C,Name, Value) performs the conversion using additional options specified by one or more Name, Value pair arguments.

## Input Arguments

## C - Input cell array

cell array
Input cell array to convert to a dataset array, specified as an $M$-by- $N$ cell array. Each column of C becomes a variable in the output dataset array, ds. By default, cell2dataset assumes that the first row of $C$ contains variable names.

## Data Types

cell

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'ReadVarNames',false,'ReadObsNames', true specifies that the first row of the cell array does not contain variable names, but the first column contains observation names.

## 'ReadVarNames' - Indicator for whether or not to read variable names <br> true (default) | false

Indicator for whether or not to read variable names from the first row of the input cell array, specified as the comma-separated pair consisting of 'ReadVarNames' and either true or false. The default value is true, unless variable names are specified using the name-value pair argument VarNames. When ReadVarNames is false, cell2dataset creates default variable names if you do not provide any.

Example: 'ReadVarNames',false

## 'VarNames' - Variable names for output dataset array

cell array of strings
Variable names for the output dataset array, specified as the comma-separated pair consisting of 'VarNames' and a cell array of strings. You must provide a variable name for each variable in ds. The names must be valid MATLAB identifiers, and must be unique.

Example: 'VarNames', \{'myVar1','myVar2','myVar3'\}

## 'ReadObsNames' - Indicator for whether or not to read observation names <br> false (default) | true

Indicator for whether or not to read observation names from the input cell array, specified as the comma-separated pair consisting of 'ReadObsNames' and either true or false. When ReadObsNames has the value true, cell2dataset creates observation names in ds using the first column of C , and sets ds. Properties. DimNames equal to \{C\{1,1\},'Variables'\}.

Example: 'ReadObsNames', true

## 'ObsNames' - Observation names for output dataset array cell array of strings

Observation names for the output dataset array, specified as the comma-separated pair consisting of 'ObsNames' and a cell array of strings. The names do not need to be valid MATLAB identifiers, but they must be unique.

## 'NumCols' - Number of columns for each variable <br> vector of nonnegative integers

Number of columns for each variable in ds, specified as the comma-separated pair consisting of 'NumCols' and a vector of nonnegative integers. When the number of columns for a variable is greater than one, cell2dataset combines multiple columns in C into a single variable in ds. The vector you assign to NumCols must sum to size (C,2), or size (C,1) of ReadObsNames is equal to true.

For example, to convert a cell array with eight columns into a dataset array with five variables, specify a vector with five elements that sum to eight, such as 'NumCols', [1, 1, 3, 1, 2].

## Output Arguments

## ds - Output dataset array

dataset array
Output dataset array, returned by default with a variable for each column of C, an observation for each row of C (except for the first row), and variable names corresponding to the first row of C .

- If you set ReadVarNames equal to false (or specify VarNames), then there is an observation in ds for each row of C , and cell2dataset creates default variable names (or uses the names in VarNames).
- If you set ReadObsNames equal to true, then cell2dataset uses the first column of C as observation names.
- If you specify NumCols, then the number of variables in ds is equal to the length of the specified vector of column numbers.


## Examples Convert Cell Array to Dataset Array

Convert a cell array to a dataset array using the default options.
Create a cell array to convert.

```
C = {'Name','Gender','SystolicBP','DiastolicBP';
 'CLARK','M',124,93;
 'BROWN','F',122,80;
 'MARTIN','M',130,92}
```


## cell2dataset

$C=$

| ' Name ' | 'Gender ${ }^{\text {' }}$ | 'SystolicBP' | DiastolicBP' |
| :---: | :---: | :---: | :---: |
| ' CLARK' | 'M' | [ 124] | 93] |
| 'BROWN' | 'F' | [ 122] | 80] |
| 'MARTIN ' | 'M' | $130]$ | 92] |

Convert the cell array to a dataset array.

```
ds = cell2dataset(C)
ds =
\begin{tabular}{llll}
Name & Gender & SystolicBP & DiastolicBP \\
'CLARK' & 'M' & 124 & 93 \\
'BROWN' & 'F' & 122 & 80 \\
'MARTIN' & 'M' & 130 & 92
\end{tabular}
```

The first row of C become the variable names in the output dataset array, ds.

## Create a Dataset Array with Multicolumn Variables

Convert a cell array to a dataset array containing multicolumn variables.

Create a cell array to convert.

```
C = {'Name','Gender','SystolicBP','DiastolicBP';
 'CLARK','M',124,93;
 'BROWN','F',122,80;
 'MARTIN','M',130,92}
C =
\begin{tabular}{|c|c|c|c|}
\hline 'Name' & 'Gender' & 'SystolicBP' & DiastolicBP' \\
\hline ' CLARK ' & 'M' & [124] & \(93]\) \\
\hline 'BROWN' & 'F' & [122] & 80] \\
\hline 'MARTIN' & 'M' & \(130]\) & 92] \\
\hline
\end{tabular}
```

Convert the cell array to a dataset array, combining the systolic and diastolic blood pressure measurements into one variable named BloodPressure.
ds = cell2dataset(C, 'NumCols', [1, 1, 2]); ds.Properties.VarNames $\{3\}=$ 'BloodPressure'; ds
ds =

| Name | Gender | BloodPressure |  |
| :--- | :--- | :--- | :--- |
| 'CLARK' | 'M' | 124 | 93 |
| 'BROWN' | 'F' | 122 | 80 |
| 'MARTIN' | 'M' | 130 | 92 |

The output dataset array has three observations and three variables.
size(ds)
ans =
$3 \quad 3$

## See Also

## Related <br> Examples

Concepts
dataset | dataset2cell | struct2dataset

- "Create a Dataset Array from Workspace Variables" on page 2-65
- "Create a Dataset Array from a File" on page 2-71
- "Dataset Arrays" on page 2-135

Purpose Convert categorical array to cell array of strings

## Syntax <br> $B=$ cellstr(A)

Description $B=$ cellstr $(A)$ converts the categorical array $A$ to a cell array of strings. Each element of B contains the categorical level label for the corresponding element of A.

See Also char | getlabels

## Purpose Create cell array of strings from dataset array

Syntax
$\mathrm{B}=\mathrm{cellstr}(\mathrm{A})$
$\mathrm{B}=\mathrm{cellstr}(\mathrm{A}, \mathrm{VARS})$

Description
$\mathrm{B}=$ cellstr(A) returns the contents of the dataset A , converted to a cell array of strings. The variables in the dataset must support the conversion and must have compatible sizes.
$B=$ cellstr(A,VARS) returns the contents of the dataset variables specified by VARS. VARS is a positive integer, a vector of positive integers, a variable name, a cell array containing one or more variable names, or a logical vector.

See Also<br>dataset.double | dataset.replacedata

Purpose $\quad$ Convert categorical array to character array

## Syntax <br> $B=\operatorname{char}(A)$

Description $\quad B=\operatorname{char}(A)$ converts the categorical array $A$ to a 2-D character matrix. char does not preserve the shape of $A$. $B$ contains numel ( $A$ ) rows, and each row of $B$ contains the categorical level label for the corresponding element of $A(:)$.

See Also cellstr | getlabels

## Purpose <br> Chi-square cumulative distribution function

## Syntax <br> $P=\operatorname{chi2cdf}(X, V)$

Description
$P=\operatorname{chi2cdf}(X, V)$ computes the chi-square cdf at each of the values in $X$ using the corresponding degrees of freedom in $V$. $X$ and $V$ can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input.

The degrees of freedom parameters in $V$ must be positive integers, and the values in X must lie on the interval [ 0 Inf].

The $x^{2} \operatorname{cdf}$ for a given value $x$ and degrees-of-freedom $v$ is

$$
p=F(x \mid v)=\int_{0}^{x} \frac{t^{(v-2) / 2} e^{-t / 2}}{2^{v / 2} \Gamma(v / 2)} d t
$$

where $\Gamma(\cdot)$ is the Gamma function.
The chi-square density function with $v$ degrees-of-freedom is the same as the gamma density function with parameters $v / 2$ and 2 .

## Examples

See Also
cdf | chi2pdf | chi2inv | chi2stat | chi2rnd
How To

- "Chi-Square Distribution" on page B-25


## Purpose Chi-square goodness-of-fit test

Syntax

```
h = chi2gof(x)
[h,p] = chi2gof(...)
[h,p,stats] = chi2gof(...)
[...] = chi2gof(X,'Name',value)
```


## Description

$h=c h i 2 g o f(x)$ performs a chi-square goodness-of-fit test of the default null hypothesis that the data in vector x are a random sample from a normal distribution with mean and variance estimated from $x$, against the alternative that the data are not normally distributed with the estimated mean and variance. The result $h$ is 1 if the null hypothesis can be rejected at the $5 \%$ significance level. The result h is 0 if the null hypothesis cannot be rejected at the $5 \%$ significance level.

The null distribution can be changed from a normal distribution to an arbitrary discrete or continuous distribution. See the syntax for specifying optional argument name/value pairs below.

The test is performed by grouping the data into bins, calculating the observed and expected counts for those bins, and computing the chi-square test statistic

$$
\chi^{2}=\sum_{i=1}^{N}\left(O_{i}-E_{i}\right)^{2} / E_{i}
$$

where $O_{i}$ are the observed counts and $E_{i}$ are the expected counts. The statistic has an approximate chi-square distribution when the counts are sufficiently large. Bins in either tail with an expected count less than 5 are pooled with neighboring bins until the count in each extreme bin is at least 5 . If bins remain in the interior with counts less than 5 , chi2gof displays a warning. In this case, you should use fewer bins, or provide bin centers or edges, to increase the expected counts in all bins. (See the syntax for specifying optional argument name/value pairs below.) chi2gof sets the number of bins, nbins, to 10 by default, and compares the test statistic to a chi-square distribution with nbins - 3 degrees of freedom to take into account the two estimated parameters.
$[\mathrm{h}, \mathrm{p}]=$ chi2gof(...) also returns the $p$ value of the test, p . The $p$ value is the probability, under assumption of the null hypothesis, of observing the given statistic or one more extreme.
[h,p,stats] = chi2gof(...) also returns a structure stats with the following fields:

- chi2stat - The chi-square statistic
- df - Degrees of freedom
- edges - Vector of bin edges after pooling
- 0-Observed count in each bin
- E - Expected count in each bin
[...] = chi2gof(X, 'Name', value) specifies one or more optional argument name/value pairs chosen from the following lists. Argument names are case insensitive and partial matches are allowed. Specify Name in single quotes.

The following name/value pairs control the initial binning of the data before pooling. You should not specify more than one of these options.

- nbins - The number of bins to use. Default is 10.
- ctrs - A vector of bin centers
- edges - A vector of bin edges

The following name/value pairs determine the null distribution for the test. Do not specify both cdf and expected.

- cdf - A fully specified cumulative distribution function. This can be a function name, a function handle, or a ProbDist object of the ProbDistUnivParam class or ProbDistUnivKernel class. When 'cdf' is a function name or handle, the distribution function must take $x$ as its only argument. Alternately, you can provide a cell array whose first element is a function name or handle, and whose later elements are parameter values, one per cell. The function must take $x$ as its first argument, and other parameters as later arguments.


## chi2gof

- expected - A vector with one element per bin specifying the expected counts for each bin.
- nparams - The number of estimated parameters; used to adjust the degrees of freedom to be nbins - 1 - nparams, where nbins is the number of bins.

If your cdf or expected input depends on estimated parameters, you should use nparams to ensure that the degrees of freedom for the test is correct. If cdf is a cell array, the default value of nparams is the number of parameters in the array; otherwise the default is 0 .

The following name/value pairs control other aspects of the test.

- emin - The minimum allowed expected value for a bin; any bin in either tail having an expected value less than this amount is pooled with a neighboring bin. Use the value 0 to prevent pooling. The default is 5 .
- frequency - A vector the same length as $x$ containing the frequency of the corresponding xvalues
- alpha - Significance level for the test. The default is 0.05 .


## Examples

## Example 1

Equivalent ways to test against an unspecified normal distribution with estimated parameters:

```
x = normrnd(50,5,100,1);
[h,p] = chi2gof(x)
h =
 0
p =
 0.7532
[h,p] = chi2gof(x,'cdf',@(z)normcdf(z,mean(x),std(x)),'nparams',2)
h =
 0
p =
```

0.7532

```
[h,p] = chi2gof(x,'cdf',{@normcdf,mean(x),std(x)})
h =
 0
p =
 0.7532
```


## Example 2

Test against the standard normal:
$x=\operatorname{randn}(100,1) ;$
[h,p] = chi2gof(x,'cdf', @normcdf)
$\mathrm{h}=$
0
$p=$
0.9443

## Example 3

Test against the standard uniform:
$x=\operatorname{rand}(100,1) ;$
$\mathrm{n}=$ length( x$)$;
edges $=$ linspace $(0,1,11)$; expectedCounts $=n$ * diff(edges); [h,p,st] = chi2gof(x,'edges',edges,... 'expected', expectedCounts)
$\mathrm{h}=$
0
$p=$
0.3191
st $=$
chi2stat: 10.4000
df: 9
edges: [1x11 double]

```
0: [[\begin{array}{llllllllllll}{6}&{11}&{4}&{12}&{15}&{8}&{14}&{9}&{11}&{10}\end{array}]
E: [1\times10 double]
```


## Example 4

Test against the Poisson distribution by specifying observed and expected counts:
bins = 0:5;
obsCounts $=\left[\begin{array}{llllll}6 & 16 & 10 & 12 & 4 & 2\end{array}\right]$;
$\mathrm{n}=$ sum(obsCounts);
lambdaHat $=$ sum(bins.*obsCounts)/n;
expCounts $=$ n*poisspdf(bins,lambdaHat);
[h,p,st] = chi2gof(bins,'ctrs',bins,...
'frequency',obsCounts, ...
'expected', expCounts,...
'nparams',1)
$\mathrm{h}=$
0
$p=$
0.4654
st $=$
chi2stat: 2.5550
df: 3
edges: [1x6 double]
0: [ $\left.\begin{array}{lllll}6 & 16 & 10 & 12 & 6\end{array}\right]$
E: $\left[\begin{array}{lllll}7.0429 & 13.8041 & 13.5280 & 8.8383 & 6.0284\end{array}\right]$
See Also crosstab | lillietest | kstest | chi2cdf | chi2pdf | chi2inv |
How To . "Chi-Square Distribution" on page B-25

## Purpose

Chi-square inverse cumulative distribution function

## Syntax

$X=\operatorname{chi2inv}(P, V)$
$X=$ chi2inv $(P, V)$ computes the inverse of the chi-square cdf with degrees of freedom specified by $V$ for the corresponding probabilities in P. P and V can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs.
The degrees of freedom parameters in $V$ must be positive integers, and the values in P must lie in the interval [01].
The inverse chi-square cdf for a given probability $p$ and v degrees of freedom is

$$
x=F^{-1}(p \mid v)=\{x: F(x \mid v)=p\}
$$

where

$$
p=F(x \mid v)=\int_{0}^{x} \frac{t^{(v-2) / 2} e^{-t / 2}}{2^{v / 2} \Gamma(v / 2)} d t
$$

and $\Gamma(\cdot)$ is the Gamma function. Each element of output X is the value whose cumulative probability under the chi-square cdf defined by the corresponding degrees of freedom parameter in $V$ is specified by the corresponding value in P .

## Examples

Find a value that exceeds $95 \%$ of the samples from a chi-square distribution with 10 degrees of freedom.

```
x = chi2inv(0.95,10)
x =
 18.3070
```

You would observe values greater than 18.3 only $5 \%$ of the time by chance.

See Also icdf | chi2cdf | chi2pdf | chi2stat | chi2rnd<br>How To . "Chi-Square Distribution" on page B-25

## Purpose

Chi-square probability density function

## Syntax

$Y=\operatorname{chi2pdf}(X, V)$
$Y=$ chi2pdf $(X, V)$ computes the chi-square pdf at each of the values in $X$ using the corresponding degrees of freedom in $V . X$ and $V$ can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of the output Y . A scalar input is expanded to a constant array with the same dimensions as the other input.

The degrees of freedom parameters in $V$ must be positive integers, and the values in X must lie on the interval [ 0 Inf].

The chi-square pdf for a given value $x$ and $v$ degrees of freedom is

$$
y=f(x \mid v)=\frac{x^{(v-2) / 2} e^{-x / 2}}{2^{v / 2} \Gamma(v / 2)}
$$

where $\Gamma(\cdot)$ is the Gamma function.
If $x$ is standard normal, then $x^{2}$ is distributed chi-square with one degree of freedom. If $x_{1}, x_{2}, \ldots, x_{\mathrm{n}}$ are $n$ independent standard normal observations, then the sum of the squares of the $x$ 's is distributed chi-square with $n$ degrees of freedom (and is equivalent to the gamma density function with parameters $v / 2$ and 2 ).

## Examples

See Also

```
nu = 1:6;
x = nu;
y = chi2pdf(x,nu)
y =
```



The mean of the chi-square distribution is the value of the degrees of freedom parameter, nu. The above example shows that the probability density of the mean falls as nu increases.

How To<br>- "Chi-Square Distribution" on page B-25

## Purpose <br> Syntax <br> Description

Chi-square random numbers
$\mathrm{R}=\mathrm{chi2} \mathrm{rnd}(\mathrm{V})$
R = chi2rnd(V,m,n,...)
$R=\operatorname{chi2rnd}(V,[m, n, \ldots])$

## Examples

$r=$ chi2rnd(6,[16])
$r=$
$\begin{array}{llllll}6.5249 & 2.6226 & 12.2497 & 3.0388 & 6.3133 & 5.0388\end{array}$
$r=\operatorname{chi2rnd}(1: 6,1,6)$
$r=$
$\begin{array}{llllll}0.7638 & 6.0955 & 0.8273 & 3.2506 & 1.5469 & 10.9197\end{array}$
See Also
random | chi2cdf | chi2pdf | chi2inv | chi2stat
How To

- "Chi-Square Distribution" on page B-25

Purpose Chi-square mean and variance
Syntax $\quad[M, V]=$ chi2stat (NU)
Description
$[M, V]=$ chi2stat(NU) returns the mean of and variance for the chi-square distribution with degrees of freedom parameters specified by NU.

The mean of the chi-square distribution is v , the degrees of freedom parameter, and the variance is 2 v .

## Examples



See Also chi2cdf | chi2pdf | chi2inv | chi2rnd<br>How To . "Chi-Square Distribution" on page B-25

## classregtree.children

Purpose Child nodes
Syntax
C = children(t)
C = children(t,nodes)

Description
$\mathrm{C}=$ children( t$)$ returns an $n$-by- 2 array C containing the numbers of the child nodes for each node in the tree $t$, where $n$ is the number of nodes. Leaf nodes have child node 0 .

C = children(t,nodes) takes a vector nodes of node numbers and returns the children for the specified nodes.

## Examples <br> Create a classification tree for Fisher's iris data:

```
load fisheriris;
t = classregtree(meas,species,...
 'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
 class = setosa
 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
 class = virginica
 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
 class = virginica
 class = versicolor
 class = virginica
view(t)
```

|  |  |  |  |  |  |  |  | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Click to display: | Identity | $\checkmark$ | Magnification: | 100\% | $\checkmark$ | Pruning level: | 0 of 4 |  |



```
C = children(t)
C =
 2 3
 0
 4
 6
 0
 8 9
 0
 0
```


## classregtree.children

0

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also
classregtree | numnodes | parent

## Purpose Cholesky-like covariance decomposition

Syntax $\quad$| $T=\operatorname{chol} \operatorname{cov}($ SIGMA $)$ |  |
| :--- | :--- |
| $[T$, num $]$ | $=\operatorname{cholcov}($ SIGMA $)$ |
| $[T$, num $]$ | $=\operatorname{cholcov}($ SIGMA, 0$)$ |

## Description

## Examples

The following 4 -by- 4 covariance matrix is rank-deficient:

```
C1 = [2 1 1 2;1 2 1 2;1 \(122 ; 2223]\)
C1 =
 \(\begin{array}{llll}2 & 1 & 1 & 2\end{array}\)
 \(1 \quad 2 \quad 1 \quad 2\)
 \(\begin{array}{llll}1 & 1 & 2 & 2\end{array}\)
 223
rank(C1)
ans =
 3
```

Use cholcov to factor C1:

```
T = cholcov(C1)
T =
\begin{tabular}{rrrr}
-0.2113 & 0.7887 & -0.5774 & 0 \\
0.7887 & -0.2113 & -0.5774 & 0 \\
1.1547 & 1.1547 & 1.1547 & 1.7321
\end{tabular}
C2 = T'*T
C2 =
\begin{tabular}{llll}
2.0000 & 1.0000 & 1.0000 & 2.0000 \\
1.0000 & 2.0000 & 1.0000 & 2.0000 \\
1.0000 & 1.0000 & 2.0000 & 2.0000 \\
2.0000 & 2.0000 & 2.0000 & 3.0000
\end{tabular}
```

Use T to generate random data with the specified covariance:

```
C3 = cov(randn(1e6,3)*T)
C3 =
\begin{tabular}{llll}
1.9973 & 0.9982 & 0.9995 & 1.9975 \\
0.9982 & 1.9962 & 0.9969 & 1.9956 \\
0.9995 & 0.9969 & 1.9980 & 1.9972 \\
1.9975 & 1.9956 & 1.9972 & 2.9951
\end{tabular}
```

See Also
chol | cov

## Purpose Shift categorical array circularly

Syntax
B = circshift(A,shiftsize)

Description
$B=\operatorname{circshift}(A, s h i f t s i z e)$ circularly shifts the values in the categorical array A by shiftsize elements. shiftsize is a vector of integer scalars where the $n$-th element specifies the shift amount for the $n$-th dimension of array $A$. If an element in shiftsize is positive, the values of A are shifted down (or to the right). If it is negative, the values of A are shifted up (or to the left).

See Also permute | shiftdim

## NaiveBayes.ClsNonEmpty property

Purpose Flag for non-empty classes
Description The CIsNonEmpty property is a logical vector of length NClasses specifying which classes are not empty. When the grouping variable is categorical, it may contain categorical levels that don't appear in the elements of the grouping variable. Those levels are empty and NaiveBayes ignores them for the purposes of training the classifier.

## Purpose Class counts

```
Syntax
P = classcount(t)
P = classcount(t,nodes)
```

Description
$P=c l a s s c o u n t(t)$ returns an $n$-by- $m$ array $P$ of class counts for the nodes in the classification tree t , where $n$ is the number of nodes and $m$ is the number of classes. For any node number i, the class counts $P(i,:)$ are counts of observations (from the data used in fitting the tree) from each class satisfying the conditions for node i.

P = classcount( t , nodes) takes a vector nodes of node numbers and returns the class counts for the specified nodes.

## Examples

Create a classification tree for Fisher's iris data:

```
load fisheriris;
t = classregtree(meas,species,...
 'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2 class = setosa
3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
5 class = virginica
6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica
view(t)
```




| $P=$ classcount $(t)$ |  |  |
| :--- | ---: | ---: |
| $P=$ |  |  |
|  |  |  |
| 50 | 50 | 50 |
| 50 | 0 | 0 |
| 0 | 50 | 50 |
| 0 | 49 | 5 |
| 0 | 1 | 45 |
| 0 | 47 | 1 |
| 0 | 2 | 4 |
| 0 | 47 | 0 |

$0 \quad 0 \quad 1$
References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.

## See Also

## ClassificationBaggedEnsemble

Purpose Classification ensemble grown by resampling
Description
Construction
ens =fitensemble(X,Y,'bag', nlearn, learners,'type','classification')creates a bagged classification ensemble. For syntax details,see the fitensemble reference page.
Properties CategoricalPredictors
List of categorical predictors. CategoricalPredictors is a numeric vector with indices from 1 to $p$, where $p$ is the number of columns of X .

## CombineWeights

String describing how ens combines weak learner weights, either 'WeightedSum' or 'WeightedAverage'.

## FitInfo

Numeric array of fit information. The FitInfoDescription property describes the content of this array.

## FitInfoDescription

String describing the meaning of the FitInfo array.

## FResample

Numeric scalar between 0 and 1. FResample is the fraction of training data fitensemble resampled at random for every weak learner when constructing the ensemble.

## Method

String describing the method that creates ens.

## ModelParams

## ClassificationBaggedEnsemble

Parameters used in training ens.

## NTrained

Number of trained weak learners in ens, a scalar.

## PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in $X$.

## ReasonForTermination

String describing the reason fitensemble stopped adding weak learners to the ensemble.

## Replace

Logical value indicating if the ensemble was trained with replacement (true) or without replacement (false).

## ResponseName

String with the name of the response variable $Y$.

## ScoreTransform

Function handle for transforming scores, or string representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in transformation functions and the syntax of custom transformation functions, see ClassificationTree.fit.

Add or change a ScoreTransform function by dot addressing:

```
ens.ScoreTransform = 'function'
```

or
ens.ScoreTransform = @function

## Trained

Trained learners, a cell array of compact classification models.

## ClassificationBaggedEnsemble

## TrainedWeights

Numeric vector of trained weights for the weak learners in ens. TrainedWeights has $T$ elements, where $T$ is the number of weak learners in learners.

## UseObsForLearner

Logical matrix of size N -by-NTrained, where N is the number of observations in the training data and NTrained is the number of trained weak learners. UseObsForLearner ( $I, J$ ) is true if observation I was used for training learner $J$, and is false otherwise.

## w

Scaled weights, a vector with length $n$, the number of rows in X . The sum of the elements of $W$ is 1 .

## X

Matrix of predictor values that trained the ensemble. Each column of $X$ represents one variable, and each row represents one observation.

Y
Numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. Each row of $Y$ represents the classification of the corresponding row of X .

## Methods

oobEdge
oobLoss
oobMargin
oobPredict

Out-of-bag classification edge
Out-of-bag classification error
Out-of-bag classification margins
Predict out-of-bag response of ensemble

## ClassificationBaggedEnsemble

## Inherited Methods

\(\left.$$
\begin{array}{ll}\text { compact } & \text { Compact classification ensemble } \\
\text { crossval } & \begin{array}{l}\text { Cross validate ensemble } \\
\text { resubEdge } \\
\text { resssification edge by } \\
\text { resubLoss } \\
\text { Classification error by } \\
\text { resubstitution } \\
\text { Classification margins by } \\
\text { resubstitution }\end{array} \\
\text { resubPredict } & \begin{array}{l}\text { Predict ensemble response by } \\
\text { resubstitution }\end{array}
$$ <br>

resume \& Resume training ensemble\end{array}\right\}\)| Classification edge |
| :--- |
| edge |
| loss |
| margin |
| predict |
| predictorImportance | | Classification margins |
| :--- |

Copy Value. To learn how value classes affect copy operations, see Copying Semantics Objects in the MATLAB documentation.

Examples Construct a bagged ensemble for the ionosphere data, and examine its resubstitution loss:

```
load ionosphere
rng(0,'twister') % for reproducibility
ens = fitensemble(X,Y,'bag',100,'Tree',...
```


## ClassificationBaggedEnsemble

```
 'type','classification');
L = resubLoss(ens)
L =
 0
```

The ensemble does a perfect job classifying its training data.

## See Also

ClassificationEnsemble | fitensemble
How To . "Ensemble Methods" on page 15-58

## ClassificationDiscriminant

## Superclasses CompactClassificationDiscriminant <br> Purpose Discriminant analysis classification <br> Description A ClassificationDiscriminant object encapsulates a discriminant analysis classifier, which is a Gaussian mixture model for data generation. A ClassificationDiscriminant object can predict responses for new data using the predict method. The object contains the data used for training, so can compute resubstitution predictions. <br> Construction <br> obj $=$ ClassificationDiscriminant.fit $(X, Y)$ creates a discriminant classification object based on the input variables (also known as predictors, features, or attributes) $X$ and output (response) Y. For syntax details, see ClassificationDiscriminant.fit. <br> obj = ClassificationDiscriminant.fit(X,Y,Name, Value) creates a classifier with additional options specified by one or more Name, Value pair arguments. If you use one of the following five options, obj is of class ClassificationPartitionedModel: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. Otherwise, obj is of class ClassificationDiscriminant. <br> Input Arguments

## x

Matrix of numeric predictor values. Each column of $X$ represents one variable, and each row represents one observation.

NaN values in $X$ are considered missing values. Observations with missing values for $X$ are not used in the fit.

## Y

Numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. Each row of $Y$ represents the classification of the corresponding row of $X$. NaN values in $Y$ are considered missing values. Observations with missing values for $Y$ are not used in the fit.

## ClassificationDiscriminant

## Properties

## BetweenSigma

p -by-p matrix, the between-class covariance, where p is the number of predictors.

## CategoricalPredictors

List of categorical predictors, always empty ([ ]) for discriminant analysis.

## ClassNames

List of the elements in the training data $Y$ with duplicates removed. ClassNames can be a numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. ClassNames has the same data type as the data in the argument $Y$.

## Coeffs

$k$-by-k structure of coefficient matrices, where $k$ is the number of classes. Coeffs ( $i, j$ ) contains coefficients of the linear or quadratic boundaries between classes i and j. Fields in Coeffs(i,j):

- DiscrimType
- Class1 - ClassNames(i)
- Class2 - ClassNames(j)
- Const - A scalar
- Linear - A vector with $p$ components, where $p$ is the number of columns in $X$
- Quadratic - p-by-p matrix, exists for quadratic DiscrimType

The equation of the boundary between class $i$ and class $j$ is
Const + Linear * x + x' * Quadratic * x = 0,
where $x$ is a column vector of length $p$.

## ClassificationDiscriminant

If ClassificationDiscriminant.fit had the FillCoeffs name-value pair set to 'off' when constructing the classifier, Coeffs is empty ([]).

## Cost

Square matrix, where $\operatorname{Cost}(i, j)$ is the cost of classifying a point into class $j$ if its true class is $i$. Cost is $K$-by- $K$, where $K$ is the number of classes.

Change a Cost matrix using dot addressing:
obj.Cost = costMatrix

## Delta

Value of the Delta threshold for a linear discriminant model, a nonnegative scalar. If a coefficient of obj has magnitude smaller than Delta, obj sets this coefficient to 0 , and so you can eliminate the corresponding predictor from the model. Set Delta to a higher value to eliminate more predictors.

Delta must be 0 for quadratic discriminant models.
Change Delta by dot addressing:
obj.Delta $=$ newDelta

## DeltaPredictor

Row vector of length equal to the number of predictors in obj. If DeltaPredictor(i) < Delta then coefficient $i$ of the model is 0 .

If obj is a quadratic discriminant model, all elements of DeltaPredictor are 0.

## DiscrimType

String specifying the discriminant type. One of:

- 'linear'
- 'quadratic'


## ClassificationDiscriminant

- 'diagLinear'
- 'diagQuadratic'
- 'pseudoLinear'
- 'pseudoQuadratic'

Change DiscrimType using dot addressing:
obj.DiscrimType = newDiscrimType
You can change between linear types, or between quadratic types, but cannot change between linear and quadratic types.

## Gamma

Value of the Gamma regularization parameter, a scalar from 0 to 1. Change Gamma using dot addressing:
obj.Gamma $=$ newGamma

- If you set 1 for linear discriminant, the discriminant sets its type to 'diagLinear'.
- If you set a value between MinGamma and 1 for linear discriminant, the discriminant sets its type to 'linear'.
- You cannot set values below the value of the MinGamma property.
- For quadratic discriminant, you can set either 0 (for DiscrimType 'quadratic') or 1 (for DiscrimType 'diagQuadratic').


## LogDetSigma

Logarithm of the determinant of the within-class covariance matrix. The type of LogDetSigma depends on the discriminant type:

- Scalar for linear discriminant analysis


## ClassificationDiscriminant

- Vector of length $K$ for quadratic discriminant analysis, where $K$ is the number of classes


## MinGamma

Nonnegative scalar, the minimal value of the Gamma parameter so that the correlation matrix is invertible. If the correlation matrix is not singular, MinGamma is 0 .

## ModelParams

Parameters used in training obj.

## Mu

Matrix of class means of size K-by-p, where K is the number of classes, and $p$ is the number of predictors. Each row of Mu represents the mean of the multivariate normal distribution of the corresponding class. The class indices are in the ClassNames attribute.

## NObservations

Number of observations in the training data, a numeric scalar. NObservations can be less than the number of rows of input data $X$ when there are missing values in $X$ or response $Y$.

## PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in the training data $X$.

## Prior

Prior probabilities for each class. Prior is a numeric vector whose entries relate to the corresponding ClassNames property.

Add or change a Prior vector using dot addressing:
obj. Prior = priorVector

## ResponseName

String describing the response variable Y.

## ClassificationDiscriminant

## ScoreTransform

Function handle for transforming scores, or string representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in transformation functions and the syntax of custom transformation functions, see ClassificationDiscriminant.fit.

Add or change a ScoreTransform function by dot addressing:
cobj.ScoreTransform = 'function'
or
cobj.ScoreTransform = @function

## Sigma

Within-class covariance matrix or matrices. The dimensions depend on DiscrimType:

- 'linear' (default) - Matrix of size $p$-by-p, where $p$ is the number of predictors
- 'quadratic' - Array of size $p$-by-p-by-K, where $K$ is the number of classes
- 'diagLinear' - Row vector of length $p$
- 'diagQuadratic' - Array of size 1-by-p-by-K
- 'pseudoLinear' - Matrix of size p-by-p
- 'pseudoQuadratic' - Array of size p-by-p-by-K


## W

Scaled weights, a vector with length $n$, the number of rows in $X$.

## X

Matrix of predictor values. Each column of X represents one predictor (variable), and each row represents one observation.

## ClassificationDiscriminant

## Xcentered

$X$ data with class means subtracted. If $Y(i)$ is of class $j$,

$$
\text { Xcentered(i,: })=X(i,:)-M u(j,:),
$$

where Mu is the class mean property.

```
Y
```

Numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. Each row of $Y$ represents the classification of the corresponding row of $X$.

## Methods

| compact | Compact discriminant analysis <br> classifier |
| :--- | :--- |
| crossval | Cross-validated discriminant <br> analysis classifier |
| cvshrink | Cross-validate regularization of <br> linear discriminant |
| fit | Fit discriminant analysis <br> classifier |
| make | Construct discriminant analysis <br> classifier from parameters |
| resubEdge | Classification edge by <br> resubstitution |
| resubLoss | Classification error by <br> resubstitution |
| resubMargin | Classification margins by <br> resubstitution |

## ClassificationDiscriminant

resubPredict<br>template

Predict resubstitution response of classifier
Discriminant analysis classifier template for ensemble

## Inherited Methods

| edge | Classification edge |
| :--- | :--- |
| $\log \mathrm{P}$ | Log of the unconditional <br> probability density |
| loss | Classification error |
| mahal | Mahalanobis distance to class <br> means |
| margin | Classification margins |
| nLinearCoeffs | Number of nonzero linear <br> coefficients |
| predict | Predict classification |

## Definitions Discriminant Classification

The model for discriminant analysis is:

- Each class (Y) generates data (X) using a multivariate normal distribution. That is, the model assumes X has a Gaussian mixture distribution (gmdistribution).
- For linear discriminant analysis, the model has the same covariance matrix for each class, only the means vary.
- For quadratic discriminant analysis, both means and covariances of each class vary.
predict classifies so as to minimize the expected classification cost:


## ClassificationDiscriminant

$$
\hat{y}=\underset{y=1, \ldots, K}{\arg \min } \sum_{k=1}^{K} \hat{P}(k \mid x) C(y \mid k),
$$

where

- $\hat{y}$ is the predicted classification.
- $K$ is the number of classes.
- $\hat{P}(k \mid x)$ is the posterior probability of class $k$ for observation $x$.
- $C(y \mid k)$ is the cost of classifying an observation as $y$ when its true class is $k$.

For details, see "How the predict Method Classifies" on page 14-6.

## Regularization

Regularization is the process of finding a small set of predictors that yield an effective predictive model. For linear discriminant analysis, there are two parameters, $\gamma$ and $\delta$, that control regularization as follows. cvshrink helps you select appropriate values of the parameters.

Let $\Sigma$ represent the covariance matrix of the data $X$, and let $\hat{X}$ be the centered data (the data $X$ minus the mean by class). Define

$$
D=\operatorname{diag}\left(\hat{X}^{T} * \hat{X}\right)
$$

The regularized covariance matrix $\tilde{\Sigma}$ is

$$
\tilde{\Sigma}=(1-\gamma) \Sigma+\gamma D .
$$

Whenever $\gamma \geq$ MinGamma, $\tilde{\Sigma}$ is nonsingular.
Let $\mu_{k}$ be the mean vector for those elements of $X$ in class $k$, and let $\mu_{0}$ be the global mean vector (the mean of the rows of $X$ ). Let $C$ be

## ClassificationDiscriminant

the correlation matrix of the data $X$, and let $\tilde{C}$ be the regularized correlation matrix:

$$
\tilde{C}=(1-\gamma) C+\gamma I,
$$

where $I$ is the identity matrix.
The linear term in the regularized discriminant analysis classifier for a data point $x$ is

$$
\left(x-\mu_{0}\right)^{T} \tilde{\Sigma}^{-1}\left(\mu_{k}-\mu_{0}\right)=\left[\left(x-\mu_{0}\right)^{T} D^{-1 / 2}\right]\left[\tilde{C}^{-1} D^{-1 / 2}\left(\mu_{k}-\mu_{0}\right)\right] .
$$

The parameter $\delta$ enters into this equation as a threshold on the final term in square brackets. Each component of the vector
$\left[\tilde{C}^{-1} D^{-1 / 2}\left(\mu_{k}-\mu_{0}\right)\right]$ is set to zero if it is smaller in magnitude than the threshold $\delta$. Therefore, for class $k$, if component $j$ is thresholded to zero, component $j$ of $x$ does not enter into the evaluation of the posterior probability.
The DeltaPredictor property is a vector related to this threshold. When $\delta \geq$ DeltaPredictor(i), all classes $k$ have

$$
\left|\tilde{C}^{-1} D^{-1 / 2}\left(\mu_{k}-\mu_{0}\right)\right| \leq \delta .
$$

Therefore, when $\delta \geq$ DeltaPredictor(i), the regularized classifier does not use predictor i.

Copy
Semantics

## Examples

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

Create a discriminant analysis classifier for the Fisher iris data:

```
load fisheriris
obj = ClassificationDiscriminant.fit(meas,species)
```


## ClassificationDiscriminant

```
obj =
ClassificationDiscriminant:
 PredictorNames: {'x1' 'x2' 'x3' 'x4'}
 ResponseName: 'Y'
 ClassNames: {'setosa' 'versicolor' 'virginica'}
 ScoreTransform: 'none'
 NObservations: 150
 DiscrimType: 'linear'
 Mu: [3x4 double]
 Coeffs: [3x3 struct]
```

References $\quad$| [1] Guo, Y., T. Hastie, and R. Tibshirani. Regularized linear |
| :--- |
| discriminant analysis and its application in microarrays. Biostatistics, |
| Vol. 8, No. 1, pp. 86-100, 2007. |

See Also CompactClassificationDiscriminant | ClassificationDiscriminant.fit

How To . "Discriminant Analysis" on page 14-3

## ClassificationEnsemble

$$
\begin{array}{ll}
\text { Superclasses } & \text { CompactClassificationEnsemble } \\
\text { Purpose } & \text { Ensemble classifier } \\
\text { Description } & \begin{array}{l}
\text { ClassificationEnsemble combines a set of trained weak learner } \\
\text { models and data on which these learners were trained. It can predict } \\
\text { ensemble response for new data by aggregating predictions from its } \\
\text { weak learners. It also stores data used for training and can compute } \\
\text { resubstitution predictions. It can resume training if desired. }
\end{array} \\
\text { Construction } & \begin{array}{l}
\text { ens = fitensemble (X,Y, method, nlearn, learners) returns an } \\
\text { ensemble model that can predict responses to data. The ensemble } \\
\text { consists of models listed in learners. For more information on the } \\
\text { syntax, see the fitensemble function reference page. }
\end{array} \\
\begin{array}{l}
\text { ens = fitensemble (X,Y, method, nlearn, learners, Name, Value) } \\
\text { returns an ensemble model with additional options specified by one } \\
\text { or more Name, Value pair arguments. For more information on the } \\
\text { syntax, see the fitensemble function reference page. }
\end{array}
\end{array}
$$

## Properties

## CategoricalPredictors

List of categorical predictors. CategoricalPredictors is a numeric vector with indices from 1 to $p$, where $p$ is the number of columns of X .

## ClassNames

List of the elements in $Y$ with duplicates removed. ClassNames can be a numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. ClassNames has the same data type as the data in the argument Y .

## CombineWeights

String describing how ens combines weak learner weights, either 'WeightedSum' or 'WeightedAverage'.

## Cost

## ClassificationEnsemble

Square matrix where $\operatorname{Cost}(i, j)$ is the cost of classifying a point into class $j$ if its true class is $i$.

## FitInfo

Numeric array of fit information. The FitInfoDescription property describes the content of this array.

## FitInfoDescription

String describing the meaning of the FitInfo array.

## LearnerNames

Cell array of strings with names of weak learners in the ensemble. The name of each learner appears just once. For example, if you have an ensemble of 100 trees, LearnerNames is \{'Tree'\}.

## Method

String describing the method that creates ens.

## ModelParams

Parameters used in training ens.

## NObservations

Numeric scalar containing the number of observations in the training data.

## NTrained

Number of trained weak learners in ens, a scalar.

## PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in $X$.

## Prior

Prior probabilities for each class. Prior is a numeric vector whose entries relate to the corresponding ClassNames property.

## ReasonForTermination

## ClassificationEnsemble

String describing the reason fitensemble stopped adding weak learners to the ensemble.

## ResponseName

String with the name of the response variable Y.

## ScoreTransform

Function handle for transforming scores, or string representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in transformation functions and the syntax of custom transformation functions, see ClassificationTree.fit.

Add or change a ScoreTransform function by dot addressing:
ens.ScoreTransform = 'function'
or
ens.ScoreTransform = @function

## Trained

Trained learners, a cell array of compact classification models.

## TrainedWeights

Numeric vector of trained weights for the weak learners in ens. TrainedWeights has T elements, where $T$ is the number of weak learners in learners.

## UsePredForLearner

Logical matrix of size $P$-by-NTrained, where $P$ is the number of predictors (columns) in the training data $X$. UsePredForLearner ( $\mathrm{i}, \mathrm{j}$ ) is true when learner j uses predictor $i$, and is false otherwise. For each learner, the predictors have the same order as the columns in the training data $X$.
If the ensemble is not of type Subspace, all entries in UsePredForLearner are true.

## ClassificationEnsemble

## W

Scaled weights, a vector with length n , the number of rows in X . The sum of the elements of $W$ is 1 .

## X

Matrix of predictor values that trained the ensemble. Each column of $X$ represents one variable, and each row represents one observation.

## Y

Numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. Each row of $Y$ represents the classification of the corresponding row of $X$.

## Methods

| compact | Compact classification ensemble |
| :--- | :--- |
| crossval | Cross validate ensemble |
| resubEdge | Classification edge by <br> resubstitution |
| resubLoss | Classification error by <br> resubstitution |
| resubMargin | Classification margins by <br> resubstitution |
| resubPredict | Predict ensemble response by <br> resubstitution |
| resume | Resume training ensemble |

## Inherited Methods

| edge | Classification edge |
| :--- | :--- |
| loss | Classification error |

## ClassificationEnsemble

| margin | Classification margins |
| :--- | :--- |
| predict | Predict classification |
| predictorImportance | Estimates of predictor importance |
| removeLearners | Remove members of compact <br> classification ensemble |

Copy
Semantics

## Examples

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

Construct a boosted classification ensemble for the ionosphere data, using the AdaBoostM1 method:

```
load ionosphere
ens = fitensemble(X,Y,'AdaBoostM1',100,'Tree')
ens =
classreg.learning.classif.ClassificationEnsemble:
 PredictorNames: {1x34 cell}
 CategoricalPredictors: []
 ResponseName: 'Response'
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 NObservations: 351
 NTrained: }10
 Method: 'AdaBoostM1'
 LearnerNames: {'Tree'}
 ReasonForTermination: [1x77 char]
 FitInfo: [100x1 double]
 FitInfoDescription: [2x83 char]
```

Predict the classification of the mean of X :

```
ypredict = predict(ens,mean(X))
ypredict =
```


# ClassificationEnsemble 

## 'g

See Also ClassificationTree | fitensemble | RegressionEnsemble |

## ClassificationKNN

## Purpose $\quad k$-nearest neighbor classification

Description

Construction

A nearest-neighbor classification object, where both distance metric ("nearest") and number of neighbors can be altered. The object classifies new observations using the predict method. The object contains the data used for training, so can compute resubstitution predictions.
mdl $=$ ClassificationKNN.fit $(X, Y)$ creates a $k$-nearest neighbor classification model. For details, see ClassificationKNN.fit.
mdl = ClassificationKNN.fit(X,Y,Name,Value) creates a classifier with additional options specified by one or more Name, Value pair arguments. For details, see ClassificationKNN.fit.

## Input Arguments

## X

Matrix of predictor values. Each column of $X$ represents one variable, and each row represents one observation.

## Y

Grouping variables of response values with the same number of elements (rows) as X. Each entry in $Y$ is the response to the data in the corresponding row of $X$.

## Properties

## BreakTies

String specifying the method predict uses to break ties if multiple classes have the same smallest cost. By default, ties occur when multiple classes have the same number of nearest points among the K nearest neighbors.

- 'nearest' - Use the class with the nearest neighbor among tied groups.
- 'random' - Use a random tiebreaker among tied groups.
- 'smallest' - Use the smallest index among tied groups.


## ClassificationKNN

'BreakTies' applies when 'IncludeTies' is false.
Change BreakTies using dot addressing:
mdl.BreakTies = newBreakTies

## CategoricalPredictors

Specification of which predictors are categorical.

- 'all' - All predictors are categorical.
- [ ] - No predictors are categorical.


## ClassNames

List of elements in the training data $Y$ with duplicates removed. ClassNames can be a numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. ClassNames has the same data type as the data in the argument $Y$.

Change ClassNames using dot addressing:
mdl.ClassNames = newClassNames

## Cost

Square matrix, where Cost (i,j) is the cost of classifying a point into class $j$ if its true class is $i$. Cost is $K-b y-K$, where $K$ is the number of classes.

Change a Cost matrix using dot addressing:
mdl.Cost $=$ costMatrix

## Distance

String or function handle specifying the distance metric. The allowable strings depend on the NSMethod parameter, which you set in ClassificationKNN.fit, and which exists as a field in ModelParams.

## ClassificationKNN

| NSMethod | Distance Metric Names |
| :--- | :--- |
| exhaustive | Any distance metric of ExhaustiveSearcher |
| kdtree | 'cityblock', 'chebychev ', 'euclidean ', or <br> 'minkowski' |

For definitions, see "Distance Metrics" on page 15-9.
The distance metrics of ExhaustiveSearcher:

| Value | Description |
| :--- | :--- |
| 'cityblock' | City block distance. |
| 'chebychev' | Chebychev distance (maximum coordinate <br> difference). |
| 'correlation' | One minus the sample linear correlation <br> between observations (treated as <br> sequences of values). |
| 'cosine' | One minus the cosine of the included angle <br> between observations (treated as vectors). |
| 'euclidean' | Euclidean distance. |
| 'hamming' | Hamming distance, percentage of <br> coordinates that differ. |
| ' jaccard' | One minus the Jaccard coefficient, the <br> percentage of nonzero coordinates that <br> differ. |
| 'mahalanobis' | Mahalanobis distance, computed using a <br> positive definite covariance matrix C. The <br> default value of C is the sample covariance <br> matrix of X, as computed by nancov(X). <br> To specify a different value for C, use the <br> 'Cov' name-value pair. |

## ClassificationKNN

| Value | Description |
| :--- | :--- |
| 'minkowski' | Minkowski distance. The default exponent <br> is 2. To specify a different exponent, use <br> the 'P' name-value pair. |
| 'seuclidean' | Standardized Euclidean distance. Each <br> coordinate difference between X and a <br> query point is scaled, meaning divided by <br> a scale value S. The default value of S is <br> the standard deviation computed from X, <br> S = nanstd (X). To specify another value <br> for S, use the Scale name-value pair. |
| 'spearman' | One minus the sample Spearman's rank <br> correlation between observations (treated <br> as sequences of values). |
| @distfun | Distance function handle. distfun has <br> the form <br> function D2 = DISTFUN (ZI , ZJ) <br> \% calculation of distance <br> I |
| where |  |
| - ZI is a 1-by-N vector containing one row |  |
| of X or Y. |  |

Change Distance using dot addressing:

```
mdl.Distance = newDistance
```


## ClassificationKNN

If NSMethod is kdtree, you can use dot addressing to change Distance only among the types 'cityblock', 'chebychev', 'euclidean', or 'minkowski'.

## DistanceWeight

String or function handle specifying the distance weighting function.

| DistanceWeight | Meaning |
| :--- | :--- |
| 'equal' | No weighting |
| 'inverse' | Weight is 1/distance |
| 'inversesquared ' | Weight is 1/distance ${ }^{2}$ |
| @fcn | fcn is a function that accepts a matrix <br> of nonnegative distances, and returns <br> a matrix the same size containing <br> nonnegative distance weights. For <br> example, 'inversesquared ' is equivalent <br> to @(d)d.^(-2). |

Change DistanceWeight using dot addressing:
mdl.DistanceWeight = newDistanceWeight

## DistParameter

Additional parameter for the distance metric.

| Distance Metric | Parameter |
| :--- | :--- |
| 'mahalanobis' | Positive definite covariance matrix C. |
| 'minkowski' | Minkowski distance exponent, a positive <br> scalar. |
| 'seuclidean' | Vector of positive scale values with length <br> equal to the number of columns of X. |

## ClassificationKNN

For values of the distance metric other than those in the table, DistParameter must be []. Change DistParameter using dot addressing:
mdl.DistParameter = newDistParameter

## IncludeTies

Logical value indicating whether predict includes all the neighbors whose distance values are equal to the Kth smallest distance. If IncludeTies is true, predict includes all these neighbors. Otherwise, predict uses exactly K neighbors (see 'BreakTies').

Change IncludeTies using dot addressing:
mdl.IncludeTies $=$ newIncludeTies

## ModelParams

Parameters used in training mdl.

## NObservations

Number of observations used in training mdl. This can be less than the number of rows in the training data, because data rows containing NaN values are not part of the fit.

## NumNeighbors

Positive integer specifying the number of nearest neighbors in $X$ to find for classifying each point when predicting. Change NumNeighbors using dot addressing:
mdl.NumNeighbors = newNumNeighbors

## PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in the training data X . Change PredictorNames using dot addressing:

## ClassificationKNN

mdl.PredictorNames $=$ newPredictorNames

## Prior

Prior probabilities for each class. Prior is a numeric vector whose entries relate to the corresponding ClassNames property.

Add or change a Prior vector using dot addressing:
obj.Prior = priorVector

## ResponseName

String describing the response variable Y. Change ResponseName using dot addressing:
mdl.ResponseName = newResponseName

## W

Numeric vector of nonnegative weights with the same number of rows as $Y$. Each entry in $W$ specifies the relative importance of the corresponding observation in Y . Change W using dot addressing:
mdl.w = newW

X
Numeric matrix of predictor values. Each column of $X$ represents one predictor (variable), and each row represents one observation.

## $\mathbf{Y}$

Numeric vector of response values with the same number of rows as $X$. Each entry in $Y$ is the response to the data in the corresponding row of X .

## ClassificationKNN

## Methods

| crossval | Cross-validated $k$-nearest <br> neighbor classifier |
| :--- | :--- |
| edge | Edge of $k$-nearest neighbor <br> classifier |
| fit | Fit $k$-nearest neighbor classifier <br> Loss of $k$-nearest neighbor <br> classifier |
| margin | Margin of $k$-nearest neighbor <br> classifier |
| predict | Predict $k$-nearest neighbor <br> classification |
| resubEdge | Edge of $k$-nearest neighbor <br> classifier by resubstitution |
| resubLoss | Loss of $k$-nearest neighbor <br> classifier by resubstitution |
| resubMargin | Margin of $k$-nearest neighbor <br> classifier by resubstitution |
| resubPredict | Predict resubstitution response of <br> $k$-nearest neighbor classifier |
| template | $k$-nearest neighbor classifier <br> template for ensemble |

## Definitions Prediction

ClassificationKNN predicts the classification of a point Xnew using a procedure equivalent to this:

1 Find the NumNeighbors points in the training set $X$ that are nearest to Xnew.

2 Find the NumNeighbors response values $Y$ to those nearest points.

## ClassificationKNN

3 Assign the classification label Ynew that has smallest expected misclassification cost among the values in Y .

For details, see "Posterior Probability" on page 20-2181 and "Expected Cost" on page 20-2182 in the predict documentation.

## Copy <br> Semantics

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

## Examples

## Construct a KNN Classifier

Construct a $k$-nearest neighbor classifier for the Fisher iris data, where $k=5$.

Load the data.
load fisheriris
X = meas;
Y = species;
Construct a classifier for 5-nearest neighbors.
mdl = ClassificationKNN.fit(X,Y,'NumNeighbors',5)
mdl =
ClassificationKNN:
PredictorNames: \{'x1' 'x2' 'x3' 'x4'\}
ResponseName: ' $Y$ '
ClassNames: \{'setosa' 'versicolor' 'virginica'\}
ScoreTransform: 'none'
NObservations: 150
Distance: 'euclidean'
NumNeighbors: 5

## Alternatives

knnsearch finds the $k$-nearest neighbors of points. rangesearch finds all the points within a fixed distance. You can use these functions for classification, as shown in "Example: Classifying Query

## ClassificationKNN

Data Using knnsearch" on page $15-18$. If you want to perform classification, ClassificationKNN can be more convenient, in that you can construct a classifier in one step and classify in other steps. Also, ClassificationKNN has cross-validation options.

## See Also ClassificationKNN.fit | predict |

Related - "Construct a KNN Classifier" on page 15-25
Examples

- "Examine the Quality of a KNN Classifier" on page 15-26
- "Predict Classification Based on a KNN Classifier" on page 15-27
- "Modify a KNN Classifier" on page 15-27
Concepts • "Classification Using Nearest Neighbors" on page 15-9


## ClassificationPartitionedEnsemble

## Construction

## Properties

## Purpose Cross-validated classification ensemble <br> ClassificationPartitionedEnsemble is a set of classification ensembles trained on cross-validated folds. Estimate the quality of classification by cross validation using one or more "kfold" methods: kfoldPredict, kfoldLoss, kfoldMargin, kfoldEdge, and kfoldfun.

Every "kfold" method uses models trained on in-fold observations to predict response for out-of-fold observations. For example, suppose you cross validate using five folds. In this case, every training fold contains roughly $4 / 5$ of the data and every test fold contains roughly $1 / 5$ of the data. The first model stored in Trained\{1\} was trained on $X$ and $Y$ with the first $1 / 5$ excluded, the second model stored in Trained\{2\} was trained on $X$ and $Y$ with the second $1 / 5$ excluded, and so on. When you call kfoldPredict, it computes predictions for the first $1 / 5$ of the data using the first model, for the second $1 / 5$ of data using the second model, and so on. In short, response for every observation is computed by kfoldPredict using the model trained without this observation.
cvens = crossval(ens) creates a cross-validated ensemble from ens, a classification ensemble. For syntax details, see the crossval method reference page.
cvens = fitensemble(X,Y,method, nlearn, learners, name, value) creates a cross-validated ensemble when name is one of 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. For syntax details, see the fitensemble function reference page.

## CategoricalPredictors

List of categorical predictors. CategoricalPredictors is a numeric vector with indices from 1 to $p$, where $p$ is the number of columns of X .

## ClassNames

List of the elements in Y with duplicates removed. ClassNames can be a numeric vector, vector of categorical variables (nominal

## ClassificationPartitionedEnsemble

or ordinal), logical vector, character array, or cell array of strings. ClassNames has the same data type as the data in the argument Y .

## Combiner

Cell array of combiners across all folds.

## Cost

Square matrix, where $\operatorname{Cost}(i, j)$ is the cost of classifying a point into class $j$ if its true class is $i$.

## CrossValidatedModel

Name of the cross-validated model, a string.

## Kfold

Number of folds used in a cross-validated ensemble, a positive integer.

## ModelParams

Object holding parameters of cvens.

## NObservations

Number of data points used in training the ensemble, a positive integer.

## NTrainedPerFold

Number of data points used in training each fold of the ensemble, a positive integer.

## Partition

Partition of class cvpartition used in creating the cross-validated ensemble.

## PredictorNames

Cell array of names for the predictor variables, in the order in which they appear in $X$.

## Prior

## ClassificationPartitionedEnsemble

Prior probabilities for each class. Prior is a numeric vector whose entries relate to the corresponding ClassNames property.

## ResponseName

Name of the response variable Y , a string.

## ScoreTransform

Function handle for transforming scores, or string representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in transformation functions and the syntax of custom transformation functions, see ClassificationTree.fit.

Add or change a ScoreTransform function by dot addressing:
ens.ScoreTransform = 'function'
or
ens.ScoreTransform = @function

## Trainable

Cell array of ensembles trained on cross-validation folds. Every ensemble is full, meaning it contains its training data and weights.

## Trained

Cell array of compact ensembles trained on cross-validation folds.

## W

Scaled weights, a vector with length $n$, the number of rows in $X$.
X
A matrix of predictor values. Each column of $X$ represents one variable, and each row represents one observation.

Y
A numeric column vector with the same number of rows as $X$. Each entry in $Y$ is the response to the data in the corresponding row of $X$.

## ClassificationPartitionedEnsemble

## Methods

kfoldEdge
kfoldLoss
resume
Inherited Methods

| kfoldEdge | Classification edge for <br> observations not used for <br> training |
| :--- | :--- |
| kfoldfun | Cross validate function |
| kfoldLoss | Classification loss for <br> observations not used for <br> training |
| kfoldMargin | Classification margins for <br> observations not used for training |
| kfoldPredict | Predict response for observations <br> not used for training |

## Copy Semantics

Examples

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

Evaluate the k-fold cross-validation error for a classification ensemble that models the Fisher iris data:

```
load fisheriris
ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');
cvens = crossval(ens);
L = kfoldLoss(cvens)
```


## ClassificationPartitionedEnsemble

$$
L=
$$

See Also
RegressionPartitionedEnsemble |
ClassificationPartitionedModel | ClassificationEnsemble

## ClassificationPartitionedModel

## Purpose Cross-validated classification model <br> Description <br> Construction <br> ClassificationPartitionedModel is a set of classification models trained on cross-validated folds. Estimate the quality of classification by cross validation using one or more "kfold" methods: kfoldPredict, kfoldLoss, kfoldMargin, kfoldEdge, and kfoldfun. <br> Every "kfold" method uses models trained on in-fold observations to predict response for out-of-fold observations. For example, suppose you cross validate using five folds. In this case, every training fold contains roughly $4 / 5$ of the data and every test fold contains roughly $1 / 5$ of the data. The first model stored in Trained\{1\} was trained on $X$ and $Y$ with the first $1 / 5$ excluded, the second model stored in Trained $\{2\}$ was trained on $X$ and $Y$ with the second $1 / 5$ excluded, and so on. When you call kfoldPredict, it computes predictions for the first $1 / 5$ of the data using the first model, for the second $1 / 5$ of data using the second model, and so on. In short, response for every observation is computed by kfoldPredict using the model trained without this observation. <br> cvmodel $=$ crossval(obj) creates a cross-validated classification model from a classification model. <br> cvmodel = ClassificationTree.fit(X,Y, name, value) or cvmodel $=$ ClassificationDiscriminant.fit(X,Y, name, value) creates a cross-validated model when name is one of 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. For syntax details, see the ClassificationTree.fit or ClassificationDiscriminant.fit function reference pages. <br> Input Arguments <br> obi <br> A classification model. obj can be a classification tree constructed using ClassificationTree.fit, or a discriminant analysis classifier constructed using ClassificationDiscriminant.fit.

## ClassificationPartitionedModel

## Properties

## CategoricalPredictors

List of categorical predictors. CategoricalPredictors is a numeric vector with indices from 1 to $p$, where $p$ is the number of columns of X .

## ClassNames

List of the elements in $Y$ with duplicates removed. ClassNames can be a numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. ClassNames has the same data type as the data in the argument Y .

## Cost

Square matrix, where $\operatorname{Cost}(i, j)$ is the cost of classifying a point into class $j$ if its true class is $i$.

If cvmodel is a cross-validated ClassificationDiscriminant model, you can change a cost matrix by dot addressing:
cvmodel. Cost $=$ costMatrix

## CrossValidatedModel

Name of the cross-validated model, a string.

## Kfold

Number of folds used in cross-validated model, a positive integer.

## ModelParams

Object holding parameters of cvmodel.

## Partition

The partition of class cvpartition used in creating the cross-validated model.

## PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X .

## ClassificationPartitionedModel

## Prior

Prior probabilities for each class. Prior is a numeric vector whose entries relate to the corresponding ClassNames property.
If cvmodel is a cross-validated ClassificationDiscriminant model, you can change a Prior vector by dot addressing:
cvmodel.Prior = priorVector

## ResponseName

Name of the response variable Y , a string.

## ScoreTransform

Function handle for transforming scores, or string representing a built-in transformation function.

| String | Formula |
| :--- | :--- |
| 'symmetric' | $2 x-1$ |
| 'invlogit' | $\log (x /(1-x))$ |
| 'ismax' | Set score for the class with the <br> largest score to 1, and scores for all <br> other classes to 0. |
| 'symmetricismax' | Set score for the class with the <br> largest score to 1, and scores for <br> all other classes to -1. |
| 'none' | $x$ |
| 'logit' | $1 /\left(1+e^{-x}\right)$ |
| 'doublelogit' | $1 /\left(1+e^{-2 x}\right)$ |
| 'symmetriclogit' | $2 /\left(1+e^{-x}\right)-1$ |
| 'sign' | -1 for $x<0$ <br> 0 <br> for $x=0$ <br> 1 for $x>0$ |

## ClassificationPartitionedModel

You can include your own function handle for transforming scores. Your function should accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Add or change a ScoreTransform function by dot addressing:
cvmodel.ScoreTransform = 'function'
or
cvmodel.ScoreTransform = @function

## Trained

The trained learners, a cell array of compact classification models.

## W

The scaled weights, a vector with length n , the number of rows in $X$.

## X

A matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

Y
A numeric column vector with the same number of rows as $X$. Each entry in $Y$ is the response to the data in the corresponding row of $X$.

## Methods

| kfoldEdge | Classification edge for <br> observations not used for <br> training |
| :--- | :--- |
| kfoldfun | Cross validate function |
| kfoldLoss | Classification loss for <br> observations not used for <br> training |

## ClassificationPartitionedModel

$\left.\begin{array}{ll} & \begin{array}{l}\text { kfoldMargin } \\ \text { kfoldPredict }\end{array} \\ \text { Copy } \\ \text { Semantics } & \begin{array}{l}\text { Value. To learn how value classes affect copy operations, see Copying } \\ \text { Objects in the MATLAB documentation. }\end{array} \\ \text { Examples } & \begin{array}{l}\text { Evaluate the k-fold cross-validation error for a classification tree margins for } \\ \text { of the Fisher iris data: }\end{array} \\ \text { observations not used for training } \\ \text { Predict response for observations }\end{array}\right\}$

## ClassificationTree

| Superclasses | CompactClassificationTree |
| :---: | :---: |
| Purpose | Binary decision tree for classification |
| Description | A decision tree with binary splits for classification. An object of class ClassificationTree can predict responses for new data with the predict method. The object contains the data used for training, so can compute resubstitution predictions. |
| Construction | tree = ClassificationTree.fit( $\mathrm{X}, \mathrm{Y}$ ) returns a classification tree based on the input variables (also known as predictors, features, or attributes) X and output (response) Y . tree is a binary tree, where each branching node is split based on the values of a column of $X$. <br> tree $=$ ClassificationTree.fit(X,Y,Name, Value) fits a tree with additional options specified by one or more Name, Value pair arguments. If you use one of the following five options, tree is of class ClassificationPartitionedModel: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. Otherwise, tree is of class ClassificationTree. |
|  | Input Arguments |
|  | x |
|  | A matrix of numeric predictor values. Each column of X represents one variable, and each row represents one observation. |
|  | NaN values in X are taken to be missing values. Observations with all missing values for X are not used in the fit. Observations with some missing values for X are used to find splits on variables for which these observations have valid values. |

## $\mathbf{Y}$

A numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. Each row of $Y$ represents the classification of the corresponding

## ClassificationTree

> row of X. For numeric Y, consider using RegressionTree.fit instead of ClassificationTree.fit.
> NaN values in Y are taken to be missing values. Observations with missing values for Y are not used in the fit.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## AlgorithmForCategorical

Algorithm to find the best split on a categorical predictor with $L$ levels for data with $K \geq 3$ classes. The available algorithms are:

| 'Exact' | Consider all $2^{L-1}-1$ <br> combinations |
| :--- | :--- |
| 'PullLeft' | Pull left by purity <br> 'PCA' |
| Principle component-based |  |
| partition[1] |  |

Descriptions of the algorithms are in "Splitting Categorical Predictors" on page 15-55.

Default: ClassificationTree.fit selects the optimal subset of algorithms for each split using the known number of classes and levels of a categorical predictor. For $K=2$ classes, ClassificationTree.fit always performs the exact search.

## CategoricalPredictors

List of categorical predictors. Pass CategoricalPredictors as one of:

## ClassificationTree

- A numeric vector with indices from 1 to $p$, where $p$ is the number of columns of $X$.
- A logical vector of length $p$, where a true entry means that the corresponding column of X is a categorical variable.
- 'all', meaning all predictors are categorical.
- A cell array of strings, where each element in the array is the name of a predictor variable. The names must match entries in PredictorNames values.
- A character matrix, where each row of the matrix is a name of a predictor variable. The names must match entries in PredictorNames values. Pad the names with extra blanks so each row of the character matrix has the same length.

Default: []

## ClassNames

Array of class names. Use the data type that exists in $Y$.
Use ClassNames to order the classes or to select a subset of classes for training.

Default: The class names that exist in $Y$

## Cost

Square matrix, where $\operatorname{Cost}(i, j)$ is the cost of classifying a point into class $j$ if its true class is $i$. Alternatively, Cost can be a structure $S$ having two fields: S . ClassNames containing the group names as a variable of the same type as Y , and S.ClassificationCosts containing the cost matrix.

Default: $\operatorname{Cost}(i, j)=1$ if $i \sim=j$, and $\operatorname{Cost}(i, j)=0$ if $i=j$

## crossval

## ClassificationTree

Flag to grow a cross-validated decision tree. Possible value are 'on' or 'off'.

If 'on', ClassificationTree.fit grows a cross-validated decision tree with 10 folds. You can override this cross-validation setting using one of the 'kfold', 'holdout', 'leaveout', or 'cvpartition' name-value pair arguments. Note that you can only use one of these four options ('kfold', 'holdout', 'leaveout', or 'cvpartition') at a time when creating a cross-validated tree.

Alternatively, cross validate tree later using the crossval method.

Default: 'off'

## cvpartition

Partition created with cvpartition to use in a cross-validated tree.

Note that if you use 'cvpartition', you cannot use any of the 'kfold', 'holdout', or 'leaveout ' name-value pair arguments.

## holdout

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training. Specify a numeric scalar from 0 to 1 .

Note that if you use 'holdout', you cannot use any of the 'cvpartition', 'kfold', or 'leaveout' name-value pair arguments.

## kfold

Number of folds to use in a cross-validated tree, a positive integer.
Note that if you use 'kfold', you cannot use any of the 'cvpartition', 'holdout', or 'leaveout' name-value pair arguments.

## ClassificationTree

Default: 10

## leaveout

Use leave-one-out cross validation by setting to 'on'.
Note that if you use 'leaveout', you cannot use any of the 'cvpartition', 'holdout', or 'kfold' name-value pair arguments.

## MaxCat

ClassificationTree.fit splits a categorical predictor using the exact search algorithm if the predictor has at most MaxCat levels in the split node. Otherwise, ClassificationTree.fit finds the best categorical split using one of the inexact algorithms.
Specify MaxCat as a numeric nonnegative scalar value. Passing a small value can lead to loss of accuracy and passing a large value can lead to long computation time and memory overload.

Default: 10

## MergeLeaves

When 'on', ClassificationTree.fit merges leaves that originate from the same parent node, and that give a sum of risk values greater or equal to the risk associated with the parent node. When 'off', ClassificationTree.fit does not merge leaves.

Default: 'on'

## MinLeaf

Each leaf has at least MinLeaf observations per tree leaf. If you supply both MinParent and MinLeaf, ClassificationTree.fit uses the setting that gives larger leaves: MinParent=max(MinParent,2*MinLeaf).

Default: 1

## ClassificationTree

## MinParent

Each branch node in the tree has at least MinParent observations. If you supply both MinParent and MinLeaf, ClassificationTree.fit uses the setting that gives larger leaves: MinParent=max (MinParent,2*MinLeaf).

Default: 10

## NVarToSample

Number of predictors to select at random for each split. Can be a positive integer or 'all', which means use all available predictors.

Default: 'all'

## PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in $X$.

Default: \{'x1', 'x2', ...\}

## prior

Prior probabilities for each class. Specify as one of:

- A string:
- 'empirical' determines class probabilities from class frequencies in Y . If you pass observation weights, they are used to compute the class probabilities.
- 'uniform' sets all class probabilities equal.
- A vector (one scalar value for each class)
- A structure S with two fields:


## ClassificationTree

- S.ClassNames containing the class names as a variable of the same type as $Y$
- S.ClassProbs containing a vector of corresponding probabilities

If you set values for both weights and prior, the weights are renormalized to add up to the value of the prior probability in the respective class.

Default: 'empirical'

## Prune

When 'on', ClassificationTree.fit grows the classification tree, and computes the optimal sequence of pruned subtrees. When 'off' ClassificationTree.fit grows the classification tree without pruning.

Default: 'on'

## PruneCriterion

String with the pruning criterion, either 'error' or 'impurity'.
Default: 'error'

## ResponseName

Name of the response variable Y , a string.
Default: 'Response'

## ScoreTransform

Function handle for transforming scores, or string representing a built-in transformation function.

## ClassificationTree

| String | Formula |
| :--- | :--- |
| 'symmetric' | $2 x-1$ |
| 'invlogit' | $\log (x /(1-x))$ |
| 'ismax' | Set score for the class with the <br> largest score to 1, and scores for all <br> other classes to 0. |
| 'symmetricismax' | Set score for the class with the <br> largest score to 1, and scores for <br> all other classes to -1. |
| 'none' | $x$ |
| 'logit' | $1 /\left(1+e^{-x}\right)$ |
| 'doublelogit' | $1 /\left(1+e^{-2 x}\right)$ |
| 'symmetriclogit' | $2 /\left(1+e^{-x}\right)-1$ |
| 'sign' | -1 for $x<0$ <br> 0 for $x=0$ <br> 1 for $x>0$ |

You can include your own function handle for transforming scores. Your function should accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Default: 'none'

## SplitCriterion

Criterion for choosing a split. One of 'gdi' (Gini's diversity index), 'twoing' for the twoing rule, or 'deviance' for maximum deviance reduction (also known as cross entropy).

Default: 'gdi'

## Surrogate

## ClassificationTree

String describing whether to find surrogate decision splits at each branch node. Specify as 'on', 'off', 'all', or a positive scalar value.

- When 'on', ClassificationTree.fit finds at most 10 surrogate splits at each branch node.
- When set to a positive integer value, ClassificationTree.fit finds at most the specified number of surrogate splits at each branch node.
- When set to 'all', ClassificationTree.fit finds all surrogate splits at each branch node. The 'all' setting can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values. The setting also enables you to compute measures of predictive association between predictors.

Default: 'off'

## weights

Vector of observation weights. The length of weights is the number of rows in X. ClassificationTree.fit normalizes the weights in each class to add up to the value of the prior probability of the class.

Default: ones(size(X,1),1)

## Properties

## CategoricalPredictors

List of categorical predictors, a numeric vector with indices from 1 to $p$, where $p$ is the number of columns of $X$.

## CatSplit

An $n$-by- 2 cell array, where $n$ is the number of categorical splits in tree. Each row in CatSplit gives left and right values for a categorical split. For each branch node with categorical split j

## ClassificationTree

based on a categorical predictor variable $z$, the left child is chosen if $z$ is in CatSplit ( $j, 1$ ) and the right child is chosen if $z$ is in CatSplit ( $\mathrm{j}, 2$ ). The splits are in the same order as nodes of the tree. Find the nodes for these splits by selecting 'categorical' cuts from top to bottom in the CutType property.

## Children

An $n$-by- 2 array containing the numbers of the child nodes for each node in tree, where $n$ is the number of nodes. Leaf nodes have child node 0 .

## ClassCount

An $n$-by- $k$ array of class counts for the nodes in tree, where $n$ is the number of nodes and $k$ is the number of classes. For any node number i, the class counts ClassCount(i,:) are counts of observations (from the data used in fitting the tree) from each class satisfying the conditions for node i.

## ClassNames

List of the elements in $Y$ with duplicates removed. ClassNames can be a numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. ClassNames has the same data type as the data in the argument Y .

## ClassProb

An $n$-by- $k$ array of class probabilities for the nodes in tree, where $n$ is the number of nodes and $k$ is the number of classes. For any node number $i$, the class probabilities ClassProb(i,:) are the estimated probabilities for each class for a point satisfying the conditions for node i.

## Cost

Square matrix, where $\operatorname{Cost}(i, j)$ is the cost of classifying a point into class $j$ if its true class is $i$.

## CutCategories

## ClassificationTree

An $n$-by- 2 cell array of the categories used at branches in tree, where $n$ is the number of nodes. For each branch node i based on a categorical predictor variable $x$, the left child is chosen if $x$ is among the categories listed in CutCategories $\{i, 1\}$, and the right child is chosen if $x$ is among those listed in CutCategories $\{i, 2\}$. Both columns of CutCategories are empty for branch nodes based on continuous predictors and for leaf nodes.

CutPoint contains the cut points for 'continuous ' cuts, and CutCategories contains the set of categories.

## CutPoint

An $n$-element vector of the values used as cut points in tree, where $n$ is the number of nodes. For each branch node i based on a continuous predictor variable $x$, the left child is chosen if $x<C u t P o i n t(i)$ and the right child is chosen if $x>=C u t P o i n t(i)$. CutPoint is NaN for branch nodes based on categorical predictors and for leaf nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of categories.

## CutType

An $n$-element cell array indicating the type of cut at each node in tree, where $n$ is the number of nodes. For each node i, CutType\{i\} is:

- 'continuous' - If the cut is defined in the form $x<v$ for a variable x and cut point v .
- 'categorical' - If the cut is defined by whether a variable $x$ takes a value in a set of categories.
- ' ' - If i is a leaf node.

CutPoint contains the cut points for 'continuous ' cuts, and CutCategories contains the set of categories.

## CutVar

## ClassificationTree

An $n$-element cell array of the names of the variables used for branching in each node in tree, where $n$ is the number of nodes. These variables are sometimes known as cut variables. For leaf nodes, CutVar contains an empty string.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of categories.

## IsBranch

An $n$-element logical vector that is true for each branch node and false for each leaf node of tree.

## ModelParams

Parameters used in training tree.

## NObservations

Number of observations in the training data, a numeric scalar. NObservations can be less than the number of rows of input data $X$ when there are missing values in $X$ or response $Y$.

## NodeClass

An $n$-element cell array with the names of the most probable classes in each node of tree, where $n$ is the number of nodes in the tree. Every element of this array is a string equal to one of the class names in ClassNames.

## NodeErr

An $n$-element vector of the errors of the nodes in tree, where $n$ is the number of nodes. NodeErr(i) is the misclassification probability for node i.

## NodeProb

An $n$-element vector of the probabilities of the nodes in tree, where $n$ is the number of nodes. The probability of a node is computed as the proportion of observations from the original data that satisfy the conditions for the node. This proportion is adjusted for any prior probabilities assigned to each class.

## ClassificationTree

## NodeRisk

An $n$-element vector of the risk of the nodes in the tree, where $n$ is the number of nodes. The risk for each node is the measure of impurity (Gini index or deviance) for this node weighted by the node probability. If the tree is grown by twoing, the risk for each node is zero.

## NodeSize

An $n$-element vector of the sizes of the nodes in tree, where $n$ is the number of nodes. The size of a node is defined as the number of observations from the data used to create the tree that satisfy the conditions for the node.

## NumNodes

The number of nodes in tree.

## Parent

An $n$-element vector containing the number of the parent node for each node in tree, where $n$ is the number of nodes. The parent of the root node is 0 .

## PredictorNames

A cell array of names for the predictor variables, in the order in which they appear in X .

## Prior

Prior probabilities for each class. Prior is a numeric vector whose entries relate to the corresponding ClassNames property.

## PruneAlpha

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to $M$, then PruneAlpha has $M+1$ elements sorted in ascending order. PruneAlpha(1) is for pruning level 0 (no pruning), PruneAlpha(2) is for pruning level 1, and so on.

## PruneList

## ClassificationTree

An $n$-element numeric vector with the pruning levels in each node of tree, where $n$ is the number of nodes. The pruning levels range from 0 (no pruning) to $M$, where $M$ is the distance between the deepest leaf and the root node.

## ResponseName

String describing the response variable Y .

## ScoreTransform

Function handle for transforming scores, or string representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x.
Add or change a ScoreTransform function by dot addressing:
tree.ScoreTransform = 'function'
or
tree.ScoreTransform = @function

## SurrCutCategories

An $n$-element cell array of the categories used for surrogate splits in tree, where $n$ is the number of nodes in tree. For each node k, SurrCutCategories $\{\mathrm{k}\}$ is a cell array. The length of SurrCutCategories $\{\mathrm{k}\}$ is equal to the number of surrogate predictors found at this node. Every element of SurrCutCategories $\{\mathrm{k}\}$ is either an empty string for a continuous surrogate predictor, or is a two-element cell array with categories for a categorical surrogate predictor. The first element of this two-element cell array lists categories assigned to the left child by this surrogate split, and the second element of this two-element cell array lists categories assigned to the right child by this surrogate split. The order of the surrogate split variables at each node is matched to the order of variables in SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutCategories contains an empty cell.

## SurrCutFlip

## ClassificationTree

An $n$-element cell array of the numeric cut assignments used for surrogate splits in tree, where $n$ is the number of nodes in tree. For each node k, SurrCutFlip $\{k\}$ is a numeric vector. The length of SurrCutFlip $\{\mathrm{k}\}$ is equal to the number of surrogate predictors found at this node. Every element of SurrCutFlip\{k\} is either zero for a categorical surrogate predictor, or a numeric cut assignment for a continuous surrogate predictor. The numeric cut assignment can be either -1 or +1 . For every surrogate split with a numeric cut $C$ based on a continuous predictor variable $Z$, the left child is chosen if $Z<C$ and the cut assignment for this surrogate split is +1 , or if $Z \geq C$ and the cut assignment for this surrogate split is -1 . Similarly, the right child is chosen if $Z \geq C$ and the cut assignment for this surrogate split is +1 , or if $Z<C$ and the cut assignment for this surrogate split is -1 . The order of the surrogate split variables at each node is matched to the order of variables in SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutFlip contains an empty array.

## SurrCutPoint

An $n$-element cell array of the numeric values used for surrogate splits in tree, where $n$ is the number of nodes in tree. For each node $k$, SurrCutPoint $\{k\}$ is a numeric vector. The length of SurrCutPoint $\{k\}$ is equal to the number of surrogate predictors found at this node. Every element of SurrCutPoint $\{k\}$ is either NaN for a categorical surrogate predictor, or a numeric cut for a continuous surrogate predictor. For every surrogate split with a numeric cut $C$ based on a continuous predictor variable $Z$, the left child is chosen if $Z<C$ and SurrCutFlip for this surrogate split is -1 . Similarly, the right child is chosen if $Z \geq C$ and SurrCutFlip for this surrogate split is +1 , or if $Z<C$ and SurrCutFlip for this surrogate split is -1 . The order of the surrogate split variables at each node is matched to the order of variables returned by SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutPoint contains an empty cell.

## ClassificationTree

## SurrCutType

An $n$-element cell array indicating types of surrogate splits at each node in tree, where $n$ is the number of nodes in tree. For each node k, SurrCutType $\{k\}$ is a cell array with the types of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The order of the surrogate split variables at each node is matched to the order of variables in SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutType contains an empty cell. A surrogate split type can be either 'continuous' if the cut is defined in the form $Z<V$ for a variable $Z$ and cut point V or 'categorical' if the cut is defined by whether $Z$ takes a value in a set of categories.

## SurrCutVar

An $n$-element cell array of the names of the variables used for surrogate splits in each node in tree, where $n$ is the number of nodes in tree. Every element of SurrCutVar is a cell array with the names of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutVar contains an empty cell.

## SurrVarAssoc

An $n$-element cell array of the predictive measures of association for surrogate splits in tree, where $n$ is the number of nodes in tree. For each node k, SurrVarAssoc $\{k\}$ is a numeric vector. The length of SurrVarAssoc $\{k\}$ is equal to the number of surrogate predictors found at this node. Every element of SurrVarAssoc \{k\} gives the predictive measure of association between the optimal split and this surrogate split. The order of the surrogate split variables at each node is the order of variables in SurrCutVar.

## ClassificationTree

The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrVarAssoc contains an empty cell.

## w

The scaled weights, a vector with length $n$, the number of rows in $X$.

## X

A matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

## Y

A numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. Each row of $Y$ represents the classification of the corresponding row of $X$.

## Methods

| compact | Compact tree |
| :--- | :--- |
| crossval | Cross-validated decision tree |
| cvloss | Classification error by cross <br> validation |
| fit | Fit classification tree <br> Produce sequence of subtrees by <br> pruning |
| prune | Classification edge by <br> resubstitution |
| resubEdge | Classification error by <br> resubstitution <br> resubLoss |
| resubMargin | Classification margins by <br> resubstitution |

## ClassificationTree

resubPredict<br>template

Predict resubstitution response of tree

Create classification template

## Inherited Methods

| edge | Classification edge |
| :--- | :--- |
| loss | Classification error |
| margin | Classification margins |
| meanSurrVarAssoc | Mean predictive measure of <br> association for surrogate splits in <br> decision tree |
| predict | Predict classification |
| predictorImportance | Estimates of predictor importance |
| view | View tree |

View tree

## Definitions Impurity and Node Error

ClassificationTree splits nodes based on either impurity or node error. Impurity means one of several things, depending on your choice of the SplitCriterion name-value pair:

- Gini’s Diversity Index (gdi) - The Gini index of a node is

$$
1-\sum_{i} p^{2}(i),
$$

where the sum is over the classes $i$ at the node, and $p(i)$ is the observed fraction of classes with class $i$ that reach the node. A node with just one class (a pure node) has Gini index 0 ; otherwise the Gini index is positive. So the Gini index is a measure of node impurity.

- Deviance ('deviance') - With $p(i)$ defined as for the Gini index, the deviance of a node is


## ClassificationTree

$$
-\sum_{i} p(i) \log p(i) .
$$

A pure node has deviance 0 ; otherwise, the deviance is positive.

- Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a different measure for deciding how to split a node. Let $L(i)$ denote the fraction of members of class $i$ in the left child node after a split, and $R(i)$ denote the fraction of members of class $i$ in the right child node after a split. Choose the split criterion to maximize

$$
P(L) P(R)\left(\sum_{i}|L(i)-R(i)|\right)^{2},
$$

where $P(L)$ and $P(R)$ are the fractions of observations that split to the left and right respectively. If the expression is large, the split made each child node purer. Similarly, if the expression is small, the split made each child node similar to each other, and hence similar to the parent node, and so the split did not increase node purity.

- Node error - The node error is the fraction of misclassified classes at a node. If $j$ is the class with largest number of training samples at a node, the node error is

$$
1-p(j)
$$

Copy Semantics

## Examples

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

Construct a classification tree for the data in ionosphere.mat:

```
load ionosphere
tc = ClassificationTree.fit(X,Y)
tc =
 ClassificationTree
```


## ClassificationTree

```
 PredictorNames: {1x34 cell}
 ResponseName: 'Y'
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 CategoricalPredictors: []
 NObservations: 351
```

Properties, Methods

See Also $\quad$| RegressionTree \| ClassificationEnsemble | |
| :--- |
| ClassificationTree.fit \| CompactClassificationTree | predict |

How To . "Classification Trees and Regression Trees" on page 15-30

Purpose
Discriminant analysis
Syntax

```
class = classify(sample,training,group)
class = classify(sample,training,group,'type')
class = classify(sample,training,group,'type',prior)
[class,err] = classify(...)
[class,err,POSTERIOR] = classify(...)
[class,err,POSTERIOR,logp] = classify(...)
[class,err,POSTERIOR,logp,coeff] = classify(...)
```


## Description

class = classify(sample,training, group) classifies each row of the data in sample into one of the groups in training. sample and training must be matrices with the same number of columns. group is a grouping variable for training. Its unique values define groups; each element defines the group to which the corresponding row of training belongs. group can be a categorical variable, a numeric vector, a string array, or a cell array of strings. training and group must have the same number of rows. classify treats NaNs or empty strings in group as missing values, and ignores the corresponding rows of training. The output class indicates the group to which each row of sample has been assigned, and is of the same type as group.
class = classify(sample,training, group, 'type') allows you to specify the type of discriminant function. Specify type inside single quotes. type is one of:

- linear - Fits a multivariate normal density to each group, with a pooled estimate of covariance. This is the default.
- diaglinear - Similar to linear, but with a diagonal covariance matrix estimate (naive Bayes classifiers).
- quadratic - Fits multivariate normal densities with covariance estimates stratified by group.
- diagquadratic - Similar to quadratic, but with a diagonal covariance matrix estimate (naive Bayes classifiers).
- mahalanobis - Uses Mahalanobis distances with stratified covariance estimates.
class = classify(sample,training,group,'type',prior) allows you to specify prior probabilities for the groups. prior is one of:
- A numeric vector the same length as the number of unique values in group (or the number of levels defined for group, if group is categorical). If group is numeric or categorical, the order of prior must correspond to the ordered values in group, or, if group contains strings, to the order of first occurrence of the values in group.
- A 1-by-1 structure with fields:
- prob - A numeric vector.
- group - Of the same type as group, containing unique values indicating the groups to which the elements of prob correspond.

As a structure, prior can contain groups that do not appear in group. This can be useful if training is a subset a larger training set. classify ignores any groups that appear in the structure but not in the group array.

- The string 'empirical', indicating that group prior probabilities should be estimated from the group relative frequencies in training.
prior defaults to a numeric vector of equal probabilities, i.e., a uniform distribution. prior is not used for discrimination by Mahalanobis distance, except for error rate calculation.
[class,err] = classify(...) also returns an estimate err of the misclassification error rate based on the training data. classify returns the apparent error rate, i.e., the percentage of observations in training that are misclassified, weighted by the prior probabilities for the groups.
[class,err,POSTERIOR] = classify(...) also returns a matrix POSTERIOR of estimates of the posterior probabilities that the $j$ th training group was the source of the $i$ th sample observation, i.e., $\operatorname{Pr}($ group $j \mid o b s i)$. POSTERIOR is not computed for Mahalanobis discrimination.
[class,err,POSTERIOR,logp] = classify(...) also returns a vector logp containing estimates of the logarithms of the unconditional
predictive probability density of the sample observations, $p($ obs $i)=$ $\sum p(o b s i \mid$ group $j) \operatorname{Pr}($ group $j)$ over all groups. logp is not computed for Mahalanobis discrimination.
[class,err, POSTERIOR, logp,coeff] = classify(...) also returns a structure array coeff containing coefficients of the boundary curves between pairs of groups. Each element coeff (I, J) contains information for comparing group I to group $J$ in the following fields:
- type - Type of discriminant function, from the type input.
- name1 - Name of the first group.
- name2 - Name of the second group.
- const - Constant term of the boundary equation (K)
- linear - Linear coefficients of the boundary equation (L)
- quadratic - Quadratic coefficient matrix of the boundary equation (Q)

For the linear and diaglinear types, the quadratic field is absent, and a row $x$ from the sample array is classified into group I rather than group $J$ if $0<K+x * L$. For the other types, $x$ is classified into group I if $0<K+x^{*} L+X^{*} Q^{*} x^{\prime}$.

## Examples For training data, use Fisher's sepal measurements for iris versicolor and virginica:

```
load fisheriris
SL = meas(51:end,1);
SW = meas(51:end,2);
group = species(51:end);
h1 = gscatter(SL,SW,group,'rb','v^',[],'off');
set(h1,'LineWidth',2)
legend('Fisher versicolor','Fisher virginica',...
 'Location','NW')
```



Classify a grid of measurements on the same scale:

```
[X,Y] = meshgrid(linspace(4.5,8),linspace(2,4));
X = X(:); Y = Y(:);
[C,err,P,logp,coeff] = classify([X Y],[SL SW],...
 group,'quadratic');
```

Visualize the classification:
hold on;
gscatter(X,Y,C,'rb','.',1,'off');
$K=\operatorname{coeff}(1,2)$. const;
L = coeff(1,2).linear;

```
Q = coeff(1,2).quadratic;
% Function to compute K + L*v + v'*Q*v for multiple vectors
% v=[x;y]. Accepts x and y as scalars or column vectors.
f = @(x,y) K + [x y]*L + sum(([x y]*Q) .* [x y], 2);
h2 = ezplot(f,[4.5 8 2 4]);
set(h2,'Color','m','LineWidth',2)
axis([4.5 8 2 4])
xlabel('Sepal Length')
ylabel('Sepal Width')
title('{\bf Classification with Fisher Training Data}')
```

Classification with Fisher Training Data

References

[1] Krzanowski, W. J. Principles of Multivariate Analysis: A User'sSee Also classregtree | mahal | NaiveBayesHow To . "Grouping Variables" on page 2-51 Perspective. New York: Oxford University Press, 1988.
[2] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley \& Sons, Inc., 1984.
classregtree | mahal | NaiveBayes
How To . "Grouping Variables" on page 2-51

## classregtree.classname

Purpose Class names for classification decision tree
Syntax
CNAMES = classname(T)
CNAMES = classname(T,J)

Description
CNAMES = classname $(\mathrm{T})$ returns a cell array of strings with class names for this classification decision tree.

CNAMES = classname ( $\mathrm{T}, \mathrm{J}$ ) takes an array J of class numbers and returns the class names for the specified numbers.

See Also<br>classregtree

## TreeBagger.ClassNames property

Purpose Names of classes
Description The ClassNames property is a cell array containing the class names for the response variable Y . This property is empty for regression trees.

## classregtree.classprob

Purpose Class probabilities
Syntax $\quad \begin{aligned} P & =\text { classprob }(t) \\ P & =\text { classprob }(t, \text { nodes })\end{aligned}$
Description
$\mathrm{P}=$ classprob( t ) returns an $n$-by- $m$ array P of class probabilities for the nodes in the classification tree t , where $n$ is the number of nodes and $m$ is the number of classes. For any node number $i$, the class probabilities $\mathrm{P}(\mathrm{i},:$ ) are the estimated probabilities for each class for a point satisfying the conditions for node i.

P = classprob(t, nodes) takes a vector nodes of node numbers and returns the class probabilities for the specified nodes.

## Examples

Create a classification tree for Fisher's iris data:

```
load fisheriris;
t = classregtree(meas,species,...
 'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2 class = setosa
3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
5 class = virginica
6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica
view(t)
```



```
P = classprob(t)
P =
\begin{tabular}{rrr}
0.3333 & 0.3333 & 0.3333 \\
1.0000 & 0 & 0 \\
0 & 0.5000 & 0.5000 \\
0 & 0.9074 & 0.0926 \\
0 & 0.0217 & 0.9783 \\
0 & 0.9792 & 0.0208 \\
0 & 0.3333 & 0.6667 \\
0 & 1.0000 & 0
\end{tabular}
```


## classregtree.classprob

$0 \quad 0 \quad 1.0000$<br>References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification<br>See Also classregtree | numnodes

## Purpose Classification and regression trees

## Construction classregtree

Construct classification and regression trees

Categorical splits used for branches in decision tree

Child nodes
Class counts
Class names for classification decision tree

Class probabilities
Cut categories
Decision tree cut point values
Cut types
Cut variable names
Display classregtree object
Display classregtree object
Predicted responses
Test node for branch
Mean predictive measure of association for surrogate splits in decision tree

Class values of nodes of classification tree

Return vector of node errors

| nodemean | Mean values of nodes of <br> regression tree |
| :--- | :--- |
| nodeprob | Node probabilities |
| nodesize | Return node size |
| numnodes | Number of nodes |
| parent | Parent node |
| prune | Prune tree |
| prunelist | Pruning levels for decision tree <br> nodes |
| risk | Node risks <br> subsasgn |
| Subscripted reference for <br> classregtree object |  |
| subsref | Subscripted reference for <br> classregtree object |
| surrcutcategories | Categories used for surrogate <br> splits in decision tree |
| surrcutflip | Numeric cutpoint assignments <br> used for surrogate splits in |
|  | decision tree |
| surrcutpoint | Cutpoints used for surrogate <br> splits in decision tree |
| surrcuttype | Types of surrogate splits used at <br> branches in decision tree |
| surrcutvar | Variables used for surrogate <br> splits in decision tree |
| surrvarassoc | Predictive measure of association <br> for surrogate splits in decision <br> tree |
| test | Error rate |


| type | Tree type |
| :--- | :--- |
| varimportance | Compute embedded estimates of <br> input feature importance |
| view | Plot tree |

## Properties

## Copy Semantics

How To

Objects of the classregtree class have no properties accessible by dot indexing, get methods, or set methods. To obtain information about a classregtree object, use the appropriate method.

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes in the MATLAB Object-Oriented Programming documentation.

- "Ensemble Methods" on page 15-58
- "Classification Trees and Regression Trees" on page 15-30
- "Grouping Variables" on page 2-51

Purpose Construct classification and regression trees

```
Syntax
\(\mathrm{t}=\mathrm{classregtree}(\mathrm{X}, \mathrm{y})\)
t = classregtree(X,y,'Name',value)
```

$t=$ classregtree $(X, y)$ creates a decision tree $t$ for predicting the response $y$ as a function of the predictors in the columns of $X . X$ is an $n$-by- $m$ matrix of predictor values. If y is a vector of $n$ response values, classregtree performs regression. If $y$ is a categorical variable, character array, or cell array of strings, classregtree performs classification. Either way, t is a binary tree where each branching node is split based on the values of a column of X . NaN values in X or y are taken to be missing values. Observations with all missing values for $X$ or missing values for $y$ are not used in the fit. Observations with some missing values for X are used to find splits on variables for which these observations have valid values.
$\mathrm{t}=$ classregtree (X, y, 'Name', value) specifies one or more optional parameter name/value pairs. Specify Name in single quotes. The following options are available:

## For all trees:

- categorical - Vector of indices of the columns of $X$ that are to be treated as unordered categorical variables
- method - Either 'classification' (default if y is text or a categorical variable) or 'regression' (default if $y$ is numeric).
- names - A cell array of names for the predictor variables, in the order in which they appear in the $X$ from which the tree was created.
- prune - 'on' (default) to compute the full tree and the optimal sequence of pruned subtrees, or 'off' for the full tree without pruning.
- minparent - A number $k$ such that impure nodes must have $k$ or more observations to be split (default is 10).
- minleaf - A minimal number of observations per tree leaf (default is 1). If you supply both 'minparent' and 'minleaf', classregtree uses the setting which results in larger leaves: minparent $=$ max(minparent, 2*minleaf)
- mergeleaves - ' on ' (default) to merge leaves that originate from the same parent node and give the sum of risk values greater or equal to the risk associated with the parent node. If 'off', classregtree does not merge leaves.
- nvartosample - Number of predictor variables randomly selected for each split. By default all variables are considered for each decision split.
- stream - Random number stream. Default is the MATLAB default random number stream.
- surrogate - ' on' to find surrogate splits at each branch node. Default is 'off'. If you set this parameter to 'on',classregtree can run significantly slower and consume significantly more memory.
- weights - Vector of observation weights. By default the weight of every observation is 1 . The length of this vector must be equal to the number of rows in $X$.

For regression trees only:

- qetoler - Defines tolerance on quadratic error per node for regression trees. Splitting nodes stops when quadratic error per node drops below qetoler*qed, where qed is the quadratic error for the entire data computed before the decision tree is grown: qed $=$ norm( $y-y b a r$ ) with ybar estimated as the average of the input array Y. Default value is 1e-6.

For classification trees only:

- cost - Square matrix C, where $C(i, j)$ is the cost of classifying a point into class $j$ if its true class is $i$ (default has $C(i, j)=1$ if $i \sim=j$, and $C(i, j)=0$ if $i=j)$. Alternatively, this value can be a structure $S$ having two fields: S.group containing the group names as a categorical variable, character array, or cell array of strings; and S.cost containing the cost matrix C.
- splitcriterion - Criterion for choosing a split. One of 'gdi' (default) or Gini's diversity index, 'twoing' for the twoing rule, or 'deviance' for maximum deviance reduction.
- priorprob - Prior probabilities for each class, specified as a string ('empirical' or 'equal') or as a vector (one value for each distinct group name) or as a structure $S$ with two fields:
- S.group containing the group names as a categorical variable, character array, or cell array of strings
- S.prob containing a vector of corresponding probabilities.

If the input value is 'empirical' (default), class probabilities are determined from class frequencies in Y . If the input value is 'equal ', all class probabilities are set equal. If both observation weights and class prior probabilities are supplied, the weights are renormalized to add up to the value of the prior probability in the respective class.

## Examples Create a classification tree for Fisher's iris data:

```
load fisheriris;
```

```
t = classregtree(meas,species,...
 'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2 class = setosa
3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
5 class = virginica
6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica
view(t)
```


## classregtree

| Click to display: \|dentity | $\checkmark$ | Magnification: | 100\% | $\checkmark$ | Pruning level: | 0 of 4 | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification $\begin{aligned} & \text { and Regression Trees. Boca Raton, FL: CRC Press, } 1984 .\end{aligned}$
See Also eval | prune | test | view
How To . "Grouping Variables" on page 2-51

- "Ensemble Methods" on page 15-58

Purpose Class levels
Description The CLevels property is a vector of the same type as the grouping variable, containing the unique levels of the grouping variable.

## Purpose <br> Syntax <br> Description

Construct agglomerative clusters from linkages

T = cluster(Z,'cutoff', c)
T = cluster(Z,'cutoff', c,'depth',d)
T = cluster(Z,'cutoff',c,'criterion',criterion)
T = cluster(Z,'maxclust', $n$ )

## Examples

T = cluster ( $Z$, 'cutoff', c ) constructs clusters from the agglomerative hierarchical cluster tree, $Z$, as generated by the linkage function. $Z$ is a matrix of size ( $m-1$ )-by- 3 , where $m$ is the number of observations in the original data. c is a threshold for cutting Z into clusters. Clusters are formed when a node and all of its subnodes have inconsistent value less than c. All leaves at or below the node are grouped into a cluster. t is a vector of size m containing the cluster assignments of each observation.

If $c$ is a vector, $T$ is a matrix of cluster assignments with one column per cutoff value.

T = cluster (Z,'cutoff', c, 'depth', d) evaluates inconsistent values by looking to a depth $d$ below each node. The default depth is 2 .

T = cluster(Z,'cutoff', c,'criterion',criterion) uses the specified criterion for forming clusters, where criterion is one of the strings 'inconsistent' (default) or 'distance'. The 'distance' criterion uses the distance between the two subnodes merged at a node to measure node height. All leaves at or below a node with height less than c are grouped into a cluster.

T = cluster( Z, 'maxclust', n ) constructs a maximum of n clusters using the 'distance' criterion. cluster finds the smallest height at which a horizontal cut through the tree leaves n or fewer clusters.

If n is a vector, T is a matrix of cluster assignments with one column per maximum value.

Compare clusters from Fisher iris data with species:
load fisheriris

```
d = pdist(meas);
Z = linkage(d);
c = cluster(Z,'maxclust',3:5);
crosstab(c(:,1),species)
ans =
 0 0 2
 0 50 48
 50 0 0
crosstab(c(:,2),species)
ans =
 0 0 1
 0 50 47
 0 0 2
 50 0 0
crosstab(c(:,3),species)
ans =
 0 4 0
 0 46 47
 0 0 1
 0}
 50 0 0
```

See Also
clusterdata | cophenet | inconsistent | linkage | pdist

| Purpose | Construct clusters from Gaussian mixture distribution |
| :---: | :---: |
| Syntax | idx = cluster(obj, X) |
|  | [idx, nlogl] = cluster(obj, X) |
|  | [idx, nlogl, P] = cluster(obj, X ) |
|  | [idx, nlogl, P, logpdf] = cluster(obj, X) |
|  | [idx, nlogl, P, logpdf, M] = cluster(obj, X) |
| Description | idx $=$ cluster (obj, X) partitions data in the $n$-by- $d$ matrix X , where $n$ is the number of observations and $d$ is the dimension of the data, into |
|  | $k$ clusters determined by the $k$ components of the Gaussian mixture |
|  | distribution defined by obj. obj is an object created by gmdistribution or fit. idx is an $n$-by- 1 vector, where idx (I) is the cluster index of |
|  | observation I. The cluster index gives the component with the largest |
|  | posterior probability for the observation, weighted by the component |
|  |  |

Note The data in X is typically the same as the data used to create the Gaussian mixture distribution defined by obj. Clustering with cluster is treated as a separate step, apart from density estimation. For cluster to provide meaningful clustering with new data, $X$ should come from the same population as the data used to create obj.
cluster treats NaN values as missing data. Rows of X with NaN values are excluded from the partition.
[idx, nlogl] = cluster(obj, X) also returns nlogl, the negative log-likelihood of the data.
[idx, nlogl, P] = cluster(obj,X) also returns the posterior probabilities of each component for each observation in the $n$-by- $k$ matrix $P . P(I, J)$ is the probability of component $J$ given observation $I$.
[idx, nlogl, P, logpdf] = cluster(obj, X) also returns the $n$-by- 1 vector logpdf containing the logarithm of the estimated probability density function for each observation. The density estimate for
observation I is a sum over all components of the component density at I times the component probability.
[idx, nlogl, P, logpdf, M] = cluster(obj, X) also returns an $n$-by- $k$ matrix $M$ containing Mahalanobis distances in squared units. $M(I, J)$ is the Mahalanobis distance of observation I from the mean of component $J$ J.

## Examples

Generate data from a mixture of two bivariate Gaussian distributions using the mvnrnd function:

```
MU1 = [1 2];
SIGMA1 = [2 0; 0 .5];
MU2 = [-3 -5];
SIGMA2 = [1 0; 0 1];
X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];
scatter(X(:,1),X(:,2),10,'.')
hold on
```



Fit a two-component Gaussian mixture model:

```
obj = gmdistribution.fit(X,2);
h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);
```



Use the fit to cluster the data:

```
idx = cluster(obj,X);
cluster1 = X(idx == 1,:);
cluster2 = X(idx == 2,:);
delete(h)
h1 = scatter(cluster1(:,1),cluster1(:,2),10,'r.');
h2 = scatter(cluster2(:,1),cluster2(:,2),10,'g.');
legend([h1 h2],'Cluster 1','Cluster 2','Location','NW')
```



See Also<br>fit | gmdistribution | mahal | posterior

## Purpose Agglomerative clusters from data

```
Syntax
T = clusterdata(X,cutoff)
T = clusterdata(X,Name,Value)
```

$\mathrm{T}=$ clusterdata(X, cutoff)

T = clusterdata(X,Name, Value) clusters with additional options specified by one or more Name, Value pair arguments.

Tips

- The centroid and median methods can produce a cluster tree that is not monotonic. This occurs when the distance from the union of two clusters, $r$ and $s$, to a third cluster is less than the distance between $r$ and $s$. In this case, in a dendrogram drawn with the default orientation, the path from a leaf to the root node takes some downward steps. To avoid this, use another method. The following image shows a nonmonotonic cluster tree.


In this case, cluster 1 and cluster 3 are joined into a new cluster, while the distance between this new cluster and cluster 2 is less than the distance between cluster 1 and cluster 3 . This leads to a nonmonotonic tree.

## clusterdata

- You can provide the output T to other functions including dendrogram to display the tree, cluster to assign points to clusters, inconsistent to compute inconsistent measures, and cophenet to compute the cophenetic correlation coefficient.


## Input Arguments

## X

Matrix with two or more rows. The rows represent observations, the columns represent categories or dimensions.

## cutoff

When 0 < cutoff < 2, clusterdata forms clusters when inconsistent values are greater than cutoff (see inconsistent). When cutoff is an integer $\geq 2$, clusterdata interprets cutoff as the maximum number of clusters to keep in the hierarchical tree generated by linkage.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'criterion'

Either 'inconsistent' or 'distance'.

## 'cutoff'

Cutoff for inconsistent or distance measure, a positive scalar. When $0<$ cutoff < 2, clusterdata forms clusters when inconsistent values are greater than cutoff (see inconsistent). When cutoff is an integer $\geq$ 2, clusterdata interprets cutoff as the maximum number of clusters to keep in the hierarchical tree generated by linkage.

## 'depth'

Depth for computing inconsistent values, a positive integer.

## 'distance'

Any of the distance metric names allowed by pdist (follow the 'minkowski' option by the value of the exponent $p$ ):

| Metric | Description |
| :--- | :--- |
| 'euclidean' | Euclidean distance (default). |
| 'seuclidean' | Standardized Euclidean distance. Each <br> coordinate difference between rows in X is <br> scaled by dividing by the corresponding <br> element of the standard deviation <br> S=nanstd (X). To specify another value for <br> S, use D=pdist (X, ' seuclidean' , S). |
| 'cityblock' | City block metric. |
| 'minkowski' | Minkowski distance. The default exponent is <br> 2. To specify a different exponent, use D $=$ <br> pdist(X, 'minkowski' , P), where P is a scalar |
| 'chebychev' | Chebychev distance (maximum coordinate <br> difference). |
| 'mahalanobis' | Mahalanobis distance, using the sample <br> covariance of X as computed by nancov. To <br> compute the distance with a different covariance, <br> use D = pdist (X, 'mahalanobis' , C), where <br> the matrix C is symmetric and positive definite. |
| 'cosine' | One minus the cosine of the included angle <br> between points (treated as vectors). |
| 'correlation' | One minus the sample correlation between <br> points (treated as sequences of values). |
| 'spearman' | One minus the sample Spearman's rank <br> correlation between observations (treated as <br> sequences of values). |

## clusterdata

| Metric | Description |
| :---: | :---: |
| ' namming ' | Hamming distance, which is the percentage of coordinates that differ. |
| 'jaccard' | One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ. |
| custom distance function | A distance function specified using @: <br> D = pdist(X, @distfun) <br> A distance function must be of form d2 = distfun(XI, XJ) <br> taking as arguments a 1-by-n vector XI, corresponding to a single row of X , and an $m 2$-by- $n$ matrix XJ , corresponding to multiple rows of $X$. distfun must accept a matrix $X J$ with an arbitrary number of rows. distfun must return an $m 2$-by- 1 vector of distances d2, whose $k$ th element is the distance between XI and $\mathrm{XJ}(\mathrm{k},:$ ). |

## 'linkage'

Any of the linkage methods allowed by the linkage function:

- 'average'
- 'centroid'
- 'complete'
- 'median'
- 'single'
- 'ward'
- 'weighted'

For details, see the definitions in the linkage function reference page.

## clusterdata

## 'maxclust'

Maximum number of clusters to form, a positive integer.

## 'savememory'

A string, either 'on' or 'off'. When applicable, the 'on' setting causes clusterdata to construct clusters without computing the distance matrix. savememory is applicable when:

- linkage is 'centroid', 'median', or 'ward'
- distance is 'euclidean' (default)

When savememory is 'on', linkage run time is proportional to the number of dimensions (number of columns of $X$ ). When savememory is 'off', linkage memory requirement is proportional to $N^{2}$, where $N$ is the number of observations. So choosing the best (least-time) setting for savememory depends on the problem dimensions, number of observations, and available memory. The default savememory setting is a rough approximation of an optimal setting.

Default: 'on' when $X$ has 20 columns or fewer, or the computer does not have enough memory to store the distance matrix; otherwise 'off'

## Output $\quad$ T

Arguments $\quad \mathrm{T}$ is a vector of size m containing a cluster number for each observation.

- When $0<$ cutoff $<2, T=c l u s t e r d a t a(X$, cutoff $)$ is equivalent to:

```
Y = pdist(X,'euclid');
Z = linkage(Y,'single');
T = cluster(Z,'cutoff',cutoff);
```

- When cutoff is an integer $\geq 2$, $T=$ clusterdata $(X$, cutoff $)$ is equivalent to:

```
Y = pdist(X,'euclid');
Z = linkage(Y,'single');
```


## clusterdata

T = cluster(Z,'maxclust',cutoff);

Examples The example first creates a sample data set of random numbers. It then uses clusterdata to compute the distances between items in the data set and create a hierarchical cluster tree from the data set. Finally, the clusterdata function groups the items in the data set into three clusters. The example uses the find function to list all the items in cluster 2 , and the scatter3 function to plot the data with each cluster shown in a different color.

```
X = [gallery('uniformdata',[10 3],12);...
gallery('uniformdata',[10 3],13)+1.2;...
gallery('uniformdata',[10 3],14)+2.5];
T = clusterdata(X,'maxclust',3);
find(T==2)
ans =
 11
 12
 1 3
 14
 15
 16
 1 7
 18
 1 9
 20
scatter3(X(:,1),X(:,2),X(:,3),100,T,'filled')
```



Create a hierarchical cluster tree for a data with 20000 observations using Ward's linkage. If you set savememory to 'off', you can get an out-of-memory error if your machine doesn't have enough memory to hold the distance matrix.

```
X = rand(20000,3);
c = clusterdata(X,'linkage','ward','savememory','on',...
 'maxclust',4);
scatter3(X(:,1),X(:,2),X(:,3),10,c)
```


## clusterdata



## See Also

cluster | inconsistent | kmeans | linkage | pdist

| Purpose | Classical multidimensional scaling |
| :---: | :---: |
| Syntax | $\begin{aligned} & Y=\text { cmdscale(D) } \\ & {[Y, e]=\text { cmdscale(D) }} \end{aligned}$ |
| Description | $Y=$ cmdscale( $D$ ) takes an $n$-by-n distance matrix $D$, and returns an $n$-by- $p$ configuration matrix $Y$. Rows of $Y$ are the coordinates of $n$ points in $p$-dimensional space for some $p<n$. When $D$ is a Euclidean distance matrix, the distances between those points are given by D. $p$ is the dimension of the smallest space in which the n points whose inter-point distances are given by D can be embedded. <br> $[Y, e]=$ cmdscale ( $D$ ) also returns the eigenvalues of $Y * Y$. When $D$ is Euclidean, the first $p$ elements of $e$ are positive, the rest zero. If the first $k$ elements of $e$ are much larger than the remaining ( $n-k$ ), then you can use the first $k$ columns of $Y$ as $k$-dimensional points whose inter-point distances approximate $D$. This can provide a useful dimension reduction for visualization, e.g., for $\mathrm{k}=2$. |
|  | D need not be a Euclidean distance matrix. If it is non-Euclidean or a more general dissimilarity matrix, then some elements of e are negative, and cmdscale chooses $p$ as the number of positive eigenvalues. In this case, the reduction to $p$ or fewer dimensions provides a reasonable approximation to $D$ only if the negative elements of e are small in magnitude. |
|  | You can specify D as either a full dissimilarity matrix, or in upper triangle vector form such as is output by pdist. A full dissimilarity matrix must be real and symmetric, and have zeros along the diagonal and positive elements everywhere else. A dissimilarity matrix in upper triangle form must have real, positive entries. You can also specify D as a full similarity matrix, with ones along the diagonal and all other elements less than one. cmdscale transforms a similarity matrix to a dissimilarity matrix in such a way that distances between the points returned in Y equal or approximate sqrt(1-D). To use a different transformation, you must transform the similarities prior to calling cmdscale. |

```
Examples Generate some points in 4-D space, but close to 3-D space, then reduce them to distances only.
```

```
X = [normrnd(0,1,10,3) normrnd(0,.1,10,1)];
```

X = [normrnd(0,1,10,3) normrnd(0,.1,10,1)];
D = pdist(X,'euclidean');
D = pdist(X,'euclidean');
Find a configuration with those inter-point distances.

```
```

[Y,e] = cmdscale(D);

```
[Y,e] = cmdscale(D);
% Four, but fourth one small
% Four, but fourth one small
dim = sum(e > eps^(3/4))
dim = sum(e > eps^(3/4))
% Poor reconstruction
% Poor reconstruction
maxerr2 = max(abs(pdist(X)-pdist(Y(:,1:2))))
maxerr2 = max(abs(pdist(X)-pdist(Y(:,1:2))))
% Good reconstruction
% Good reconstruction
maxerr3 = max(abs(pdist(X)-pdist(Y(:,1:3))))
maxerr3 = max(abs(pdist(X)-pdist(Y(:,1:3))))
% Exact reconstruction
% Exact reconstruction
maxerr4 = max(abs(pdist(X)-pdist(Y)))
maxerr4 = max(abs(pdist(X)-pdist(Y)))
% D is now non-Euclidean
% D is now non-Euclidean
D = pdist(X,'cityblock');
D = pdist(X,'cityblock');
[Y,e] = cmdscale(D);
[Y,e] = cmdscale(D);
% One is large negative
% One is large negative
min(e)
min(e)
% Poor reconstruction
% Poor reconstruction
maxerr = max(abs(pdist(X)-pdist(Y)))
```

maxerr = max(abs(pdist(X)-pdist(Y)))

```
References

[1] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley
 \& Sons, Inc., 1984.

\section*{See Also mdscale | pdist | procrustes}

\section*{Purpose Class names}

Description The CNames property is an NClasses-by- 1 cell array containing the group names, where NClasses number of groups in the grouping variable used to create the Naive Bayes classifier.

\section*{GeneralizedLinearModel.coefCI}

\section*{Purpose Confidence intervals of coefficient estimates of generalized linear model}

Syntax
Description

\section*{Input \\ Arguments}

\section*{Output Arguments}

\section*{Definitions}
ci \(=\) coefCI(mdl)
ci \(=\) coefCI(mdl,alpha)
\(\mathrm{ci}=\operatorname{coefCI}(\mathrm{mdl})\) returns confidence intervals for the coefficients in mdl.
\(c i=\operatorname{coefCI}(m d l, a l p h a)\) returns confidence intervals with confidence level 1 - alpha.
mdl
Generalized linear model, as constructed
by GeneralizedLinearModel.fit or
GeneralizedLinearModel.stepwise.

\section*{alpha}

Scalar from 0 to 1, the probability that the confidence interval does not contain the true value.

Default: 0.05
ci
k-by- 2 matrix of confidence intervals. The jth row of ci is the confidence interval of coefficient \(j\) of mdl. The name of coefficient j of mdl is in mdl . CoefficientNames.

\section*{Confidence Interval}

Assume that model assumptions hold (data comes from a generalized linear model represented by the formula mdl. Formula and the specified link function, and with observations that are independent conditional on the predictor values). Then row \(j\) of the confidence interval matrix ci gives a confidence interval \([\mathrm{ci}(\mathrm{j}, 1), \mathrm{ci}(\mathrm{j}, 2)]\) computed such that, with repeated experimentation, a proportion 1 - alpha of the intervals will contain the true value of the coefficient.

\section*{GeneralizedLinearModel.coefCI}

\section*{Examples Confidence Interval for Coefficients of a Generalized Linear Model}

Find confidence intervals for the coefficients of a fitted generalized nonlinear model.

Generate artificial data for the model using Poisson random numbers with two underlying predictors \(X(1)\) and \(X(2)\).
rng('default') \% for reproducibility rndvars \(=\) randn \((100,2)\);
```

X = [2+rndvars(:,1),rndvars(:,2)];

```
mu \(=\exp \left(1+X^{*}[1 ; 2]\right)\);
y = poissrnd(mu);

Create a generalized linear regression model of Poisson data.
```

mdl = GeneralizedLinearModel.fit(X,y,...
'y ~ x1 + x2','distr','poisson')
mdl =
Generalized Linear regression model:
log(y) ~ 1 + x1 + x2
Distribution = Poisson
Estimated Coefficients:

|  | Estimate | SE | tStat | pValue |
| :--- | :---: | :---: | :--- | :--- |
| (Intercept) | 1.0405 | 0.022122 | 47.034 | 0 |
| x1 | 0.9968 | 0.003362 | 296.49 | 0 |
| x2 | 1.987 | 0.0063433 | 313.24 | 0 |

100 observations, 97 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0

```

Find \(95 \%\) (default) confidence intervals on the coefficients of the model.

\section*{GeneralizedLinearModel.coefCI}
```

ci = coefCI(mdl)
ci =

| 0.9966 | 1.0844 |
| :--- | :--- |
| 0.9901 | 1.0035 |
| 1.9744 | 1.9996 |

```

Find \(99 \%\) confidence intervals on the coefficients.
```

alpha = .01;
ci = coefCI(mdl,alpha)
ci =
0.9824 1.0986
0.9880 1.0056
1.9703 2.0036

```

See Also GeneralizedLinearModel |
Related • "Generalized Linear Model Workflow" on page 9-173
Examples

\section*{LinearModel.coefCI}

\section*{Purpose}

Confidence intervals of coefficient estimates of linear model
ci \(=\) coefCI(mdl)
ci = coefCI(mdl,alpha)

Description

\section*{Input Arguments}

\section*{Output}

Arguments

\section*{Definitions}
\(\mathrm{ci}=\) coefCI (mdl) returns confidence intervals for the coefficients in mdl.
ci = coefCI(mdl,alpha) returns confidence intervals with confidence level 1 - alpha.
mdl
Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.

\section*{alpha}

Scalar from 0 to 1, the probability that the confidence interval does not contain the true value.

Default: 0.05

\section*{ci}
k-by-2 matrix of confidence intervals. The \(j\) th row of ci is the confidence interval of coefficient \(j\) of mdl . The name of coefficient j of mdl is in mdl. CoefficientNames.

\section*{Confidence Interval}

Assume that model assumptions hold (data comes from a generalized linear model represented by the formula mdl. Formula, and with observations that are independent conditional on the predictor values). Then row j of the confidence interval matrix ci gives a confidence interval \([\mathrm{ci}(\mathrm{j}, 1), \mathrm{ci}(\mathrm{j}, 2)]\) computed such that, with repeated experimentation, a proportion 1 - alpha of the intervals will contain the true value of the coefficient.

\section*{LinearModel.coefCI}

\section*{Examples Default Confidence Intervals}

Create a linear model for auto mileage based on the carbig data. Then obtain confidence intervals for the resulting model coefficients.

Load the data and create a model.
```

load carbig
Origin = nominal(Origin);
ds = dataset(Horsepower,Weight,MPG,Origin);
modelspec = 'MPG ~ 1 + Horsepower + Weight + Origin';
mdl = LinearModel.fit(ds,modelspec);

```

View the names of the coefficients.
```

mdl.CoefNames
ans =
Columns 1 through 4
'(Intercept)' 'Horsepower' 'Weight' 'Origin_France
Columns 5 through 8
'Origin_Germany' 'Origin_Italy' 'Origin_Japan' 'Origin_Sweden'
Column 9
'Origin USA'

```

Find confidence intervals for the coefficients of the model.
```

ci = coefCI(mdl)
ci =

| 43.361 | 59.939 |
| ---: | ---: |
| -0.074778 | -0.031499 |
| -0.0058669 | -0.0037122 |
| -17.362 | -0.34772 |
| -15.75 | 0.74338 |
| -17.209 | 0.0613 |
| -14.511 | 1.8738 |

```

\section*{LinearModel.coefCI}
\(\begin{array}{lr}-18.582 & -1.5036 \\ -17.311 & -0.96419\end{array}\)

\section*{Custom Confidence Intervals}

Create a linear model for auto mileage based on the carbig data. Then obtain confidence intervals for the resulting model coefficients at the 99\% level.

Load the data and create a model.
```

load carbig
Origin = nominal(Origin);
ds = dataset(Horsepower,Weight,MPG,Origin);
modelspec = 'MPG ~ 1 + Horsepower + Weight + Origin';
mdl = LinearModel.fit(ds,modelspec);

```

Find \(99 \%\) confidence intervals for the coefficients.
```

ci = coefCI(mdl,.01)
ci =
40.737 62.564
-0.081629 -0.024647
-0.006208 -0.0033711
-20.056 2.3459
-18.361 3.3546
-19.943 2.7955
-17.104 4.4676
-21.286 1.2002
-19.899 1.6238

```

The confidence intervals are wider than the default \(5 \%\) confidence intervals of "Default Confidence Intervals" on page 20-332.

Alternatives You can create the intervals from the model coefficients in \(m d l\). Coefficients.Estimate and an appropriate multiplier of the standard errors sqrt(diag(mdl.CoefficientCovariance)). The multiplier is tinv(1-alpha/2,dof), where level is the confidence

\section*{LinearModel.coefCI}
level, and dof is the degrees of freedom (number of data points minus the number of coefficients).

\section*{See Also \\ LinearModel}

How To
- "Linear Regression" on page 9-11

\section*{NonLinearModel.coefCI}

\section*{Purpose}

Syntax

Description

Input
Arguments

\section*{Output}

Arguments

\section*{Definitions}

Confidence intervals of coefficient estimates of nonlinear regression model
```

ci = coefCI(mdl)
ci = coefCI(mdl,alpha)

```
\(\mathrm{ci}=\operatorname{coefCI}(\mathrm{mdl})\) returns confidence intervals for the coefficients in mdl.
ci = coefCI(mdl,alpha) returns confidence intervals with confidence level 1 - alpha.

\section*{mdl}

Nonlinear regression model, constructed by NonLinearModel.fit.

\section*{alpha}

Scalar from 0 to 1, the probability that the confidence interval does not contain the true value.

Default: 0.05

\section*{ci}
k-by-2 matrix of confidence intervals. The \(j\) th row of ci is the confidence interval of coefficient j of mdl . The name of coefficient \(j\) of mdl is in mdl. CoefNames.

\section*{Confidence Interval}

Assume that model assumptions hold (the data comes from a model represented by the formula \(m d l\). Formula, with independent normally distributed errors). Then row \(j\) of the confidence interval matrix ci gives a confidence interval \([\mathrm{ci}(\mathrm{j}, 1), \mathrm{ci}(\mathrm{j}, 2)]\) that contains coefficient j with probability 1 - alpha.

\section*{NonLinearModel.coefCI}

\section*{Examples Default Confidence Intervals}

Create a nonlinear model for auto mileage based on the carbig data. Then obtain confidence intervals for the resulting model coefficients.

Load the data and create a nonlinear model.
```

load carbig
ds = dataset(Horsepower,Weight,MPG);
modelfun = @(b,x)b(1) + b(2)*x(:,1) + ...
b(3)*x(:,2) + b(4)*x(:,1).*x(:,2);
betaO = [1 1 1 1];
mdl = NonLinearModel.fit(ds,modelfun,betaO)
mdl =

```
Nonlinear regression model:
 MPG ~ b1 + b2*Horsepower + b3*Weight + b4*Horsepower*Weight
Estimated Coefficients:
 Estimate SE tStat pValue
\begin{tabular}{lrrrr}
b1 & 63.558 & 2.3429 & 27.127 & \(1.2343 \mathrm{e}-91\) \\
b2 & -0.25084 & 0.027279 & -9.1952 & \(2.3226 \mathrm{e}-18\) \\
b3 & -0.010772 & 0.00077381 & -13.921 & \(5.1372 \mathrm{e}-36\) \\
b4 & \(5.3554 \mathrm{e}-05\) & \(6.6491 \mathrm{e}-06\) & 8.0542 & \(9.9336 \mathrm{e}-15\)
\end{tabular}
Number of observations: 392, Error degrees of freedom: 388
Root Mean Squared Error: 3.93
R-Squared: 0.748, Adjusted R-Squared 0.746
F-statistic vs. constant model: 385, p-value \(=7.26 e-116\)

All the coefficients have extremely small \(p\)-values. This means a confidence interval around the coefficients will not contain the point 0 , unless the confidence level is very high.

Find \(95 \%\) confidence intervals for the coefficients of the model.
```

ci = coefCI(mdl)

```
ci =
\begin{tabular}{rr}
58.9515 & 68.1644 \\
-0.3045 & -0.1972 \\
-0.0123 & -0.0093 \\
0.0000 & 0.0001
\end{tabular}

The confidence interval for b4 seems to contain 0 . Examine it in more detail.
```

ci(4,:)
ans =
1.0e-04
0.4048 0.6663

```

As expected, the confidence interval does not contain the point 0.
Alternatives \(\quad\)\begin{tabular}{l}
You can create the intervals from the model coefficients in \\
mdl. Coefficients.Estimate and an appropriate multiplier of the \\
standard errors sqrt(diag(mdl. CoefficientCovariance)). The \\
multiplier is tinv(1-alpha/2, dof), where level is the confidence \\
level, and dof is the degrees of freedom (number of data points minus \\
the number of coefficients).
\end{tabular}

See Also NonLinearModel I
Related
- "Nonlinear Regression Workflow" on page 9-212
Examples

Concepts - "Nonlinear Regression" on page 9-198

\section*{GeneralizedLinearModel.coefTest}

\section*{Purpose}

Syntax

\section*{Description}

\section*{Input}

Arguments
\(\mathrm{p}=\) coefTest(mdl)
p = coefTest(mdl, H)
p = coefTest(mdl, H, C)
\([\mathrm{p}, \mathrm{F}]=\) coefTest(mdl,...)
\([p, F, r]=\) coefTest(mdl,...)
Linear hypothesis test on generalized linear regression model coefficients
\[
[p, F, r]=\operatorname{coefTest}(m d l, \ldots)
\]
\(\mathrm{p}=\) coefTest (mdl) computes the \(p\)-value for an \(F\) test that all coefficient estimates in mdl are zero, except for the intercept term.
\(\mathrm{p}=\) coefTest(mdl,H) performs an \(F\) test that H*B \(=0\), where B represents the coefficient vector.
\(\mathrm{p}=\) coefTest(mdl, \(\mathrm{H}, \mathrm{C})\) performs an \(F\) test that \(\mathrm{H} * \mathrm{~B}=\mathrm{C}\).
\([\mathrm{p}, \mathrm{F}]=\) coefTest \((\mathrm{mdl}, \ldots)\) returns the \(F\) test statistic.
\([p, F, r]=\) coefTest \((\mathrm{mdl}, \ldots)\) returns the numerator degrees of freedom for the test.

\section*{mdl}

Generalized linear model, as constructed by GeneralizedLinearModel.fit or GeneralizedLinearModel.stepwise.

H
Numeric matrix having one column for each coefficient in the model. When H is an input, the output p is the \(p\)-value for an \(F\) test that \(\mathrm{H} * \mathrm{~B}=0\), where B represents the coefficient vector.

\section*{C}

Numeric vector with the same number of rows as \(H\). When C is an input, the output p is the \(p\)-value for an \(F\) test that \(\mathrm{H}^{*} \mathrm{~B}=\mathrm{C}\), where \(B\) represents the coefficient vector.

\section*{GeneralizedLinearModel.coefTest}

\section*{Output Arguments}

\section*{p}
\(p\)-value of the \(F\) test (see "Definitions" on page 20-339).

\section*{F}

Value of the test statistic for the \(F\) test (see "Definitions" on page 20-339).
r
Numerator degrees of freedom for the \(F\) test (see "Definitions" on page 20-339). The \(F\) statistic has r degrees of freedom in the numerator and mdl. DFE degrees of freedom in the denominator.

\section*{Definitions}

\section*{Test Statistics}

The \(p\)-value, \(F\) statistic, and numerator degrees of freedom are valid under these assumptions:
- The data comes from a model represented by the formula mdl. Formula.
- The observations are independent conditional on the predictor values.

Suppose these assumptions hold. Let \(\beta\) represent the (unknown) coefficient vector of the linear regression. Suppose \(H\) is a full-rank matrix of size \(r\)-by- \(s\), where \(s\) is the number of terms in \(\beta\). Let \(v\) be a vector the same size as \(\beta\). The following is a test statistic for the hypothesis that \(H \beta=v\) :
\[
F=(H \hat{\beta}-v)^{\prime}\left(H C H^{\prime}\right)^{-1}(H \hat{\beta}-v) .
\]

Here \(\hat{\beta}\) is the estimate of the coefficient vector \(\beta\) in mdl. Coefs, and \(C\) is the estimated covariance of the coefficient estimates in mdl. CoefCov. When the hypothesis is true, the test statistic \(F\) has an "F Distribution" on page B-38 with \(r\) and \(u\) degrees of freedom.

\section*{GeneralizedLinearModel.coefTest}

\section*{Examples Test Generalized Linear Model Coefficients}

Test a generalized linear model to see if its coefficients differ from zero.
Create a generalized linear regression model of Poisson data.
```

X = 2 + randn(100,1);
mu = exp(1 + X/2);
y = poissrnd(mu);
mdl = GeneralizedLinearModel.fit(X,y,...
'y ~ x1','distr','poisson');

```

Test whether the fitted model has coefficients that differ significantly from zero.
\(\mathrm{p}=\) coefTest(mdl)
\(p=\)

\section*{\(1.2461 \mathrm{e}-30\)}

There is no doubt that the coefficient of x 1 is nonzero.
\begin{tabular}{ll}
Alternatives & \begin{tabular}{l}
The values of commonly used test statistics are available in the \\
mdl.Coefficients dataset array.
\end{tabular} \\
See Also & GeneralizedLinearModel I linhyptest \\
Relafed & - "Generalized Linear Model Workflow" on page 9-173 \\
Examples & \\
Concepts & - "Generalized Linear Models" on page 9-143
\end{tabular}

\section*{Purpose}

Linear hypothesis test on linear regression model coefficients
Syntax
```

p = coefTest(mdl)
p = coefTest(mdl,H)
p = coefTest(mdl,H,C)
[p,F] = coefTest(mdl,...)
[p,F,r] = coefTest(mdl,...)

```

Description

\section*{Input Arguments}

\section*{Output \\ Arguments}
\(\mathrm{p}=\) coefTest(mdl) computes the \(p\)-value for an \(F\) test that all coefficient estimates in mdl are zero, except for the intercept term.
\(\mathrm{p}=\) coefTest(mdl, H) performs an \(F\) test that H*B \(=0\), where B represents the coefficient vector.
\(\mathrm{p}=\) coefTest(mdl, H,C) performs an \(F\) test that H*B \(=\) C.
\([\mathrm{p}, \mathrm{F}]=\) coefTest \((\mathrm{mdl}, \ldots)\) returns the \(F\) test statistic.
\([p, F, r]=\) coefTest (mdl, ...) returns the numerator degrees of freedom for the test.

\section*{mdl}

Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.

\section*{H}

Numeric matrix having one column for each coefficient in the model. When H is an input, the output p is the \(p\)-value for an \(F\) test that \(\mathrm{H} * \mathrm{~B}=0\), where B represents the coefficient vector.

C
Numeric vector with the same number of rows as H . When C is an input, the output p is the \(p\)-value for an \(F\) test that \(\mathrm{H}^{*} \mathrm{~B}=\mathrm{C}\), where \(B\) represents the coefficient vector.

\section*{p} \(p\)-value of the \(F\) test (see "Definitions" on page 20-342).

\section*{LinearModel.coefTest}

F
Value of the test statistic for the \(F\) test (see "Definitions" on page 20-342).

\section*{r}

Numerator degrees of freedom for the \(F\) test (see "Definitions" on page 20-342). The \(F\) statistic has \(r\) degrees of freedom in the numerator and mdl. DFE degrees of freedom in the denominator.

\section*{Definitions}

\section*{Test Statistics}

The \(p\)-value, \(F\) statistic, and numerator degrees of freedom are valid under these assumptions:
- The data comes from a model represented by the formula mdl. Formula.
- The observations are independent conditional on the predictor values.

Suppose these assumptions hold. Let \(\beta\) represent the (unknown) coefficient vector of the linear regression. Suppose \(H\) is a full-rank matrix of size \(r\)-by- \(s\), where \(s\) is the number of terms in \(\beta\). Let \(v\) be a vector the same size as \(\beta\). The following is a test statistic for the hypothesis that \(H \beta=v\) :
\[
F=(H \hat{\beta}-v)^{\prime}\left(H C H^{\prime}\right)^{-1}(H \hat{\beta}-v) .
\]

Here \(\hat{\beta}\) is the estimate of the coefficient vector \(\beta\) in mdl. Coefs, and \(C\) is the estimated covariance of the coefficient estimates in mdl. CoefCov. When the hypothesis is true, the test statistic \(F\) has an " \(F\) Distribution" on page B- 38 with \(r\) and \(u\) degrees of freedom.

\section*{Examples Test Linear Regression Model}

Make a linear model of mileage as a function of the weight, weight squared, and model year from the carsmall data set. Test the coefficients to see if all should be zero.

Load the data and make a dataset array, where the model year is an ordinal variable.
```

load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);
mdl = LinearModel.fit(ds,'MPG ~ Year + Weight + Weight^2');

```

Test the model for significant differences from a constant model.
```

p = coefTest(mdl)
p =
5.5208e-41

```

There is no doubt that the model contains more than the intercept term.

\section*{Test a Particular Coefficient}

Test the Weight^2 coefficient in a linear model of mileage as a function of the weight, weight squared, and model year.

Load the data and make a dataset array, where the model year is an ordinal variable.
```

load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);
mdl = LinearModel.fit(ds,'MPG ~ Year + Weight + Weight^2');

```

Test the significance of the Weight \({ }^{\wedge} 2\) coefficient. To do so, find the coefficient corresponding to Weight^2.
mdl.CoefficientNames
ans =
'(Intercept)' 'Weight' 'Year_76' 'Year_82' 'Weight^2'

\section*{LinearModel.coefTest}

Weight^2 is the fifth (final) coefficient.
Test the significance of the Weight^2 coefficient.
```

p = coefTest(mdl,[0 0 0 0 1])
p =
0.0022

```
Alternatives The values of commonly used test statistics are available in themdl. Coefficients dataset array.anova provides a test for each model term.
See Also anova | LinearModel | linhyptest
How To - "Linear Regression" on page 9-11

\section*{Purpose}

Linear hypothesis test on nonlinear regression model coefficients
Syntax
```

p = coefTest(mdl)
p = coefTest(mdl,H)
p = coefTest(mdl,H,C)
[p,F] = coefTest(mdl,...)
[p,F,r] = coefTest(mdl,...)

```

Description

\section*{Input Arguments}

\section*{Output \\ Arguments}
\(\mathrm{p}=\) coefTest(mdl) computes the \(p\)-value for an \(F\) test that all coefficient estimates in mdl are zero.
\(\mathrm{p}=\) coefTest(mdl, H) performs an \(F\) test that \(\mathrm{H}^{*} \mathrm{~B}=0\), where B represents the coefficient vector.
\(\mathrm{p}=\) coefTest(mdl, \(\mathrm{H}, \mathrm{C})\) performs an \(F\) test that \(\mathrm{H}^{*} \mathrm{~B}=\mathrm{C}\).
\([\mathrm{p}, \mathrm{F}]=\) coefTest(mdl,...) returns the \(F\) test statistic.
\([p, F, r]=\) coefTest (mdl,...) returns the numerator degrees of freedom for the test.

\section*{mdl}

Nonlinear regression model, constructed by NonLinearModel.fit.

\section*{H}

Numeric matrix having one column for each coefficient in the model. When H is an input, the output p is the \(p\)-value for an \(F\) test that \(\mathrm{H}^{*} \mathrm{~B}=0\), where B represents the coefficient vector.

\section*{C}

Numeric vector with the same number of rows as H . When C is an input, the output p is the \(p\)-value for an \(F\) test that \(\mathrm{H}^{*} \mathrm{~B}=\mathrm{C}\), where \(B\) represents the coefficient vector.

\section*{p} \(p\)-value of the \(F\) test (see "Definitions" on page 20-346).

\section*{NonLinearModel.coefTest}

Value of the test statistic for the \(F\) test (see "Definitions" on page 20-346).

\section*{r}

Numerator degrees of freedom for the \(F\) test (see "Definitions" on page 20-346). The \(F\) statistic has \(r\) degrees of freedom in the numerator and mdl. DFE degrees of freedom in the denominator.

\section*{Definitions}

\section*{Test Statistics}

The \(p\)-value, \(F\) statistic, and numerator degrees of freedom are valid under these assumptions:
- The data comes from a normal distribution.
- The entries are independent.

Suppose these assumptions hold. Let \(\beta\) represent the unknown coefficient vector of the linear regression. Suppose \(H\) is a full-rank matrix of size \(r\)-by- \(s\), where \(s\) is the number of terms in \(\beta\). Let \(v\) be a vector the same size as \(\beta\). The following is a test statistic for the hypothesis that \(H \beta=v\) :
\[
F=(H \hat{\beta}-v)^{\prime}\left(H C H^{\prime}\right)^{-1}(H \hat{\beta}-v)
\]

Here \(\hat{\beta}\) is the estimate of the coefficient vector \(\beta\) in mdl. Coefs, and \(C\) is the estimated covariance of the coefficient estimates in mdl. CoefCov. When the hypothesis is true, the test statistic \(F\) has an "F Distribution" on page B- 38 with \(r\) and \(u\) degrees of freedom.

\section*{Examples Test Nonlinear Regression Model Coefficients}

Make a nonlinear model of mileage as a function of the weight from the carsmall data set. Test the coefficients to see if all should be zero.

Create an exponential model of car mileage as a function of weight from the carsmall data. Scale the weight by a factor of 1000 so all the variables are roughly equal in size.
```

load carsmall
X = Weight;
y = MPG;
modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';
betaO = [1 1 1];
mdl = NonLinearModel.fit(X,y,modelfun,betaO);

```

Test the model for significant differences from a constant model.
```

p = coefTest(mdl)
p =

```

\subsection*{1.3708e-36}

There is no doubt that the model contains nonzero terms.

\title{
Alternatives The values of commonly used test statistics are available in the mdl. Coefficients dataset array.
}

\section*{See Also NonLinearModel |}

Concepts • "Nonlinear Regression" on page 9-198

\section*{CompactTreeBagger.combine}

Purpose Combine two ensembles
Syntax \(\quad B 1=\operatorname{combine}(B 1, B 2)\)
Description \(\quad B 1=\operatorname{combine}(B 1, B 2)\) appends decision trees from ensemble \(B 2\) to those stored in B1 and returns ensemble B1. This method requires that the class and variable names be identical in both ensembles.

See Also TreeBagger.append
Purpose Enumeration of combinations
Syntax C = combnk(v,k)
Description \(\mathrm{C}=\) combnk \((\mathrm{v}, \mathrm{k})\) returns all combinations of the \(n\) elements in v takenk at a time.\(\mathrm{C}=\) combnk(\(\mathrm{v}, \mathrm{k})\) produces a matrix C with k columns and \(n!/ k!(n-k)\) !rows, where each row contains k of the elements in the vector v .It is not practical to use this function if v has more than about 15elements.
Examples Combinations of characters from a string.
```

C = combnk('tendril',4);
last5 = C(31:35,:)
last5 =
tedr
tenl
teni
tenr
tend

```
Combinations of elements from a numeric vector.
c = combnk (1:4,2)
C \(=\)
 \(3 \quad 4\)
 24
 23
 14
 13
 12

See Also perms

\section*{ClassificationDiscriminant.compact}

\section*{Purpose Compact discriminant analysis classifier}

Syntax \(\quad\) cobj \(=\) compact \((o b j)\)
Description
cobj \(=\) compact \((\mathrm{obj})\) creates a compact version of obj.
Input
Arguments
obi
Discriminant analysis classifier created using ClassificationDiscriminant.fit.

Output cobi
Arguments
Compact classifier. cobj has class CompactClassificationDiscriminant. You can predict classifications using cobj exactly as you can using obj. However, since cobj does not contain training data, you cannot perform some actions, such as cross validation.

\section*{Examples Compare the size of the discriminant analysis classifier for Fisher's iris data to the compact version of the classifier:}
```

load fisheriris
fullobj = ClassificationDiscriminant.fit(meas,species);
cobj = compact(fullobj);
b = whos('fullobj'); % b.bytes = size of fullobj
c = whos('cobj'); % c.bytes = size of cobj
[b.bytes c.bytes] % shows cobj uses 60% of the memory
ans =
18578 11498

```

\section*{See Also \\ ClassificationDiscriminant}

How To . "Discriminant Analysis" on page 14-3

\section*{ClassificationEnsemble.compact}
\begin{tabular}{ll}
Purpose & Compact classification ensemble \\
Syntax & cens = compact (ens) \\
Description & \begin{tabular}{l}
cens = compact (ens) creates a compact version of ens. You can \\
predict classifications using cens exactly as you can using ens. \\
However, since cens does not contain training data, you cannot perform \\
some actions, such as cross validation.
\end{tabular} \\
Input & ens \\
Arguments & \multicolumn{1}{c}{ A classification ensemble created with fitensemble. }
\end{tabular}

\section*{ClassificationTree.compact}
Purpose Compact tree
Syntax ctree = compact(tree)
Description ctree \(=\) compact(tree) creates a compact version of tree.
Input treeArgumentsA classification tree created using ClassificationTree.fit.
Output ctreeArgumentsA compact decision tree. ctree has classCompactClassificationTree. You can predict classificationsusing ctree exactly as you can using tree. However, since ctreedoes not contain training data, you cannot perform some actions,such as cross validation.
ExamplesCompare the size of the classification tree for Fisher's iris data to thecompact version of the tree:
```

load fisheriris
fulltree = ClassificationTree.fit(meas,species);
ctree = compact(fulltree);
b = whos('fulltree'); % b.bytes = size of fulltree
c = whos('ctree'); % c.bytes = size of ctree
[b.bytes c.bytes] % shows ctree uses half the memory
ans =
13913 6818

```
See Also CompactClassificationTree | ClassificationTree | predict

\section*{RegressionEnsemble.compact}
```

Purpose Create compact regression ensemble
Syntax cens = compact(ens)
Description cens = compact(ens) creates a compact version of ens. You can
predict regressions using cens exactly as you can using ens. However,
since cens does not contain training data, you cannot perform some
actions, such as cross validation.

```

\section*{Input}
```

Arguments

```

\section*{Output \\ cens}
```

Arguments
A compact regression ensemble. cens is of class CompactRegressionEnsemble.
Examples Compare the size of a regression ensemble for the carsmall data to the compact version of the ensemble:

```
```

load carsmall

```
load carsmall
X = [Acceleration Cylinders Displacement Horsepower Weight];
X = [Acceleration Cylinders Displacement Horsepower Weight];
ens = fitensemble(X,MPG,'LSBoost',100,'Tree');
ens = fitensemble(X,MPG,'LSBoost',100,'Tree');
cens = compact(ens);
cens = compact(ens);
b = whos('ens'); % b.bytes = size of ens
b = whos('ens'); % b.bytes = size of ens
c = whos('cens'); % c.bytes = size of cens
c = whos('cens'); % c.bytes = size of cens
[b.bytes c.bytes] % shows ctree uses less memory
[b.bytes c.bytes] % shows ctree uses less memory
ans =
ans =
 311789 287368
```

    311789 287368
    ```

\footnotetext{
See Also
RegressionEnsemble | CompactRegressionEnsemble
}

\section*{RegressionTree.compact}
Purpose Compact regression tree
Syntax

ctree = compact(tree)ctree \(=\) compact(tree) creates a compact version of tree.
Input tree
Arguments A regression tree created using RegressionTree.fit.
Output ctreeArgumentsA compact regression tree. ctree has classCompactRegressionTree. You can predict regressionsusing ctree exactly as you can using tree. However, since ctreedoes not contain training data, you cannot perform some actions,such as cross validation.
ExamplesCompare the size of a regression tree for the carsmall data to thecompact version of the tree:
```

load carsmall
X = [Acceleration Cylinders Displacement Horsepower Weight];
fulltree = RegressionTree.fit(X,MPG);
ctree = compact(fulltree);
b = whos('fulltree'); % b.bytes = size of fulltree
c = whos('ctree'); % c.bytes = size of ctree
[b.bytes c.bytes] % shows ctree uses 2/3 the memory
ans =
15715 10258

```
See Also CompactRegressionTree | RegressionTree | predict
\begin{tabular}{ll}
Purpose & Compact ensemble of decision trees \\
Description & \begin{tabular}{l}
Return an object of class CompactTreeBagger holding the structure \\
of the trained ensemble. The class is more compact than the full \\
TreeBagger class because it does not contain information for growing \\
more trees for the ensemble. In particular, it does not contain X and \\
Y used for training.
\end{tabular} \\
See Also & CompactTreeBagger
\end{tabular}

\section*{CompactClassificationDiscriminant}

\section*{Purpose Compact discriminant analysis class}

Description

\section*{Construction}

A CompactClassificationDiscriminant object is a compact version of a discriminant analysis classifier. The compact version does not include the data for training the classifier. Therefore, you cannot perform some tasks with a compact classifier, such as cross validation. Use a compact classifier for making predictions (classifications) of new data.
cobj \(=\) compact (obj) constructs a compact classifier from a full classifier.
cobj = ClassificationDiscriminant.make(Mu,Sigma) constructs a compact discriminant analysis classifier from the class means Mu and covariance matrix Sigma. For syntax details, see ClassificationDiscriminant.make.

\section*{Input Arguments}

\section*{obi}

Discriminant analysis classifier, created with ClassificationDiscriminant.fit.

\section*{Properties}

\section*{BetweenSigma}
p -by-p matrix, the between-class covariance, where p is the number of predictors.

\section*{CategoricalPredictors}

List of categorical predictors, always empty ([]) for discriminant analysis.

\section*{ClassNames}

List of the elements in the training data \(Y\) with duplicates removed. ClassNames can be a numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. ClassNames has the same data type as the data in the argument \(Y\).

\section*{CompactClassificationDiscriminant}

\section*{Coeffs}
\(k\)-by-k structure of coefficient matrices, where \(k\) is the number of classes. Coeffs (\(\mathrm{i}, \mathrm{j}\)) contains coefficients of the linear or quadratic boundaries between classes i and j. Fields in Coeffs(i,j):
- DiscrimType
- Class1 - ClassNames(i)
- Class2 - ClassNames(j)
- Const - A scalar
- Linear - A vector with \(p\) components, where \(p\) is the number of columns in \(X\)
- Quadratic - p-by-p matrix, exists for quadratic DiscrimType

The equation of the boundary between class \(i\) and class \(j\) is
\[
\text { Const }+ \text { Linear * } x+x \text { ' * Quadratic * } x=0
\]
where \(x\) is a column vector of length \(p\).
If ClassificationDiscriminant.fit had the FillCoeffs name-value pair set to 'off' when constructing the classifier, Coeffs is empty ([]).

\section*{Cost}

Square matrix, where \(\operatorname{Cost}(i, j)\) is the cost of classifying a point into class \(j\) if its true class is i. Cost is \(K\)-by- \(K\), where \(K\) is the number of classes.

Change a Cost matrix using dot addressing:
obj. Cost = costMatrix

\section*{Delta}

\section*{CompactClassificationDiscriminant}

Value of the Delta threshold for a linear discriminant model, a nonnegative scalar. If a coefficient of obj has magnitude smaller than Delta, obj sets this coefficient to 0 , and so you can eliminate the corresponding predictor from the model. Set Delta to a higher value to eliminate more predictors.
Delta must be 0 for quadratic discriminant models.
Change Delta by dot addressing:
obj.Delta \(=\) newDelta

\section*{DeltaPredictor}

Row vector of length equal to the number of predictors in obj. If DeltaPredictor(i) < Delta then coefficient \(i\) of the model is 0 .

If obj is a quadratic discriminant model, all elements of DeltaPredictor are 0.

\section*{DiscrimType}

String specifying the discriminant type. One of:
- 'linear'
- 'quadratic'
- 'diagLinear'
- 'diagQuadratic'
- 'pseudoLinear'
- 'pseudoQuadratic'

Change DiscrimType using dot addressing:
obj.DiscrimType \(=\) newDiscrimType
You can change between linear types, or between quadratic types, but cannot change between linear and quadratic types.

\section*{Gamma}

\section*{CompactClassificationDiscriminant}

Value of the Gamma regularization parameter, a scalar from 0 to 1. Change Gamma using dot addressing:
obj.Gamma \(=\) newGamma
- If you set 1 for linear discriminant, the discriminant sets its type to 'diagLinear'.
- If you set a value between MinGamma and 1 for linear discriminant, the discriminant sets its type to 'linear'.
- You cannot set values below the value of the MinGamma property.
- For quadratic discriminant, you can set either 0 (for DiscrimType 'quadratic') or 1 (for DiscrimType 'diagQuadratic').

\section*{LogDetSigma}

Logarithm of the determinant of the within-class covariance matrix. The type of LogDetSigma depends on the discriminant type:
- Scalar for linear discriminant analysis
- Vector of length K for quadratic discriminant analysis, where K is the number of classes

\section*{MinGamma}

Nonnegative scalar, the minimal value of the Gamma parameter so that the correlation matrix is invertible. If the correlation matrix is not singular, Mingamma is 0 .

\section*{Mu}

Matrix of class means of size K-by-p, where \(K\) is the number of classes, and p is the number of predictors. Each row of Mu represents the mean of the multivariate normal distribution of the corresponding class. The class indices are in the ClassNames attribute.

\section*{CompactClassificationDiscriminant}

\section*{PredictorNames}

Cell array of names for the predictor variables, in the order in which they appear in the training data \(X\).

\section*{Prior}

Prior probabilities for each class. Prior is a numeric vector whose entries relate to the corresponding ClassNames property.

Add or change a Prior vector using dot addressing:
obj.Prior = priorVector

\section*{ResponseName}

String describing the response variable Y.

\section*{ScoreTransform}

Function handle for transforming scores, or string representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in transformation functions and the syntax of custom transformation functions, see ClassificationDiscriminant.fit.

Add or change a ScoreTransform function by dot addressing:
cobj.ScoreTransform = 'function'
or
cobj.ScoreTransform = @function

\section*{Sigma}

Within-class covariance matrix or matrices. The dimensions depend on DiscrimType:
- 'linear' (default) - Matrix of size p -by-p, where p is the number of predictors

\section*{CompactClassificationDiscriminant}
- 'quadratic ' - Array of size p-by-p-by-K, where \(K\) is the number of classes
- 'diagLinear' - Row vector of length \(p\)
- 'diagQuadratic' - Array of size 1-by-p-by-K
- 'pseudoLinear' - Matrix of size p-by-p
- 'pseudoQuadratic' - Array of size p-by-p-by-K

\section*{Methods}
\begin{tabular}{ll}
edge & Classification edge \\
\(\log \mathrm{P}\) & \begin{tabular}{l}
Log of the unconditional \\
probability density
\end{tabular} \\
loss & \begin{tabular}{l}
Classification error
\end{tabular} \\
mahal & \begin{tabular}{l}
Mahalanobis distance to class \\
means
\end{tabular} \\
margin & \begin{tabular}{l}
Classification margins
\end{tabular} \\
nLinearCoeffs & \begin{tabular}{l}
Number of nonzero linear \\
coefficients
\end{tabular} \\
predict & Predict classification
\end{tabular}

\section*{Definitions Discriminant Classification}

The model for discriminant analysis is:
- Each class (Y) generates data (X) using a multivariate normal distribution. That is, the model assumes X has a Gaussian mixture distribution (gmdistribution).
- For linear discriminant analysis, the model has the same covariance matrix for each class, only the means vary.
- For quadratic discriminant analysis, both means and covariances of each class vary.

\section*{CompactClassificationDiscriminant}
predict classifies so as to minimize the expected classification cost:
\[
\hat{y}=\underset{y=1, \ldots, K}{\arg \min } \sum_{k=1}^{K} \hat{P}(k \mid x) C(y \mid k),
\]
where
- \(\hat{y}\) is the predicted classification.
- \(K\) is the number of classes.
- \(\hat{P}(k \mid x)\) is the posterior probability of class \(k\) for observation \(x\).
- \(C(y \mid k)\) is the cost of classifying an observation as \(y\) when its true class is \(k\).

For details, see "How the predict Method Classifies" on page 14-6.

\section*{Regularization}

Regularization is the process of finding a small set of predictors that yield an effective predictive model. For linear discriminant analysis, there are two parameters, \(\gamma\) and \(\delta\), that control regularization as follows. cvshrink helps you select appropriate values of the parameters.

Let \(\Sigma\) represent the covariance matrix of the data \(X\), and let \(\hat{X}\) be the centered data (the data \(X\) minus the mean by class). Define
\[
D=\operatorname{diag}\left(\hat{X}^{T} * \hat{X}\right)
\]

The regularized covariance matrix \(\tilde{\Sigma}\) is
\[
\tilde{\Sigma}=(1-\gamma) \Sigma+\gamma D .
\]

Whenever \(y \geq\) MinGamma, \(\tilde{\Sigma}\) is nonsingular.
Let \(\mu_{k}\) be the mean vector for those elements of \(X\) in class \(k\), and let \(\mu_{0}\) be the global mean vector (the mean of the rows of \(X\)). Let \(C\) be

\section*{CompactClassificationDiscriminant}
the correlation matrix of the data \(X\), and let \(\tilde{C}\) be the regularized correlation matrix:
\[
\tilde{C}=(1-\gamma) C+\gamma I,
\]
where \(I\) is the identity matrix.
The linear term in the regularized discriminant analysis classifier for a data point \(x\) is
\[
\left(x-\mu_{0}\right)^{T} \tilde{\Sigma}^{-1}\left(\mu_{k}-\mu_{0}\right)=\left[\left(x-\mu_{0}\right)^{T} D^{-1 / 2}\right]\left[\tilde{C}^{-1} D^{-1 / 2}\left(\mu_{k}-\mu_{0}\right)\right] .
\]

The parameter \(\delta\) enters into this equation as a threshold on the final term in square brackets. Each component of the vector
\(\left[\tilde{C}^{-1} D^{-1 / 2}\left(\mu_{k}-\mu_{0}\right)\right]\) is set to zero if it is smaller in magnitude than the threshold \(\delta\). Therefore, for class \(k\), if component \(j\) is thresholded to zero, component \(j\) of \(x\) does not enter into the evaluation of the posterior probability.

The DeltaPredictor property is a vector related to this threshold. When \(\delta \geq\) DeltaPredictor(i), all classes \(k\) have
\[
\left|\tilde{C}^{-1} D^{-1 / 2}\left(\mu_{k}-\mu_{0}\right)\right| \leq \delta .
\]

Therefore, when \(\delta \geq\) DeltaPredictor(i), the regularized classifier does not use predictor i.

Copy
Semantics
Examples

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

Construct a compact discriminant analysis classifier for the Fisher iris data, and compare its size to that of the full classifier:
load fisheriris
fullobj = ClassificationDiscriminant.fit(meas,species);

\section*{CompactClassificationDiscriminant}
```

cobj = compact(fullobj);
b = whos('fullobj'); % b.bytes = size of fullobj
c = whos('cobj'); % c.bytes = size of cobj
[b.bytes c.bytes] % shows cobj uses 60% of the memory
ans =
18578 11498

```

Construct a compact discriminant analysis classifier from the means and covariances of the Fisher iris data:
```

load fisheriris
mu(1,:) = mean(meas(1:50,:));
mu(2,:) = mean(meas(51:100,:));
mu(3,:) = mean(meas(101:150,:));
mm1 = repmat(mu(1,:),50,1);
mm2 = repmat(mu(2,:),50,1);
mm3 = repmat(mu(3,:),50,1);
cc = meas;
cc(1:50,:) = cc(1:50,:) - mm1;
cc(51:100,:) = cc(51:100,:) - mm2;
cc(101:150,:) = cc(101:150,:) - mm3;
sigstar = cc' * cc / 147;
cpct = ClassificationDiscriminant.make(mu,sigstar,...
'ClassNames',{'setosa','versicolor','virginica'});

```

See Also ClassificationDiscriminant | compact | ClassificationDiscriminant.make | predict

How To . "Discriminant Analysis" on page 14-3

\section*{CompactClassificationEnsemble}
\begin{tabular}{ll}
Purpose & Compact classification ensemble class \\
Description & \begin{tabular}{l}
Compact version of a classification ensemble (of class \\
ClassificationEnsemble). The compact version does not include the \\
data for training the classification ensemble. Therefore, you cannot \\
perform some tasks with a compact classification ensemble, such as \\
cross validation. Use a compact classification ensemble for making \\
predictions (classifications) of new data.
\end{tabular} \\
Construction & \begin{tabular}{l}
cens = compact (ens) constructs a compact decision ensemble from \\
a full decision ensemble.
\end{tabular} \\
\begin{tabular}{l}
Input Arguments
\end{tabular} \\
& ens
\end{tabular}

A classification ensemble created by fitensemble.

\section*{Properties}

\section*{CategoricalPredictors}

List of categorical predictors. CategoricalPredictors is a numeric vector with indices from 1 to \(p\), where \(p\) is the number of columns of \(X\).

\section*{ClassNames}

List of the elements in Y with duplicates removed. ClassNames can be a numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. ClassNames has the same data type as the data in the argument Y .

\section*{CombineWeights}

String describing how ens combines weak learner weights, either 'WeightedSum' or 'WeightedAverage'.

\section*{Cost}

Square matrix where \(\operatorname{Cost}(i, j)\) is the cost of classifying a point into class \(j\) if its true class is \(i\).

\section*{NTrained}

\section*{CompactClassificationEnsemble}

Number of trained weak learners in cens, a scalar.

\section*{PredictorNames}

A cell array of names for the predictor variables, in the order in which they appear in X .

\section*{Prior}

Prior probabilities for each class. Prior is a numeric vector whose entries relate to the corresponding ClassNames property.

\section*{ResponseName}

String with the name of the response variable \(Y\).

\section*{ScoreTransform}

Function handle for transforming scores, or string representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in transformation functions and the syntax of custom transformation functions, see ClassificationTree.fit.

Add or change a ScoreTransform function by dot addressing:
cens.ScoreTransform = 'function'
or
cens.ScoreTransform = @function

\section*{Trained}

Trained learners, a cell array of compact classification models.

\section*{TrainedWeights}

Numeric vector of trained weights for the weak learners in ens. TrainedWeights has T elements, where \(T\) is the number of weak learners in learners.

\section*{UsePredForLearner}

Logical matrix of size \(P\)-by-NTrained, where \(P\) is the number of predictors (columns) in the training data \(X\). UsePredForLearner (\(\mathrm{i}, \mathrm{j}\)) is true when learner j uses predictor \(i\), and is false otherwise. For each learner, the predictors have the same order as the columns in the training data \(X\).

If the ensemble is not of type Subspace, all entries in UsePredForLearner are true.

\section*{Methods}
\begin{tabular}{ll}
edge & Classification edge \\
loss & Classification error \\
margin & Classification margins \\
predict & Predict classification \\
predictorImportance & Estimates of predictor importance \\
removeLearners & \begin{tabular}{l}
Remove members of compact \\
classification ensemble
\end{tabular}
\end{tabular}

\section*{Copy Semantics}

Value. To learn how value classes affect copy operations, see Copying

\section*{Examples}

Create a compact classification ensemble for the ionosphere data:
```

load ionosphere
ens = fitensemble(X,Y,'AdaBoostM1',100,'Tree');
cens = compact(ens)
cens =
classreg.learning.classif.CompactClassificationEnsemble:
PredictorNames: {1x34 cell}
CategoricalPredictors: []
ResponseName: 'Y'
ClassNames: {'b' 'g'}
ScoreTransform: 'none'

```

\section*{CompactClassificationEnsemble}

\section*{NTrained: 100}

\section*{See Also \\ fitensemble | ClassificationEnsemble | predict | compact}

\section*{CompactClassificationTree}

\section*{Purpose Compact classification tree}

Description

Construction

Compact version of a classification tree (of class ClassificationTree). The compact version does not include the data for training the classification tree. Therefore, you cannot perform some tasks with a compact classification tree, such as cross validation. Use a compact classification tree for making predictions (classifications) of new data.
ctree \(=\) compact(tree) constructs a compact decision tree from a full decision tree.

\section*{Input Arguments}

\section*{tree}

A decision tree constructed by ClassificationTree.fit.

\section*{CategoricalPredictors}

List of categorical predictors. CategoricalPredictors is a numeric vector with indices from 1 to \(p\), where \(p\) is the number of columns of \(X\).

\section*{CatSplit}

An \(n\)-by- 2 cell array, where \(n\) is the number of categorical splits in tree. Each row in CatSplit gives left and right values for a categorical split. For each branch node with categorical split \(j\) based on a categorical predictor variable \(z\), the left child is chosen if \(z\) is in CatSplit (\(j, 1\)) and the right child is chosen if \(z\) is in CatSplit (j,2). The splits are in the same order as nodes of the tree. Find the nodes for these splits by selecting 'categorical' cuts from top to bottom in the CutType property.

\section*{Children}

An \(n\)-by- 2 array containing the numbers of the child nodes for each node in tree, where \(n\) is the number of nodes. Leaf nodes have child node 0 .

\section*{ClassCount}

\section*{CompactClassificationTree}

An \(n\)-by- \(k\) array of class counts for the nodes in tree, where \(n\) is the number of nodes and \(k\) is the number of classes. For any node number \(i\), the class counts ClassCount (i,:) are counts of observations (from the data used in fitting the tree) from each class satisfying the conditions for node i.

\section*{ClassNames}

List of the elements in Y with duplicates removed. ClassNames can be a numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. ClassNames has the same data type as the data in the argument Y .

\section*{ClassProb}

An \(n\)-by- \(k\) array of class probabilities for the nodes in tree, where \(n\) is the number of nodes and \(k\) is the number of classes. For any node number \(i\), the class probabilities ClassProb(i,:) are the estimated probabilities for each class for a point satisfying the conditions for node i.

\section*{Cost}

Square matrix, where \(\operatorname{Cost}(i, j)\) is the cost of classifying a point into class \(j\) if its true class is \(i\).

\section*{CutCategories}

An \(n\)-by- 2 cell array of the categories used at branches in tree, where \(n\) is the number of nodes. For each branch node i based on a categorical predictor variable x , the left child is chosen if x is among the categories listed in CutCategories \(\{\mathrm{i}, 1\}\), and the right child is chosen if \(x\) is among those listed in CutCategories \(\{i, 2\}\). Both columns of CutCategories are empty for branch nodes based on continuous predictors and for leaf nodes.

CutPoint contains the cut points for 'continuous ' cuts, and CutCategories contains the set of categories.

\section*{CutPoint}

\section*{CompactClassificationTree}

An \(n\)-element vector of the values used as cut points in tree, where \(n\) is the number of nodes. For each branch node i based on a continuous predictor variable \(x\), the left child is chosen if \(x<\) CutPoint (\(i\)) and the right child is chosen if \(x>=\) CutPoint (\(i\)). CutPoint is NaN for branch nodes based on categorical predictors and for leaf nodes.

CutPoint contains the cut points for 'continuous' cuts, and CutCategories contains the set of categories.

\section*{CutType}

An \(n\)-element cell array indicating the type of cut at each node in tree, where \(n\) is the number of nodes. For each node \(i\), CutType\{i\} is:
- 'continuous' - If the cut is defined in the form \(x<v\) for a variable x and cut point v .
- 'categorical' - If the cut is defined by whether a variable \(x\) takes a value in a set of categories.
- ' ' - If i is a leaf node.

CutPoint contains the cut points for 'continuous ' cuts, and CutCategories contains the set of categories.

\section*{CutVar}

An \(n\)-element cell array of the names of the variables used for branching in each node in tree, where \(n\) is the number of nodes. These variables are sometimes known as cut variables. For leaf nodes, CutVar contains an empty string.

CutPoint contains the cut points for 'continuous ' cuts, and CutCategories contains the set of categories.

\section*{IsBranch}

An \(n\)-element logical vector that is true for each branch node and false for each leaf node of tree.

\section*{CompactClassificationTree}

\section*{NodeClass}

An \(n\)-element cell array with the names of the most probable classes in each node of tree, where \(n\) is the number of nodes in the tree. Every element of this array is a string equal to one of the class names in ClassNames.

\section*{NodeErr}

An \(n\)-element vector of the errors of the nodes in tree, where \(n\) is the number of nodes. NodeErr(i) is the misclassification probability for node i.

\section*{NodeProb}

An \(n\)-element vector of the probabilities of the nodes in tree, where \(n\) is the number of nodes. The probability of a node is computed as the proportion of observations from the original data that satisfy the conditions for the node. This proportion is adjusted for any prior probabilities assigned to each class.

\section*{NodeRisk}

An \(n\)-element vector of the risk of the nodes in the tree, where \(n\) is the number of nodes. The risk for each node is the measure of impurity (Gini index or deviance) for this node weighted by the node probability. If the tree is grown by twoing, the risk for each node is zero.

\section*{NodeSize}

An \(n\)-element vector of the sizes of the nodes in tree, where \(n\) is the number of nodes. The size of a node is defined as the number of observations from the data used to create the tree that satisfy the conditions for the node.

\section*{NumNodes}

The number of nodes in tree.

\section*{Parent}

\section*{CompactClassificationTree}

An \(n\)-element vector containing the number of the parent node for each node in tree, where \(n\) is the number of nodes. The parent of the root node is 0 .

\section*{PredictorNames}

A cell array of names for the predictor variables, in the order in which they appear in X .

\section*{Prior}

Prior probabilities for each class. Prior is a numeric vector whose entries relate to the corresponding ClassNames property.

\section*{PruneAlpha}

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to \(M\), then PruneAlpha has \(M+1\) elements sorted in ascending order. PruneAlpha(1) is for pruning level 0 (no pruning), PruneAlpha(2) is for pruning level 1, and so on.

\section*{PruneList}

An \(n\)-element numeric vector with the pruning levels in each node of tree, where \(n\) is the number of nodes. The pruning levels range from 0 (no pruning) to \(M\), where \(M\) is the distance between the deepest leaf and the root node.

\section*{ResponseName}

String describing the response variable Y.

\section*{ScoreTransform}

Function handle for transforming scores, or string representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x. For a list of built-in transformation functions and the syntax of custom transformation functions, see ClassificationTree.fit.

Add or change a ScoreTransform function by dot addressing:
ctree.ScoreTransform = 'function'
or

\section*{CompactClassificationTree}
ctree.ScoreTransform = @function

\section*{SurrCutCategories}

An \(n\)-element cell array of the categories used for surrogate splits in tree, where \(n\) is the number of nodes in tree. For each node \(k\), SurrCutCategories \(\{k\}\) is a cell array. The length of SurrCutCategories \(\{\mathrm{k}\}\) is equal to the number of surrogate predictors found at this node. Every element of SurrCutCategories \(\{k\}\) is either an empty string for a continuous surrogate predictor, or is a two-element cell array with categories for a categorical surrogate predictor. The first element of this two-element cell array lists categories assigned to the left child by this surrogate split and the second element of this two-element cell array lists categories assigned to the right child by this surrogate split. The order of the surrogate split variables at each node is matched to the order of variables in SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutCategories contains an empty cell.

\section*{SurrCutFlip}

An \(n\)-element cell array of the numeric cut assignments used for surrogate splits in tree, where \(n\) is the number of nodes in tree. For each node k, SurrCutFlip \(\{\mathrm{k}\}\) is a numeric vector. The length of SurrCutFlip \(\{k\}\) is equal to the number of surrogate predictors found at this node. Every element of SurrCutFlip\{k\} is either zero for a categorical surrogate predictor, or a numeric cut assignment for a continuous surrogate predictor. The numeric cut assignment can be either -1 or +1 . For every surrogate split with a numeric cut \(C\) based on a continuous predictor variable \(Z\), the left child is chosen if \(Z<C\) and the cut assignment for this surrogate split is +1 , or if \(Z \geq C\) and the cut assignment for this surrogate split is -1 . Similarly, the right child is chosen if \(Z \geq C\) and the cut assignment for this surrogate split is +1 , or if \(Z<C\) and the cut assignment for this surrogate split is -1 . The order of the surrogate split variables at each node is matched to the order of variables in SurrCutVar. The optimal-split variable at this

\section*{CompactClassificationTree}
node does not appear. For nonbranch (leaf) nodes, SurrCutFlip contains an empty array.

\section*{SurrCutPoint}

An \(n\)-element cell array of the numeric values used for surrogate splits in tree, where \(n\) is the number of nodes in tree. For each node \(k\), SurrCutPoint \(\{\mathrm{k}\}\) is a numeric vector. The length of SurrCutPoint \(\{\mathrm{k}\}\) is equal to the number of surrogate predictors found at this node. Every element of SurrCutPoint \{k\} is either NaN for a categorical surrogate predictor, or a numeric cut for a continuous surrogate predictor. For every surrogate split with a numeric cut \(C\) based on a continuous predictor variable \(Z\), the left child is chosen if \(Z<C\) and SurrCutFlip for this surrogate split is -1 . Similarly, the right child is chosen if \(Z \geq C\) and SurrCutFlip for this surrogate split is +1 , or if \(Z<C\) and SurrCutFlip for this surrogate split is -1 . The order of the surrogate split variables at each node is matched to the order of variables returned by SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutPoint contains an empty cell.

\section*{SurrCutType}

An \(n\)-element cell array indicating types of surrogate splits at each node in tree, where \(n\) is the number of nodes in tree. For each node \(k\), SurrCutType \(\{k\}\) is a cell array with the types of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The order of the surrogate split variables at each node is matched to the order of variables in SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutType contains an empty cell. A surrogate split type can be either 'continuous' if the cut is defined in the form \(Z<V\) for a variable \(Z\) and cut point V or 'categorical' if the cut is defined by whether \(Z\) takes a value in a set of categories.

\section*{CompactClassificationTree}

\section*{SurrCutVar}

An \(n\)-element cell array of the names of the variables used for surrogate splits in each node in tree, where \(n\) is the number of nodes in tree. Every element of SurrCutVar is a cell array with the names of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutVar contains an empty cell.

\section*{SurrVarAssoc}

An \(n\)-element cell array of the predictive measures of association for surrogate splits in tree, where \(n\) is the number of nodes in tree. For each node k, SurrVarAssoc \(\{k\}\) is a numeric vector. The length of SurrVarAssoc \(\{k\}\) is equal to the number of surrogate predictors found at this node. Every element of SurrVarAssoc\{k\} gives the predictive measure of association between the optimal split and this surrogate split. The order of the surrogate split variables at each node is the order of variables in SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrVarAssoc contains an empty cell.

\section*{Methods}
\begin{tabular}{ll}
edge & Classification edge \\
loss & Classification error \\
margin & Classification margins \\
meanSurrVarAssoc & \begin{tabular}{l}
Mean predictive measure of \\
association for surrogate splits in \\
decision tree
\end{tabular} \\
predict & Predict classification \\
predictorImportance & Estimates of predictor importance \\
view & View tree
\end{tabular}

\section*{CompactClassificationTree}

\section*{Definitions Impurity and Node Error}

ClassificationTree splits nodes based on either impurity or node error. Impurity means one of several things, depending on your choice of the SplitCriterion name-value pair:
- Gini's Diversity Index (gdi) - The Gini index of a node is
\[
1-\sum_{i} p^{2}(i),
\]
where the sum is over the classes \(i\) at the node, and \(p(i)\) is the observed fraction of classes with class \(i\) that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of node impurity.
- Deviance ('deviance') - With \(p(i)\) defined as for the Gini index, the deviance of a node is
\[
-\sum_{i} p(i) \log p(i) .
\]

A pure node has deviance 0 ; otherwise, the deviance is positive.
- Twoing rule ('twoing') - Twoing is not a purity measure of a node, but is a different measure for deciding how to split a node. Let \(L(i)\) denote the fraction of members of class \(i\) in the left child node after a split, and \(R(i)\) denote the fraction of members of class \(i\) in the right child node after a split. Choose the split criterion to maximize
\[
P(L) P(R)\left(\sum_{i}|L(i)-R(i)|\right)^{2},
\]
where \(P(L)\) and \(P(R)\) are the fractions of observations that split to the left and right respectively. If the expression is large, the split made each child node purer. Similarly, if the expression is small, the split made each child node similar to each other, and hence similar to the parent node, and so the split did not increase node purity.

\section*{CompactClassificationTree}
- Node error - The node error is the fraction of misclassified classes at a node. If \(j\) is the class with largest number of training samples at a node, the node error is
\[
1-p(j) .
\]

Copy
Semantics
Examples

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

Construct a compact classification tree for the Fisher iris data, and compare the size of the resulting tree to that of the original tree:
```

load fisheriris
tree = ClassificationTree.fit(meas,species);
ctree = compact(tree);
t = whos('tree'); % t.bytes = size of tree in bytes
c = whos('ctree'); % c.bytes = size of ctree in bytes
[c.bytes t.bytes]
ans =
6818 13913

```
See Also ClassificationTree.fit | ClassificationTree | compact

\section*{CompactRegressionEnsemble}
Purpose Compact regression ensemble class
Description Compact version of a regression ensemble (of class RegressionEnsemble). The compact version does not include the data for training the regression ensemble. Therefore, you cannot perform some tasks with a compact regression ensemble, such as cross validation. Use a compact regression ensemble for making predictions (regressions) of new data.
Construction cens = compact(ens) constructs a compact decision ensemble from a full decision ensemble.
Input Arguments
ens
A regression ensemble created by fitensemble.

\section*{Properties}

\section*{CategoricalPredictors}
List of categorical predictors. CategoricalPredictors is a numeric vector with indices from 1 to \(p\), where \(p\) is the number of columns of X .

\section*{CombineWeights}
A string describing how the ensemble combines learner predictions.

\section*{NTrained}
Number of trained learners in the ensemble, a positive scalar.

\section*{PredictorNames}
A cell array of names for the predictor variables, in the order in which they appear in X .

\section*{ResponseName}
A string with the name of the response variable Y .

\section*{ResponseTransform}

\section*{CompactRegressionEnsemble}

Function handle for transforming scores, or string representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x.

Add or change a ResponseTransform function by dot addressing:
cens.ResponseTransform = @function

\section*{Trained}

The trained learners, a cell array of compact regression models.

\section*{TrainedWeights}

A numeric vector of weights the ensemble assigns to its learners. The ensemble computes predicted response by aggregating weighted predictions from its learners.

\section*{Methods}
loss
predict
predictorImportance
removeLearners

Regression error
Predict response of ensemble
Estimates of predictor importance
Remove members of compact regression ensemble

Copy
Semantics
Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

Examples Construct a regression ensemble for the carsmall data. Make a compact version of the ensemble, and compare its size to that of the full ensemble:
```

load carsmall
learner = RegressionTree.template('MinParent',20);
ens = fitensemble([Weight, Cylinders],MPG,...
'LSBoost',100,learner,'PredictorNames',{'W','C'},...
'categoricalpredictors',2);

```

\section*{CompactRegressionEnsemble}
```

cens = compact(ens);
ee = whos('ens'); % ee.bytes = size of ensemble in bytes
cee = whos('cens');
[ee.bytes cee.bytes]
ans =
606903 587096

```

\section*{See Also}
fitensemble | RegressionEnsemble | predict | compact

\section*{CompactRegressionTree}

\section*{Purpose Compact regression tree}

Description

\section*{Construction}

Compact version of a regression tree (of class RegressionTree). The compact version does not include the data for training the regression tree. Therefore, you cannot perform some tasks with a compact regression tree, such as cross validation. Use a compact regression tree for making predictions (regressions) of new data.
ctree \(=\) compact(tree) constructs a compact decision tree from a full decision tree.

\section*{Input Arguments}

\section*{tree}

A decision tree constructed by RegressionTree.fit.

\section*{Properties}

\section*{CategoricalPredictors}

List of categorical predictors. CategoricalPredictors is a numeric vector with indices from 1 to \(p\), where \(p\) is the number of columns of \(X\).

\section*{CatSplit}

An \(n\)-by- 2 cell array, where \(n\) is the number of categorical splits in tree. Each row in CatSplit gives left and right values for a categorical split. For each branch node with categorical split j based on a categorical predictor variable \(z\), the left child is chosen if \(z\) is in CatSplit (\(j, 1\)) and the right child is chosen if \(z\) is in CatSplit (\(\mathrm{j}, 2\)). The splits are in the same order as nodes of the tree. Nodes for these splits can be found by running cuttype and selecting 'categorical' cuts from top to bottom.

\section*{Children}

An \(n\)-by- 2 array containing the numbers of the child nodes for each node in tree, where \(n\) is the number of nodes. Leaf nodes have child node 0 .

\section*{CutCategories}

\section*{CompactRegressionTree}

An \(n\)-by- 2 cell array of the categories used at branches in tree, where \(n\) is the number of nodes. For each branch node i based on a categorical predictor variable x , the left child is chosen if x is among the categories listed in CutCategories \(\{i, 1\}\), and the right child is chosen if \(x\) is among those listed in CutCategories \(\{i, 2\}\). Both columns of CutCategories are empty for branch nodes based on continuous predictors and for leaf nodes.

CutVar contains the cut points for 'continuous' cuts, and CutCategories contains the set of categories.

\section*{CutPoint}

An \(n\)-element vector of the values used as cut points in tree, where \(n\) is the number of nodes. For each branch node i based on a continuous predictor variable \(x\), the left child is chosen if CutPoint \(<v\) (i) and the right child is chosen if \(x>=\) CutPoint(i). CutPoint is NaN for branch nodes based on categorical predictors and for leaf nodes.

\section*{CutType}

An \(n\)-element cell array indicating the type of cut at each node in tree, where \(n\) is the number of nodes. For each node i, CutType\{i\} is:
- 'continuous' - If the cut is defined in the form \(\mathrm{x}<\mathrm{v}\) for a variable x and cut point v .
- 'categorical' - If the cut is defined by whether a variable \(x\) takes a value in a set of categories.
- ' ' - If i is a leaf node.

CutVar contains the cut points for 'continuous' cuts, and CutCategories contains the set of categories.

\section*{CutVar}

An \(n\)-element cell array of the names of the variables used for branching in each node in tree, where \(n\) is the number of nodes.

\section*{CompactRegressionTree}

These variables are sometimes known as cut variables. For leaf nodes, CutVar contains an empty string.

CutVar contains the cut points for 'continuous' cuts, and CutCategories contains the set of categories.

\section*{IsBranch}

An \(n\)-element logical vector ib that is true for each branch node and false for each leaf node of tree.

\section*{NodeErr}

An \(n\)-element vector e of the errors of the nodes in tree, where \(n\) is the number of nodes. \(e(i)\) is the misclassification probability for node i.

\section*{NodeMean}

An \(n\)-element numeric array with mean values in each node of tree, where \(n\) is the number of nodes in the tree. Every element in NodeMean is the average of the true \(Y\) values over all observations in the node.

\section*{NodeProb}

An \(n\)-element vector p of the probabilities of the nodes in tree, where \(n\) is the number of nodes. The probability of a node is computed as the proportion of observations from the original data that satisfy the conditions for the node. This proportion is adjusted for any prior probabilities assigned to each class.

\section*{NodeRisk}

An \(n\)-element vector of the risk of the nodes in the tree, where \(n\) is the number of nodes. The risk for each node is the node error weighted by the node probability.

\section*{NodeSize}

An \(n\)-element vector sizes of the sizes of the nodes in tree, where \(n\) is the number of nodes. The size of a node is defined as

\section*{CompactRegressionTree}
the number of observations from the data used to create the tree that satisfy the conditions for the node.

\section*{NumNodes}

The number of nodes n in tree.

\section*{Parent}

An \(n\)-element vector \(p\) containing the number of the parent node for each node in tree, where \(n\) is the number of nodes. The parent of the root node is 0 .

\section*{PredictorNames}

A cell array of names for the predictor variables, in the order in which they appear in X .

\section*{PruneAlpha}

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to \(M\), then PruneAlpha has \(M+1\) elements sorted in ascending order. PruneAlpha(1) is for pruning level 0 (no pruning), PruneAlpha(2) is for pruning level 1, and so on.

\section*{PruneList}

An \(n\)-element numeric vector with the pruning levels in each node of tree, where \(n\) is the number of nodes. The pruning levels range from 0 (no pruning) to \(M\), where \(M\) is the distance between the deepest leaf and the root node.

\section*{ResponseName}

Name of the response variable Y , a string.

\section*{ResponseTransform}

Function handle for transforming the raw response values (mean squared error). The function handle should accept a matrix of response values and return a matrix of the same size. The default string 'none' means @(x)x, or no transformation.

Add or change a ResponseTransform function by dot addressing:

\section*{CompactRegressionTree}
ctree.ResponseTransform = @function

\section*{SurrCutCategories}

An \(n\)-element cell array of the categories used for surrogate splits in tree, where \(n\) is the number of nodes in tree. For each node \(k\), SurrCutCategories \(\{k\}\) is a cell array. The length of SurrCutCategories \(\{k\}\) is equal to the number of surrogate predictors found at this node. Every element of SurrCutCategories \(\{k\}\) is either an empty string for a continuous surrogate predictor, or is a two-element cell array with categories for a categorical surrogate predictor. The first element of this two-element cell array lists categories assigned to the left child by this surrogate split, and the second element of this two-element cell array lists categories assigned to the right child by this surrogate split. The order of the surrogate split variables at each node is matched to the order of variables in SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutCategories contains an empty cell.

\section*{SurrCutFlip}

An \(n\)-element cell array of the numeric cut assignments used for surrogate splits in tree, where \(n\) is the number of nodes in tree. For each node k, SurrCutFlip \(\{\mathrm{k}\}\) is a numeric vector. The length of SurrCutFlip \(\{\mathrm{k}\}\) is equal to the number of surrogate predictors found at this node. Every element of SurrCutFlip\{k\} is either zero for a categorical surrogate predictor, or a numeric cut assignment for a continuous surrogate predictor. The numeric cut assignment can be either -1 or +1 . For every surrogate split with a numeric cut \(C\) based on a continuous predictor variable \(Z\), the left child is chosen if \(Z<C\) and the cut assignment for this surrogate split is +1 , or if \(Z \geq C\) and the cut assignment for this surrogate split is -1 . Similarly, the right child is chosen if \(Z \geq C\) and the cut assignment for this surrogate split is +1 , or if \(Z<C\) and the cut assignment for this surrogate split is -1 . The order of the surrogate split variables at each node is matched to the order of variables in SurrCutVar. The optimal-split variable at this

\section*{CompactRegressionTree}
node does not appear. For nonbranch (leaf) nodes, SurrCutFlip contains an empty array.

\section*{SurrCutPoint}

An \(n\)-element cell array of the numeric values used for surrogate splits in tree, where \(n\) is the number of nodes in tree. For each node \(k\), SurrCutPoint \(\{\mathrm{k}\}\) is a numeric vector. The length of SurrCutPoint \(\{\mathrm{k}\}\) is equal to the number of surrogate predictors found at this node. Every element of SurrCutPoint \{k\} is either NaN for a categorical surrogate predictor, or a numeric cut for a continuous surrogate predictor. For every surrogate split with a numeric cut \(C\) based on a continuous predictor variable \(Z\), the left child is chosen if \(Z<C\) and SurrCutFlip for this surrogate split is -1 . Similarly, the right child is chosen if \(Z \geq C\) and SurrCutFlip for this surrogate split is +1 , or if \(Z<C\) and SurrCutFlip for this surrogate split is -1 . The order of the surrogate split variables at each node is matched to the order of variables returned by SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutPoint contains an empty cell.

\section*{SurrCutType}

An \(n\)-element cell array indicating types of surrogate splits at each node in tree, where \(n\) is the number of nodes in tree. For each node \(k\), SurrCutType \(\{k\}\) is a cell array with the types of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The order of the surrogate split variables at each node is matched to the order of variables in SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutType contains an empty cell. A surrogate split type can be either 'continuous' if the cut is defined in the form \(Z<V\) for a variable \(Z\) and cut point V or 'categorical' if the cut is defined by whether \(Z\) takes a value in a set of categories.

\section*{CompactRegressionTree}

\section*{SurrCutVar}

An \(n\)-element cell array of the names of the variables used for surrogate splits in each node in tree, where \(n\) is the number of nodes in tree. Every element of SurrCutVar is a cell array with the names of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutVar contains an empty cell.

\section*{SurrVarAssoc}

An \(n\)-element cell array of the predictive measures of association for surrogate splits in tree, where \(n\) is the number of nodes in tree. For each node k, SurrVarAssoc \(\{k\}\) is a numeric vector. The length of SurrVarAssoc \(\{k\}\) is equal to the number of surrogate predictors found at this node. Every element of SurrVarAssoc\{k\} gives the predictive measure of association between the optimal split and this surrogate split. The order of the surrogate split variables at each node is the order of variables in SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrVarAssoc contains an empty cell.

\section*{Methods}
\begin{tabular}{ll}
loss & Regression error \\
meanSurrVarAssoc & \begin{tabular}{l}
Mean predictive measure of \\
association for surrogate splits in \\
decision tree
\end{tabular} \\
predict & \begin{tabular}{l}
Predict response of regression \\
tree
\end{tabular} \\
predictorImportance & Estimates of predictor importance \\
view & View tree
\end{tabular}

\section*{CompactRegressionTree}

Copy
Semantics
Examples

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

Construct a regression tree for the carsmall data. Make a compact version of the tree, and compare its size to that of the full tree:
```

load carsmall
tree = RegressionTree.fit([Weight, Cylinders],MPG,...
'MinParent',20,...
'PredictorNames',{'W','C'});
ctree = compact(tree);
t = whos('tree'); % t.bytes = size of tree in bytes
c = whos('ctree'); % c.bytes = size of ctree in bytes
[c.bytes t.bytes]
ans =
4972 8173

```

See Also RegressionTree.fit | RegressionTree | compact

\section*{CompactTreeBagger}
\begin{tabular}{|c|c|}
\hline Purpose & Compact ensemble of decision trees grown by bootstrap aggregation \\
\hline Description & \begin{tabular}{l}
CompactTreeBagger class is a lightweight class that contains the tr grown using TreeBagger. CompactTreeBagger does not preserve any information about how TreeBagger grew the decision trees. It does not contain the input data used for growing trees, nor does it contain training parameters such as minimal leaf size or number of variables sampled for each decision split at random. You can only u CompactTreeBagger for predicting the response of the trained ensen given new data \(X\), and other related functions. \\
CompactTreeBagger lets you save the trained ensemble to disk, or use it in any other way, while discarding training data and various parameters of the training configuration irrelevant for predicting response of the fully grown ensemble. This reduces storage and men requirements, especially for ensembles trained on large data sets.
\end{tabular} \\
\hline Construction & \begin{tabular}{ll}
CompactTreeBagger & \begin{tabular}{l}
Create CompactTreeBagger \\
object
\end{tabular}
\end{tabular} \\
\hline \multirow[t]{7}{*}{Methods} & combine Combine two ensembles \\
\hline & error \(\quad\)\begin{tabular}{l}
Error (misclassification \\
probability or MSE)
\end{tabular} \\
\hline & margin Classification margin \\
\hline & mdsProx \(\quad\)\begin{tabular}{l}
Multidimensional scaling of \\
proximity matrix
\end{tabular} \\
\hline & meanMargin Mean classification margin \\
\hline & outlierMeasure Outlier measure for data \\
\hline & predict Predict response \\
\hline
\end{tabular}

\section*{Methods}

Combine two ensembles
Error (misclassification probability or MSE)
Classification margin
Multidimensional scaling of proximity matrix

Mean classification margin
Outlier measure for data
Predict response

\section*{CompactTreeBagger}
\begin{tabular}{ll}
proximity & Proximity matrix for data \\
setDefaultYfit & Set default value for predict
\end{tabular}

\section*{Properties}

\section*{ClassNames}

The ClassNames property is a cell array containing the class names for the response variable \(Y\) supplied to TreeBagger. This property is empty for regression trees.

\section*{DeltaCritDecisionSplit}

The DeltaCritDecisionSplit property is a numeric array of size 1-by-Nvars of changes in the split criterion summed over splits on each variable, averaged across the entire ensemble of grown trees.

See also TreeBagger.DeltaCritDecisionSplit, classregtree.varimportance

\section*{DefaulłYfit}

The DefaultYfit property controls what predicted value CompactTreeBagger returns when no prediction is possible, for example when the predict method needs to predict for an observation which has only false values in the matrix supplied through 'useifort' argument.

For classification, you can set this property to either ' ' or 'MostPopular'. If you choose 'MostPopular' (default), the property value becomes the name of the most probable class in the training data.

For regression, you can set this property to any numeric scalar. The default is the mean of the response for the training data.

See also predict, setDefaultYfit, TreeBagger.DefaultYfit.

\section*{Method}

The Method property is 'classification' for classification ensembles and 'regression' for regression ensembles.

\section*{CompactTreeBagger}

\section*{NTrees}

The NTrees property is a scalar equal to the number of decision trees in the ensemble.

\section*{NVarSplit}

The NVarSplit property is a numeric array of size 1-by-Nvars, where every element gives a number of splits on this predictor summed over all trees.

\section*{Trees}

The Trees property is a cell array of size NTrees-by- 1 containing the trees in the ensemble.

\section*{VarAssoc}

The VarAssoc property is a matrix of size Nuars-by-Nvars with predictive measures of variable association, averaged across the entire ensemble of grown trees. If you grew the ensemble setting 'surrogate' to 'on', this matrix for each tree is filled with predictive measures of association averaged over the surrogate splits. If you grew the ensemble setting 'surrogate' to 'off' (default), VarAssoc is diagonal.

See also classregtree.MeanSurrVarAssoc

\section*{VarNames}

The VarNames property is a cell array containing the names of the predictor variables (features). These names are taken from the optional 'names' parameter that supplied to TreeBagger. The default names are 'x1', 'x2', etc.

\section*{Copy Semantics}

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes in the MATLAB Object-Oriented Programming documentation.

\author{
See Also \\ classregtree
}

\section*{How To}
- "Ensemble Methods" on page 15-58
- "Classification Trees and Regression Trees" on page 15-30
- "Grouping Variables" on page 2-51

\section*{CompactTreeBagger}
\[
\begin{array}{ll}
\text { Purpose } & \text { Create CompactTreeBagger object } \\
\text { Description } & \begin{array}{l}
\text { When you use the TreeBagger constructor to grow trees, it creates a } \\
\text { CompactTreeBagger object. You can obtain the compact object from the } \\
\text { full TreeBagger object using the TreeBagger/compact method. You do } \\
\text { not create an instance of CompactTreeBagger directly. }
\end{array}
\end{array}
\]

\section*{See Also \\ TreeBagger}

How To
- "Grouping Variables" on page 2-51
- "Ensemble Methods" on page 15-58

\section*{TreeBagger.ComputeOOBPrediction property}
Purpose Flag to compute out-of-bag predictions
Description The Compute00BPrediction property is a logical flag specifying whether out-of-bag predictions for training observations should be computed. The default is false.
If this flag is true, the following properties are available:
- OOBIndices
- OOBInstanceWeight
If this flag is true, the following methods can be called:
- oobError
- oobMargin
- oobMeanMargin

\author{
See Also
}
oobError | OOBIndices | OOBInstanceWeight | oobMargin | oobMeanMargin

\section*{TreeBagger.ComputeOOBVarlmp property}

Purpose Flag to compute out-of-bag variable importance
Description
The ComputeOOBVarImp property is a logical flag specifying whether TreeBagger should compute out-of-bag estimates of variable importance. The default is false.

If this flag is true, the following properties are available:
- OOBPermutedVarDeltaError
- OOBPermutedVarDeltaMeanMargin
- OOBPermutedVarCountRaiseMargin

See Also
ComputeOOBPrediction | OOBPermutedVarDeltaError | OOBPermutedVarDeltaMeanMargin |
OOBPermutedVarCountRaiseMargin | oobMeanMargin | TreeBagger

\section*{Purpose Confusion matrix}
```

Syntax $\quad C=$ confusionmat (group, grouphat)
C = confusionmat(group,grouphat,'order',grouporder)
[C,order] = confusionmat(...)

```

\section*{Description}

\section*{Examples}

\section*{Example 1}

Display the confusion matrix for data with two misclassifications and one missing classification:
```

g1 = [llllllll'; % Known groups
g2 = [1 1 2 2 3 4 NaN]'; % Predicted groups
[C,order] = confusionmat(g1,g2)
C =

```
\begin{tabular}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
order \(=\) & & & \\
1 & & & \\
2 & & & \\
3 & & & \\
4 & & &
\end{tabular}

\section*{Example 2}

Randomize the measurements and groups in Fisher's iris data:
```

load fisheriris
numObs = length(species);
p = randperm(numObs);
meas = meas(p,:);
species = species(p);

```

Use classify to classify measurements in the second half of the data, using the first half of the data for training:
```

half = floor(numObs/2);
training = meas(1:half,:);
trainingSpecies = species(1:half);
sample = meas(half+1:end,:);
grouphat = classify(sample,training,trainingSpecies);

```

Display the confusion matrix for the resulting classification:
```

group = species(half+1:end);
C =
22 0 0
2 02 0
0 0 29
order =
'virginica'

```
[C,order] = confusionmat(group,grouphat)
```

'versicolor'
'setosa'

```
\(\begin{array}{ll}\text { See Also } & \text { crosstab | grp2idx } \\ \text { How To } & \text { - "Grouping Variables" on page 2-51 }\end{array}\)

\section*{Purpose \\ Shewhart control charts}

\author{
Syntax \\ \section*{Description}
}
controlchart(X)
controlchart(x,group)
controlchart(X,group)
[stats,plotdata] = controlchart(x,[group])
controlchart(x,group, 'name', value)
controlchart (X) produces an xbar chart of the measurements in matrix \(X\). Each row of \(X\) is considered to be a subgroup of measurements containing replicate observations taken at the same time. The rows should be in time order. If \(X\) is a time series object, the time samples should contain replicate observations.

The chart plots the means of the subgroups in time order, a center line (CL) at the average of the means, and upper and lower control limits (UCL, LCL) at three standard errors from the center line. The standard error is the estimated process standard deviation divided by the square root of the subgroup size. Process standard deviation is estimated from the average of the subgroup standard deviations. Out of control measurements are marked as violations and drawn with a red circle. Data cursor mode is enabled, so clicking any data point displays information about that point.
controlchart (\(\mathrm{x}, \mathrm{group}\)) accepts a grouping variable group for a vector of measurements \(x\). group is a categorical variable, vector, string array, or cell array of strings the same length as \(x\). Consecutive measurements \(x(n)\) sharing the same value of group (\(n\)) for \(1 \leq n \leq\) length (\(x\)) are defined to be a subgroup. Subgroups can have different numbers of observations.
controlchart (X, group) accepts a grouping variable group for a matrix of measurements in \(X\). In this case, group is only used to label the time axis; it does not change the default grouping by rows.
[stats, plotdata] = controlchart(x,[group]) returns a structure stats of subgroup statistics and parameter estimates, and a structure plotdata of plotted values. plotdata contains one record for each chart.

The fields in stats and plotdata depend on the chart type.
The fields in stats are selected from the following:
- mean - Subgroup means
- std - Subgroup standard deviations
- range - Subgroup ranges
- n - Subgroup size, or total inspection size or area
- i - Individual data values
- ma - Moving averages
- mr - Moving ranges
- count - Count of defects or defective items
- mu - Estimated process mean
- sigma - Estimated process standard deviation
- p - Estimated proportion defective
- m - Estimated mean defects per unit

The fields in plotdata are the following:
- pts - Plotted point values
- cl - Center line
- lcl - Lower control limit
- ucl - Upper control limit
- se - Standard error of plotted point
- n - Subgroup size
- ooc - Logical that is true for points that are out of control controlchart(x,group, 'name', value) specifies one or more of the following optional parameter name/value pairs, with name in single quotes:
- charttype - The name of a chart type chosen from among the following:
- 'xbar' - Xbar or mean
- 's' - Standard deviation
- 'r' - Range
- 'ewma' - Exponentially weighted moving average
- 'i' - Individual observation
- 'mr' - Moving range of individual observations
- 'ma' - Moving average of individual observations
- ' \(p\) ' - Proportion defective
- 'np' - Number of defectives
- 'u' - Defects per unit
- 'c' - Count of defects

Alternatively, a parameter can be a cell array listing multiple compatible chart types. There are four sets of compatible types:
- 'xbar', 's', 'r', and 'ewma'
- 'i', 'mr', and 'ma'
- 'p' and 'np'
- 'u' and 'c'
- display - Either 'on' (default) to display the control chart, or 'off' to omit the display
- label - A string array or cell array of strings, one per subgroup. This label is displayed as part of the data cursor for a point on the plot.
- lambda - A parameter between 0 and 1 controlling how much the current prediction is influenced by past observations in an EWMA
plot. Higher values of 'lambda ' give less weight to past observations and more weight to the current observation. The default is 0.4.
- limits' - A three-element vector specifying the values of the lower control limit, center line, and upper control limits. Default is to estimate the center line and to compute control limits based on the estimated value of sigma. Not permitted if there are multiple chart types.
- mean - Value for the process mean, or an empty value (default) to estimate the mean from \(X\). This is the \(p\) parameter for \(p\) and \(n p\) charts, the mean defects per unit for \(u\) and \(c\) charts, and the normal mu parameter for other charts.
- nsigma - The number of sigma multiples from the center line to a control limit. Default is 3 .
- parent - The handle of the axes to receive the control chart plot. Default is to create axes in a new figure. Not permitted if there are multiple chart types.
- rules - The name of a control rule, or a cell array containing multiple control rule names. These rules, together with the control limits, determine if a point is marked as out of control. The default is to apply no control rules, and to use only the control limits to decide if a point is out of control. See controlrules for more information. Control rules are applied to charts that measure the process level (xbar, i, c, u, p, and np) rather than the variability (\(r, s\)), and they are not applied to charts based on moving statistics (ma, mr, ewma).
- sigma - Either a value for sigma, or a method of estimating sigma chosen from among 'std' (the default) to use the average within-subgroup standard deviation, 'range' to use the average subgroup range, and 'variance' to use the square root of the pooled variance. When creating i, mr, or ma charts for data not in subgroups, the estimate is always based on a moving range.
- specs - A vector specifying specification limits. Typically this is a two-element vector of lower and upper specification limits. Since specification limits typically apply to individual measurements, this
parameter is primarily suitable for i charts. These limits are not plotted on \(r\), \(s\), or mr charts.
- unit - The total number of inspected items for \(p\) and \(n p\) charts, and the size of the inspected unit for \(u\) and \(c\) charts. In both cases \(X\) must be the count of the number of defects or defectives found. Default is 1 for \(u\) and \(c\) charts. This argument is required (no default) for \(p\) and \(n p\) charts.
- width - The width of the window used for computing the moving ranges and averages in mr and ma charts, and for computing the sigma estimate in i, mr, and ma charts. Default is 5 .

\section*{Examples Create xbar and \(r\) control charts for the data in parts.mat:}
```

load parts
st = controlchart(runout,'chart',{'xbar' 'r'});

```

Control charts

Display the process mean and standard deviation:
fprintf('Parameter estimates: mu \(=\%\), sigma \(=\% g \backslash n '\) st.mu,st.sigma);
Parameter estimates: mu \(=-0.0863889\), sigma \(=0.130215\)
\begin{tabular}{ll}
See Also & controlrules \\
How To & . "Grouping Variables" on page 2-51
\end{tabular}

\section*{Purpose Western Electric and Nelson control rules}
```

Syntax
R = controlrules('rules',x,cl,se)
[R,RULES] = controlrules('rules',x,cl,se)

```

\section*{Description}
\(\mathrm{R}=\) controlrules('rules', \(\mathrm{x}, \mathrm{cl}, \mathrm{se})\) determines which points in the vector x violate the control rules in rules. cl is a vector of center-line values. se is a vector of standard errors. (Typically, control limits on a control chart are at the values \(\mathrm{cl}-3^{*}\) se and \(\mathrm{cl}+3 * \mathrm{se}\).) rules is the name of a control rule, or a cell array containing multiple control rule names, from the list below. If \(x\) has \(n\) values and rules contains \(m\) rules, then \(R\) is an \(n\)-by- \(m\) logical array, with \(R(i, j)\) assigned the value 1 if point i violates rule \(j, 0\) if it does not.

The following are accepted values for rules (specified inside single quotes):
- we1 - 1 point above cl + 3*se
- we \(2-2\) of 3 above cl + 2*se
- we3 - 4 of 5 above cl + se
- we4 - 8 of 8 above cl
- we5 - 1 below cl \(3 *\) se
- we6 - 2 of 3 below cl 2*se
- we \(7-4\) of 5 below cl se
- we8 - 8 of 8 below cl
- we9 - 15 of 15 between cl se and cl + se
- we10-8 of 8 below cl se or above cl + se
- n1-1 point below cl \(3^{*}\) se or above cl +3 *se
- n2 - 9 of 9 on the same side of cl
- n3 - 6 of 6 increasing or decreasing
- n4-14 alternating up/down
- n5-2 of 3 below cl 2*se or above cl + 2*se, same side
- n6-4 of 5 below cl se or above cl + se, same side
- n7-15 of 15 between cl se and cl + se
- n8 - 8 of 8 below cl se or above cl + se, either side
- we - All Western Electric rules
- n - All Nelson rules

For multi-point rules, a rule violation at point i indicates that the set of points ending at point \(i\) triggered the rule. Point \(i\) is considered to have violated the rule only if it is one of the points violating the rule's condition.

Any points with NaN as their \(\mathrm{x}, \mathrm{cl}\), or se values are not considered to have violated rules, and are not counted in the rules for other points.

Control rules can be specified in the controlchart function as values for the 'rules' parameter.
[R,RULES] = controlrules('rules', \(x, c l, s e)\) returns a cell array of text strings RULES listing the rules applied.

\section*{Examples}

Create an xbar chart using the we2 rule to mark out of control measurements:
```

load parts;
st = controlchart(runout,'rules','we2');
x = st.mean;
cl = st.mu;
se = st.sigma./sqrt(st.n);
hold on
plot(cl+2*se,'m')

```


Use controlrules to identify the measurements that violate the control rule:
```

R = controlrules('we2',x,cl,se);
I = find(R)
I =
21
23

```

\section*{gmdistribution.Converged property}

Purpose Determine if algorithm converged
Description Logical true if the algorithm has converged; logical false if the algorithm has not converged.

Note This property applies only to gmdistribution objects constructed with fit.

Purpose
Cophenetic correlation coefficient

\section*{Syntax}
\(\mathrm{c}=\operatorname{cophenet}(\mathrm{Z}, \mathrm{Y})\)
\([\mathrm{c}, \mathrm{d}]=\operatorname{cophenet}(\mathrm{Z}, \mathrm{Y})\)
\(c=\) cophenet \((Z, Y)\) computes the cophenetic correlation coefficient for the hierarchical cluster tree represented by \(Z . Z\) is the output of the linkage function. Y contains the distances or dissimilarities used to construct \(Z\), as output by the pdist function. \(Z\) is a matrix of size (\(m-1\))-by- 3 , with distance information in the third column. Y is a vector of size \(m^{*}(m-1) / 2\).
\([c, d]=\) cophenet \((Z, Y)\) returns the cophenetic distances \(d\) in the same lower triangular distance vector format as Y .

The cophenetic correlation for a cluster tree is defined as the linear correlation coefficient between the cophenetic distances obtained from the tree, and the original distances (or dissimilarities) used to construct the tree. Thus, it is a measure of how faithfully the tree represents the dissimilarities among observations.

The cophenetic distance between two observations is represented in a dendrogram by the height of the link at which those two observations are first joined. That height is the distance between the two subclusters that are merged by that link.

The output value, \(c\), is the cophenetic correlation coefficient. The magnitude of this value should be very close to 1 for a high-quality solution. This measure can be used to compare alternative cluster solutions obtained using different algorithms.

The cophenetic correlation between \(Z(:, 3)\) and \(Y\) is defined as
\[
c=\frac{\sum_{i<j}\left(Y_{i j}-y\right)\left(Z_{i j}-z\right)}{\sqrt{\Sigma_{i<j}\left(Y_{i j}-y\right)^{2} \Sigma_{i<j}\left(Z_{i j}-z\right)^{2}}}
\]
where:
- \(Y_{i j}\) is the distance between objects \(i\) and \(j\) in \(Y\).
- \(Z_{i j}\) is the cophenetic distance between objects \(i\) and \(j\), from \(\mathrm{Z}(:, 3)\).
- \(y\) and \(z\) are the average of \(Y\) and \(Z(:, 3)\), respectively.
```

Examples
$X=[r a n d(10,3) ; r a n d(10,3)+1 ; r a n d(10,3)+2] ;$
Y = pdist(X);
Z = linkage(Y,'average');
\% Compute Spearman's rank correlation between the
\% dissimilarities and the cophenetic distances
[c,D] = cophenet(Z,Y);
$r=\operatorname{corr}\left(\mathrm{Y}^{\prime}, \mathrm{D}^{\prime}, ' t y p \mathrm{C}^{\prime}\right.$, 'spearman')
$r=$
0.8279

```

\section*{See Also}
cluster | dendrogram | inconsistent | linkage | pdist | squareform

\section*{Purpose Copula cumulative distribution function}
```

Syntax $\quad Y=\operatorname{copulacdf}($ 'Gaussian', U, rho $)$
$Y=$ copulacdf('t',U,rho,NU)
Y = copulacdf('family',U,alpha)

```

\section*{Description}

\section*{Examples}
```

u = linspace(0,1,10);
[U1,U2] = meshgrid(u,u);
F = copulacdf('Clayton',[U1(:) U2(:)],1);
surf(U1,U2,reshape(F,10,10))
xlabel('u1')
ylabel('u2')

```


See Also
copulapdf | copularnd | copulastat | copulaparam

\section*{Purpose Fit copula to data}

\author{
Syntax \\ \section*{Description}
}
```

RHOHAT = copulafit('Gaussian',U)
[RHOHAT,nuhat] = copulafit('t',U)
[RHOHAT,nuhat,nuci] = copulafit('t',U)
paramhat = copulafit('family',U)
[paramhat,paramci] = copulafit('family',U)
[...] = copulafit(...,'alpha',alpha)
[...] = copulafit('t',U,'Method','ApproximateML')
[...] = copulafit(...,'Options',options)

```

RHOHAT = copulafit('Gaussian', U) returns an estimate RHOHAT of the matrix of linear correlation parameters for a Gaussian copula, given data in \(\mathrm{U} . \mathrm{U}\) is an \(n\)-by- \(p\) matrix of values in the open interval \((0,1)\) representing \(n\) points in the \(p\)-dimensional unit hypercube.
[RHOHAT, nuhat] = copulafit('t', U) returns an estimate RHOHAT of the matrix of linear correlation parameters for a \(t\) copula and an estimate nuhat of the degrees of freedom parameter, given data in U . U is an \(n\)-by- \(p\) matrix of values in the open interval \((0,1)\) representing \(n\) points in the \(p\)-dimensional unit hypercube.
[RHOHAT, nuhat, nuci] = copulafit('t', U) also returns an approximate \(95 \%\) confidence interval nuci for the degrees of freedom parameter estimated in nuhat.
paramhat \(=\) copulafit('family', U) returns an estimate paramhat of the copula parameter for an Archimedean copula specified by family, given data in \(U\). U is an \(n\)-by- 2 matrix of values in the open interval \((0,1)\) representing \(n\) points in the unit square. family is one of Clayton, Frank, or Gumbel.
[paramhat,paramci] = copulafit('family',U) also returns an approximate \(95 \%\) confidence interval paramci for the copula parameter estimated in paramhat.
[...] = copulafit(...,'alpha', alpha) returns approximate 100*(1-alpha) \% confidence intervals in nuci or paramci.

Note By default, copulafit uses maximum likelihood to fit a copula to \(U\). When \(U\) contains data transformed to the unit hypercube by parametric estimates of their marginal cumulative distribution functions, this is known as the Inference Functions for Margins (IFM) method. When U contains data transformed by the empirical cdf (see ecdf), this is known as Canonical Maximum Likelihood (CML).
[...] = copulafit('t',U,'Method','ApproximateML') fits a \(t\) copula for large samples \(U\) by maximizing an objective function that approximates the profile log-likelihood for the degrees of freedom parameter (see [1]). This method can be significantly faster than maximum likelihood, but the estimates and confidence limits may not be accurate for small to moderate sample sizes.
[...] = copulafit(...,'Options',options) specifies control parameters for the iterative parameter estimation algorithm using an options structure options as created by statset. Type statset('copulafit') at the command prompt for fields and default values used by copulafit. This argument is not applicable to the 'Gaussian' family.

\section*{References}

Examples Load and plot simulated stock return data:
load stockreturns
x = stocks(:,1);
y = stocks(:,2);
scatterhist(\(x, y\))

Transform the data to the copula scale (unit square) using a kernel estimator of the cumulative distribution function:
```

u = ksdensity(x,x,'function','cdf');
v = ksdensity(y,y,'function','cdf');
scatterhist(u,v)
xlabel('u')
ylabel('v')

```


Fit a \(t\) copula:
```

[Rho,nu] = copulafit('t',[u v],'Method','ApproximateML')
Rho =
1.0000 0.7220
0.7220 1.0000
nu =
2.8934e+006

```

Generate a random sample from the \(t\) copula:
```

r = copularnd('t',Rho,nu,1000);

```
```

u1 = r(:,1);
v1 = r(:,2);
scatterhist(u1,v1)
xlabel('u')
ylabel('v')
set(get(gca,'children'),'marker','.')

```


Transform the random sample back to the original scale of the data:
x1 = ksdensity(x,u1,'function','icdf');
```

y1 = ksdensity(y,v1,'function','icdf');
scatterhist(x1,y1)
set(get(gca,'children'),'marker','.')

```


See Also
ecdf | copulacdf | copulaparam | copulapdf | copularnd | copulastat

\section*{Purpose}

Copula parameters as function of rank correlation
Syntax
```

rho = copulaparam('Gaussian',R)
rho = copulaparam('t',R,NU)
alpha = copulaparam(family,R)
[...] = copulaparam(...,'type',type)

```

\section*{Examples}

Get the linear correlation coefficient corresponding to a bivariate Gaussian copula having a rank correlation of -0.5.
```

tau = -0.5

```
```

rho = copulaparam('gaussian',tau)
rho =
-0.7071
% Generate dependent beta random values using that copula
u = copularnd('gaussian',rho,100);
b = betainv(u,2,2);
% Verify that the sample has a rank correlation
% approximately equal to tau
tau_sample = corr(b,'type','k')
tau_sample =
1.0000 -0.4638
-0.4638 1.0000

```
See Also copulacdf | copulapdf | copularnd | copulastat

\section*{Purpose}

Copula probability density function
```

Syntax
Y = copulapdf('Gaussian', U, rho)
Y = copulapdf('t',U,rho,NU)
Y = copulapdf('family',U,alpha)

```

\section*{Description}

Examples coefficient. matrix, rho may also be a scalar correlation coefficient. Frank, or Gumbel. \(U\) is an \(n\)-by- 2 matrix of values in [0,1].
\(Y=\) copulapdf('Gaussian' \(, U, r h o)\) returns the probability density of the Gaussian copula with linear correlation parameters rho, evaluated at the points in \(U . U\) is an \(n\)-by-p matrix of values in [0,1], representing \(n\) points in the \(p\)-dimensional unit hypercube. rho is a \(p\)-by-p correlation matrix. If \(U\) is an \(n\)-by- 2 matrix, rho may also be a scalar correlation
\(Y=\) copulapdf('t', \(U, r h o, N U)\) returns the probability density of the \(t\) copula with linear correlation parameters rho and degrees of freedom parameter \(N U\), evaluated at the points in \(U . U\) is an \(n\)-by-p matrix of values in \([0,1]\). rho is a \(p\)-by-p correlation matrix. If \(U\) is an \(n\)-by- 2
\(\mathrm{Y}=\) copulapdf('family', \(\mathrm{U}, \mathrm{alpha})\) returns the probability density of the bivariate Archimedean copula determined by family, with scalar parameter alpha, evaluated at the points in U. family is Clayton,
```

u = linspace(0,1,10);
[U1,U2] = meshgrid(u,u);
F = copulapdf('Clayton',[U1(:) U2(:)],1);
surf(U1,U2,reshape(F,10,10))
xlabel('u1')
ylabel('u2')

```


See Also
copulacdf | copulaparam | copularnd | copulastat
\begin{tabular}{|c|c|}
\hline Purpose & Copula rank correlation \\
\hline \multirow[t]{4}{*}{Syntax} & R = copulastat ('Gaussian ', rho) \\
\hline & R = copulastat ('t', rho,NU) \\
\hline & R = copulastat (family, alpha) \\
\hline & R = copulastat(...,'type',type) \\
\hline
\end{tabular}

Description

\section*{Examples}

Get the theoretical rank correlation coefficient for a bivariate.
```

% Gaussian copula with linear correlation parameter rho
rho = -.7071;
tau = copulastat('gaussian',rho)
tau =

```
\(-0.5000\)
\% Generate dependent beta random values using that copula
u = copularnd('gaussian', rho,100);
b = betainv(u,2,2);
\% Verify that the sample has a rank correlation
\% approximately equal to tau
tau_sample \(=\) corr(b,'type','k')
tau_sample =
\(1.0000-0.5265\)
\(-0.5265 \quad 1.0000\)
See Also
copulacdf | copulaparam | copulapdf | copularnd
\begin{tabular}{|c|c|}
\hline Purpose & Copula random numbers \\
\hline Syntax & \[
\begin{aligned}
& U=\text { copularnd('Gaussian', rho,N) } \\
& U=\text { copularnd('t',rho,NU,N) } \\
& U=\text { copularnd('family', alpha, } N \text {) }
\end{aligned}
\] \\
\hline Description & \begin{tabular}{l}
U = copularnd('Gaussian', rho, N) returns \(N\) random vectors generated from a Gaussian copula with linear correlation parameters rho. If rho is a \(p\)-by- \(p\) correlation matrix, \(U\) is an \(n\)-by- \(p\) matrix. If rho is a scalar correlation coefficient, copularnd generates \(U\) from a bivariate Gaussian copula. Each column of \(U\) is a sample from a \(\operatorname{Uniform}(0,1)\) marginal distribution. \\
\(\mathrm{U}=\) copularnd('t', rho, \(\mathrm{NU}, \mathrm{N}\)) returns N random vectors generated from a \(t\) copula with linear correlation parameters rho and degrees of freedom NU. If rho is a \(p\)-by- \(p\) correlation matrix, \(U\) is an \(n\)-by- \(p\) matrix. If rho is a scalar correlation coefficient, copularnd generates \(U\) from a bivariate \(t\) copula. Each column of \(U\) is a sample from a \(\operatorname{Uniform}(0,1)\) marginal distribution. \\
\(\mathrm{U}=\) copularnd('family', alpha, N) returns N random vectors generated from the bivariate Archimedean copula determined by family, with scalar parameter alpha. family is Clayton, Frank, or Gumbel. \(U\) is an \(n\)-by-2 matrix. Each column of \(U\) is a sample from a Uniform (0,1) marginal distribution.
\end{tabular} \\
\hline Examples & Determine the linear correlation parameter corresponding to a bivariate Gaussian copula having a rank correlation of -0.5.
```

tau = -0.5
rho = copulaparam('gaussian',tau)
rho =
-0.7071
% Generate dependent beta random values using that copula
u = copularnd('gaussian',rho,100);
b = betainv(u,2,2);

``` \\
\hline
\end{tabular}
```

% Verify that the sample has a rank correlation
% approximately equal to tau
tau_sample = corr(b,'type','kendall')
tau_sample =
1.0000 -0.4537
-0.4537 1.0000

```

\section*{See Also \\ copulacdf | copulaparam | copulapdf | copulastat}

\section*{Purpose Coordinate exchange}

Syntax
```

dCE = cordexch(nfactors,nruns)
[dCE,X] = cordexch(nfactors,nruns)
[dCE,X] = cordexch(nfactors,nruns,'model')
[dCE,X] = cordexch(...,'name',value)

```

Description
dCE = cordexch(nfactors, nruns) uses a coordinate-exchange algorithm to generate a \(D\)-optimal design dCE with nruns runs (the rows of dCE) for a linear additive model with nfactors factors (the columns of dCE). The model includes a constant term.
[dCE,X] = cordexch(nfactors,nruns) also returns the associated design matrix \(X\), whose columns are the model terms evaluated at each treatment (row) of dCE.
[dCE, X] = cordexch(nfactors,nruns,'model') uses the linear regression model specified in model. model is one of the following strings, specified inside single quotes:
- linear - Constant and linear terms. This is the default.
- interaction - Constant, linear, and interaction terms
- quadratic - Constant, linear, interaction, and squared terms
- purequadratic - Constant, linear, and squared terms

The order of the columns of X for a full quadratic model with \(n\) terms is:

\section*{1 The constant term}

2 The linear terms in order \(1,2, \ldots, n\)
3 The interaction terms in order \((1,2),(1,3), \ldots,(1, n),(2,3), \ldots,(n-1, n)\)
4 The squared terms in order \(1,2, \ldots, n\)
Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In this case, model should have one column for each factor and one row for each term in the model. The entries in any row of model are powers for the factors in the columns. For example, if a model has factors \(\mathrm{X} 1, \mathrm{X} 2\), and X 3 , then a row [0 1 12 2] in model specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model specifies a constant term, which can be omitted.
[dCE,X] = cordexch(...,'name', value) specifies one or more optional name/value pairs for the design. Valid parameters and their values are listed in the following table. Specify name inside single quotes.
\begin{tabular}{|c|c|}
\hline name & Value \\
\hline bounds & Lower and upper bounds for each factor, specified as a 2-by-nfactors matrix. Alternatively, this value can be a cell array containing nfactors elements, each element specifying the vector of allowable values for the corresponding factor. \\
\hline categorical & Indices of categorical predictors. \\
\hline display & Either 'on' or 'off' to control display of the iteration counter. The default is 'on'. \\
\hline excludefun & Handle to a function that excludes undesirable runs. If the function is \(f\), it must support the syntax \(b=f(S)\), where \(S\) is a matrix of treatments with nfactors columns and \(b\) is a vector of Boolean values with the same number of rows as \(S . b(i)\) is true if the method should exclude \(i\) th row \(S\). \\
\hline init & Initial design as a nruns-by-nfactors matrix. The default is a randomly selected set of points. \\
\hline levels & Vector of number of levels for each factor. Not used when hounds is snecified as a cell arrav \\
\hline maxiter & Maximum number of iterations. The default is 10. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline name & Value \\
\hline tries & Number of times to try to generate a design from a new starting point. The algorithm uses random points for each try, except possibly the first. The default is 1 . \\
\hline options & \begin{tabular}{l}
A structure that specifies whether to run in parallel, and specifies the random stream or streams. Create the options structure with statset. Option fields: \\
- UseParallel - Set to true to compute in parallel. Default is false. \\
- UseSubstreams - Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'. \\
- Streams - A RandStream object or cell array of such objects. If you do not specify Streams, cordexch uses the default stream or streams. If you choose to specify Streams, use a single object except in the case \\
- You have an open MATLAB pool \\
- UseParallel is true \\
- UseSubstreams is false \\
In that case, use a cell array the same size as the MATLAB pool.
\end{tabular} \\
\hline
\end{tabular}

\section*{Algorithms}

Both cordexch and rowexch use iterative search algorithms. They operate by incrementally changing an initial design matrix \(X\) to increase \(D=\left|X^{T} X\right|\) at each step. In both algorithms, there is randomness built into the selection of the initial design and into the choice of the incremental changes. As a result, both algorithms may return locally, but not globally, \(D\)-optimal designs. Run each algorithm multiple times
and select the best result for your final design. Both functions have a 'tries ' parameter that automates this repetition and comparison.

Unlike the row-exchange algorithm used by rowexch, cordexch does not use a candidate set. (Or rather, the candidate set is the entire design space.) At each step, the coordinate-exchange algorithm exchanges a single element of \(X\) with a new element evaluated at a neighboring point in design space. The absence of a candidate set reduces demands on memory, but the smaller scale of the search means that the coordinate-exchange algorithm is more likely to become trapped in a local minimum.

\section*{Examples}

Suppose you want a design to estimate the parameters in the following three-factor, seven-term interaction model:
\[
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{12} x_{1} x_{2}+\beta_{13} x_{1} x_{3}+\beta_{23} x_{2} x_{3}+\varepsilon
\]

Use cordexch to generate a \(D\)-optimal design with seven runs:
```

nfactors = 3;
nruns = 7;
[dCE,X] = cordexch(nfactors,nruns,'interaction','tries',10)
dCE =

-1	1	1				
-1	-1	-1				
1	1	1				
-1	1	-1				
1	-1	1				
1	-1	-1				
-1	-1	1			1	1
				1	1	1
1	-1	1	1	1	1	1
1	-1	-1	-1	1	1	-1
1	1	1	1	-1	1	-1
1	-1	1	-1	-1	1	-1
1	1	-1	1	-1	1	
1	1	-1	-1	-1	-1	1
1	-1	-1	1	1	-1	-1

```

Columns of the design matrix X are the model terms evaluated at each row of the design dCE. The terms appear in order from left to right: constant term, linear terms (\(1,2,3\)), interaction terms (\(12,13,23\)). Use \(X\) to fit the model, as described in "Linear Regression" on page 9-11, to response data measured at the design points in dCE.

See Also rowexch | daugment | dcovary

\section*{Purpose Linear or rank correlation}
```

Syntax
RHO $=\operatorname{corr}(X)$
RHO $=\operatorname{corr}(X, Y)$
[RHO,PVAL] $=\operatorname{corr}(X, Y)$
[RHO,PVAL] = corr(X,Y,'name',value)

```

\section*{Description}

RHO \(=\operatorname{corr}(\mathrm{X})\) returns a \(p\)-by- \(p\) matrix containing the pairwise linear correlation coefficient between each pair of columns in the \(n\)-by- \(p\) matrix X.

RHO \(=\operatorname{corr}(\mathrm{X}, \mathrm{Y})\) returns a \(p 1\)-by- \(p 2\) matrix containing the pairwise correlation coefficient between each pair of columns in the \(n\)-by- \(p 1\) and \(n\)-by- \(p 2\) matrices X and Y .

The difference between \(\operatorname{corr}(X, Y)\) and the MATLAB function corrcoef \((X, Y)\) is that corrcoef \((X, Y)\) returns a matrix of correlation coefficients for the two column vectors \(X\) and \(Y\). If \(X\) and \(Y\) are not column vectors, corrcoef \((X, Y)\) converts them to column vectors.
[RHO, PVAL] \(=\operatorname{corr}(\mathrm{X}, \mathrm{Y})\) also returns PVAL, a matrix of \(p\)-values for testing the hypothesis of no correlation against the alternative that there is a nonzero correlation. Each element of PVAL is the \(p\) value for the corresponding element of RHO. If PVAL \((i, j)\) is small, say less than 0.05 , then the correlation \(\operatorname{RHO}(i, j)\) is significantly different from zero.
[RHO, PVAL] \(=\operatorname{corr}(X, Y\), 'name ', value) specifies one or more optional name/value pairs. Specify name inside single quotes. The following table lists valid parameters and their values.
\begin{tabular}{l|l}
\hline Parameter & Values \\
\hline type & \begin{tabular}{l}
- 'Pearson' (the default) computes Pearson's \\
linear correlation coefficient
\end{tabular} \\
& • 'Kendall' computes Kendall's tau \\
- 'Spearman' computes Spearman's rho
\end{tabular}

Using the 'pairwise' option for the rows parameter may return a matrix that is not positive definite. The 'complete' option always returns a positive definite matrix, but in general the estimates are based on fewer observations.
corr computes \(p\)-values for Pearson's correlation using a Student's \(t\) distribution for a transformation of the correlation. This correlation is exact when \(X\) and \(Y\) are normal. corr computes \(p\)-values for Kendall's tau and Spearman's rho using either the exact permutation distributions (for small sample sizes), or large-sample approximations.
corr computes \(p\)-values for the two-tailed test by doubling the more significant of the two one-tailed \(p\)-values.

Example
Find the correlation between two matrices and compare to the correlation between two column vectors.

Generate sample data.
rng('default')
\(x=r a n d n(30,4)\);
\(y=r a n d n(30,4)\);
\(y(:, 4)=\operatorname{sum}(x, 2) ;\) introduce correlation
Calculate the correlation between columns of \(X\) and \(Y\).
\([\mathrm{r}, \mathrm{p}]=\operatorname{corr}(\mathrm{x}, \mathrm{y})\)
\(r=\)
\begin{tabular}{rrrr}
-0.1686 & -0.0363 & 0.2278 & 0.6901 \\
0.3022 & 0.0332 & -0.0866 & 0.2617 \\
-0.3632 & -0.0987 & -0.0200 & 0.3504 \\
-0.1365 & -0.1804 & 0.0853 & 0.4908
\end{tabular}
\(p=\)
\begin{tabular}{llll}
0.3731 & 0.8489 & 0.2260 & 0.0000 \\
0.1045 & 0.8619 & 0.6491 & 0.1624 \\
0.0485 & 0.6039 & 0.9166 & 0.0577 \\
0.4721 & 0.3400 & 0.6539 & 0.0059
\end{tabular}

Calculate the correlation between \(X\) and \(Y\) using corrcoef.
\([r, p]=\operatorname{corrcoef}(x, y)\)
\(r=\)
\[
\begin{array}{ll}
1.0000 & 0.1252 \\
0.1252 & 1.0000
\end{array}
\]
\(p=\)
```

1.0000 0.1729
0.1729 1.0000

```

MATLAB function corrcoef converts \(X\) and \(Y\) into column vectors before computing the correlation between them.

\section*{References}
[1] Gibbons, J.D. (1985) Nonparametric Statistical Inference, 2nd ed., M. Dekker.
[2] Hollander, M. and D.A. Wolfe (1973) Nonparametric Statistical Methods, Wiley.
[3] Kendall, M.G. (1970) Rank Correlation Methods, Griffin.
[4] Best, D.J. and D.E. Roberts (1975) "Algorithm AS 89: The Upper Tail Probabilities of Spearman's rho", Applied Statistics, 24:377-379.

See Also corrcoef \| partialcorr | corrcov \| tiedrank

\section*{Purpose Convert covariance matrix to correlation matrix}
```

Syntax
$\mathrm{R}=\operatorname{corrcov}(\mathrm{C})$
[R,sigma] = corrcov(C)

```

Description

Examples
load hospital
X = [hospital.Weight hospital.BloodPressure];
\(C=\operatorname{cov}(X)\)
C \(=\)
\(706.0404 \quad 27.7879 \quad 41.0202\)
\(27.7879 \quad 45.0622 \quad 23.8194\)
\(41.0202 \quad 23.8194 \quad 48.0590\)
\(R=\operatorname{corrcoef}(X)\)
\(R=\)
\begin{tabular}{lll}
1.0000 & 0.1558 & 0.2227 \\
0.1558 & 1.0000 & 0.5118 \\
0.2227 & 0.5118 & 1.0000
\end{tabular}

Compare R with the correlation matrix computed from C by corrcov:
corrcov(C)
ans =
\begin{tabular}{lll}
1.0000 & 0.1558 & 0.2227 \\
0.1558 & 1.0000 & 0.5118 \\
0.2227 & 0.5118 & 1.0000
\end{tabular}

\section*{See Also}

\section*{TreeBagger.Cost property}
Purpose Misclassification costs
Description The cost property is a matrix with misclassification costs. This property is empty for ensembles of regression trees.
See Also classregtree

\section*{gmdistribution.CovType property}

\section*{Purpose Type of covariance matrices}

Description The string 'diagonal' if the covariance matrices are restricted to be diagonal; the string 'full' otherwise.

\section*{Purpose Cox proportional hazards regression}

Syntax
b \(=\operatorname{coxphfit}(\mathrm{X}, \mathrm{T})\)
b = coxphfit(X, T,Name, Value)
[b,logl,H,stats] = coxphfit(__)

\section*{Description}

\section*{Input Arguments}
\(\mathrm{b}=\) coxphfit \((\mathrm{X}, \mathrm{T})\) returns a \(p\)-by- 1 vector, b , of coefficient estimates for a Cox proportional hazards regression of the observed responses in an \(n\)-by- 1 vector, T , on the predictors in an \(n\)-by- \(p\) matrix X .

The model does not include a constant term, and \(X\) cannot contain a column of 1 s .
b = coxphfit (X, T, Name, Value) returns a vector of coefficient estimates, with additional options specified by one or more Name, Value pair arguments.
[b, logl, H, stats] = coxphfit(__) also returns the loglikelihood, logl, a structure, stats, that contains additional statistics, and a two-column matrix, H , that contains the T values in the first column and the estimated baseline cumulative hazard, in the second column. You can use any of the input arguments in the previous syntaxes.

\section*{X - Observations on predictor variables}
matrix
Observations on predictor variables, specified as an \(n\)-by- \(p\) matrix of \(p\) predictors for each of \(n\) observations.

The model does not include a constant term, thus X cannot contain a column of 1 s .

\section*{Data Types \\ single | double}

\section*{T - Time-to-event data}

\author{
vector
}

Time-to-event data, specified as an \(n\)-by- 1 vector.

\author{
Data Types \\ single | double
}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example:
'baseline', 0,'censoring', censoreddata, 'frequency',freq specifies that coxphfit calculates the baseline hazard rate relative to 0 , considering the censoring information in the vector censoreddata, and the frequency of observations on \(T\) and \(X\) given in the vector freq.

\section*{'baseline' - X values at which to compute the baseline hazard mean(X) (default) | scalar value}
\(X\) values at which to compute the baseline hazard, specified as the comma-separated pair consisting of 'baseline' and a scalar value.

The default is mean \((X)\), so the hazard rate at \(X\) is \(h(t) * \exp ((X-\operatorname{mean}(X)) * b)\). Enter 0 to compute the baseline relative to 0 , so the hazard rate at \(X\) is \(h(t) * \exp (X * b)\). Changing the baseline does not affect the coefficient estimates, but the hazard ratio changes.

\section*{Example: 'baseline',0}

Data Types
single | double

\section*{'censoring' - Indicator for censoring}
array of 0 s (default) | array of 0 s and 1 s
Indicator for censoring, specified as the comma-separated pair consisting of 'censoring' and a Boolean array of the same size as T .

Use 1 for observations that are right censored and 0 for observations that are fully observed. The default is all observations are fully observed.

Example: 'censoring', cens

\section*{Data Types}
logical

\section*{'frequency' - Frequency of observations}

\section*{array of 1s (default) | vector of nonnegative integer counts}

Frequency of observations, specified as the comma-separated pair consisting of 'frequency' and an array that is the same size as \(T\) containing nonnegative integer counts.
The \(j^{\text {th }}\) element of this vector gives the number of times the method observes the \(j^{\text {th }}\) element of T and the \(j^{\text {th }}\) row of X . The default is one observation per row of \(X\) and \(T\).

Example: 'frequency',freq
Data Types
single | double

\section*{'init' - Initial values for estimated coefficients}
vector
Initial values for estimated coefficients, specified as the comma-separated pair consisting of 'init' and a vector containing the coefficient initial values.

Example: 'init', initcoef
Data Types
single | double

\section*{'options' - Algorithm control parameters}
structure
Algorithm control parameters for the iterative algorithm used to estimate \(b\), specified as the comma-separated pair consisting of
'options ' and a structure. A call to statset creates this argument. For parameter names and default values, type statset('coxphfit'). You can set the options under a new name and use that in the name-value pair argument.

\section*{Example: 'options',statset('coxphfit')}

\section*{Data Types}
char

\section*{Output Arguments}

\section*{b - Coefficient estimates}
vector
Coefficient estimates for a Cox proportional hazards regression, returned as a \(p\)-by- 1 vector.

\section*{logl - Loglikelihood}
scalar
Loglikelihood of the fitted model, returned as a scalar.
You can use log likelihood values to compare different models and assess the significance of effects of terms in the model.

\section*{H - Estimated baseline cumulative hazard \\ two-column matrix}

Estimated baseline cumulative hazard rate evaluated at \(T\) values, returned as a two-column matrix. The first column of the matrix contains \(T\) values, and the second column contains cumulative hazard rate estimates.

\section*{stats - Coefficient statistics}

\section*{structure}

Coefficient statistics, returned as a structure that contains the following fields.
\begin{tabular}{l|l}
\hline beta & Coefficient estimates (same as b) \\
\hline se & Standard errors of coefficient estimates, b \\
\hline z & \(z\)-statistics for b (that is, b divided by standard error) \\
\hline p & \(p\)-values for b \\
\hline covb & Estimated covariance matrix for b \\
\hline
\end{tabular}

\section*{Examples Lifetime of Light Bulbs}

Navigate to a folder containing sample data.
```

cd(matlabroot)
cd('help/toolbox/stats/examples')

```

Load the sample data.
load lightbulb
The first column of the light bulb data has the lifetime (in hours) of two different types of bulbs. The second column has the binary variable indicating whether the bulb is fluorescent or incandescent. 0 indicates that the bulb is incandescent, and 1 indicates that it is fluorescent. The third column contains the censorship information, where 0 indicates the bulb was observed until failure, and 1 indicates the bulb was censored.

Fit a Cox proportional hazards model for the lifetime of the light bulbs, also accounting for censoring. The predictor variable is the type of bulb.
```

b = coxphfit(lightbulb(:,2),lightbulb(:,1),...
'censoring',lightbulb(:,3))

```
b \(=\)

The estimate of the hazard ratio is \(\exp (b)=112.8646\). This means that the hazard for the incandescent bulbs is 112.86 times the hazard for the fluorescent bulbs.

\section*{Change the Algorithm Parameters}

Navigate to a folder containing sample data.
```

cd(matlabroot)
cd('help/toolbox/stats/examples')

```

Load the sample data.
load lightbulb
The first column of the data has the lifetime (in hours) of two types of bulbs. The second column has the binary variable indicating whether the bulb is fluorescent or incandescent. 0 indicates that the bulb is incandescent, and 1 indicates that it is fluorescent. The third column contains the censorship information, where 0 indicates the bulb is observed until failure, and 1 indicates the item (bulb) is censored.

Fit a Cox proportional hazards model, also accounting for censoring. The predictor variable is the type of bulb.
```

b = coxphfit(lightbulb(:,2),lightbulb(:,1),...
'censoring',lightbulb(:,3))
b =

```
\[
4.7262
\]

Display the default control parameters for the algorithm coxphfit uses to estimate the coefficients.
```

statset('coxphfit')

```
ans =
```

    Display: 'off'
    ```
```

    MaxFunEvals: 200
        MaxIter: 100
            TolBnd: 1.0000e-06
            TolFun: 1.0000e-08
        TolTypeFun: []
            TolX: 1.0000e-08
            TolTypeX: []
            GradObj: []
            Jacobian: []
            DerivStep: []
            FunValCheck: []
            Robust: []
    RobustWgtFun: []
        WgtFun: []
            Tune: []
    UseParallel: []
    UseSubstreams: []
Streams: {}
OutputFen: []

```

Save the options under a different name and change how the results will be displayed and the maximum number of iterations, Display and MaxIter.
```

coxphopt = statset('coxphfit');
coxphopt.Display = 'final';
coxphopt.MaxIter = 50;

```

Run coxphfit with the new algorithm parameters.
b = coxphfit(lightbulb(:,2), lightbulb(:,1),... 'censoring', lightbulb(:,3),'options', coxphopt)

Successful convergence: Norm of gradient less than OPTIONS.TolFun
b =
4.7262
coxphfit displays a report on the final iteration. Changing the maximum number of iterations did not affect the coefficient estimate.

\section*{Fit and Compare Cox and Weibull Survivor Functions}

Generate Weibull data depending on predictor X .
```

rng('default') % for reproducibility
X = 4*rand(100,1);
A = 50*exp(-0.5*X);
B = 2;
y = wblrnd(A,B);

```

The response values are generated from a Weibull distribution with a shape parameter depending on the predictor variable \(X\) and a scale parameter of 2 .

Fit a Cox proportional hazards model.
```

[b,logL,H,stats] = coxphfit(X,y);
[b logL]
ans =
0.9409 -331.1479

```

The coefficient estimate is 0.9409 and the log likelihood value is -331.1479 . Request the model statistics.
```

stats

```
stats \(=\)
 covb: 0.0158
 beta: 0.9409
 se: 0.1256
 z: 7.4889
 p: 6.9462e-14

The covariance matrix of the coefficient estimates, covb, contains only one value, which is equal to the variance of the coefficient estimate in this example. The coefficient estimate, beta, is the same as \(b\) and is equal to 0.9409. The standard error of the coefficient estimate, se, is 0.1256 , which is the square root of the variance 0.0158 . The \(z\)-statistic, \(z\), is beta/se \(=0.9409 / 0.1256=7.4880\). The \(p\)-value, \(p\), indicates that the effect of \(X\) is significant.

Plot the Cox estimate of the baseline survivor function together with the known Weibull function.
```

stairs(H(:,1), exp(-H(:,2)),'LineWidth', 2)
xx = linspace(0,100);
line(xx,1-wblcdf(xx,50*exp(-0.5*mean(X)),B),'color','r','LineWidth',2)
xlim([0,50])
legend('Estimated Survivor Function','Weibull Survivor Function')

```


The fitted model gives a close estimate to the survivor function of the actual distribution.

\section*{Definitions Cox Proportional Hazards Regression}

Cox proportional hazards regression is a semiparametric method for adjusting survival rate estimates to remove the effect of confounding variables and to quantify the effect of predictor variables. The method represents the effects of explanatory and confounding variables as a multiplier of a common baseline hazard function, \(h_{0}(t)\). For a baseline relative to 0 , this model corresponds to
\[
h_{X}(t)=h_{0}(t) e^{\sum_{i} X_{i} b_{i}},
\]
where \(h_{\mathrm{X}}(t)\) is the hazard rate at X and \(h_{0}(t)\) is the baseline hazard rate function. The baseline hazard function is the nonparametric part of the Cox proportional hazards regression function, whereas the impact of the predictor variables is a loglinear regression. The assumption is that the baseline hazard function depends on time, \(t\), but the predictor variables do not depend on time.

\section*{References}
[1] Cox, D.R., and D. Oakes. Analysis of Survival Data. London: Chapman \& Hall, 1984.
[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ: Wiley-Interscience, 2002.
[3] Kleinbaum, D. G., and M. Klein. Survival Analysis. Statistics for Biology and Health. 2nd edition. Springer, 2005.

\section*{See Also \\ ecdf | statset | wblfit}

\section*{Related Examples}

\section*{Concepts}
- "Hazard and Survivor Functions for Different Groups" on page 11-19
- "Survivor Functions for Two Groups" on page 11-26
- "Cox Proportional Hazards Model for Censored Data" on page 11-34
- "What Is Survival Analysis?" on page 11-2
- "Kaplan-Meier Method" on page 11-11
- "Cox Proportional Hazards Regression" on page 11-31

\section*{NaiveBayes.CPrior property}

\section*{Purpose Class priors}

Description The CPrior property is a vector of length NClasses containing the class priors. The priors for empty classes are zero.
Purpose Create object to use in \(k\)-nearest neighbors search

\section*{Syntax}

\section*{Input} Arguments

Description

NS = createns (X)
NS = createns(X,'Name', Value)
\(N S=\) createns \((X)\) uses the data observations in an \(m x\)-by- \(n\) matrix \(X\) to create an object NS. Rows of \(X\) correspond to observations and columns correspond to variables. NS is either an ExhaustiveSearcher or a KDTreeSearcher object which you can use to find nearest neighbors in \(X\) for desired query points. When NS is an ExhaustiveSearcher object, knnsearch uses the exhaustive search algorithm to find nearest neighbors. When NS is a KDTreeSearcher, createns creates and saves a \(k\) d-tree based on \(X\) in NS. knnsearch uses the \(k d\)-tree to find nearest neighbors. For information on these search methods, see " \(k\)-Nearest Neighbor Search and Radius Search" on page 15-12.
NS \(=\) createns (X,'Name', Value) accepts one or more optional name/value pairs. Specify Name inside single quotes. Specify NSMethod to determine which type of object to create. The object's properties save the information when you specify other arguments. For more information on the objects' properties, see ExhaustiveSearcher and KDTreeSearcher.

\section*{Name-Value Pair Arguments}

\section*{'NSMethod'}
Nearest neighbors search method, used to define the type of object created. Value is either:
- 'kdtree ' - Create a KDTreeSearcher object. If you do not specify NSMethod, this is the default value when the number of columns of \(X\) is less than \(10, \mathrm{X}\) is not sparse, and the distance measure is one of the following measures:
- 'euclidean' (default)
- 'cityblock'
- 'minkowski'
- 'chebychev'
- 'exhaustive' - Create an ExhaustiveSearcher object. If you do not specify NSMethod, this is the default value when the default criteria for 'kdtree' do not apply.

\section*{'Distance'}

A string or a function handle specifying the default distance metric used when you call the knnsearch method to find nearest neighbors for future query points. If you specify a distance metric but not an NSMethod, this input determines the type of object createns creates, according to the default values described in NSMethod.

For both KDTreeSearcher and ExhaustiveSearcher objects, the following options apply:
- 'euclidean' (default) - Euclidean distance.
- 'cityblock' - City block distance.
- 'chebychev' - Chebychev distance (maximum coordinate difference).
- 'minkowski' - Minkowski distance.

The following options apply only to ExhaustiveSearcher objects:
- 'seuclidean' - Standardized Euclidean distance. Each coordinate difference between rows in \(X\) and the query matrix is scaled by dividing by the corresponding element of the standard deviation computed from \(X, S=\) nanstd (X). To specify another value for \(S\), use the Scale argument.
- 'mahalanobis' - Mahalanobis distance, which is computed using a positive definite covariance matrix \(C\). The default value of \(C\) is the sample covariance matrix of \(X\), as computed by nancov (\(X\)). To change the value of C , use the Cov parameter.
- 'cosine' - One minus the cosine of the included angle between observations (treated as vectors).
- 'correlation' - One minus the sample linear correlation between observations (treated as sequences of values).
- 'spearman' - One minus the sample Spearman's rank correlation between observations (treated as sequences of values).
- 'hamming' - Hamming distance, which is percentage of coordinates that differ.
- 'jaccard' - One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.
- custom distance function - A distance function specified using @ (for example, @distfun). A distance function must be of the form function D2 = distfun(ZI, ZJ), taking as arguments a 1-by-n vector ZI containing a single row from \(X\) or from the query points \(Y\), and an \(m 2\)-by- \(n\) matrix ZJ containing multiple rows of X or Y , and returning an \(m 2\)-by- 1 vector of distances \(d 2\), whose \(j\) th element is the distance between the observations ZI and ZJ (\(j,:\)).

\section*{'P'}

A positive scalar, \(p\), indicating the exponent of the Minkowski distance. This parameter is only valid when Distance is 'minkowski'. Default is 2 .

\section*{'Cov'}

A positive definite matrix indicating the covariance matrix when computing the Mahalanobis distance. This parameter is only valid when Distance is 'mahalanobis'. Default is nancov (X).

\section*{'Scale'}

A vector \(S\) with the length equal to the number of columns in \(X\). Each coordinate of \(X\) and each query point is scaled by the corresponding element of S when computing the standardized Euclidean distance. This parameter is only valid when Distance is 'seuclidean'. Default is nanstd (X).

\section*{'BucketSize'}

A positive integer, indicating the maximum number of data points in each leaf node of the \(k d\)-tree. This argument is only meaningful when using the \(k\) d-tree search method. Default is 50 .

\section*{Examples Create a kd-tree with a Minkowski distance metric and a P value of 5:}
```

load fisheriris
x = meas(:,3:4);
% Since x has only two columns and the Distance is Minkowski,
% createns creates a KDTreeSearcher object by default:
knnobj = createns(x,'Distance','minkowski','P',5)
knnobj =
KDTreeSearcher
Properties:
BucketSize: 50
X: [150x2 double]
Distance: 'minkowski'
DistParameter: 5

```
See Also ExhaustiveSearcher.knnsearch | KDTreeSearcher.knnsearch |
How To . " \(k\)-Nearest Neighbor Search and Radius Search" on page 15-12

\section*{Purpose Cross-tabulation}
```

Syntax table $=$ crosstab $(x 1, x 2)$
table $=$ crosstab(x1, x2,..., xn)
[table,chi2,p] = crosstab(x1,..., xn)
[table,chi2, p,labels] = crosstab(x1,....,xn)

```

\section*{Description}

\section*{Examples}

\section*{Example 1}

Cross-tabulate two vectors with three and four distinct values, respectively:
```

x = [1 1 2 3 1]; y = [1 2 5 3 1];

```
```

table = crosstab(x,y)
table =

| 2 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |

```

\section*{Example 2}

Generate two independent vectors, each containing 50 discrete uniform random numbers in the range \(1: 3\) :
```

x1 = unidrnd(3,50,1);
x2 = unidrnd(3,50,1);
[table,chi2,p] = crosstab(x1,x2)
table =
1
5 5 2
11 7 6
chi2 =
7.5449
p =
0.1097

```

At the \(95 \%\) confidence level, the \(p\) value fails to reject the null hypothesis that table is independent in each dimension.

\section*{Example 3}

The file carbig.mat contains measurements of large model cars during the years 1970-1982:
```

load carbig
[table,chi2,p,labels] = crosstab(cyl4,when,org)
table(:,:,1) =
82 75 25
12 22 38
table(:,:,2) =
0 4 3
23 26 17
table(:,:,3) =

```
```

    3 3 4
    12 25 32
    chi2 =
207.7689
p =
0
label =
'Other' 'Early' 'USA'
'Four' 'Mid' 'Europe'
[] 'Late' 'Japan'

```
table and label together show that the number of four-cylinder cars made in the USA during the late period of the data was table \((2,3,1)\) or 38 cars.

\section*{See Also \\ grp2idx | tabulate}

How To
- "Grouping Variables" on page 2-51

\section*{Purpose Loss estimate using cross validation}

\author{
Syntax \\ \section*{Description}
}
vals \(=\) crossval(fun, \(X)\)
vals \(=\) crossval(fun, \(X, Y, \ldots\))
mse \(=\) crossval('mse', \(X, y\), 'Predfun', predfun)
\(m c r=c r o s s v a l(' m c r ', X, y, ' P r e d f u n ', p r e d f u n)\)
val \(=\) crossval(criterion, X1, X2, ..., y, 'Predfun', predfun)
vals \(=\) crossval(...,'name', value)
vals \(=\) crossval(fun, X) performs 10 -fold cross validation for the function fun, applied to the data in \(X\).
fun is a function handle to a function with two inputs, the training subset of \(X\), XTRAIN, and the test subset of \(X\), XTEST, as follows:
testval = fun(XTRAIN,XTEST)
Each time it is called, fun should use XTRAIN to fit a model, then return some criterion testval computed on XTEST using that fitted model.
\(X\) can be a column vector or a matrix. Rows of \(X\) correspond to observations; columns correspond to variables or features. Each row of vals contains the result of applying fun to one test set. If testval is a non-scalar value, crossval converts it to a row vector using linear indexing and stored in one row of vals.
vals \(=\) crossval(fun, \(X, Y, \ldots\)) is used when data are stored in separate variables X, Y, All variables (column vectors, matrices, or arrays) must have the same number of rows. fun is called with the training subsets of \(\mathrm{X}, \mathrm{Y}, \ldots\), followed by the test subsets of \(\mathrm{X}, \mathrm{Y}, \ldots\), as follows:
testvals = fun(XTRAIN, YTRAIN,...,XTEST,YTEST, ...)
mse \(=\) crossval('mse', X,y,'Predfun', predfun) returns mse, a scalar containing a 10 -fold cross validation estimate of mean-squared error for the function predfun. X can be a column vector, matrix, or array of predictors. y is a column vector of response values. X and y must have the same number of rows.
predfun is a function handle called with the training subset of \(X\), the training subset of \(y\), and the test subset of \(X\) as follows:
```

yfit = predfun(XTRAIN,ytrain,XTEST)

```

Each time it is called, predfun should use XTRAIN and ytrain to fit a regression model and then return fitted values in a column vector yfit. Each row of yfit contains the predicted values for the corresponding row of XTEST. crossval computes the squared errors between yfit and the corresponding response test set, and returns the overall mean across all test sets.
mcr = crossval('mcr', X, y,'Predfun', predfun) returns mcr, a scalar containing a 10 -fold cross validation estimate of misclassification rate (the proportion of misclassified samples) for the function predfun. The matrix \(X\) contains predictor values and the vector y contains class labels. predfun should use XTRAIN and YTRAIN to fit a classification model and return yfit as the predicted class labels for XTEST. crossval computes the number of misclassifications between yfit and the corresponding response test set, and returns the overall misclassification rate across all test sets.
val = crossval(criterion, X1, X2, ...,y,'Predfun', predfun), where criterion is 'mse' or 'mcr', returns a cross validation estimate of mean-squared error (for a regression model) or misclassification rate (for a classification model) with predictor values in \(\mathrm{X} 1, \mathrm{X} 2, \ldots\) and, respectively, response values or class labels in y . \(\mathrm{X} 1, \mathrm{X} 2, \ldots\) and y must have the same number of rows. predfun is a function handle called with the training subsets of \(\mathrm{X} 1, \mathrm{X} 2, \ldots\), the training subset of y , and the test subsets of \(\mathrm{X} 1, \mathrm{X} 2, \ldots\), as follows:
yfit=predfun(X1TRAIN, X2TRAIN, ...,ytrain,X1TEST,X2TEST,....)
yfit should be a column vector containing the fitted values.
vals = crossval(..., 'name', value) specifies one or more optional parameter name/value pairs from the following table. Specify name inside single quotes.
\begin{tabular}{l|l}
\hline Name & Value \\
\hline holdout & \begin{tabular}{l}
A scalar specifying the ratio or the number \\
of observations p for holdout cross validation. \\
When \(0<p<1\), approximately p*n observations \\
for the test set are randomly selected. When \(p\) \\
is an integer, p observations for the test set are \\
randomly selected.
\end{tabular} \\
\hline kfold & \begin{tabular}{l}
A scalar specifying the number of folds k for \\
k-fold cross validation.
\end{tabular} \\
\hline leaveout & \begin{tabular}{l}
Specifies leave-one-out cross validation. The \\
value must be 1.
\end{tabular} \\
\hline mcreps & \begin{tabular}{l}
A positive integer specifying the number of \\
Monte-Carlo repetitions for validation. Ifthe \\
first input of crossval is 'mse ' or 'mcr ' \\
crossval returns the mean of mean-squared \\
error or misclassification rate across all of the \\
Monte-Carlo repetitions. Otherwise, crossval \\
concatenates the values vals from all of \\
the Monte-Carlo repetitions along the first \\
dimension.
\end{tabular} \\
\hline partition & \begin{tabular}{l}
An object c of the cvpartition class, specifying \\
the cross validation type and partition.
\end{tabular} \\
\hline stratify & \begin{tabular}{l}
A column vector group specifying groups for \\
stratification. Both training and test sets have \\
roughly the same class proportions as in group. \\
NaNs or empty strings in group are treated as \\
missing values, and the corresponding rows of \\
the data are ignored.
\end{tabular} \\
\hline options & \begin{tabular}{l}
A structure that specifies whether to run in \\
parallel, and specifies the random stream or \\
streams. Create the options structure with \\
statset. Option fields:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Name & Value \\
& \begin{tabular}{l}
- UseParallel — Set to true to compute in \\
parallel. Default is false. \\
- UseSubstreams — Set to true to compute in \\
parallel in a reproducible fashion. Default is \\
false. To compute reproducibly, set Streams \\
to a type allowing substreams: 'mlfg6331_64' \\
or 'mrg32k3a'. \\
- Streams - A RandStream object or cell array \\
consisting of one such object. If you do not \\
specify Streams, crossval uses the default \\
stream.
\end{tabular} \\
\hline
\end{tabular}

Only one of kfold, holdout, leaveout, or partition can be specified, and partition cannot be specified with stratify. If both partition and mcreps are specified, the first Monte-Carlo repetition uses the partition information in the cvpartition object, and the repartition method is called to generate new partitions for each of the remaining repetitions. If no cross validation type is specified, the default is 10 -fold cross validation.

Note When using cross validation with classification algorithms, stratification is preferred. Otherwise, some test sets may not include observations from all classes.

\section*{Examples Example 1}

Compute mean-squared error for regression using 10 -fold cross validation:
```

load('fisheriris');
y = meas(:,1);
X = [ones(size(y,1),1),meas(:,2:4)];

```
```

regf=@(XTRAIN, ytrain,XTEST)(XTEST*regress(ytrain,XTRAIN));
cvMse = crossval('mse',X,y,'predfun',regf)
cvMse =
0.1015

```

\section*{Example 2}

Compute misclassification rate using stratified 10 -fold cross validation:
```

load('fisheriris');
y = species;
X = meas;
cp = cvpartition(y,'k',10); % Stratified cross-validation
classf = @(XTRAIN, ytrain,XTEST)(classify(XTEST,XTRAIN,...
ytrain));
cvMCR = crossval('mcr',X,y,'predfun',classf,'partition',cp)
cvMCR =
0.0200

```

\section*{Example 3}

Compute the confusion matrix using stratified 10 -fold cross validation:
```

load('fisheriris');
y = species;
X = meas;
order = unique(y); % Order of the group labels
cp = cvpartition(y,'k',10); % Stratified cross-validation
f = @(xtr,ytr,xte,yte)confusionmat(yte,...
classify(xte,xtr,ytr),'order',order);
cfMat = crossval(f,X,y,'partition',cp);
cfMat = reshape(sum(cfMat),3,3)
cfMat =

```
\begin{tabular}{rrr}
50 & 0 & 0 \\
0 & 48 & 2 \\
0 & 1 & 49
\end{tabular}
cfMat is the summation of 10 confusion matrices from 10 test sets.

\title{
References \\ [1] Hastie, T., R. Tibshirani, and J. Friedman. The Elements ofStatistical Learning. New York: Springer, 2001.
}
See Also cvpartition
How To - "Grouping Variables" on page 2-51

\section*{ClassificationDiscriminant.crossval}

\section*{Purpose Cross-validated discriminant analysis classifier}

\author{
Syntax \\ Description
}

Tips

Input
Arguments
cvmodel = crossval(obj)
cvmodel = crossval(obj,Name,Value)
cvmodel = crossval(obj) creates a partitioned model from obj, a fitted discriminant analysis classifier. By default, crossval uses 10 -fold cross validation on the training data to create cvmodel.
cvmodel \(=\) crossval(obj,Name, Value) creates a partitioned model with additional options specified by one or more Name, Value pair arguments.
- Assess the predictive performance of obj on cross-validated data using the "kfold" methods and properties of cvmodel, such as kfoldLoss.
obi
Discriminant analysis classifier, produced using ClassificationDiscriminant.fit.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'cvpartition'}

Object of class cvpartition, created by the cvpartition function. crossval splits the data into subsets with cvpartition.
Use only one of these options at a time: 'cvpartition', 'holdout', 'kfold', or 'leaveout'.

Default: []

\section*{ClassificationDiscriminant.crossval}

\section*{'holdout'}

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training. Specify a numeric scalar from 0 to 1 . Use only one of these options at a time: 'cvpartition', 'holdout', 'kfold', or 'leaveout'.

\section*{'kfold'}

Number of folds to use in a cross-validated classifier, a positive integer.

Use only one of these options at a time: 'cvpartition', 'holdout', 'kfold', or 'leaveout'.

Default: 10

\section*{'leaveout'}

Set to 'on' for leave-one-out cross validation.
Use only one of these options at a time: 'cvpartition', 'holdout', 'kfold', or 'leaveout'.

\section*{Examples}

\section*{Alternatives}

Create a classification model for the Fisher iris data, and then create a cross-validation model. Evaluate the quality the model using kfoldLoss.
```

load fisheriris
obj = ClassificationDiscriminant.fit(meas,species);
cvmodel = crossval(obj);
L = kfoldLoss(cvmodel)
L =
0.0200

```

You can create a cross-validation classifier directly from the data, instead of creating a discriminant analysis classifier followed by a cross-validation classifier. To do so, include one of these options in

\section*{ClassificationDiscriminant.crossval}

> ClassificationDiscriminant.fit: 'crossval', 'cvpartition', 'holdout', 'kfold', or 'leaveout'.

\author{
See Also ClassificationDiscriminant.fit | crossval | kfoldEdge | kfoldfun | kfoldLoss | kfoldMargin | kfoldPredict
}

How To . "Discriminant Analysis" on page 14-3

\section*{ClassificationEnsemble.crossval}

\section*{Purpose \\ Cross validate ensemble}

Syntax \(\quad \begin{aligned} \text { cvens } & =\operatorname{crossval(ens)} \\ \text { cvens } & =\operatorname{crossval}(\text { ens, Name, Value })\end{aligned}\)
Description
cvens = crossval(ens) creates a cross-validated ensemble from ens, a classification ensemble. Default is 10 -fold cross validation.
cvens \(=\) crossval(ens,Name,Value) creates a cross-validated ensemble with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, , NameN, ValueN.

\section*{Input \\ Arguments}
ens
A classification ensemble created with fitensemble.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'cvpartition'}

A partition of class cvpartition. Sets the partition for cross validation.

Use no more than one of the name-value pairs cvpartition, holdout, kfold, or leaveout.

\section*{'holdout'}

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training. Specify a numeric scalar from 0 to 1 . You can only use one of these four options at a time for creating a cross-validated tree: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

\section*{ClassificationEnsemble.crossval}

\section*{'kfold'}

Number of folds for cross validation, a numeric positive scalar.
Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

\section*{'leaveout'}

If 'on ', use leave-one-out cross validation.
Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

\section*{'nprint'}

Printout frequency, a positive integer scalar. Use this parameter to observe the training of cross-validation folds.

Default: 'off', meaning no printout

\section*{Output Arguments}

Alternatives

Examples
cvens
A cross-validated classification ensemble of class ClassificationPartitionedEnsemble.

You can create a cross-validation ensemble directly from the data, instead of creating an ensemble followed by a cross-validation ensemble. To do so, include one of these five options in fitensemble: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

Create a cross-validated classification model for the Fisher iris data, and assess its quality using the kfoldLoss method.
```

load fisheriris
ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');
cvens = crossval(ens);
L = kfoldLoss(cvens)
L =
0.0467

```

\author{
See Also ClassificationPartitionedEnsemble | cvpartition
}

\section*{ClassificationKNN.crossval}

\section*{Purpose Cross-validated \(k\)-nearest neighbor classifier}
Syntax \(\quad\)\begin{tabular}{rl}
cvmodel & \(=\operatorname{crossval}(m d l)\) \\
cvmodel & \(=\operatorname{crossval}(m d l\), Name, Value \()\)
\end{tabular}

Description cvmodel = crossval(mdl) creates a partitioned model from mdl, a fitted KNN classification model. By default, crossval uses 10 -fold cross validation on the training data to create cvmodel.
cvmodel \(=\) crossval(mdl,Name,Value) creates a partitioned model with additional options specified by one or more Name, Value pair arguments.
- Assess the predictive performance of mdl on cross-validated data using the "kfold" methods and properties of cvmodel, such as kfoldLoss.

\section*{Input \\ Arguments}

\section*{mdl}
\(k\)-nearest neighbor classifier, created by ClassificationKNN.fit.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'cvpartition'}

Object of class cvpartition, created by the cvpartition function. crossval splits the data into subsets with cvpartition.

Use only one of these four options at a time: 'kfold', 'holdout ', 'leaveout', or 'cvpartition'.

\section*{'holdout'}

\section*{ClassificationKNN.crossval}

Holdout validation tests the specified fraction of the data, and uses the remaining data for training. Specify a numeric scalar from 0 to 1 . Use only one of these four options at a time: ' \(k f o l d '\), 'holdout', 'leaveout', or 'cvpartition'.

\section*{'kfold'}

Number of folds to use in a cross-validated tree, a positive integer.
Use only one of these four options at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

Default: 10

\section*{'leaveout'}

Set to 'on' for leave-one-out cross validation.
Use only one of these four options at a time: 'kfold ', 'holdout', 'leaveout', or 'cvpartition'.

\section*{Output Arguments}

\section*{Examples}
cvmodel
Partitioned model of class ClassificationPartitionedModel.

\section*{Cross-Validared K-Nearest Neighbor Model}

Construct a cross-validated \(k\)-nearest neighbor model, and assess classification performance using the model.

Load the data.
load fisheriris
X = meas;
Y = species;
Construct a classifier for nearest neighbors.
mdl \(=\) ClassificationKNN.fit(\(\mathrm{X}, \mathrm{Y}\));
Construct a cross-validated classifier.

\section*{ClassificationKNN.crossval}
```

cvmdl = crossval(mdl)
cvmdl =
classreg.learning.partition.ClassificationPartitionedModel:
CrossValidatedModel: 'KNN'
PredictorNames: {'x1' 'x2' 'x3' 'x4'}
CategoricalPredictors: []
ResponseName: 'Y'
NObservations: 150
KFold: 10
Partition: [1x1 cvpartition]
ClassNames: {'setosa' 'versicolor' 'virginica'}
ScoreTransform: 'none'

```

Find the cross-validated loss of the classifier.
```

cvmdlloss = kfoldLoss(cvmdl)

```
cvmdlloss =
 0.0400

The cross-validated loss is less than \(5 \%\). You can expect mdl to have a similar error rate.
\begin{tabular}{ll}
Alternatives & \begin{tabular}{l}
You can create a cross-validated model directly from the data, inst \\
creating a model followed by a cross-validated model. To do so, inclu \\
one of these options in ClassificationKNN.fit: 'crossval', 'kf \\
'holdout', 'leaveout', or 'cvpartition'.
\end{tabular} \\
See Also & \begin{tabular}{l}
ClassificationKNN | ClassificationPartitionedModel | \\
crossvalkfoldEdge | kfoldfun | kfoldLoss | kfoldMargin | \\
kfoldPredict |
\end{tabular} \\
\begin{tabular}{l}
Related \\
Examples
\end{tabular} \begin{tabular}{l}
- "Examine the Quality of a KNN Classifier" on page 15-26
\end{tabular} \\
\hline
\end{tabular}

\section*{ClassificationKNN.crossval}

\section*{Concepts \\ - "Classification Using Nearest Neighbors" on page 15-9}

\section*{ClassificationTree.crossval}

Purpose Cross-validated decision tree
Syntax \(\quad \begin{aligned} \text { cvmodel } & =\operatorname{crossval}(\text { model }) \\ \text { cvmodel } & =\text { crossval }(\text { model }, \text { Name, Value })\end{aligned}\)
Description cvmodel = crossval(model) creates a partitioned model from model, a fitted classification tree. By default, crossval uses 10 -fold cross validation on the training data to create cvmodel.
cvmodel = crossval(model, Name, Value) creates a partitioned model with additional options specified by one or more Name, Value pair arguments.

Tips

Input
Arguments
- Assess the predictive performance of model on cross-validated data using the "kfold" methods and properties of cvmodel, such as kfoldLoss.

\section*{model}

A classification model, produced using ClassificationTree.fit.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'cvpartition'}

Object of class cvpartition, created by the cvpartition function. crossval splits the data into subsets with cupartition.
Use only one of these four options at a time: 'kfold', 'holdout ', 'leaveout', or 'cvpartition'.

\section*{'holdout'}

\section*{ClassificationTree.crossval}

Holdout validation tests the specified fraction of the data, and uses the remaining data for training. Specify a numeric scalar from 0 to 1. Use only one of these four options at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

\section*{'kfold'}

Number of folds to use in a cross-validated tree, a positive integer.
Use only one of these four options at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

Default: 10

\section*{'leaveout'}

Set to 'on' for leave-one-out cross validation.
Use only one of these four options at a time: 'kfold ', 'holdout ', 'leaveout', or 'cvpartition'.

\section*{Output Arguments}

\section*{Examples}

\section*{cvmodel}

Partitioned model of class ClassificationPartitionedModel.

Create a classification model for the ionosphere data, then create a cross-validation model. Evaluate the quality the model using kfoldLoss.
load ionosphere
tree = ClassificationTree.fit(X,Y);
cvmodel = crossval(tree);
L = kfoldLoss(cvmodel)
L =
0.1168

Alternatives You can create a cross-validation tree directly from the data, instead of creating a decision tree followed by a cross-validation tree. To do

\section*{ClassificationTree.crossval}
so, include one of these five options in ClassificationTree.fit:
'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'.
See Also ClassificationTree.fit | crossval

\section*{RegressionEnsemble.crossval}

\section*{Purpose \\ Cross validate ensemble}

Syntax \(\quad \begin{aligned} \text { cvens } & =\operatorname{crossval(ens)} \\ \text { cvens } & =\operatorname{crossval}(\text { ens, Name, Value })\end{aligned}\)
Description
cvens = crossval(ens) creates a cross-validated ensemble from ens, a regression ensemble. Default is 10 -fold cross validation.
cvens \(=\) crossval(ens, Name, Value) creates a cross-validated ensemble with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, , NameN, ValueN.

\section*{Input \\ Arguments}
ens
A regression ensemble created with fitensemble.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'cvpartition'}

A partition of class cvpartition. Sets the partition for cross validation.

Use no more than one of the name-value pairs cvpartition, holdout, kfold, and leaveout.

\section*{'holdout'}

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training. Specify a numeric scalar from 0 to 1 . You can only use one of these four options at a time for creating a cross-validated tree: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

\section*{RegressionEnsemble.crossval}

\section*{'kfold'}

Number of folds for cross validation, a numeric positive scalar.
Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

\section*{'leaveout'}

If 'on ', use leave-one-out cross-validation.
Use no more than one of the name-value pairs 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

\section*{'nprint'}

Printout frequency, a positive integer scalar. Use this parameter to observe the training of cross-validation folds.

Default: 'off', meaning no printout

\section*{Output Arguments}

Alternatives

Examples
cvens
A cross-validated classification ensemble of class RegressionPartitionedEnsemble.

You can create a cross-validation ensemble directly from the data, instead of creating an ensemble followed by a cross-validation ensemble. To do so, include one of these five options in fitensemble: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

Create a cross-validated classification model for the carsmall data, and assess its quality using the kfoldLoss method:
```

X = [Acceleration Displacement Horsepower Weight];
rens = fitensemble(X,MPG,'LSBoost',100,'Tree');
cvens = crossval(rens);
L = kfoldLoss(cvens)
L =
21.9868

```

See Also RegressionPartitionedEnsemble | cvpartition

\section*{RegressionTree.crossval}
\begin{tabular}{ll}
Purpose & Cross-validated decision tree \\
Syntax & \begin{tabular}{l}
cvmodel \\
cvmodel
\end{tabular}\(=\) crossval(model) \\
&
\end{tabular}

Description cvmodel = crossval(model) creates a partitioned model from model, a fitted regression tree. By default, crossval uses 10 -fold cross validation on the training data to create cvmodel.
cvmodel = crossval(model, Name, Value) creates a partitioned model with additional options specified by one or more Name, Value pair arguments.
- Assess the predictive performance of model on cross-validated data using the "kfold" methods and properties of cvmodel, such as kfoldLoss.

\section*{Input \\ Arguments}

\section*{model}

A regression model, produced using RegressionTree.fit.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'cvpartition'}

Object of class cvpartition, created by the cvpartition function. crossval splits the data into subsets with cvpartition.
Use only one of these four options at a time: 'kfold', 'holdout ', 'leaveout', or 'cvpartition'.

Default: []

\section*{'holdout'}

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training. Specify a numeric scalar from 0 to 1 . You can only use one of these four options at a time for creating a cross-validated tree: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

\section*{'kfold'}

Number of folds to use in a cross-validated tree, a positive integer.
Use only one of these four options at a time: 'kfold', 'holdout ', 'leaveout', or 'cvpartition'.

Default: 10

\section*{'leaveout'}

Set to 'on' for leave-one-out cross-validation.

\section*{Output Arguments}

\section*{Examples}

\section*{cvmodel}

A partitioned model of class RegressionPartitionedModel.
Create a regression model of the carsmall data, and assess its accuracy with kfoldLoss:
```

load carsmall
X = [Acceleration Displacement Horsepower Weight];
tree = RegressionTree.fit(X,MPG);
cvtree = crossval(tree);
L = kfoldLoss(cvtree)
L =
25.2432

```

Alternatives You can create a cross-validation tree directly from the data, instead of creating a decision tree followed by a cross-validation tree. To do so,

\section*{RegressionTree.crossval}

> include one of these five options in RegressionTree.fit: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

See Also RegressionTree.fit | crossval
Purpose Transpose categorical matrix
Syntax

\(B=\) ctranspose(A)
\(\begin{array}{ll}\text { Description } & B=\text { ctranspose (A) returns the transpose of the 2-D categorical matrix } \\ \text { A. Note that ctranspose is identical to transpose for categorical arrays. }\end{array}\)
See Also transpose | permute

\section*{classregtree.cutcategories}

\section*{Purpose Cut categories}
```

Syntax C = cutcategories(t)
C = cutcategories(t,nodes)

```

\section*{Description}
\(\mathrm{C}=\) cutcategories(t) returns an \(n\)-by- 2 cell array C of the categories used at branches in the decision tree \(t\), where \(n\) is the number of nodes. For each branch node i based on a categorical predictor variable x, the left child is chosen if \(x\) is among the categories listed in C \(\{i, 1\}\), and the right child is chosen if \(x\) is among those listed in \(C\{i, 2\}\). Both columns of C are empty for branch nodes based on continuous predictors and for leaf nodes.
\(C=\) cutcategories(t, nodes) takes a vector nodes of node numbers and returns the categories for the specified nodes.

\section*{Examples Create a classification tree for car data:}
```

load carsmall
t = classregtree([MPG Cylinders],Origin,...
'names',{'MPG' 'Cyl'},'cat',2)
t =
Decision tree for classification
if Cyl=4 then node 2 elseif Cyl in {6 8} then node 3 else USA
if MPG<31.5 then node 4 elseif MPG>=31.5 then node 5 else USA
if Cyl=6 then node 6 elseif Cyl=8 then node 7 else USA
if MPG<21.5 then node 8 elseif MPG>=21.5 then node 9 else USA
if MPG<41 then node 10 elseif MPG>=41 then node 11 else Japan
if MPG<17 then node 12 elseif MPG>=17 then node 13 else USA
class = USA
class = France
class = USA
class = Japan
class = Germany
class = Germany
class = USA

```
\begin{tabular}{|l|l|l|l|l|l|}
\hline Click to display: & Identity & \(\square\) & Magnification: \(100 \%\) & \(\square\) & Pruning level: 0 of 3 \\
\hline
\end{tabular}

```

C = cutcategories(t)
C =
[4] [1x2 double]
[] []
[6] [ 8]
[] []
[] []
[] []
[] []
[] []

```

\section*{classregtree.cutcategories}
[] []
[] []
[] []
[] []
[] []
C\{1,2\}ans =\(6 \quad 8\)
References[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classificationand Regression Trees. Boca Raton, FL: CRC Press, 1984.
See Also classregtree | cutpoint | cuttype | cutvar

\section*{Purpose}

Decision tree cut point values

\section*{Syntax}
v = cutpoint(t)
v = cutpoint(t,nodes)

Description
\(\mathrm{v}=\) cutpoint(t) returns an \(n\)-element vector v of the values used as cut points in the decision tree t , where \(n\) is the number of nodes. For each branch node i based on a continuous predictor variable \(x\), the left child is chosen if \(x<v(i)\) and the right child is chosen if \(x>=\) \(v\) (i). \(v\) is NaN for branch nodes based on categorical predictors and for leaf nodes.
\(v=\) cutpoint(\(t\), nodes) takes a vector nodes of node numbers and returns the cut points for the specified nodes.

\section*{Examples Create a classification tree for car data:}
```

load carsmall
t = classregtree([MPG Cylinders],Origin,...
'names',{'MPG' 'Cyl'},'cat',2)
t =
Decision tree for classification
if Cyl=4 then node 2 elseif Cyl in {6 8} then node 3 else USA
if MPG<31.5 then node 4 elseif MPG>=31.5 then node 5 else USA
if Cyl=6 then node 6 elseif Cyl=8 then node 7 else USA
if MPG<21.5 then node 8 elseif MPG>=21.5 then node 9 else USA
if MPG<41 then node 10 elseif MPG>=41 then node 11 else Japan
if MPG<17 then node 12 elseif MPG>=17 then node 13 else USA
class = USA
class = France
class = USA
class = Japan
class = Germany
class = Germany
class = USA

```

\section*{classregtree.cutpoint}

\section*{view(t)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Click to display: & Identity & \(\rightarrow\) & Magnification: \(100 \%\) & & \\
\hline
\end{tabular}

\[
\begin{gathered}
\mathrm{v}=\text { cutpoint }(\mathrm{t}) \\
\mathrm{v}= \\
\mathrm{NaN} \\
31.5000 \\
\mathrm{NaN} \\
21.5000 \\
41.0000 \\
17.0000 \\
\mathrm{NaN} \\
\mathrm{NaN} \\
\mathrm{NaN} \\
\mathrm{NaN}
\end{gathered}
\]

NaN
NaN NaN

\author{
References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984. \\ See Also classregtree | cutcategories | cuttype | cutvar
}

\section*{classregtree.cuttype}

\section*{Purpose \\ Cut types}
Syntax
c = cuttype(t)
c = cuttype(t,nodes)

\section*{Description}
\(c=\) cuttype(t) returns an \(n\)-element cell array c indicating the type of cut at each node in the tree \(t\), where \(n\) is the number of nodes. For each node i, c\{i\} is:
- 'continuous ' - If the cut is defined in the form \(\mathrm{x}<\mathrm{v}\) for a variable \(x\) and cut point \(v\).
- 'categorical' - If the cut is defined by whether a variable \(x\) takes a value in a set of categories.
- ' ' - If \(i\) is a leaf node.
cutvar returns the cut points for 'continuous' cuts, and cutcategories returns the set of categories.
c = cuttype(t, nodes) takes a vector nodes of node numbers and returns the cut types for the specified nodes.

\section*{Examples \\ Create a classification tree for car data:}
```

load carsmall
t = classregtree([MPG Cylinders],Origin,...
'names',{'MPG' 'Cyl'},'cat',2)
t =
Decision tree for classification
if Cyl=4 then node 2 elseif Cyl in {6 8} then node 3 else USA
2 if MPG<31.5 then node 4 elseif MPG>=31.5 then node 5 else USA
3 if Cyl=6 then node 6 elseif Cyl=8 then node 7 else USA
4 if MPG<21.5 then node 8 elseif MPG>=21.5 then node 9 else USA
5 if MPG<41 then node 10 elseif MPG>=41 then node 11 else Japan
6 if MPG<17 then node 12 elseif MPG>=17 then node 13 else USA
7 class = USA

```
\begin{tabular}{|c|c|}
\hline 8 & class = France \\
\hline 9 & class = USA \\
\hline 10 & class = Japan \\
\hline 11 & class = Germany \\
\hline 12 & class = Germany \\
\hline & class = USA \\
\hline & t) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Click to display: & \(\mid\) Identity & \(\square\) & Magnification: & \(100 \%\) & \(\square\)
\end{tabular} Pruning level: \begin{tabular}{|l|l|l|}
\hline 0 of 3 & \\
\hline
\end{tabular}

\[
\begin{aligned}
c= & \text { cuttype(t) } \\
c= & \\
& \text { 'categorical' } \\
& \text { 'continuous' } \\
& \text { 'categorical' }
\end{aligned}
\]

\section*{classregtree.cuttype}
```

'continuous'
'continuous'
'I
1 I
1 1
1 1
| I
1 I
I I

```
References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.
See Also classregtree | numnodes | cutvar | cutcategories

Purpose
Syntax
\(\mathrm{v}=\) cutvar(t\()\)
v = cutvar(t,nodes)
[v, num] = cutvar(...)
Cut variable names
\(\mathrm{v}=\) cutvar \((\mathrm{t})\) returns an \(n\)-element cell array v of the names of the variables used for branching in each node of the tree \(t\), where \(n\) is the number of nodes. These variables are sometimes known as cut variables. For leaf nodes, v contains an empty string.
\(\mathrm{v}=\) cutvar(t, nodes) takes a vector nodes of node numbers and returns the cut variables for the specified nodes.
[v , num] \(=\) cutvar(...) also returns a vector num containing the number of each variable.

Create a classification tree for car data:
```

load carsmall
t = classregtree([MPG Cylinders],Origin,...
'names',{'MPG' 'Cyl'},'cat',2)
t =
Decision tree for classification
if Cyl=4 then node 2 elseif Cyl in {6 8} then node 3 else USA
if MPG<31.5 then node 4 elseif MPG>=31.5 then node 5 else USA
if Cyl=6 then node 6 elseif Cyl=8 then node 7 else USA
if MPG<21.5 then node 8 elseif MPG>=21.5 then node 9 else USA
if MPG<41 then node 10 elseif MPG>=41 then node 11 else Japan
if MPG<17 then node 12 elseif MPG>=17 then node 13 else USA
class = USA
class = France
class = USA
class = Japan
class = Germany
class = Germany
class = USA

```

\section*{classregtree.cutvar}

\section*{view(t)}
\begin{tabular}{|l|l|l|l|l|l|}
\hline Click to display: & Identity & \(\sim\) & Magnification: & \(100 \%\) & \(\sim\) \\
\hline
\end{tabular}

\[
\begin{aligned}
& {[\mathrm{v}, \text { num] }=\text { cutvar(t) }} \\
& \mathrm{v}= \\
& \text { 'Cyl' } \\
& \text { 'MPG' } \\
& \text { 'Cyl' } \\
& \text { 'MPG' } \\
& \text { 'MPG' } \\
& \text { 'MPG' } \\
& \text { '' } \\
& \text { '' } \\
& \text { '' }
\end{aligned}
\]

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.
See Also classregtree | numnodes | children

\section*{ClassificationTree.cvLoss}

Purpose Classification error by cross validation
Syntax \(\quad E=\) cvLoss(tree)
[E,SE] = cvLoss(tree)
[E,SE,Nleaf] = cvLoss(tree)
[E,SE,Nleaf,BestLevel] = cvLoss(tree)
[\(\mathrm{E}, \ldots\)...] = cvLoss(tree, Name, Value)

Description

Input
Arguments
\(\mathrm{E}=\mathrm{cvLoss}(\) tree \()\) returns the cross-validated classification error (loss) for tree, a classification tree.
[\(E, S E]=\) cvLoss(tree) returns the standard error of \(E\).
[\(\mathrm{E}, \mathrm{SE}, \mathrm{Nleaf}]=\) cvLoss(tree) returns the number of leaves of tree.
[E,SE,Nleaf,BestLevel] = cvLoss(tree) returns the optimal pruning level for tree.
\([E, \ldots]=\) cvLoss(tree, Name, Value) cross validates with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, , NameN, ValueN.

\section*{tree}

A classification tree produced by ClassificationTree.fit.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'subtrees'}

Vector of pruning levels, with 0 representing the full, unpruned tree. tree must include a pruning sequence as created either by ClassificationTree.fit with 'prune' set to 'on', or by the

\section*{ClassificationTree.cvLoss}
prune method. The returned E, SE, and Nleaf are vectors of the same length as subtrees; BestLevel is a scalar. If you set subtrees to 'all', cvLoss uses the entire pruning sequence.

Default: 0

\section*{'treesize'}

One of the following strings:
- 'se' - cvLoss uses the smallest tree whose cost is within one standard error of the minimum cost.
- 'min' - cvLoss uses the minimal cost tree.

Default: 'se'

\section*{'kfold'}

Number of cross-validation samples, a positive integer.
Default: 10

Output E
Arguments

The cross-validation classification error (loss). A vector or scalar depending on the setting of the subtrees name-value pair.

SE
The standard error of \(E\). A vector or scalar depending on the setting of the subtrees name-value pair.

\section*{Nleaf}

Number of leaf nodes in tree. Leaf nodes are terminal nodes, which give classifications, not splits. A vector or scalar depending on the setting of the subtrees name-value pair.

\section*{BestLevel}

\section*{ClassificationTree.cvLoss}

By default, a scalar representing the largest pruning level that achieves a value of \(E\) within \(S E\) of the minimum error. If you set treesize to 'min', BestLevel is the smallest value in subtrees.

Examples Compute the cross-validation error for the default classification tree for the ionosphere data:
```

load ionosphere
tree = ClassificationTree.fit(X,Y);
[E,SE,Nleaf,BestLevel] = cvLoss(tree)
E =
0.1282
SE =
0.0178
Nleaf =
1 9
BestLevel =
0

```

Find the best level by using the subtrees name-value pair:
[~,~,~,BestLevel] = cvLoss(tree,'subtrees','all')
BestLevel =
6

\footnotetext{
Alternatives You can construct a cross-validated tree model with crossval, and call kfoldLoss instead of cvLoss. The alternative can save time if you are going to examine the cross-validated tree more than once.

However, unlike cvLoss, kfoldLoss does not return SE,Nleaf, or BestLevel. kfoldLoss also does not allow you to examine any error other than classification error.
}

\title{
ClassificationTree.cvLoss
}

See Also ClassificationTree.fit | crossval | loss | kfoldLoss

\section*{RegressionTree.cvLoss}

\section*{Purpose Regression error by cross validation}
```

Syntax $\quad E=$ cuLoss(tree)
[E,SE] = cvLoss(tree)
[E,SE,Nleaf] = cvLoss(tree)
[E,SE,Nleaf,BestLevel] = cvLoss(tree)
[E,...] = cvLoss(tree,Name,Value)

```

\section*{Description}

Input Arguments

E = cvLoss(tree) returns the cross-validated regression error (loss) for tree, a regression tree.
[\(\mathrm{E}, \mathrm{SE}]=\) cvLoss(tree) returns the standard error of E .
[\(\mathrm{E}, \mathrm{SE}, \mathrm{Nleaf}]=\) cvLoss(tree) returns the number of leaves (terminal nodes) in tree.
[E,SE,Nleaf,BestLevel] = cvLoss(tree) returns the optimal pruning level for tree.
[\(\mathrm{E}, \ldots\)...] = cvLoss(tree, Name, Value) cross validates with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, ,NameN, ValueN.

\section*{tree}

A regression tree produced by RegressionTree.fit.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'subtrees'}

Vector of pruning levels, with 0 representing the full, unpruned tree. tree must include a pruning sequence as created either by

\section*{RegressionTree.cvLoss}

ClassificationTree.fit with 'prune' set to 'on', or by the prune method. The returned E, SE, and Nleaf are vectors of the same length as subtrees; BestLevel is a scalar. If you set subtrees to 'all', cvLoss uses the entire pruning sequence.

Default: 0

\section*{'treesize'}

One of the following strings:
- 'se' - cvLoss uses the smallest tree whose cost is within one standard error of the minimum cost.
- 'min' - cvLoss uses the minimal cost tree.

Default: 'se'

\section*{'kfold'}

Number of cross-validation samples, a positive integer.
Default: 10

\section*{Output E}

Arguments
The cross-validation mean squared error (loss). A vector or scalar depending on the setting of the subtrees name-value pair.

SE
The standard error of E . A vector or scalar depending on the setting of the subtrees name-value pair.

\section*{Nleaf}

Number of leaf nodes in tree. Leaf nodes are terminal nodes, which give responses, not splits. A vector or scalar depending on the setting of the subtrees name-value pair.

\section*{BestLevel}

\section*{RegressionTree.cvLoss}

By default, a scalar representing the largest pruning level that achieves a value of \(E\) within \(S E\) of the minimum error. If you set treesize to 'min', BestLevel is the smallest value in subtrees.

Examples Compute the cross-validation error for the default classification tree for the carsmall data:
```

load carsmall
X = [Displacement Horsepower Weight];
tree = RegressionTree.fit(X,MPG);
[E,SE,Nleaf,BestLevel] = cvLoss(tree)
E =
30.7558
SE =
6.0651
Nleaf =
1 9
BestLevel =
O

```

Find the best level by using the subtrees name-value pair:
[~,~,~,BestLevel] = cvLoss(tree,'subtrees','all')
BestLevel =
15

Alternatives You can construct a cross-validated tree model with crossval, and call kfoldLoss instead of cvLoss. The alternative can save time if you are going to examine the cross-validated tree more than once.

However, unlike cvLoss, kfoldLoss does not return SE,Nleaf, or BestLevel.

\section*{RegressionTree.cvLoss}

See Also crossval | kfoldLoss | RegressionTree.fit | loss

\section*{Purpose Data partitions for cross validation}

Description
An object of the cupartition class defines a random partition on a set of data of a specified size. Use this partition to define test and training sets for validating a statistical model using cross validation.

\section*{Construction}

Create cross validation partition
for data

Display cvpartition object
Display cvpartition object
Repartition data for cross-validation

Test indices for cross-validation
Training indices for cross-validation

Number of observations (including observations with missing group values)
Number of test sets
Size of each test set
Size of each training set
Type of partition

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes in the MATLAB Object-Oriented Programming documentation.
```

Examples Use a 10-fold stratified cross validation to compute the misclassification error for classify on iris data.
load('fisheriris');
CVO = cvpartition(species,'k',10);
err = zeros(CVO.NumTestSets,1);
for i = 1:CVO.NumTestSets
trIdx = CVO.training(i);
teIdx = CVO.test(i);
ytest = classify(meas(teIdx,:),meas(trIdx,:),...
species(trIdx,:));
err(i) = sum(~strcmp(ytest,species(teIdx)));
end
cvErr = sum(err)/sum(CVO.TestSize);
See Also crossval
How To

- "Grouping Variables" on page 2-51

```

Purpose Create cross validation partition for data
\begin{tabular}{|c|c|}
\hline Syntax & \begin{tabular}{l}
\(c=\) cvpartition(n, 'kfold', k) \\
c = cvpartition(group, 'kfold',k) \\
\(\mathrm{c}=\) cvpartition(n, 'holdout', p) \\
\(c=\) cvpartition(group, 'holdout ', \(p\)) \\
c = cvpartition(n, 'leaveout') \\
c = cvpartition(n,'resubstitution')
\end{tabular} \\
\hline
\end{tabular}

\section*{Description}
\(c=\) cvpartition(\(\mathrm{n},{ }^{\prime} \mathrm{kfold}{ }^{\prime}, \mathrm{k}\)) constructs an object c of the cvpartition class defining a random partition for \(k\)-fold cross validation on \(n\) observations. The partition divides the observations into k disjoint subsamples (or folds), chosen randomly but with roughly equal size. The default value of \(k\) is 10 .
c = cvpartition(group, 'kfold', k) creates a random partition for a stratified \(k\)-fold cross validation. group is a numeric vector, categorical array, string array, or cell array of strings indicating the class of each observation. Each subsample has roughly equal size and roughly the same class proportions as in group. cupartition treats NaNs or empty strings in group as missing values.
\(c=\) cvpartition(\(n\), 'holdout', \(p\)) creates a random partition for holdout validation on \(n\) observations. This partition divides the observations into a training set and a test (or holdout) set. The parameter \(p\) must be a scalar. When \(0<p<1\), cvpartition randomly selects approximately \(p * n\) observations for the test set. When \(p\) is an integer, cvpartition randomly selects p observations for the test set. The default value of \(p\) is \(1 / 10\).
c = cvpartition(group, 'holdout', p) randomly partitions observations into a training set and a test set with stratification, using the class information in group; that is, both training and test sets have roughly the same class proportions as in group.
c = cvpartition(\(n\), 'leaveout') creates a random partition for leave-one-out cross validation on \(n\) observations. Leave-one-out is a special case of ' \(k f o l d\) ', in which the number of folds equals the number of observations.
\(c=\) cvpartition(n, 'resubstitution') creates an object \(c\) that does not partition the data. Both the training set and the test set contain all of the original \(n\) observations.

\section*{Examples}

Use stratified 10 -fold cross validation to compute misclassification rate:
load fisheriris;
y = species;
c = cvpartition(y, 'k', 10);
fun \(=@(x T, y T, x t, y t)(\operatorname{sum}(\sim \operatorname{strcmp}(y t, c l a s s i f y(x t, x T, y T)))) ;\)
rate \(=\) sum(crossval(fun,meas,y,'partition', c))...
/sum(c.TestSize)
rate = 0.0200

See Also
crossval | repartition
How To . "Grouping Variables" on page 2-51

\section*{ClassificationDiscriminant.cvshrink}

\section*{ClassificationDiscriminant.cvshrink}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'delta'}
- Scalar delta - cvshrink uses this value of delta with every value of gamma for regularization.
- Row vector delta - For each i and j, cvshrink uses delta(j) with gamma(i) for regularization.
- Matrix delta - The number of rows of delta must equal the number of elements in gamma. For each i and j, cvshrink uses delta(i,j) with gamma(i) for regularization.

Default: 0

\section*{'gamma'}

Vector of Gamma values for cross-validation.
Default: 0:0.1:1

\section*{'NumDelta'}

Number of Delta intervals for cross-validation. For every value of Gamma, cvshrink cross-validates the discriminant using NumDelta +1 values of Delta, uniformly spaced from zero to the maximal Delta at which all predictors are eliminated for this value of Gamma. If you set delta, cvshrink ignores NumDelta.

Default: 0
'NumGamma'

\section*{ClassificationDiscriminant.cvshrink}

Number of Gamma intervals for cross-validation. cvshrink cross-validates the discriminant using NumGamma +1 values of Gamma, uniformly spaced from MinGamma to 1. If you set gamma, cvshrink ignores NumGamma.

Default: 10

\section*{'verbose'}

Verbosity level, an integer from 0 to 2. Higher values give more progress messages.

Default: 0

\section*{Output} Arguments

Numeric vector or matrix of errors. err is the misclassification error rate, meaning the average fraction of misclassified data over all folds.
- If delta is a scalar (default), err(i) is the misclassification error rate for obj regularized with gamma(i).
- If delta is a vector, \(\operatorname{err}(i, j)\) is the misclassification error rate for obj regularized with gamma(i) and delta(j).
- If delta is a matrix, err(\(i, j\)) is the misclassification error rate for obj regularized with gamma(i) and delta(i,j).

\section*{gamma}

Vector of Gamma values used for regularization. See "Gamma and Delta" on page 20-513.

\section*{delta}

Vector or matrix of Delta values used for regularization. See "Gamma and Delta" on page 20-513.

\section*{ClassificationDiscriminant.cvshrink}
- If you give a scalar for the delta name-value pair, the output delta is a row vector the same size as gamma, with entries equal to the input scalar.
- If you give a row vector for the delta name-value pair, the output delta is a matrix with the same number of columns as the row vector, and with the number of rows equal to the number of elements of gamma. The output delta(i,j) is equal to the input delta(j).
- If you give a matrix for the delta name-value pair, the output delta is the same as the input matrix. The number of rows of delta must equal the number of elements in gamma.

\section*{numpred}

Numeric vector or matrix containing the number of predictors in the model at various regularizations. numpred has the same size as err.
- If delta is a scalar (default), numpred(i) is the number of predictors for obj regularized with gamma(i) and delta.
- If delta is a vector, numpred \((i, j)\) is the number of predictors for obj regularized with gamma(i) and delta(j).
- If delta is a matrix, numpred \((i, j)\) is the number of predictors for obj regularized with gamma(i) and delta(i,j).

\section*{Definitions Gamma and Delta}

Regularization is the process of finding a small set of predictors that yield an effective predictive model. For linear discriminant analysis, there are two parameters, \(\gamma\) and \(\delta\), that control regularization as follows. cvshrink helps you select appropriate values of the parameters.

Let \(\Sigma\) represent the covariance matrix of the data \(X\), and let \(\hat{X}\) be the centered data (the data \(X\) minus the mean by class). Define

\section*{ClassificationDiscriminant.cvshrink}
\[
D=\operatorname{diag}\left(\hat{X}^{T} * \hat{X}\right) .
\]

The regularized covariance matrix \(\tilde{\Sigma}\) is
\[
\tilde{\Sigma}=(1-\gamma) \Sigma+\gamma D .
\]

Whenever \(y \geq\) MinGamma, \(\tilde{\Sigma}\) is nonsingular.
Let \(\mu_{k}\) be the mean vector for those elements of \(X\) in class \(k\), and let \(\mu_{0}\) be the global mean vector (the mean of the rows of \(X\)). Let \(C\) be the correlation matrix of the data \(X\), and let \(\tilde{C}\) be the regularized correlation matrix:
\[
\tilde{C}=(1-\gamma) C+\gamma I,
\]
where \(I\) is the identity matrix.
The linear term in the regularized discriminant analysis classifier for a data point \(x\) is
\[
\left(x-\mu_{0}\right)^{T} \tilde{\Sigma}^{-1}\left(\mu_{k}-\mu_{0}\right)=\left[\left(x-\mu_{0}\right)^{T} D^{-1 / 2}\right]\left[\tilde{C}^{-1} D^{-1 / 2}\left(\mu_{k}-\mu_{0}\right)\right] .
\]

The parameter \(\delta\) enters into this equation as a threshold on the final term in square brackets. Each component of the vector \(\left[\tilde{C}^{-1} D^{-1 / 2}\left(\mu_{k}-\mu_{0}\right)\right]\) is set to zero if it is smaller in magnitude than the threshold \(\delta\). Therefore, for class \(k\), if component \(j\) is thresholded to zero, component \(j\) of \(x\) does not enter into the evaluation of the posterior probability.
The DeltaPredictor property is a vector related to this threshold. When \(\delta \geq\) DeltaPredictor(i), all classes \(k\) have
\[
\left|\tilde{C}^{-1} D^{-1 / 2}\left(\mu_{k}-\mu_{0}\right)\right| \leq \delta .
\]

Therefore, when \(\delta \geq\) DeltaPredictor(i), the regularized classifier does not use predictor \(i\).

\section*{ClassificationDiscriminant.cvshrink}

\section*{Examples Regularize Data with Many Predictors}

This example shows how to regularize a discriminant analysis classifier, and how to view the tradeoff between the number of predictors in the model and the classification accuracy.

Create a linear discriminant analysis classifier for the ovariancancer data. Set the SaveMemory and FillCoeffs options to keep the resulting model reasonably small.
```

load ovariancancer
obj = ClassificationDiscriminant.fit(obs,grp,...
'SaveMemory','on','FillCoeffs','off');

```

Use 10 levels of Gamma and 10 levels of Delta to search for good parameters. This search is time-consuming. Set Verbose to 1 to view the progress.
```

rng('default') % for reproducibility
[err,gamma,delta,numpred] = cvshrink(obj,...
'NumGamma',9,'NumDelta',9,'Verbose',1);

```
Done building cross-validated model.
Processing Gamma step 1 out of 10.
Processing Gamma step 2 out of 10 .
Processing Gamma step 3 out of 10 .
Processing Gamma step 4 out of 10.
Processing Gamma step 5 out of 10 .
Processing Gamma step 6 out of 10 .
Processing Gamma step 7 out of 10 .
Processing Gamma step 8 out of 10.
Processing Gamma step 9 out of 10.
Processing Gamma step 10 out of 10.

Plot the classification error rate against the number of predictors.
```

plot(err,numpred,'k.')
xlabel('Error rate');
ylabel('Number of predictors');

```

\section*{ClassificationDiscriminant.cvshrink}

\begin{tabular}{ll}
See Also & ClassificationDiscriminant | ClassificationDiscriminant.fit | \\
Related & - "Regularize a Discriminant Analysis Classifier" on page 14-22 \\
Examples & \\
Concepts & - "Discriminant Analysis" on page 14-3
\end{tabular}

\section*{RegressionEnsemble.cvshrink}

\section*{Purpose}

Syntax

\section*{Description}

\section*{Input Arguments}

Cross validate shrinking (pruning) ensemble
vals = cvshrink(ens)
[vals,nlearn] = cvshrink(ens)
[vals,nlearn] = cvshrink(ens,Name,Value)
vals = cvshrink(ens) returns an L-by-T matrix with cross-validated values of the mean squared error. \(L\) is the number of lambda values in the ens.Regularization structure. \(T\) is the number of threshold values on weak learner weights. If ens does not have a Regularization property filled in by the regularize method, pass a lambda name-value pair.
[vals, nlearn] = cvshrink(ens) returns an L-by-T matrix of the mean number of learners in the cross-validated ensemble.
[vals, nlearn] = cvshrink(ens,Name, Value) cross validates with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, ,NameN, ValueN.

\section*{ens}

A regression ensemble, created with fitensemble.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'cvpartition'}

A partition created with cvpartition to use in a cross-validated tree. You can only use one of these four options at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

\section*{'holdout'}

\section*{RegressionEnsemble.cvshrink}

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training. Specify a numeric scalar from 0 to 1. You can only use one of these four options at a time for creating a cross-validated tree: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

\section*{'kfold'}

Number of folds to use in a cross-validated tree, a positive integer. If you do not supply a cross-validation method, cvshrink uses 10 -fold cross validation. You can only use one of these four options at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

Default: 10

\section*{'lambda'}

Vector of nonnegative regularization parameter values for lasso. If empty, cvshrink does not perform cross validation.

Default: []

\section*{'leaveout'}

Use leave-one-out cross validation by setting to 'on'. You can only use one of these four options at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

\section*{'threshold'}

Numeric vector with lower cutoffs on weights for weak learners. cvshrink discards learners with weights below threshold in its cross-validation calculation.

Default: 0

\section*{Output vals \\ Arguments \\ L-by-T matrix with cross-validated values of the mean squared error. \(L\) is the number of values of the regularization parameter}

\section*{RegressionEnsemble.cvshrink}
'lambda', and T is the number of 'threshold' values on weak learner weights.

\section*{nlearn}

L-by-T matrix with cross-validated values of the mean number of learners in the cross-validated ensemble. L is the number of values of the regularization parameter ' lambda', and \(T\) is the number of 'threshold' values on weak learner weights.

\section*{Examples}

Create a regression ensemble for predicting mileage from the carsmall data. Cross validate the ensemble for three values each of lambda and threshold.
```

load carsmall
X = [Displacement Horsepower Weight];
ens = fitensemble(X,MPG,'bag',100,'Tree',...
'type','regression');
[vals nlearn] = cvshrink(ens,'lambda',[.01 .1 1],...
'threshold',[0 .01 .1])
vals =
20.0949 19.9007 131.6316
20.0924 19.8431 128.0989
19.9759 19.7987 119.5574
nlearn =
13.3000 11.6000 3.5000
13.2000 11.5000 3.6000
13.4000 11.4000 3.9000

```

Clearly, setting a threshold of 0.1 leads to unacceptable errors, while a threshold of 0.01 gives similar errors to a threshold of 0 . The mean number of learners with a threshold of 0.1 is about 11.5 , whereas the mean number is about 13.2 when the threshold is 0 .

\section*{See Also \\ ```
regularize | shrink
```}

Purpose
Syntax

\section*{Description}

Tips

Input
Arguments
```

```
y = datasample(data,k)
```

```
y = datasample(data,k)
\(y=\) datasample(data,k,dim)
\(y=\) datasample(data,k,dim)
[y,idx] = datasample(data,k,...)
[y,idx] = datasample(data,k,...)
[y,...] = datasample(s,data,k,...)
[y,...] = datasample(s,data,k,...)
[y,...] = datasample(data,k,Name, Value)
[y,...] = datasample(data,k,Name, Value)
[y,...] = datasample(data, \(k\), dim,Name, Value)
```

```
[y,...] = datasample(data, \(k\), dim,Name, Value)
```

```

Randomly sample from data, with or without replacement
\(\mathrm{y}=\) datasample(data, k\()\) returns k observations sampled uniformly at random, with replacement, from the data in data.
\(\mathrm{y}=\) datasample(data, \(\mathrm{k}, \mathrm{dim})\) returns a sample taken along dimension dim of data.
[y,idx] = datasample(data, \(k, \ldots\) ) returns an index vector indicating which values datasample sampled from data.
\([y, \ldots]=\) datasample(s,data,k,...) uses the random number stream \(s\) to generate random numbers.
[y,...] = datasample(data,k,Name,Value) or [y,...] = datasample(data, k, dim, Name, Value) samples with additional options specified by one or more Name, Value pair arguments.
- To sample random integers with replacement from a range, use randi.
- To sample random integers without replacement, use randperm or datasample.
- To randomly sample from data, with or without replacement, use datasample.

\section*{data}

Vector, matrix, \(N\)-dimensional array, or dataset array representing the data from which to sample. By default, datasample regards the rows of a data matrix, or the first nonsingleton dimension of a data array, as data elements. Change this behavior with the dim argument.

\section*{k}

Positive integer, the number of samples.

\section*{\(\operatorname{dim}\)}

Integer specifying the dimension on which to take samples. For example, if data is a matrix and dim is 2 , \(y\) contains a selection of columns in data. If data is a dataset array and dim is 2 , \(y\) contains a selection of variables in data. Use dim to ensure sampling along a specific dimension regardless of whether data is a vector, matrix or \(N\)-dimensional array.

Default: 1

\section*{s}

Random number stream. Create s using rng or RandStream.
Default: The global random number stream

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'Replace'}

Select the sample with replacement if Replace is true, or without replacement if Replace is false. If Replace is false, \(k\) must not be larger than the number of data elements in data.

Default: true

\section*{'Weights'}

Vector with the same number of elements as data elements in data, and with nonnegative elements. Sample with probability proportional to the elements of Weights.

Default: ones(datasize, 1), where datasize is the number of data elements in data

\section*{Output Arguments}

\section*{\(y\)}
- If data is a vector, y is a vector containing k elements selected from data.
- If data is a matrix, y is a matrix containing k rows selected from data. Or, if dim \(=2\), \(y\) is a matrix containing \(k\) columns selected from data
- If data is an \(N\)-dimensional array, datasample samples along its first non-singleton dimension. Or, if you give a dim name-value pair, datasample samples along the dimension dim.

When the sample is taken with replacement (default), y can contain repeated observations from data. Set the Replace name-value pair to false to sample without replacement.

\section*{idx}

Vector of indices indicating which elements datasample chose from data to create y. For example:
- If data is a vector, \(y=d a t a(i d x)\).
- If data is a matrix, \(\mathrm{y}=\operatorname{data}(\mathrm{idx},:)\).

Examples Draw five unique values from the integers 1:10.
```

y = datasample(1:10,5,'Replace',false)
y =
6

```

Generate a random sequence of the characters ACGT, with replacement, according to specified probabilities.
```

seq = datasample('ACGT',48,'Weights',[0.15 0.35 0.35 0.15])
seq =
CTTCGACTGTGAGTGGGCGCGACAAGGCTACCGGCCCGGGCGGCACTC

```

Select a random subset of columns from a data matrix.
```

X = randn(10,1000);
Y = datasample(X,5,2,'Replace',false)
Y =

0.7007	0.3382	2.1298	-0.1891	0.5026
0.6520	-0.6693	-0.1961	-0.9915	1.9107
0.1785	0.6640	2.3247	-1.1735	-1.0020
1.6760	2.6102	-0.8902	-0.7735	1.8676
-0.3251	-0.6415	-0.2572	-0.1629	-1.0523
0.1011	0.9323	-1.3088	-0.4477	0.8036
-0.5767	-0.5778	-0.8556	0.8672	-0.0727
-0.0615	-0.9084	0.9020	-0.4185	-1.9520
0.7256	-1.1228	0.7558	1.2691	2.4997
-1.2273	0.5754	-0.8755	-0.8224	-1.2066

```

Resample observations from a dataset array to create a bootstrap replicate dataset.
load hospital
y = datasample(hospital,size(hospital,1));

Use the second output to sample "in parallel" from two data vectors. \(x 1=\operatorname{randn}(100,1) ;\)

\section*{datasample}
```

x2 = randn(100,1);
[y1,idx] = datasample(x1,10);
y2 = x2(idx);

```

\section*{Algorithms}

References
\(\begin{array}{ll}\text { Alternatives } & \begin{array}{l}\text { You can use randi or randperm to generate indices for random sampling } \\ \text { with or without replacement, respectively. However, datasample } \\ \text { can be more convenient because it samples directly from your data. } \\ \text { datasample also allows weighted sampling. }\end{array}\end{array}\)
See Also
datasample uses randperm, rand, or randi to generate random values. Therefore, datasample changes the state of the MATLAB global random number generator. Control the random number generator using rng.

For selecting weighted samples without replacement, datasample uses the algorithm of Wong and Easton [1].
[1] Wong, C. K. and M. C. Easton. An Efficient Method for Weighted Sampling Without Replacement. SIAM Journal of Computing 9(1), pp. 111-113, 1980.
rand | randi | randperm | RandStream | rng

\section*{Purpose Arrays for statistical data}

\section*{Construction}

Use the dataset constructor to create a dataset array from variables in the MATLAB workspace. You can also create a dataset array by reading data from a text or spreadsheet file. You can access each variable in a dataset array much like fields in a structure, using dot subscripting. See the following section for a list of operations available for dataset arrays.
\[
\text { dataset } \quad \text { Construct dataset array }
\]

\section*{Methods}
cat
cellstr
dataset2cell

Concatenate dataset arrays
Create cell array of strings from dataset array
Convert dataset array to cell array

\section*{dataset}
\begin{tabular}{ll} 
dataset2struct & Convert dataset array to structure \\
datasetfun & \begin{tabular}{l} 
Apply function to dataset array \\
variables
\end{tabular} \\
disp & \begin{tabular}{l} 
Display dataset array \\
display \\
double
\end{tabular} \\
Display dataset array \\
end & \begin{tabular}{l} 
Convert dataset variables to \\
double array
\end{tabular} \\
export & \begin{tabular}{l} 
Last index in indexing expression \\
for dataset array
\end{tabular} \\
get & \begin{tabular}{l} 
Write dataset array to file
\end{tabular} \\
horzcat & \begin{tabular}{l} 
Access dataset array properties
\end{tabular} \\
intersect & \begin{tabular}{l} 
Horizontal concatenation for \\
dataset arrays
\end{tabular} \\
isempty & \begin{tabular}{l} 
Set intersection for dataset array \\
observations
\end{tabular} \\
ismember & \begin{tabular}{l} 
True for empty dataset array
\end{tabular} \\
ismissing & \begin{tabular}{l} 
Dataset array elements that are \\
members of set
\end{tabular} \\
join & \begin{tabular}{l} 
Find dataset array elements with \\
missing values
\end{tabular} \\
length & \begin{tabular}{l} 
Merge observations
\end{tabular} \\
ndims & \begin{tabular}{l} 
Length of dataset array \\
number of dimensions of dataset
\end{tabular} \\
numel & \begin{tabular}{l} 
array \\
replacedata
\end{tabular} \\
\begin{tabular}{l} 
Number of elements in dataset \\
array \\
Replace dataset variables
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{ll} 
replaceWithMissing & \begin{tabular}{l} 
Insert missing data indicators \\
into a dataset array
\end{tabular} \\
set & \begin{tabular}{l} 
Set and display properties \\
Set difference for dataset array \\
observations
\end{tabular} \\
setdiff & \begin{tabular}{l} 
Set exclusive or for dataset array \\
observations
\end{tabular} \\
setxor & \begin{tabular}{l} 
Convert dataset variables to \\
single array
\end{tabular} \\
single & \begin{tabular}{l} 
Size of dataset array \\
Sort rows of dataset array
\end{tabular} \\
size & \begin{tabular}{l} 
Stack data from multiple \\
variables into single variable
\end{tabular} \\
sortrows & \begin{tabular}{l} 
Subscripted assignment to \\
dataset array
\end{tabular} \\
stack & \begin{tabular}{l} 
Subscripted reference for dataset \\
array
\end{tabular} \\
subsasgn & \begin{tabular}{l} 
Print summary of dataset array
\end{tabular} \\
subsref & \begin{tabular}{l} 
Set union for dataset array \\
observations
\end{tabular} \\
summary & \begin{tabular}{l} 
Unique observations in dataset \\
array
\end{tabular} \\
union & \begin{tabular}{l} 
Unstack data from single variable \\
into multiple variables
\end{tabular} \\
unique & \begin{tabular}{l} 
Vertical concatenation for dataset \\
arrays
\end{tabular} \\
unstack & vertcat
\end{tabular}

\section*{Properties \\ A dataset array \(D\) has properties that store metadata (information about your data). Access or assign to a property using \(\mathrm{P}=\)}

\section*{dataset}
D.Properties.PropName or D.Properties.PropName \(=P\), where PropName is one of the following:
\begin{tabular}{|c|c|}
\hline Description & String describing data set \\
\hline DimNames & Two-element cell array of strings giving names of dimensions of data set \\
\hline ObsNames & Cell array of nonempty, distinct strings giving names of observations in data set \\
\hline Units & Units of variables in data set \\
\hline UserData & Variable containing additional information associated with data set \\
\hline VarDescription & Cell array of strings giving descriptions of variables in data set \\
\hline VarNames & Cell array giving names of variables in data set \\
\hline
\end{tabular}

Copy Semantics

Examples

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes in the MATLAB Object-Oriented Programming documentation.

Load a dataset array from a .mat file and create some simple subsets:
```

load hospital

```
h1 = hospital(1:10,:)
h2 = hospital(:, \{'LastName' 'Age' 'Sex' 'Smoker'\})
\% Access and modify metadata
hospital.Properties.Description
hospital.Properties.VarNames\{4\} = 'Wgt'
\% Create a new dataset variable from an existing one hospital.AtRisk = hospital.Smoker | (hospital.Age > 40)
\% Use individual variables to explore the databoxplot(hospital.Age, hospital.Sex)h3 = hospital(hospital.Age<30,...\{'LastName' 'Age' 'Sex' 'Smoker'\})
\% Sort the observations based on two variablesh4 = sortrows(hospital, \{'Sex','Age'\})
See Also genvarname | tdfread | textscan | xlsread
How To - "Dataset Arrays" on page 2-135

Purpose Construct dataset array
Syntax \(\quad \begin{aligned} \text { A } & =\operatorname{dataset}(\text { varspec, 'ParamName', Value) } \\ \text { A } & =\operatorname{dataset}(' F i l e ', f i l e n a m e, ' P a r a m N a m e ', ~ V a l u e) ~ \\ A & =\operatorname{dataset}(' X L S F i l e ', f i l e n a m e, ' P a r a m N a m e ', ~ V a l u e) ~ \\ A & =\operatorname{dataset}(' X P T F i l e ', x p t f i l e n a m e, ' P a r a m N a m e ', ~ V a l u e) ~\end{aligned}\)

\section*{Description}

A = dataset(varspec,'ParamName', Value) creates dataset array A using the workspace variable input method varspec and one or more optional name/value pairs (see Parameter Name/Value Pairs).

The input method varspec can be one or more of the following:
- VAR - a workspace variable. dataset uses the workspace name for the variable name in \(A\). To include multiple variables, specify VAR_1,VAR_2,...,VAR_N. Variables can be arrays of any size, but all variables must have the same number of rows. VAR can also be an expression. In this case, dataset creates a default name automatically.
- \{VAR,name\} - a workspace variable, VAR and a variable name, name . dataset uses name as the variable name. To include multiple variables and names, specify \(\left\{V A R \_1\right.\), name_1\}, \{VAR_2,name_2\},..., \{VAR_N,name_N\}.
- \{VAR,name_1,...,name_m - an \(m\)-columned workspace variable, VAR. dataset uses the names name_1, ..., name_m as variable names. You must include a name for every column in VAR. Each column becomes a separate variable in A.

You can combine these input methods to include as many variables and names as needed. Names must be valid, unique MATLAB identifier strings. For example input combinations, see Examples. For optional name/value pairs see Inputs.
To convert numeric arrays, cell arrays, or structure arrays to dataset arrays, you can also use (respectively):
- mat2dataset
- cell2dataset
- struct2dataset

Note Dataset arrays may contain built-in types or array objects as variables. Array objects must implement each of the following:
- Standard MATLAB parenthesis indexing of the form var(i,....), where \(i\) is a numeric or logical vector corresponding to rows of the variable
- A size method with a dim argument
- A vertcat method

A = dataset('File',filename,'ParamName', Value) creates dataset array A from column-oriented data in the text file specified by the string filename. Variables in A are of type double if data in the corresponding column of the file, following the column header, are entirely numeric; otherwise the variables in A are cell arrays of strings. dataset converts empty fields to either NaN (for a numeric variable) or the empty string (for a string-valued variable). dataset ignores insignificant white space in the file. You cannot specify both a file and workspace variables as input. See Name/Value Pairs for more information.

A = dataset('XLSFile',filename,'ParamName', Value) creates dataset array A from column-oriented data in the Excel spreadsheet specified by the string filename. Variables in A are of type double if data in the corresponding column of the spreadsheet, following the column header, are entirely numeric; otherwise the variables in A are cell arrays of strings. See Name/Value Pairs for more information.

A = dataset('XPTFile',xptfilename,'ParamName', Value) creates a dataset array from a SAS \({ }^{\circledR}\) XPORT format file. Variable names from the XPORT format file are preserved. Numeric data types in the XPORT format file are preserved but all other data types are converted to cell
arrays of strings. The XPORT format allows for 28 missing data types. dataset represents these in the file by an upper case letter, '. ' or '_ '. dataset converts all missing data to NaN values in A. However, if you need the specific missing types you can use the xptread function to recover the information. See Name/Value Pairs for more information.

\section*{Parameter Specify one or more of the following name/value pairs when constructing Name/Value Pairs \\ a dataset:}

\section*{VarNames}

A cell array \{name_1, ... , name_m \} naming the \(m\) variables in \(A\) with the specified variable names. Names must be valid, unique MATLAB identifier strings. The number of names must equal the number of variables in A. You cannot use the VarNames parameter if you provide names for individual variables using \{VAR, name\} pairs. To specify VarNames when using a file as input, set ReadVarNames to false.

\section*{ObsNames}

A cell array \(\{\) name_1,.. , name_n\} naming the \(n\) observations in A with the specified observation names. The names need not be valid MATLAB identifier strings, but must be unique. The number of names must equal the number of observations (rows) in A. To specify ObsNames when using a file as input, set ReadObsNames to false.

\section*{Name/value pairs available when using text files as inputs:}

\section*{Delimiter}

A string indicating the character separating columns in the file.
Values are
- ' \(\backslash t\) ' (tab, the default when no format is specified)
- ' ' (space, the default when a format is specified)
- ', ' (comma)
- ';' (semicolon)
- ' \(\mid\) ' (bar)

\section*{Format}

A format string, as accepted by textscan. dataset reads the file using textscan, and creates variables in A according to the conversion specifiers in the format string. You may also provide any name/value pairs accepted by textscan. Using the Format parameter is much faster for large files. If ReadObsNames is true, the format string should include a format specifier for the first column of the file.

\section*{HeaderLines}

Numeric value indicating the number of lines to skip at the beginning of a file.

Default: 0

\section*{TreatAsEmpty}

Specifies strings to treat as the empty string in a numeric column. Values may be a character string or a cell array of strings. The parameter applies only to numeric columns in the file; dataset does not accept numeric literals such as '-99'.

\section*{Name/value pairs available when using text files or Excel spreadsheets as inputs:}

\section*{ReadVarNames}

A logical value indicating whether (true) or not (false) to read variable names from the first row of the file. The default is true. If ReadVarNames is true, variable names in the column headers of the file or range (if using an Excel spreadsheet) cannot be empty.

\section*{ReadObsNames}

A logical value indicating whether (true) or not (false) to read observation names from the first column of the file or range (if using an Excel spreadsheet). The default is false. If ReadObsNames and ReadVarNames are both true, dataset saves the header of the first column in the file or range as the name of the first dimension in A. Properties.DimNames.

When reading from an XPT format file, the ReadObsNames parameter name/value pair determines whether or not to try to use the first variable in the file as observation names. Specify as a logical value (default false). If the contents of the first variable are not valid observation names then dataset reads the variable into a variable of the dataset array and does not set the observation names.

\section*{Name/value pairs available when using Excel spreadsheets as input:}

\section*{Sheet}

A positive scalar value of type double indicating the sheet number, or a quoted string indicating the sheet name.

\section*{Range}

A string of the form 'C1: C 2 ' where C1 and C2 are the names of cells at opposing corners of a rectangular region to be read, as for xlsread. By default, the rectangular region extends to the right-most column containing data. If the spreadsheet contains empty columns between columns of data, or if the spreadsheet contains figures or other non-tabular information, specify a range that contains only data.
```

Examples Create a dataset array from workspace variables, including observation names:

```
```

load cereal

```
load cereal
cereal = dataset(Calories,Protein,Fat,Sodium,Fiber,Carbo,...
cereal = dataset(Calories,Protein,Fat,Sodium,Fiber,Carbo,...
    Sugars,'ObsNames',Name)
```

 Sugars,'ObsNames',Name)
    ```
```

cereal.Properties.VarDescription = Variables(4:10,2);

```

Create a dataset array from a single, multi-columned workspace variable, designating variable names for each column:
```

load cities
categories = cellstr(categories);
cities = dataset({ratings,categories{:}},...
'ObsNames',cellstr(names))

```

Load data from a text or spreadsheet file
```

patients = dataset('File','hospital.dat',...
'Delimiter',',','ReadObsNames',true)
patients2 = dataset('XLSFile','hospital.xls',...
'ReadObsNames',true)

```

1 Load patient data from the CSV file hospital.dat and store the information in a dataset array with observation names given by the first column in the data (patient identification):
```

patients = dataset('file','hospital.dat', ...
'format','%S%S%S%f%f%f%f%f%f%f%f%f', ...
'Delimiter',',','ReadObsNames',true);

```

You can also load the data without specifying a format string. dataset will automatically create dataset variables that are either double arrays or cell arrays of strings, depending on the contents of the file:
```

patients = dataset('file','hospital.dat',...
'delimiter',',',...
'ReadObsNames',true);

```

2 Make the \(\{0,1\}\)-valued variable smoke nominal, and change the labels to 'No' and 'Yes':
```

patients.smoke = nominal(patients.smoke,{'No','Yes'});

```

3 Add new levels to smoke as placeholders for more detailed histories of smokers:
```

patients.smoke = addlevels(patients.smoke,...
{'0-5 Years','5-10 Years','LongTerm'});

```

4 Assuming the nonsmokers have never smoked, relabel the 'No ' level:
```

patients.smoke = setlabels(patients.smoke,'Never','No');

```

5 Drop the undifferentiated 'Yes' level from smoke:
```

patients.smoke = droplevels(patients.smoke,'Yes');

```

Warning: OLDLEVELS contains categorical levels that were present in A, caused some array elements to have undefined levels.

Note that smokers now have an undefined level.
6 Set each smoker to one of the new levels, by observation name:
```

patients.smoke('YPL-320') = '5-10 Years';

```
\begin{tabular}{ll} 
See Also & \begin{tabular}{l} 
cell2dataset | mat2dataset | struct2dataset | tdfread | \\
textscan | xlsread
\end{tabular} \\
Related & - "Create a Dataset Array from Workspace Variables" on page 2-65 \\
Examples & - "Create a Dataset Array from a File" on page 2-71 \\
Concepts & - "Dataset Arrays in the Variables Editor" on page 2-122 \\
CDataset Arrays" on page 2-135
\end{tabular}

Purpose Convert dataset array to cell array
Syntax \(\quad C=\) dataset2cell (D)
Description \(\quad C=\) dataset2cell( \(D\) ) converts the dataset array \(D\) to a cell array \(C\). Each variable of \(D\) becomes a column in C. If \(D\) is an \(M\)-by- \(N\) array, then \(C\) is \((M+1)\)-by- \(N\), with the variable names of \(D\) in the first row. If \(D\) contains observation names, then \(C\) is \((M+1)\)-by- \((N+1)\), with the observation names in the first column.

See Also dataset | dataset.export

Purpose Convert dataset array to structure
Syntax \(\quad \begin{aligned} S & =\text { dataset2struct }(D) \\ S & =\text { dataset2struct }(D, ' A s S c a l a r ', ~ t r u e) ~\end{aligned}\)

Input
Arguments

\section*{Output}

Arguments

\section*{Examples}

\section*{Convert Dataset Array to Structure Array}

Load sample dataset array.
load('hospital')
Create a dataset array, D, that has only a subset of the observations and variables.
```

D = hospital(1:8,{'LastName','Sex','Age'});

```
size(D)
ans =

83
The dataset array D has 8 observations and 3 variables.
Convert D to a structure array.
```

S = dataset2struct(D)
S =
8x1 struct array with fields:
ObsNames
LastName
Sex
Age

```

The structure is \(8 \times 1\), corresponding to the 8 observations in the dataset array. \(S\) also has the field ObsNames, since \(D\) had observation names.

Display the field data for the first element of \(S\).
S(1)
ans =
ObsNames: 'YPL-320'
LastName: 'SMITH'
Sex: [1x1 nominal]
Age: 38
This information corresponds to the first observation (row) of the dataset array.

\section*{Convert Dataset Array to Scalar Structure}

Load sample dataset array.

\section*{dataset.dataset2struct}
```

load('hospital')

```

Create a dataset array, D, that has only a subset of the observations and variables.

D = hospital(1:8,\{'LastName','Sex','Age'\});
size(D)
ans =

83

The dataset array D has 8 observations and 3 variables.
Convert D to a scalar structure array.
S = dataset2struct(D, 'AsScalar',true)
S =

ObsNames: \{8x1 cell\}
LastName: \{8x1 cell\}
Sex: [8x1 nominal]
Age: [ \(8 \times 1\) double]
The data in the fields of the scalar structure is \(8 \times 1\), corresponding to the 8 observations in the dataset array. S also has the field ObsNames, since \(D\) had observation names.

Display the data for the field LastName.
S.LastName
ans =
'SMITH '
'JOHNSON'
'WILLIAMS'
'JONES'
```

'BROWN'
'DAVIS'
'MILLER'
'WILSON'

```

The structure field LastName contains all of the data that was in the original dataset array variable, LastName.

\author{
See Also \\ dataset | dataset2cell | struct2dataset \\ Concepts - "Dataset Arrays" on page 2-135
}

\section*{dataset.datasetfun}

Purpose Apply function to dataset array variables
Syntax
b = datasetfun(fun, A)
[b,c,...] = datasetfun(fun,A)
[b,...] = datasetfun(fun,A,...,'UniformOutput',false)
\([b, \ldots]=\) datasetfun(fun, \(A, \ldots\), '...DatasetOutput',true)
[b,...] = datasetfun(fun,A,...,'DataVars', vars)
[b,...] = datasetfun(fun,A,...,'ObsNames',obsnames)
[b,...] = datasetfun(fun,A,...,'ErrorHandler',efun)

\section*{Description}
b = datasetfun(fun, A) applies the function specified by fun to each variable of the dataset array \(A\), and returns the results in the vector \(b\). The \(i\) th element of b is equal to fun applied to the \(i\) th dataset variable of A. fun is a function handle to a function that takes one input argument and returns a scalar value. fun must return values of the same class each time it is called, and datasetfun concatenates them into the vector b. The outputs from fun must be one of the following types: numeric, logical, character, structure, or cell.

To apply functions that return results that are nonscalar or of different sizes and types, use the 'UniformOutput' or 'DatasetOutput' parameters described below.

Do not rely on the order in which datasetfun computes the elements of \(b\), which is unspecified.

If fun is bound to more than one built-in function or file, (that is, if it represents a set of overloaded functions), datasetfun follows MATLAB dispatching rules in calling the function. (See "Function Precedence Order".)
[b,c,...] = datasetfun(fun, A), where fun is a function handle to a function that returns multiple outputs, returns vectors \(\mathrm{b}, \mathrm{c}, \ldots\), each corresponding to one of the output arguments of fun. datasetfun calls fun each time with as many outputs as there are in the call to datasetfun. fun may return output arguments having different classes, but the class of each output must be the same each time fun is called.
[b,...] = datasetfun(fun,A,...,'UniformOutput',false) allows you to specify a function fun that returns values of different sizes or types. datasetfun returns a cell array (or multiple cell arrays), where the \(i\) th cell contains the value of fun applied to the \(i\) th dataset variable of A. Setting 'Uniform0utput' to true is equivalent to the default behavior.
[b, ...] = datasetfun(fun, A, ...,'DatasetOutput', true) specifies that the output(s) of fun are returned as variables in a dataset array (or multiple dataset arrays). fun must return values with the same number of rows each time it is called, but it may return values of any type. The variables in the output dataset array(s) have the same names as the variables in the input. Setting 'DatasetOutput' to false (the default) specifies that the type of the output(s) from datasetfun is determined by 'Uniform0utput'.
[b, ...] = datasetfun(fun, A, ...,'DataVars', vars) allows you to apply fun only to the dataset variables in A specified by vars. vars is a positive integer, a vector of positive integers, a variable name, a cell array containing one or more variable names, or a logical vector.
[b,...] = datasetfun(fun,A,..., 'ObsNames', obsnames) specifies observation names for the dataset output when 'DatasetOutput' is true.
[b,...] = datasetfun(fun,A,...,'ErrorHandler', efun), where efun is a function handle, specifies the MATLAB function to call if the call to fun fails. The error-handling function is called with the following input arguments:
- A structure with the fields identifier, message, and index, respectively containing the identifier of the error that occurred, the text of the error message, and the linear index into the input array(s) at which the error occurred
- The set of input arguments at which the call to the function failed

The error-handling function should either re-throw an error, or return the same number of outputs as fun. These outputs are then returned as

\section*{dataset.datasetfun}
the outputs of datasetfun. If 'UniformOutput' is true, the outputs of the error handler must also be scalars of the same type as the outputs of fun. For example, the following code could be saved in a file as the error-handling function:
function \([A, B]=\) errorFunc(S,varargin)
warning(S.identifier,S.message);
A = NaN;
B = NaN;
If an error-handling function is not specified, the error from the call to fun is rethrown.

Examples Compute statistics on selected variables in the hospital dataset array:
load hospital
stats = ...
datasetfun(@mean, hospital,...
'DataVars', \{'Weight', 'BloodPressure'\},...
'UniformOutput',false)
```

stats =

```
[154] [1x2 double]
stats\{2\}
ans =
122.780082 .9600

Display the blood pressure variable:
```

datasetfun(@hist,hospital,...
'DataVars','BloodPressure',...
'UniformOutput',false);
title('{\bf Blood Pressure}')
legend('Systolic','Diastolic','Location','N')

```

Blood Pressure


See Also
grpstats

Purpose \(\quad D\)-optimal augmentation
```

Syntax
dCE2 = daugment(dCE,mruns)
[dCE2,X] = daugment(dCE,mruns)
[dCE2,X] = daugment(dCE,mruns,model)
[dCE2,X] = daugment(...,param1,val1,param2,val2,...)

```

\section*{Description}
dCE2 = daugment(dCE, mruns) uses a coordinate-exchange algorithm to \(D\)-optimally add mruns runs to an existing experimental design dCE for a linear additive model.
[dCE2, X] = daugment (dCE, mruns) also returns the design matrix \(X\) associated with the augmented design.
[dCE2, X] = daugment(dCE,mruns,model) uses the linear regression model specified in model. model is one of the following strings:
- 'linear' - Constant and linear terms. This is the default.
- 'interaction' - Constant, linear, and interaction terms
- 'quadratic' - Constant, linear, interaction, and squared terms
- 'purequadratic' - Constant, linear, and squared terms

The order of the columns of \(X\) for a full quadratic model with \(n\) terms is:
1 The constant term
2 The linear terms in order \(1,2, \ldots, n\)
3 The interaction terms in order (1, 2), (1, 3), \(\ldots,(1, n),(2,3), \ldots,(n-1, n)\)
4 The squared terms in order \(1,2, \ldots, n\)
Other models use a subset of these terms, in the same order.
Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In this case, model should have one column for each factor and one row for each term in the model. The entries in any row of model are powers for the factors in the columns. For example, if a
model has factors \(\mathrm{X} 1, \mathrm{X} 2\), and X 3 , then a row [ \(\left.\begin{array}{lll}0 & 1 & 2\end{array}\right]\) in model specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model specifies a constant term, which can be omitted.
[dCE2,X] = daugment(..., param1,val1,param2,val2,...) specifies additional parameter/value pairs for the design. Valid parameters and their values are listed in the following table.
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline 'bounds ' & \begin{tabular}{l} 
Lower and upper bounds for each factor, specified \\
as a 2-by-nfactors matrix, where nfactors is the \\
number of factors. Alternatively, this value can be \\
a cell array containing nfactors elements, each \\
element specifying the vector of allowable values for \\
the corresponding factor.
\end{tabular} \\
\hline 'categorical' & Indices of categorical predictors. \\
\hline 'display' & \begin{tabular}{l} 
Either ' on ' or ' off' to control display of the \\
iteration counter. The default is ' on '.
\end{tabular} \\
\hline 'excludefun' & \begin{tabular}{l} 
Handle to a function that excludes undesirable \\
runs. If the function is \(f\), it must support the syntax \\
\(b=f(S)\), where \(S\) is a matrix of treatments with \\
nfactors columns, where nfactors is the number \\
of factors, and \(b\) is a vector of Boolean values with \\
the same number of rows as \(S . b(i)\) is true if the \(i\) th \\
row \(S\) should be excluded.
\end{tabular} \\
\hline 'init' & \begin{tabular}{l} 
Initial design as an mruns-by-nfactors matrix, \\
where nfactors is the number of factors. The \\
default is a randomly selected set of points.
\end{tabular} \\
\hline 'levels ' & \begin{tabular}{l} 
Vector of number of levels for each factor.
\end{tabular} \\
\hline 'maxiter' & \begin{tabular}{l} 
Maximum number of iterations. The default is 10. \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter & Value \\
\hline 'options' & \begin{tabular}{l}
The value is a structure that contains options specifying whether to compute multiple tries in parallel, and specifying how to use random numbers when generating the starting points for the tries. Create the options structure with statset. Applicable statset parameters are: \\
- 'UseParallel' - If true and if a matlabpool of the Parallel Computing Toolbox is open, compute in parallel. If the Parallel Computing Toolbox is not installed, or a matlabpool is not open, computation occurs in serial mode. Default is false, meaning serial computation. \\
- UseSubstreams - Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'. \\
- Streams - A RandStream object or cell array of such objects. If you do not specify Streams, daugment uses the default stream or streams. If you choose to specify Streams, use a single object except in the case \\
- You have an open MATLAB pool \\
- UseParallel is true \\
- UseSubstreams is false \\
In that case, use a cell array the same size as the MATLAB pool.
\end{tabular} \\
\hline 'tries' & Number of times to try to generate a design from a new starting point. The algorithm uses random points for each try, except possibly the first. The default is 1 . \\
\hline
\end{tabular}

> Note The daugment function augments an existing design using a coordinate-exchange algorithm; the 'start ' parameter of the candexch function provides the same functionality using a row-exchange algorithm.

\section*{Examples}

The following eight-run design is adequate for estimating main effects in a four-factor model:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{```
dCEmain = cordexch(4,8)
dCEmain =
```} \\
\hline 1 & -1 & -1 & 1 \\
\hline -1 & -1 & 1 & 1 \\
\hline -1 & 1 & -1 & 1 \\
\hline 1 & 1 & 1 & -1 \\
\hline 1 & 1 & 1 & 1 \\
\hline -1 & 1 & -1 & -1 \\
\hline 1 & -1 & -1 & -1 \\
\hline -1 & -1 & 1 & -1 \\
\hline
\end{tabular}

To estimate the six interaction terms in the model, augment the design with eight additional runs:
```

dCEinteraction = daugment(dCEmain,8,'interaction')
dCEinteraction =

1	-1	-1	1
-1	-1	1	1
-1	1	-1	1
1	1	1	-1
1	1	1	1
-1	1	-1	-1
1	-1	-1	-1
-1	-1	1	-1
-1	1	1	1
-1	-1	-1	-1
1	-1	1	-1

```
\begin{tabular}{rrrr}
1 & 1 & -1 & 1 \\
-1 & 1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & 1 \\
1 & 1 & 1 & -1
\end{tabular}

The augmented design is full factorial, with the original eight runs in the first eight rows.

See Also dcovary | cordexch | candexch

\section*{Purpose}
\(D\)-optimal design with fixed covariates
Syntax
dCV = dcovary(nfactors,fixed)
[dCV,X] = dcovary(nfactors,fixed)
[dCV,X] = dcovary(nfactors,fixed,model)
[dCV, X] = daugment(...,param1,val1,param2,val2,...)
Description
dCV = dcovary(nfactors,fixed) uses a coordinate-exchange
algorithm to generate a \(D\)-optimal design for a linear additive model with nfactors factors, subject to the constraint that the model include the fixed covariate factors in fixed. The number of runs in the design is the number of rows in fixed. The design dCV augments fixed with initial columns for treatments of the model terms.
\([d C V, X]=\) dcovary (nfactors, fixed) also returns the design matrix X associated with the design.
[dCV, X] = dcovary(nfactors,fixed,model) uses the linear regression model specified in model. model is one of the following strings:
- 'linear' - Constant and linear terms. This is the default.
- 'interaction' - Constant, linear, and interaction terms
- 'quadratic ' - Constant, linear, interaction, and squared terms
- 'purequadratic' - Constant, linear, and squared terms

The order of the columns of \(X\) for a full quadratic model with \(n\) terms is:
1 The constant term
2 The linear terms in order \(1,2, \ldots, n\)
3 The interaction terms in order \((1,2),(1,3), \ldots,(1, n),(2,3), \ldots,(n-1, n)\)
4 The squared terms in order \(1,2, \ldots, n\)
Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In this case, model should have one column for each factor and one row for each term in the model. The entries in any row of model are powers for the factors in the columns. For example, if a model has factors \(\mathrm{X} 1, \mathrm{X} 2\), and X 3 , then a row [012 1 2] in model specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model specifies a constant term, which can be omitted.
[dCV,X] = daugment(...,param1,val1,param2,val2,...) specifies additional parameter/value pairs for the design. Valid parameters and their values are listed in the following table.
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline 'bounds ' & \begin{tabular}{l}
Lower and upper bounds for each factor, specified as \\
a 2-by-nfactors matrix. Alternatively, this value \\
can be a cell array containing nfactors elements, \\
each element specifying the vector of allowable \\
values for the corresponding factor.
\end{tabular} \\
\hline 'categorical' & Indices of categorical predictors. \\
\hline 'display ' & \begin{tabular}{l}
Either ' on ' or ' off' to control display of the \\
iteration counter. The default is ' on '.
\end{tabular} \\
\hline 'excludefun' & \begin{tabular}{l}
Handle to a function that excludes undesirable \\
runs. If the function is \(f\), it must support the syntax \\
\(b=f(S)\), where \(S\) is a matrix of treatments with \\
nfactors columns and \(b\) is a vector of Boolean \\
values with the same number of rows as \(S . b(i)\) is \\
true if the \(i\) th row \(S\) should be excluded.
\end{tabular} \\
\hline 'init' & \begin{tabular}{l}
Initial design as an mruns-by-nfactors matrix. The \\
default is a randomly selected set of points.
\end{tabular} \\
\hline 'levels' & \begin{tabular}{l}
Vector of number of levels for each factor. \\
\hline 'maxiter'
\end{tabular} \begin{tabular}{l}
Maximum number of iterations. The default is 10. \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter & Value \\
\hline 'options' & \begin{tabular}{l}
The value is a structure that contains options specifying whether to compute multiple tries in parallel, and specifying how to use random numbers when generating the starting points for the tries. Create the options structure with statset. Applicable statset parameters are: \\
- 'UseParallel' - If true and if a matlabpool of the Parallel Computing Toolbox is open, compute in parallel. If the Parallel Computing Toolbox is not installed, or a matlabpool is not open, computation occurs in serial mode. Default is false, meaning serial computation. \\
- UseSubstreams - Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'. \\
- Streams - A RandStream object or cell array of such objects. If you do not specify Streams, dcovary uses the default stream or streams. If you choose to specify Streams, use a single object except in the case \\
- You have an open MATLAB pool \\
- UseParallel is true \\
- UseSubstreams is false \\
In that case, use a cell array the same size as the MATLAB pool.
\end{tabular} \\
\hline 'tries' & Number of times to try to generate a design from a new starting point. The algorithm uses random points for each try, except possibly the first. The default is 1 . \\
\hline
\end{tabular}

\section*{Examples \\ Example 1}

Suppose you want a design to estimate the parameters in a three-factor linear additive model, with eight runs that necessarily occur at different times. If the process experiences temporal linear drift, you may want to include the run time as a variable in the model. Produce the design as follows:
```

time = linspace(-1,1,8)';
[dCV1,X] = dcovary(3,time,'linear')
dCV1 =

-1.0000	1.0000	1.0000	-1.0000	
1.0000	-1.0000	-1.0000	-0.7143	
-1.0000	-1.0000	-1.0000	-0.4286	
1.0000	-1.0000	1.0000	-0.1429	
1.0000	1.0000	-1.0000	0.1429	
-1.0000	1.0000	-1.0000	0.4286	
1.0000	1.0000	1.0000	0.7143	
-1.0000	-1.0000	1.0000	1.0000	
1.0000	-1.0000	1.0000	1.0000	-1.0000
1.0000	1.0000	-1.0000	-1.0000	-0.7143
1.0000	-1.0000	-1.0000	-1.0000	-0.4286
1.0000	1.0000	-1.0000	1.0000	-0.1429
1.0000	1.0000	1.0000	-1.0000	0.1429
1.0000	-1.0000	1.0000	-1.0000	0.4286
1.0000	1.0000	1.0000	1.0000	0.7143
1.0000	-1.0000	-1.0000	1.0000	1.0000

```

The column vector time is a fixed factor, normalized to values between \(\pm 1\). The number of rows in the fixed factor specifies the number of runs in the design. The resulting design dCV gives factor settings for the three controlled model factors at each time.

\section*{Example 2}

The following example uses the dummyvar function to block an eight-run experiment into 4 blocks of size 2 for estimating a linear additive model with two factors:
```

fixed = dummyvar([[11 1 2 2 3 3 4 4 4]);
dCV2 = dcovary(2,fixed(:,1:3),'linear')
dCV2 =

1	1	1	0	0
-1	-1	1	0	0
-1	1	0	1	0
1	-1	0	1	0
1	1	0	0	1
-1	-1	0	0	1
-1	1	0	0	0
1	-1	0	0	0

```

The first two columns of dCV2 contain the settings for the two factors; the last three columns are dummy variable codings for the four blocks.

\section*{See Also}
daugment | cordexch | dummyvar

\section*{TreeBagger.DefaultYfit property}

Purpose Default value returned by predict and oobPredict

Description

See Also
```

oobPredict | Predict | OOBIndices

```
Purpose Delete handle object
Syntax

delete(h)

Description delete \((\mathrm{h})\) deletes the handle object h , where h is a scalar handle. The delete method deletes a handle object but does not clear the handle from the workspace. A deleted handle is no longer valid.

See Also clear | isvalid | qrandstream

\section*{TreeBagger.DeltaCritDecisionSplit property}

Purpose Split criterion contributions for each predictor
Description \(\quad \begin{aligned} & \text { The DeltaCritDecisionSplit property is a numeric array of size } \\ & \text { 1-by-Nvars of changes in the split criterion summed over splits on each } \\ & \text { variable, averaged across the entire ensemble of grown trees. }\end{aligned}\)

\author{
See Also classregtree.varimportance
}

\section*{Purpose Dendrogram plot}

Syntax dendrogram(tree)
dendrogram(tree, Name, Value)
dendrogram(tree, P)
dendrogram(tree, \(P\), Name, Value)
H = dendrogram(\(\qquad\))
[\(\mathrm{H}, \mathrm{T}\), outperm] = dendrogram(__)

\section*{Description}
dendrogram(tree) generates a dendrogram plot of the hierarchical binary cluster tree. A dendrogram consists of many \(U\)-shaped lines that connect data points in a hierarchical tree. The height of each \(U\) represents the distance between the two data points being connected.
- If there are 30 or fewer data points in the original data set, then each leaf in the dendrogram corresponds to one data point.
- If there are more than 30 data points, then dendrogram collapses lower branches so that there are 30 leaf nodes. As a result, some leaves in the plot correspond to more than one data point.
dendrogram(tree, Name, Value) uses additional options specified by one or more name-value pair arguments.
dendrogram(tree, \(P\)) generates a dendrogram plot with no more than \(P\) leaf nodes. If there are more than \(P\) data points in the original data set, then dendrogram collapses the lower branches of the tree. As a result, some leaves in the plot correspond to more than one data point.
dendrogram(tree, P, Name, Value) uses additional options specified by one or more name-value pair arguments.

H = dendrogram(_ _) generates a dendrogram plot and returns a vector of line handles. You can use any of the input arguments from the previous syntaxes.
[H, T, outperm] = dendrogram(__) also returns a vector containing the leaf node number for each object in the original data set, T , and a vector giving the order of the node labels of the leaves as shown in the dendrogram, outperm.
- It is useful to return \(T\) when the number of leaf nodes, \(P\), is less than the total number of data points, so that some leaf nodes in the display correspond to multiple data points.
- The order of the node labels given in outperm is from left to right for a horizontal dendrogram, and from bottom to top for a vertical dendrogram.

\section*{Input Arguments}

\section*{tree - Hierarchical binary cluster tree}
matrix returned by linkage
Hierarchical binary cluster tree, specified as an \((M-1)\)-by- 3 matrix that you generate using linkage, where \(M\) is the number of data points in the original data set.

\section*{P-Maximum number of leaf nodes}

30 (default) | positive integer value
Maximum number of leaf nodes to include in the dendrogram plot, specified as a positive integer value.
- If there are \(P\) or fewer data points in the original data set, then each leaf in the dendrogram corresponds to one data point.
- If there are more than P data points, then dendrogram collapses lower branches so that there are \(P\) leaf nodes. As a result, some leaves in the plot correspond to more than one data point.

If you do not specify \(P\), then dendrogram uses 30 as the maximum number of leaf nodes. To display the complete tree, set P equal to 0 .

\section*{Data Types \\ single | double}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'Orientation','left', 'Reorder', myOrder, specifies a vertical dendrogram with leaves in the order specified by myOrder.

\section*{'Reorder' - Order of leaf nodes}
vector
Order of leaf nodes in the dendrogram plot, specified as the comma-separated pair consisting of 'Reorder' and a vector giving the order of nodes in the complete tree. The order vector must be a permutation of the vector \(1: \mathrm{M}\), where \(M\) is the number of data points in the original data set. Specify the order from left to right for horizontal dendrograms, and from bottom to top for vertical dendrograms.

If \(M\) is greater than the number of leaf nodes in the dendrogram plot, \(P\) (by default, \(P\) is 30), then you can only specify a permutation vector that does not separate the groups of leaves that correspond to collapsed nodes.

\section*{Example:}

\section*{Data Types}
single | double

\section*{'CheckCrossing' - Indicator for whether to check for crossing branches \\ true (default) | false}

Indicator for whether to check for crossing branches in the dendrogram plot, specified as the comma-separated pair consisting of
'CheckCrossing ' and either true or false. This option is only useful when you specify a value for Reorder.

When CheckCrossing has the value true, dendrogram issues a warning if the order of the leaf nodes causes crossing branches in the plot. If the dendrogram plot does not show a complete tree (because the number of data points in the original data set is greater than \(P\)), dendrogram only issues a warning when the order of the leaf nodes causes branch to cross in the dendrogram as shown in the plot. That is, there is no warning if the order causes crossing branches in the complete tree but not in the dendrogram as shown in the plot.

\section*{Data Types}
logical

\section*{'ColorThreshold' - Threshold for unique colors \\ 'default' | scalar value in the range (\(0, \max (\operatorname{tree}(:, 3)\))}

Threshold for unique colors in the dendrogram plot, specified as the comma-separated pair consisting of 'ColorThreshold' and either the string 'default' or a scalar value in the range (\(0, \max (\operatorname{tree}(:, 3)\)). If ColorThreshold has the value \(T\), then dendrogram assigns a unique color to each group of nodes in the dendrogram whose linkage is less than \(T\).
- If ColorThreshold has the value 'default', then the threshold, \(T\), is \(70 \%\) of the maximum linkage, \(0.7 * \max (\operatorname{tree}(:, 3)\)).
- If you do not specify a value for ColorThreshold, or if you specify a threshold outside the range (\(0, \max (\operatorname{tree}(:, 3)\)), then dendrogram uses only one color for the dendrogram plot.

\section*{'Orientation' - Orientation of dendrogram}
'top' (default) | 'bottom' | 'left' | 'right'
Orientation of the dendrogram in the figure window, specified as the comma-separated pair consisting of 'Orientation' and one of these strings:
\begin{tabular}{ll}
'top' & Top to bottom \\
'bottom' & Bottom to top \\
'left' & Left to right \\
'right' & Right to left
\end{tabular}

\section*{Data Types}
char

\section*{'Labels' - Label for each data point}
character array | cell array of strings
Label for each data point in the original data set, specified as the comma-separated pair consisting of 'Labels' and a character array or cell array of strings. dendrogram labels any leaves in the dendrogram plot containing a single data point with that data point's label.

\section*{Data Types}
char | cell

\section*{Output Arguments}

\section*{H - Handles to lines}
vector
Handles to lines in the dendrogram plot, returned as a vector.

\section*{T-Leaf node numbers}

\section*{column vector}

Leaf node numbers for each data point in the original data set, returned as a column vector of length \(M\), where \(M\) is the number of data points in the original data set.

When there are fewer than P data points in the original data (P is 30 , by default), all data points are displayed in the dendrogram, with each node containing a single data point. In this case, \(T\) is the identity map, T = (1:M)'.
\(T\) is useful when \(P\) is less than the total number of data points. That is, when some leaf nodes in the dendrogram display correspond to multiple
data points. For example, to find out which data points are contained in leaf node \(k\) of the dendrogram plot, use find (\(T==k\)).

\section*{outperm - Permutation of node labels}
vector
Permutation of the node labels of the leaves of the dendrogram as shown in the plot, returned as a row vector. outperm gives the order from left to right for a horizontal dendrogram, and from bottom to top for a vertical dendrogram. If there are \(P\) leaves in the dendrogram plot, outperm is a permutation of the vector \(1: P\).

\section*{Examples}

\section*{Plot Dendrogram}

Generate sample data.
```

rng('default') % For reproducibility

```
\(X=\operatorname{rand}(10,3)\);

Create a hierarchical binary cluster tree using linkage. Then, plot the dendrogram using the default options.
```

tree = linkage(X,'average');
figure()
dendrogram(tree)

```


\section*{Specify Dendrogram Leaf Node Order}

Generate sample data.
```

rng('default') % For reproducibility
X = rand(10,3);

```

Create a hierarchical binary cluster tree using linkage. Then, plot the dendrogram using an optimal leaf order.
tree = linkage(X, 'average');
D = pdist(X);
leafOrder = optimalleaforder(tree,D)
leafOrder =

The order of the leaf nodes in the dendrogram plot corresponds-from left to right-to the permutation in leafOrder.

\section*{Specify Number of Nodes in Dendrogram Plot}

Generate sample data.
```

rng('default') % For reproducibility
X = rand(100,2);

```

There are 100 data points in the original data set, X .

Create a hierarchical binary cluster tree using linkage. Then, plot the dendrogram for the complete tree (100 leaf nodes) by setting the input argument \(P\) equal to 0 .
tree = linkage(X, 'average');
figure()
dendrogram(tree, 0)

Now, plot the dendrogram with only 25 leaf nodes. Return the mapping of the original data points to the leaf nodes shown in the plot.
figure()
[~,T] = dendrogram(tree, 25);

List the original data points that are in leaf node 7 of the dendrogram plot.
```

find(T==7)

```
ans =

7

\section*{Change Dendrogram Orientation and Line Width}

Generate sample data.
```

rng('default') % For reproducibility
X = rand(10,3);

```

Create a hierarchical binary cluster tree using linkage. Then, plot the dendrogram with a vertical orientation, using the default color threshold. Return handles to the lines so you can change the dendrogram line widths.
```

tree = linkage(X,'average');

```
figure()
H = dendrogram(tree,'Orientation','left','ColorThreshold','default');
set(H,'LineWidth',2)

See Also
cluster | clusterdata | cophenet | inconsistent | linkage pdist | silhouette

Purpose String describing data set
Description Description is a string describing the data set. The default is an empty string.

\section*{GeneralizedLinearModel.devianceTest}

\section*{Purpose Analysis of deviance}

Syntax tbl = devianceTest (mdl)

Description

Input
Arguments

\section*{Output}

Arguments

\section*{Definitions}
tbl = devianceTest(mdl) returns an analysis of deviance table for the mdl generalized linear model. tbl gives the result of a test of whether the fitted model fits significantly better than a constant model.
mdl
Generalized linear model, as constructed by GeneralizedLinearModel.fit or GeneralizedLinearModel.stepwise.
tbl
Dataset array containing two rows and four columns.
- The first row relates to a constant model.
- The second row relates to the full model in mdl.
- The columns are (see "Definitions" on page 20-572):
- Deviance
- DFE (Error Degrees of Freedom)
- F statistic or Chi-squared statistic, depending on whether the dispersion is estimated (F statistic) or not (Chi-squared statistic)
- \(p\)-value associated with the test

\section*{Deviance Test Statistics for a Generalized Linear Model}
- Deviance is twice the difference between the log likelihoods of the models (full or constant).

\section*{GeneralizedLinearModel.devianceTest}
- \(D F E\) is the number of observations minus the number of parameters in the model.
- Chi-squared statistic is the difference between the deviance of the constant model and the deviance of the full model.
- F statistic is the difference between the deviance of the constant model and the deviance of the full model, divided by the estimated dispersion.
- p-value is the Chi-squared statistic with (number of coefficients in the model minus one) degrees of freedom, or \(F\) statistic with (number of coefficients in the model minus one) numerator degrees of freedom, and DFE denominator degrees of freedom.

\section*{Examples Deviance Test}

Perform a deviance test on a generalized linear model.
Construct a generalized linear model.
```

rng('default') % for reproducibility
X = randn(100,5);
mu = exp(X(:,[14 4 5])*[.4;.2;.3]);
y = poissrnd(mu);
mdl = GeneralizedLinearModel.fit(X,y,...
'linear','Distribution','poisson');

```

Test whether the model differs from a constant in a statistically significant way.
```

tbl = devianceTest(mdl)

```
tbl =
\begin{tabular}{lllll}
& Deviance & DFE & chi2Stat & pValue \\
\(\log (y) \sim 1\) & 128.58 & 99 & & \\
\(\log (y) \sim 1+x 1+x 2+x 3+x 4+x 5\) & 83.726 & 94 & 44.858 & \(1.5502 e-08\)
\end{tabular}

\section*{GeneralizedLinearModel.devianceTest}

The \(p\)-value is very small, indicating that the model significantly differs from a constant.

\section*{See Also GeneralizedLinearModel I}

Concepts • "Generalized Linear Models" on page 9-143
\begin{tabular}{|c|c|}
\hline Purpose & Interactive distribution fitting \\
\hline \multirow[t]{5}{*}{Syntax} & dfittool \\
\hline & dfittool(y) \\
\hline & dfittool(y, cens) \\
\hline & dfittool (y, cens, freq) \\
\hline & dfittool (y, cens,freq, dsname) \\
\hline
\end{tabular}

Description
dfittool opens a graphical user interface for displaying fit distributions to data. To fit distributions to your data and display them over plots of the empirical distributions, you can import data from the workspace.
dfittool(y) displays the Distribution Fitting Tool and creates a data set with data specified by the vector \(y\).
dfittool (y, cens) uses the vector cens to specify whether the observation \(\mathrm{y}(\mathrm{j})\) is censored, (cens \((\mathrm{j})==1\)) and/or observed, exactly (cens \((\mathrm{j})==0\)). If cens is omitted or empty, no y values are censored.
dfittool (y, cens, freq) uses the vector freq to specify the frequency of each element of \(y\). If freq is omitted or empty, all \(y\) values have a frequency of 1 .
dfittool(y, cens,freq, dsname) creates a data set with the name dsname using the data vector \(y\), censoring indicator cens, and frequency vector freq.
For more information, see "Modeling Data Using the Distribution Fitting Tool" on page 5-12.

See Also mle | randtool | disttool

\section*{qrandset.Dimensions property}

Purpose Number of dimensions
Description Number of dimensions in the point set. The Dimensions property of a point set contains a positive integer that indicates the number of dimensions for which the points have values. For example, a point set with Dimensions=5 produces points that each have five values.

Set this property by specifying the number of dimensions when constructing a new point set. After construction, you cannot change the value. The default number of dimensions is 2 .

\section*{dataset.DimNames property}

Purpose Two-element cell array of strings giving names of dimensions of data set
Description A two-element cell array of strings giving the names of the two dimensions of the data set. The default is \{'Observations' 'Variables'\}.

Purpose Display categorical array

\section*{Syntax \(\quad \operatorname{disp}(A)\)}

Description disp(A) prints the categorical array A without printing the array name. In all other ways it's the same as leaving the semicolon off an expression, except that empty arrays don't display.

\author{
See Also categorical | display
}
Purpose Display classregtree object
Syntax display(t)
Description display(t) prints the classregtree object \(t\).
See Also classregtree | view

\section*{cvpartition.disp}

\section*{Purpose Display cvpartition object}

\section*{Syntax disp(c)}

Description disp(c) prints the cvpartition object c.
See Also cvpartition
Purpose Display dataset array
Syntax disp(ds)
Description

disp(ds) prints the dataset array ds, including variable names and observation names (if present), without printing the dataset name. In all other ways it's the same as leaving the semicolon off an expression.
For numeric or categorical variables that are 2-D and have three or fewer columns, disp prints the actual data using either short g, long g , or bank format, depending on the current command line setting. Otherwise, disp prints the size and type of each dataset element.
For character variables that are 2 -D and 10 or fewer characters wide, disp prints quoted strings. Otherwise, disp prints the size and type of each dataset element.
For cell variables that are 2-D and have three or fewer columns, disp prints the contents of each cell (or its size and type if too large). Otherwise, disp prints the size of each dataset element.
For time series variables, disp prints columns for both the time and the data. If the variable is 2-D and has three or fewer columns, disp prints the actual data Otherwise, disp prints the size and type of each dataset element.
For other types of variables, disp prints the size and type of each dataset element.
See Also dataset | display | format

\section*{GeneralizedLinearModel.disp}

\section*{Purpose Display generalized linear regression model}

\section*{Syntax disp(mdl)}

Description disp(mdl) displays the mdl linear model.
Input
Arguments

\section*{Examples}

\section*{Display a Generalized Linear Regression Model}

Create and display a generalized linear regression model.
Create a generalized linear regression model of Poisson data.
```

X = 2 + randn(100,1);
mu = exp(1 + X/2);
y = poissrnd(mu);
mdl = GeneralizedLinearModel.fit(X,y,...
'y ~ x1','distr','poisson');

```

Display the model.
disp(mdl)

Generalized Linear regression model:
\(\log (y)\) ~ 1 + x1
Distribution = Poisson
Estimated Coefficients:
\begin{tabular}{lclll}
& Estimate & SE & tStat & pValue \\
(Intercept) & 0.9581 & 0.090294 & 10.611 & \(2.6519 \mathrm{e}-26\) \\
x1 & 0.51027 & 0.033738 & \(\mathbf{1 5 . 1 2 4}\) & \(1.1179 \mathrm{e}-51\)
\end{tabular}

\section*{GeneralizedLinearModel.disp}
100 observations, 98 error degrees of freedomDispersion: 1Chi^2-statistic vs. constant model: 221, p-value \(=5.77 \mathrm{e}-50\)
Alternatives Enter mdl at the command line to obtain a display, where \(m d l\) is the name of your model.
See Also GeneralizedLinearModel I
Concepts - "Generalized Linear Models" on page 9-143

\section*{gmdistribution.disp}

Purpose Display Gaussian mixture distribution object

\section*{Syntax disp(obj)}

Description disp(obj) prints a text representation of the gmdistribution object, obj, without printing the object name. In all other ways it's the same as leaving the semicolon off an expression.

See Also gmdistribution | display

\section*{LinearModel.disp}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Purpose & \multicolumn{5}{|l|}{Display linear regression model} \\
\hline Syntax & \multicolumn{5}{|l|}{display(mdl)} \\
\hline Description & \multicolumn{5}{|l|}{display (mdl) displays the mdl linear model.} \\
\hline Input & \multicolumn{5}{|l|}{mdl} \\
\hline Arguments & \multicolumn{5}{|l|}{Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.} \\
\hline \multirow[t]{17}{*}{Examples} & \multicolumn{5}{|l|}{Display a Linear Regression Model} \\
\hline & \multicolumn{5}{|l|}{Create and display a linear regression model.} \\
\hline & \multicolumn{5}{|l|}{Create a linear regression model.} \\
\hline & \multicolumn{5}{|l|}{\(X=\operatorname{randn}(100,5)\);} \\
\hline & \multicolumn{5}{|l|}{\[
\begin{aligned}
& y=X *[1 ; 2 ; 3 ; 4 ; 5]+6+\operatorname{randn}(100,1) ; \\
& \text { mdl }=\text { LinearModel.fit }(X, y) ;
\end{aligned}
\]} \\
\hline & \multicolumn{5}{|l|}{Display the model.} \\
\hline & \multicolumn{5}{|l|}{disp(mdl)} \\
\hline & \multicolumn{5}{|l|}{Linear regression model:} \\
\hline & \multicolumn{5}{|l|}{\(y \sim 1+x 1+x 2+x 3+x 4+x 5\)} \\
\hline & \multicolumn{5}{|l|}{Estimated Coefficients:} \\
\hline & & Estimate & SE & tStat & pValue \\
\hline & (Intercept) & 6.0806 & 0.11393 & 53.371 & 4.2509e-72 \\
\hline & x 1 & 1.1181 & 0.1154 & 9.6894 & 8.4046e-16 \\
\hline & x2 & 2.0903 & 0.11378 & 18.372 & 7.2209e-33 \\
\hline & x3 & 3.0926 & 0.10725 & 28.836 & 1.7967e-48 \\
\hline & x4 & 3.9343 & 0.11489 & 34.244 & 6.9609e-55 \\
\hline & \(\times 5\) & 4.9538 & 0.10799 & 45.873 & 3.8195e-66 \\
\hline
\end{tabular}

\section*{LinearModel.disp}
```

Number of observations: 100, Error degrees of freedom: 94
Root Mean Squared Error: 1.08
R-squared: 0.979, Adjusted R-Squared 0.978
F-statistic vs. constant model: 891, p-value = 1.59e-77

```

\section*{Alternatives \\ Enter \(m d l\) at the command line to obtain a display, where \(m d l\) is the name of your model.}

\section*{See Also LinearModel}

How To . "Linear Regression" on page 9-11
- "Stepwise Regression" on page 9-111
- "Robust Regression - Reduce Outlier Effects" on page 9-116
Purpose Display NaiveBayes classifier object
Syntax disp(nb)
Description disp(nb) prints a text representation of the NaiveBayes object nb,without printing the object name. In all other ways it's the same asleaving the semicolon off an expression.
See Also NaiveBayes | display

\section*{NonLinearModel.disp}

\section*{Purpose Display nonlinear regression model}

\section*{Syntax disp(mdl)}

Description
disp(mdl) displays the mal nonlinear model at the command line.
Input
Arguments
mdl
Nonlinear regression model, constructed by NonLinearModel.fit.

\section*{Examples}

\section*{Display a Nonlinear Regression Model}

Create and display a nonlinear regression model.
Load the reaction data, and specify both a model function and starting values for the iterations.
load reaction
modelfun = 'rate~(b1*x2-x3/b5)/(1+b2*x1+b3*x2+b4*x3)'; betaO = [1 . 05 . 02 . 1 2];

Create a model of the data.
mdl = NonLinearModel.fit(reactants,rate,...
modelfun, beta0) ;
Display the model.
disp(mdl)
Nonlinear regression model:
rate ~ (b1*x2 - x3/b5)/(1 + b2*x1 + b3*x2 + b4*x3)
\begin{tabular}{crrll}
Estimated Coefficients: & & \\
& Estimate & \multicolumn{1}{l}{ SE } & tStat & pValue \\
b1 & 1.2526 & 0.86701 & 1.4447 & 0.18654 \\
b2 & 0.062776 & 0.043561 & 1.4411 & 0.18753 \\
b3 & 0.040048 & 0.030885 & 1.2967 & 0.23089 \\
b4 & 0.11242 & 0.075157 & 1.4957 & 0.17309
\end{tabular}
```

    b5 1.1914 0.83671 1.4239 0.1923
    Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.193
R-Squared: 0.999, Adjusted R-Squared 0.998
F-statistic vs. constant model: 1.81e+03, p-value = 7.36e-12

```

\section*{Alternatives Enter mdl at the command line to obtain a display, where \(m d l\) is the name of your model.}

See Also NonLinearModel |
Concepts - "Nonlinear Regression" on page 9-198

\section*{piecewisedistribution.disp}

\author{
Purpose Display piecewisedistribution object
}

\section*{Syntax \(\quad \operatorname{disp}(A)\)}

Description disp(A) prints a text representation of the piecewisedistribution object A, without printing the object name. In all other ways it's the same as leaving the semicolon off an expression.

See Also piecewisedistribution

\section*{Purpose \\ Display qrandset object}

\section*{Syntax \\ disp(p)}

Description disp(p) displays the properties of the quasi-random point set s, without printing the variable name. disp prints out the number of dimensions and points in the point-set, and follows this with the list of all property values for the object.

See Also qrandset

\section*{qrandstream.disp}

Purpose Display qrandstream object

\section*{Syntax disp(q)}

Description disp(q) displays the quasi-random stream \(q\), without printing the variable name. disp prints the type and number of dimensions in the stream, and follows it with the list of point set properties.

See Also qrandstream
Purpose Display categorical array
Syntax display(A)
Description display(A) prints the categorical array A. categorical callsdisplay when a you do not use a semicolon to terminate a statement.
See Also categorical | disp

\section*{classregtree.display}

Purpose Display classregtree object
Syntax
display(t)
display(A)

Description display(t) prints the classregtree object \(t\). classregtree callsdisplay when a you do not use a semicolon to terminate a statement.
display(A) prints the categorical array A. categorical callsdisplay when a you do not use a semicolon to terminate a statement.

\author{
See Also \\ classregtree | eval | prune | test
}

Purpose Display cvpartition object

\section*{Syntax display(c)}

Description display (c) prints the cvpartition object c. cvpartition callsdisplay when a you do not use a semicolon to terminate a statement.

See Also cupartition

\section*{dataset.display}

Purpose Display dataset array

\section*{Syntax display(ds)}

Description display(ds) prints the dataset array ds, including variable names and observation names (if present). dataset callsdisplay when a you do not use a semicolon to terminate a statement

For numeric or categorical variables that are 2-D and have three or fewer columns, display prints the actual data. Otherwise, display prints the size and type of each dataset element.

For character variables that are 2-D and 10 or fewer characters wide, display prints quoted strings. Otherwise, display prints the size and type of each dataset element.

For cell variables that are 2-D and have three or fewer columns, display prints the contents of each cell (or its size and type if too large). Otherwise, display prints the size of each dataset element.
For time series variables, display prints columns for both the time and the data. If the variable is \(2-\mathrm{D}\) and has three or fewer columns, display prints the actual data. Otherwise, display prints the size and type of each dataset element.

For other types of variables, display prints the size and type of each dataset element.

See Also dataset | display | format

Purpose Display Gaussian mixture distribution object

\section*{Syntax display (obj)}

Description display(obj) prints a text representation of the gmdistribution object obj. gmdistribution callsdisplay when a you do not use a semicolon to terminate a statement.

See Also gmdistribution | disp

\section*{NaiveBayes.display}

\author{
Purpose Display NaiveBayes classifier object
}

\section*{Syntax display(nb)}

Description display(nb) prints a text representation of the NaiveBayes object nb. NaiveBayes callsdisplay when a you do not use a semicolon to terminate a statement.

See Also NaiveBayes | display
Purpose Display piecewisedistribution object
Syntax

display(A)

Description display (A) prints a text representation of the piecewisedistribution object A, without printing the object name. piecewisedistribution callsdisplay when a you do not use a semicolon to terminate a statement.

\author{
See Also \\ piecewisedistribution
}

\section*{ProbDist.DistName property}
```

Purpose Read-only string containing probability distribution name of ProbDist object

```

\section*{Description \\ DistName is a read-only property of the ProbDist class. DistName is a}
``` string containing the type of distribution used to create the object.
```


Values
 Possible values are:

```
- 'kernel'
- 'beta'
- 'binomial'
- 'birnbaumsaunders'
- 'exponential'
- 'extreme value'
- 'gamma'
- 'generalized extreme value'
- 'generalized pareto'
- 'inversegaussian'
- 'logistic'
- 'loglogistic'
- 'lognormal'
- 'nakagami'
- 'negative binomial'
- 'normal'
- 'poisson'
- 'rayleigh'
- 'rician'
```


ProbDist.DistName property

- 'tlocationscale'
- 'weibull'

Use this information to view and compare the type of distribution used to create distribution objects.

NaiveBayes.Dist property

Purpose Distribution names
Description The Dist property is a string or a 1-by-NDims cell array of strings indicating the types of distributions for all the features. If all the features use the same type of distribution, Dist is a single string. Otherwise Dist(j) indicates the distribution type used for the j th feature.

The valid strings for this property are the following:

'normal'	Normal distribution.
'kernel'	Kernel smoothing density estimate.
'mvmn'	Multivariate multinomial distribution.
'mn'	Multinomial bag-of-tokens model.

gmdistribution.DistName property

Purpose Type of distribution
Description The string 'gaussian mixture distribution'.

disttool

Purpose Interactive density and distribution plots

Syntax disttool

Description disttool is a graphical interface for exploring the effects of changing parameters on the plot of a cdf or pdf.

See Also randtool | dfittool

Purpose Convert categorical array to double array
Syntax $\quad B=\operatorname{double}(A)$
Description $\quad B=$ double (A) converts the categorical array A to a double array. Each element of B contains the internal categorical level code for the corresponding element of A.

See Also single

Purpose Convert dataset variables to double array
Syntax
b = double(A)
b = double(a, vars)

Description
$b=\operatorname{double}(A)$ returns the contents of the dataset A, converted to one double array. The classes of the variables in the dataset must support the conversion.
b = double(a,vars) returns the contents of the dataset variables specified by vars. vars is a positive integer, a vector of positive integers, a variable name, a cell array containing one or more variable names, or a logical vector.

See Also

dataset | single | replacedata

Purpose Drop levels

Syntax $\quad B=\operatorname{droplevels}(A)$
B = droplevels(A,oldlevels)
Description $\quad B=\operatorname{droplevels}(A)$ removes unused levels from the categorical array
A. B is a categorical array with the same size and values as A, but with a list of potential levels that includes only those present in some element of A .

B = droplevels(A, oldlevels) removes specified levels from the categorical array A. oldlevels is a cell array of strings or a 2-D character matrix specifying the levels to be removed.
droplevels removes levels, but does not remove elements. Elements of B that correspond to elements of A having levels in oldlevels all have an undefined level.

Examples

Example 1

Drop unused age levels from the data in hospital.mat:

```
load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);
AgeGroup = droplevels(AgeGroup);
getlabels(AgeGroup)
ans =
    '20s' '30s' '40s' '50s'
```


Example 2

1 Load patient data from the CSV file hospital. dat and store the information in a dataset array with observation names given by the first column in the data (patient identification):

```
patients = dataset('file','hospital.dat',...
    'delimiter',',',...
```


'ReadObsNames', true);

2 Make the $\{0,1\}$-valued variable smoke nominal, and change the labels to 'No' and 'Yes':
patients.smoke $=$ nominal(patients.smoke, \{'No', 'Yes'\});
3 Add new levels to smoke as placeholders for more detailed histories of smokers:

```
patients.smoke = addlevels(patients.smoke,...
    {'0-5 Years','5-10 Years','LongTerm'});
```

4 Assuming the nonsmokers have never smoked, relabel the 'No ' level:
patients.smoke = setlabels(patients.smoke,'Never','No');
5 Drop the undifferentiated 'Yes' level from smoke:
patients.smoke = droplevels(patients.smoke,'Yes');
Warning: OLDLEVELS contains categorical levels that were present in A, caused some array elements to have undefined levels.

Note that smokers now have an undefined level.
6 Set each smoker to one of the new levels, by observation name:

```
patients.smoke('YPL-320') = '5-10 Years';
```

See Also
addlevels | getlabels | islevel | mergelevels | reorderlevels

Purpose
Create dummy variables
Syntax
Description
D = dummyvar (group)
$D=$ dummyvar(group) returns a matrix D containing zeros and ones, whose columns are dummy variables for the grouping variable group. Columns of group represent categorical predictor variables, with values indicating categorical levels. Rows of group represent observations across variables.
group can be a numeric vector or categorical column vector representing levels within a single variable, a cell array containing one or more grouping variables, or a numeric matrix or cell array of categorical column vectors representing levels within multiple variables. If group is a numeric vector or matrix, values in any column must be positive integers in the range from 1 to the number of levels for the corresponding variable. In this case, dummyvars treats each column as a separate numeric grouping variable. With multiple grouping variables, the sets of dummy variable columns are in the same order as the grouping variables in group.

The order of the dummy variable columns in D matches the order of the groups defined by group. When group is a categorical vector, the groups and their order match the output of the getlabels (group) method. When group is a numeric vector, dummyvar assumes that the groups and their order are 1: max (group). In this respect, dummyvars treats a numeric grouping variable differently than grp2idx.
If group is n-by- p, D is n-by- S, where S is the sum of the number of levels in each of the columns of group. The number of levels s in any column of group is the maximum positive integer in the column or the number of categorical levels. Levels are considered distinct if they appear in different columns of group, even if they have the same value. Columns of D are, from left to right, dummy variables created from the first column of group, followed by dummy variables created from the second column of group, etc.
dummyvar treats NaN values or undefined categorical levels in group as missing data and returns NaN values in D.

Dummy variables are used in regression analysis and ANOVA to indicate values of categorical predictors.

Note If a column of 1 s is introduced in the matrix D , the resulting matrix $X=$ [ones(size ($\mathrm{D}, 1$), 1) D] will be rank deficient. The matrix D itself will be rank deficient if group has multiple columns. This is because dummy variables produced from any column of group always sum to a column of 1s. Regression and ANOVA calculations often address this issue by eliminating one dummy variable (implicitly setting the coefficients for dropped columns to zero) from each group of dummy variables produced by a column of group.

Examples

Suppose you are studying the effects of two machines and three operators on a process. Use group to organize predictor data on machine-operator combinations:

```
machine = [11 1 1 1 1 2 2 2 2]';
operator = [1 2 % 3 1 2 3 1 1 2]';
group = [machine operator]
group =
    1
    2
    1 3
    1
    2 2
    2
    2 1
    2
```

Use dummyvar to create dummy variables for a regression or ANOVA calculation:

```
D = dummyvar(group)
```

D =

1	0	1	0	0

1	0	0	1	0
1	0	0	0	1
1	0	1	0	0
0	1	0	1	0
0	1	0	0	1
0	1	1	0	0
0	1	0	1	0

The first two columns of D represent observations of machine 1 and machine 2 , respectively; the remaining columns represent observations of the three operators.

See Also regress | anova1

How To . "Grouping Variables" on page 2-51

- "Dummy Indicator Variables" on page 2-55
- "Regression with Categorical Covariates" on page 2-59

Purpose Durbin-Watson test
$\left.\begin{array}{cl}\text { Syntax } & p=\operatorname{dwtest}(r, x) \\ & p=\operatorname{dwtest}(r, x, \text { Name }, \text { Value }) \\ {[p, d w]=\operatorname{dwtest}(\ldots}\end{array}\right)$

Description

Input
 Arguments

$p=\operatorname{dwtest}(r, x)$ returns the p-value for the Durbin-Watson test of the null hypothesis that the residuals from a linear regression are uncorrelated. The alternative hypothesis is that there is autocorrelation among the residuals.
$\mathrm{p}=$ dwtest(r, x, Name, Value) returns the p-value for the Durbin-Watson test with additional options specified by one or more name-value pair arguments. For example, you can conduct a one-sided test or calculate the p-value using a normal approximation.
[p, dw] = dwtest (__) also returns the Durbin-Watson test statistic, dw , using any of the input arguments from the previous syntaxes.

x - Design matrix

matrix
Design matrix for a linear regression, specified as a matrix. Include a column of 1 values in the design matrix so the model contains a constant term.

Data Types
single | double

\mathbf{r} - Regression residuals

vector

Regression residuals, specified as a vector. Obtain r by performing a linear regression using a function such as regress, or by using the backslash operator.

Data Types
 single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'Tail','right','Method', 'approximate' specifies a right-tailed hypothesis test and calculates the p-value using a normal approximation.

'Method' - Computation method for p-value

'exact' | 'approximate'
Computation method for the p-value, specified as the comma-separated pair consisting of 'Method' and one of the following.
'exact \quad Calculate an exact p-value using the Pan algorithm. This is the default if the sample size is less than 400.
' approximate Calculate the p-value using a normal approximation.
This is the default if the sample size is 400 or larger.

Example: 'Method','exact'

'Tail' - Type of alternative hypothesis
 'both' (default) | 'right' | 'left'

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of 'Tail' and one of the following.

'both'	Test the alternate hypothesis that autocorrelation among the residuals is not zero.
'right'	Test the alternative hypothesis that autocorrelation among the residuals is greater than zero.
'left'	Test the alternative hypothesis that autocorrelation among the residuals is less than zero.

Example: 'Tail','right'

Output p-p-value

Arguments
scalar value in the range $(0,1)$
p-value of the test, returned as a scalar value in the range $(0,1) . \mathrm{p}$ is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of p cast doubt on the validity of the null hypothesis.

dw - Test statistic

nonnegative scalar value
Test statistic of the hypothesis test, returned as a nonnegative scalar value.

Examples Test Residuals for Correlation

Load the sample census data.
load census;
Create a design matrix using the census date (cdate) as the predictor. Add a column of 1 values to include a constant term.

```
n = length(cdate);
x = [ones(n,1),cdate];
```

Fit a linear regression to the data.

```
[b,bint,r] = regress(pop,x);
```

Test the null hypothesis that there is no autocorrelation among the residuals, r.

```
[p,dw] = dwtest(r,x)
```

p =
0
dw =
0.1308

The returned value $\mathrm{p}=0$ indicates rejection of the null hypothesis at the 5% significance level.

One-Sided Hypothesis Test

Load the sample census data.

```
load census;
```

Create a design matrix using the census date (cdate) as the predictor. Add a column of 1 values to include a constant term.

```
n = length(cdate);
x = [ones(n,1),cdate];
```

Fit a linear regression to the data.
[b,bint,r] = regress(pop,x);
Test the null hypothesis that there is no autocorrelation among regression residuals, against the alternative hypothesis that the autocorrelation is greater than zero.

```
[p,dw] = dwtest(r,x,'Tail','right')
p =
    0
```

$\mathrm{d} w=$
0.1308

The returned value $\mathrm{p}=0$ indicates rejection of the null hypothesis at the 5% significance level, in favor of the alternative hypothesis that the autocorrelation among residuals is greater than zero.

Definitions

Durbin-Watson Test

The Durbin-Watson test is used to test if linear regression residuals are uncorrelated, against the alternative that autocorrelation exists.

The test statistic is

$$
d=\frac{\sum_{t=2}^{T}\left(e_{t}-e_{t-1}\right)^{2}}{\sum_{t=1}^{T} e_{t}^{2}}
$$

where T is the number of observations, and e_{t} is the residual at time t.
The p-value can be calculated exactly using the Pan algorithm. Alternatively, the p-value can be estimated using a normal approximation. Significantly small p-values indicate correlation among residuals.

See Also
 regress

LinearModel.dwtest

Purpose Durbin-Watson test of linear model
Syntax

P = dwtest(mdl)
[P,DW] = dwtest(mdl)
[P,DW] = dwtest(mdl,method)
[P,DW] = dwtest(mdl,method,tail)

Input

Arguments
$\mathrm{P}=\mathrm{dwtest}(\mathrm{mdl})$ returns the p-value of the Durbin-Watson test on the mdl linear model.
[P,DW] = dwtest(mdl) returns the Durbin-Watson statistic.
[P,DW] = dwtest(mdl,method) specifies the method dwtest uses to compute the p-value.
[P,DW] = dwtest(mdl,method,tail) specifies the alternative hypothesis.
mdl
Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.

method

Algorithm for computing the p-value:

- 'exact ' - Calculates an exact p-value using Pan's algorithm.
- 'approximate' - Calculates the p-value using a normal approximation.

Default: 'exact' when the sample size is less than 400 , 'approximate' otherwise

tail

dwtest tests whether mdl has no serial correlation against one of these alternative hypotheses:

LinearModel.dwtest

Tail	Alternative Hypothesis
'both'	Serial correlation is not 0.
'right'	Serial correlation is greater than 0 (right-tailed test).
'left'	Serial correlation is less than 0 (left-tailed test).

Default: 'both'

Output P

Arguments

Definitions

Durbin-Watson Statistic

Let r be the vector of residuals (in mdl.residuals.response). The Durbin-Watson statistic is

$$
D W=\frac{\sum_{i=1}^{n-1}\left(r_{i+1}-r_{i}\right)^{2}}{\sum_{i=1}^{n} r_{i}^{2}} .
$$

Examples
 Test Residuals for Autocorrelation

Examine whether the residuals from a fitted model of census data over time have autocorrelated residuals.

Load the census data and create a linear model.

LinearModel.dwtest

load census
mdl = LinearModel.fit(cdate,pop);
Find the p-value of the Durbin-Watson autocorrelation test.
P = dwtest(mdl)
$P=$
0
There is significant autocorrelation in the residuals.

Algorithms

References
Approximate calculation of the p-value uses a normal approximation [1]. Exact calculation uses Pan's algorithm [2].
[1] Durbin, J., and G. S. Watson. Testing for Serial Correlation in Least Squares Regression I. Biometrika 37, pp. 409-428, 1950.
[2] Farebrother, R. W. Pan's Procedure for the Tail Probabilities of the Durbin-Watson Statistic. Applied Statistics 29, pp. 224-227, 1980.
See Also LinearModel
How To . "Linear Regression" on page 9-11

Purpose Empirical cumulative distribution function
Syntax

```
[f,x] = ecdf(y)
[f,x] = ecdf(y,Name,Value)
[f,x,flo,fup] = ecdf(___)
ecdf(
```

\qquad

```
ecdf(ax, ___)
```


Description

$[f, x]=\operatorname{ecdf}(y)$ returns the empirical cumulative distribution function (cdf), f, evaluated at the points in x, using the data in the vector y .

In survival and reliability analysis, this empirical cdf is called the Kaplan-Meier estimate. And the data might correspond to survival or failure times.
$[f, x]=\operatorname{ecdf}(y, N a m e$, Value $)$ returns the empirical function values, f, evaluated at the points in x, with additional options specified by one or more Name, Value pair arguments.

For example, you can specify the type of function to evaluate or which data is censored.
[f,x,flo,fup] $=\operatorname{ecdf}(\ldots$) also returns the 95% lower and upper confidence bounds for the evaluated function values. You can use any of the input arguments in the previous syntaxes.
ecdf computes the confidence bounds using Greenwood's formula. They are not simultaneous confidence bounds.
$\operatorname{ecdf}(\ldots$,$) plots the evaluated function.$
ecdf(ax, __) plots the evaluated function using axes with the handle, ax, instead of the current axes returned by gca.

Input Arguments

y-Input data
 column vector

Input data, specified as a column vector. For example, in survival or reliability analysis, data might be survival or failure times for each item or individual.

Data Types

single | double

ax-Axes handle

handle
Axes handle for the figure ecdf plots to, specified as a handle.
For instance, if h is a handle for a figure, then ecdf can plot to that figure as follows.

Example: $\operatorname{ecdf(h,x)~}$

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'censoring', c,'function', 'cumulative hazard', 'alpha', 0.025,'bounds', 'on' specifies that ecdf returns the cumulative hazard function and plots the 97.5% confidence bounds, accounting for the censored data specified by vector c .

'censoring' - Indicator of censored data

array of 0 s (default) | vector of 0 s and 1 s
Indicator of censored data, specified as the comma-separated pair including 'censoring' and a Boolean array of the same size as x. Enter 1 for observations that are right-censored and 0 for observations that are fully observed. Default is all observations are fully observed.

For instance, if vector cdatastores the censored data information, you can enter the censoring information as follows.

Example: 'censoring', cdata

Data Types

logical

'frequency' - Frequency of observations

array of 1 s (default) | vector of nonnegative scalars
Frequency of observations, specified as the comma-separated pair consisting of 'frequency' and a vector containing nonnegative integer counts. This vector is the same size as the vector x. The j th element of this vector gives the number of times the j th element of x was observed. Default is one observation per element of x.

For instance, if failurefreq is a vector of frequencies, then you can enter it as follows.

```
Example: 'frequency',failurefreq
```

```
Data Types
single | double
```


'alpha' - Confidence level

0.05 (default) | scalar value in the range (0,1)

Confidence level for the confidence interval of the evaluated function, specified as the comma-separated pair consisting of 'alpha' and a scalar value between in the range (0,1). Default is 0.05 for 95% confidence. For a given value alpha, the confidence level is $100(1$-alpha) $\%$.

For instance, for a 99% confidence interval, you can specify the alpha value as follows.

Example: 'alpha', 0.01

Data Types
 single | double

'function' - Type of function returned

```
'cdf'(default) | 'survivor' | 'cumulative hazard'
```

Type of function that ecdf evaluates and returns, specified as the comma-separated pair consisting of 'function' and one of the following.

'cdf'	Default. Cumulative distribution function.
'survivor'	Survivor function.
'cumulative hazard '	Cumulative hazard function.

Example: 'function','cumulative hazard'

Data Types

char

'bounds' - Indicator for including bounds

'off' (default) | 'on'
Indicator for including bounds, specified as the comma-separated pair consisting of 'bounds ' and one of the following.

'off'	Default. Specify to omit bounds.
'on'	Specify to include bounds.

Note This name-value argument is used only for plotting.

Example: 'bounds', 'on'

Data Types

char

Output Arguments

f-Function values

column vector
Function values evaluated at the points in x , returned as a column vector.

x - Distinct observed points

column vector
Distinct observed points in data vector y , returned as a column vector.

flo - Lower confidence bound

column vector
Lower confidence bound for the evaluated function, returned as a column vector. ecdf computes the confidence bounds using Greenwood's formula. They are not simultaneous confidence bounds.

fup - Upper confidence bound
 column vector

Upper confidence bound for the evaluated function, returned as a column vector. ecdf computes the confidence bounds using Greenwood's formula. They are not simultaneous confidence bounds.

Examples Compute Empirical Cumulative Distribution Function

Compute the Kaplan-Meier estimate of the cumulative distribution function (cdf) for simulated survival data.

Generate survival data from a Weibull distribution with parameters 3 and 1.

```
rng('default') % for reproducibility
failuretime = random('wbl',3,1,15,1);
```

Compute the Kaplan-Meier estimate of the cdf for survival data.
[f,x] = ecdf(failuretime);
[f,x]
ans =

0	0.0895
0.0667	0.0895
0.1333	0.1072
0.2000	0.1303
0.2667	0.1313
0.3333	0.2718
0.4000	0.2968
0.4667	0.6147
0.5333	0.6684
0.6000	1.3749
0.6667	1.8106
0.7333	2.1685
0.8000	3.8350
0.8667	5.5428
0.9333	6.1910
1.0000	6.9825

Plot the estimated cdf.
figure()
plot(x,f)

Empirical Hazard Function of Right-Censored Data

Compute and plot the hazard function of simulated right-censored survival data.

Generate failure times from a Birnbaum-Saunders distribution.

```
rng('default') % for reproducibility
failuretime = random('birnbaumsaunders',0.3,1,100,1);
```

Assuming that the end of the study is at time 0.9 , generate a logical array that indicates simulated failure times that are larger than 0.9 as censored data, and store this information in a vector.

T = 0.9;
cens = (failuretime>T);
Plot the empirical hazard function for the data.

```
ecdf(failuretime,'function','cumulative hazard',...
'censoring',cens,'bounds','on');
```


Compare Empirical Cumulative Distribution Function (CDF) with Known CDF

Generate right-censored survival data and compare the empirical cumulative distribution function (cdf) with the known cdf.

Generate failure times from an exponential distribution with mean failure time of 15 .

```
rng('default')
y = exprnd(15,75,1);
```

Generate drop-out times from an exponential distribution with mean failure time of 30 .

```
d = exprnd(30,75,1);
```

Generate the observed failure times. They are the minimum of the generated failure times and the drop-out times.
$\mathrm{t}=\min (\mathrm{y}, \mathrm{d})$;
Create a logical array that indicates generated failure times that are larger than the drop-out times. The data for which this is true are censored.

```
censored = (y>d);
```

Compute the empirical cdf and confidence bounds.

```
[f,x,flo,fup] = ecdf(t,'censoring',censored);
```

Plot the cdf and confidence bounds.

```
figure()
ecdf(t,'censoring',censored,'bounds','on');
hold on
```

Superimpose a plot of the known population cdf.

```
xx = 0:.1:max(t);
yy = 1-exp(-xx/15);
plot(xx,yy,'g-','LineWidth',2)
axis([0 50 0 1])
legend('Empirical','LCB','UCB','Population',...
    'Location','SE')
hold off
```


Empirical Survivor Function with 99\% Confidence Bounds

Generate survival data and plot the empirical survivor function with 99% confidence bounds.

Generate lifetime data from a Weibull distribution with parameters 100 and 2.
rng('default') \% for reproducibility
R = wblrnd(100,2,100,1);

Plot the survivor function for the data with 99% confidence bounds.

```
ecdf(R,'function','survivor','alpha',0.01,'bounds','on')
hold on
```

Fit the Weibull survivor function.
$x=1: 1: 250 ;$
wblsurv = 1-cdf('weibull',x,100,2); plot(x,wblsurv,'g-','LineWidth', 2) legend('Empirical','LCB','UCB', 'Population',... 'Location', 'NE')

The survivor function based on the actual distribution is within the confidence bounds.

Definitions
 Greenwood's Formula

Approximation for the variance of Kaplan-Meier estimator. The variance estimate is given by

$$
V(S(t))=S^{2}(t) \sum_{t_{i}<T} \frac{d_{i}}{r_{i}\left(r_{i}-d_{i}\right)},
$$

where r_{i} is the number at risk at time t_{i}, and d_{i} is the number of failures at time t_{i}.

References

[1] Cox, D. R., and D. Oakes. Analysis of Survival Data. London: Chapman \& Hall, 1984.
[2] Lawless, J. F. Statistical Models and Methods for Lifetime Data. 2nd ed., Hoboken, NJ: John Wiley \& Sons, Inc., 2003.

See Also cdfplot | ecdfhist

Purpose
Syntax

Description

Input
Arguments

Histogram based on empirical cumulative distribution function

```
[n,c] = ecdfhist(f,x)
[n,c] = ecdfhist(f,x,m)
n = ecdfhist(f,x,centers)
ecdfhist(
```

\qquad
[n, c] = ecdfhist (f, x) returns the heights, n, of histogram bars for 10 equally spaced bins and the position of the bin centers, c.
ecdfhist computes the bar heights from the increases in the empirical cumulative distribution function, f, at evaluation points, x. It normalizes the bar heights so that the area of the histogram is equal to 1. In contrast, hist produces bars with heights representing bin counts.
[n, c] = ecdfhist(f,x,m) returns the histogram bars using m bins.
$\mathrm{n}=$ ecdfhist(f,x,centers) returns the heights of the histogram bars with bin centers specified by centers.
ecdfhist (_ _) plots the histogram bars.

f-Empirical cdf values

vector
Empirical cdf values at given evaluation points, x, specified as a vector.
For instance, you can use ecdf to obtain the empirical cdf values and enter them in ecdfhist as follows.

Example: [f,x] = ecdf(failure); ecdfhist(f,x);
Data Types
single | double

x-Evaluation points

vector

Evaluation points at which empirical cdf values, f, are calculated, specified as a vector.
For instance, you can use ecdf to obtain the empirical cdf values and enter them in ecdfhist as follows.

Example: [f,x] = ecdf(failure); ecdfhist(f,x);
Data Types
single | double

m - Number of bins

scalar

Number of bins, specified as a scalar.
For instance, you can draw a histogram with 8 bins as follows.
Example: ecdfhist(f,x,8)
Data Types
single | double
centers - Center points of bins
vector
Center points of bins, specified as a vector.
Example: centers = 2:2:10; ecdfhist(f,x,centers);
Data Types
single | double

Output
 Arguments

n - Heights of histogram bars

row vector
Heights of histogram bars ecdfhist calculates based on the empirical cdf values, returned as a row vector.

c-Position of bin centers

row vector
Position of bin centers, returned as a row vector.

Examples Return Histogram Bar Heights and Bin Centers

Compute the histogram bar heights based on the empirical cumulative distribution function.

Generate failure times from a Birnbaum-Saunders distribution.

```
rng('default') % for reproducibility
failuretime = random('birnbaumsaunders',0.3,1,100,1);
```

Assuming that the end of the study is at time 0.9 , mark the generated failure times that are larger than 0.9 as censored data and store that information in a vector.

```
T = 0.9;
cens = (failuretime>T);
```

Compute the empirical cumulative distribution function for the data.
[f,x] = ecdf(failuretime,'censoring',cens);
Now, find the bar heights of the histogram using the cumulative distribution function estimate.

```
n = ecdfhist(f,x);
[n' c']
ans =
    2.3529 0.0715
    1.7647 0.1565
    1.4117 0.2415
    1.5294 0.3265
    1.0588 0.4115
    0.4706 0.4965
```

0.4706	0.5815
0.9412	0.6665
0.2353	0.7515
0.2353	0.8365

Return Bar Heights and Bin Centers for a Given Number of Bins

Compute the bar heights for six bins using the empirical cumulative distribution function and also return the bin centers.

Generate failure times from a Birnbaum-Saunders distribution.

```
rng('default') % for reproducibility
failuretime = random('birnbaumsaunders',0.3,1,100,1);
```

Assuming that the end of the study is at time 0.9, mark the generated failure times that are larger than 0.9 as censored data and store that information in a vector.

```
T = 0.9;
cens = (failuretime>T);
```

First, compute the empirical cumulative distribution function for the data.
[f,x] = ecdf(failuretime,'censoring',cens);
Now, estimate the histogram with six bins using the cumulative distribution function estimate.

```
[n,c] = ecdfhist(f,x,6);
[n' c']
ans =
    1.9764 0.0998
    1.7647 0.2415
    1.1294 0.3831
```

0.4235	0.5248
0.7764	0.6665
0.2118	0.8081

Draw Histogram for Given Bin Centers

Draw the histogram of the empirical cumulative distribution histogram for specified bin centers.

Generate failure times from a Birnbaum-Saunders distribution.
rng('default') \% for reproducibility
failuretime $=$ random('birnbaumsaunders', 0.3,1,100,1);

Assuming that the end of the study is at time 0.9 , mark the generated failure times that are larger than 0.9 as censored data and store that information in a vector.

```
T = 0.9;
cens = (failuretime>T);
```

Define bin centers.
centers = 0.1:0.1:1;

Compute the empirical cumulative distribution function for the data and draw the histogram for specified bin centers.

```
[f,x] = ecdf(failuretime,'censoring',cens);
ecdfhist(f,x,centers)
axis([0 1 0 2.5])
```


Compare Histogram with Known Probability Distribution Function

Generate right-censored survival data and compare the histogram from cumulative distribution function with the known probability distribution function.

Generate failure times from an exponential distribution with mean failure time of 15 .

```
rng('default')
y = exprnd(15,75,1);
```

Generate drop-out times from an exponential distribution with mean failure time of 30 .
$d=\operatorname{exprnd}(30,75,1) ;$
Record the minimum of these times as the observed failure times.
$\mathrm{t}=\mathrm{min}(\mathrm{y}, \mathrm{d})$;
Generate censoring by finding the generated failure times that are greater than the drop-out times.
censored $=(y>d)$;
Calculate the empirical cdf and plot a histogram using the empirical cumulative distribution function.

```
[f,x] = ecdf(t,'censoring',censored);
ecdfhist(f,x)
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
hold on
```

Superimpose a plot of the known population pdf.

```
xx = 0:.1:max(t);
yy = exp(-xx/15)/15;
plot(xx,yy,'r-','LineWidth',2)
hold off
```


See Also ecdf | hist | histc

ClassificationKNN.edge

Purpose Edge of k-nearest neighbor classifier
Syntax $\quad \begin{aligned} E & =\operatorname{edge}(m d l, X, Y) \\ E & =\operatorname{edge}(m d l, X, Y, \text { Name, Value })\end{aligned}$
Description $E=$ edge ($m d l, X, Y$) returns the classification edge for $m d l$ with data X and classification Y.
$\mathrm{E}=$ edge(mdl, X, Y, Name, Value) computes the edge with additional options specified by one or more Name, Value pair arguments.

Input
 Arguments

mdl

k-nearest neighbor classifier, created by ClassificationKNN.fit.

X

Matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

Y

Grouping variables of response values with the same number of elements (rows) as X. Each entry in Y is the response to the data in the corresponding row of X.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

'weights'

Observation weights, a numeric vector of length size ($X, 1$). If you supply weights, edge computes weighted classification edge.

Default: ones(size(X,1))

ClassificationKNN.edge

Output Arguments
 \section*{E}

Definitions

Classification edge, a scalar that is the mean classification margin (see "Margin" on page 20-643).

Edge

The edge is the mean value of the classification margin.

Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes.

Margin is a column vector with the same number of rows as X.

Score

The score of a classification is the posterior probability of the classification. The posterior probability is the number of neighbors that have that classification, divided by the number of neighbors. For a more detailed definition that includes weights and prior probabilities, see "Posterior Probability" on page 20-2181.

Examples Edge Calculation

Construct a k-nearest neighbor classifier for the Fisher iris data, where $k=5$.

Load the data.

```
load fisheriris
```

$X=$ meas;
$Y=$ species;

Construct a classifier for five-nearest neighbors.

```
mdl = ClassificationKNN.fit(X,Y,'NumNeighbors',5);
```


ClassificationKNN.edge

Examine the edge of the classifier for minimum, mean, and maximum observations classified 'setosa', 'versicolor', and 'virginica' respectively.

NewX = [min(X); mean(X);max $(X)]$;
$Y=$ \{'setosa';'versicolor';'virginica'\};
E = edge(mdl,NewX,Y)

E =

1

The classifier has no doubt that the Y entries are correct classifications (all five nearest neighbors of each NewX point classify as the corresponding Y entry).

See Also

ClassificationKNN | ClassificationKNN.fit | loss | margin |

Concepts

- "Classification Using Nearest Neighbors" on page 15-9

CompactClassificationDiscriminant.edge

Purpose	Classification edge
Syntax	$E=$ edge (obj, X, Y)
	$\mathrm{E}=$ edge(obj, X, Y, Name, Value)
Description	$\mathrm{E}=\mathrm{edge}(\mathrm{obj}, \mathrm{X}, \mathrm{Y})$ returns the classification edge for obj with data X and classification Y.
	E = edge(obj, X, Y, Name, Value) computes the edge with additional options specified by one or more Name, Value pair arguments.
Input Arguments	obi
	Discriminant analysis classifier of class ClassificationDiscriminant or CompactClassificationDiscriminant, typically constructed with ClassificationDiscriminant.fit.
	X
	Matrix where each row represents an observation, and each column represents a predictor. The number of columns in X must equal the number of predictors in obj.
	Y
	Class labels, with the same data type as exists in obj. The number of elements of Y must equal the number of rows of X.
	Name-Value Pair Arguments
	Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
	'weights'

Observation weights, a numeric vector of length size ($\mathrm{X}, 1$). If you supply weights, edge computes the weighted classification edge.

CompactClassificationDiscriminant.edge

Default: ones(size (X,1))

Output

Arguments

Definitions

Edge

The edge is the weighted mean value of the classification margin. The weights are the class probabilities in obj. Prior. If you supply weights in the weights name-value pair, those weights are normalized to sum to the prior probabilities in the respective classes, and are then used to compute the weighted average.

Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix X . A high value of margin indicates a more reliable prediction than a low value.

Score (discriminant analysis)

For discriminant analysis, the score of a classification is the posterior probability of the classification. For the definition of posterior probability in discriminant analysis, see "Posterior Probability" on page 14-7.

Examples Compute the classification edge and margin for the Fisher iris data, trained on its first two columns of data, and view the last 10 entries:

```
load fisheriris
X = meas(:,1:2);
obj = ClassificationDiscriminant.fit(X,species);
E = edge(obj,X,species)
E =
    0.4980
```


CompactClassificationDiscriminant.edge

```
M = margin(obj,X,species);
M(end-10: end)
ans =
    0.6551
    0.4838
    0.6551
    -0.5127
    0.5659
    0.4611
    0.4949
    0.1024
    0.2787
    -0.1439
    -0.4444
```

The classifier trained on all the data is better:
obj = ClassificationDiscriminant.fit(meas,species);
E = edge(obj,meas,species)
E =
0.9454

M = margin(obj,meas,species);
M (end-10: end)
ans $=$
0.9983
1.0000
0.9991
0.9978
1.0000
1.0000
0.9999
0.9882

CompactClassificationDiscriminant.edge

0.9937
1.0000
0.9649
See Also ClassificationDiscriminant | loss | margin | predict
How To . "Discriminant Analysis" on page 14-3

CompactClassificationEnsemble.edge

Purpose	Classification edge
Syntax	$E=$ edge $(e n s, X, Y)$
	$E=$ edge $(e n s, X, Y$, Name, Value $)$

Description

Input Arguments

$E=$ edge (ens, X, Y) returns the classification edge for ens with data X and classification Y.
$\mathrm{E}=$ edge(ens, X, Y, Name, Value) computes the edge with additional options specified by one or more Name, Value pair arguments.

ens

A classification ensemble constructed with fitensemble, or a compact classification ensemble constructed with compact.

X

A matrix where each row represents an observation, and each column represents a predictor. The number of columns in X must equal the number of predictors in ens.

Y

Class labels, with the same data type as exists in ens. The number of elements of Y must equal the number of rows of X.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
'learners'
Indices of weak learners in the ensemble ranging from 1 to ens.NTrained. edge uses only these learners for calculating loss.

Default: 1:NTrained

CompactClassificationEnsemble.edge

'mode'

String representing the meaning of the output E :

- 'ensemble' - E is a scalar value, the edge for the entire ensemble.
- 'individual' - E is a vector with one element per trained learner.
- 'cumulative' - E is a vector in which element J is obtained by using learners $1: \mathrm{J}$ from the input list of learners.

Default: 'ensemble'

'UseObsForLearner'

A logical matrix of size N -by-T, where:

- N is the number of rows of X .
- T is the number of weak learners in ens.

When UseObsForLearner (i, j) is true, learner j is used in predicting the class of row i of X.

Default: $\operatorname{true}(\mathrm{N}, \mathrm{T})$

'weights'

Observation weights, a numeric vector of length size ($\mathrm{X}, 1$). If you supply weights, edge computes weighted classification edge.

Default: ones(size(X,1))

Output E Arguments

The classification edge, a vector or scalar depending on the setting of the mode name-value pair. Classification edge is weighted average classification margin.

CompactClassificationEnsemble.edge

Definitions Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix X .

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

- AdaBoostM1 scores range from $-\infty$ to ∞.
- Bag scores range from 0 to 1 .

Edge

The edge is the weighted mean value of the classification margin. The weights are the class probabilities in ens.Prior. If you supply weights in the weights name-value pair, those weights are used instead of class probabilities.

Examples

Make a boosted ensemble classifier for the ionosphere data, and find the classification edge for the last few rows:

```
load ionosphere
ens = fitensemble(X,Y,'AdaboostM1',100,'Tree');
E = edge(ens,X(end-10:end,:),Y(end-10:end))
E =
    8.3310
```

See Also margin | edge

CompactClassificationTree.edge

\section*{Purpose Classification edge
 Syntax \quad| $E=\operatorname{edge}($ tree $, X, Y)$ | |
| ---: | :--- |
| E | $=$ edge(tree $, X, Y$, Name, Value $)$ |
 Description $E=$ edge(tree $, X, Y)$ returns the classification edge for tree with data X and classification Y.
 $\mathrm{E}=$ edge(tree, X, Y, Name, Value) computes the edge with additional options specified by one or more Name, Value pair arguments.
 Input
 Arguments
 A classification tree created by ClassificationTree.fit, or a compact classification tree created by compact.
 x
 A matrix where each row represents an observation, and each column represents a predictor. The number of columns in X must equal the number of predictors in tree.}

Y

Class labels, with the same data type as exists in tree. The number of elements of Y must equal the number of rows of X.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

'weights'

Observation weights, a numeric vector of length size ($X, 1$). If you supply weights, edge computes weighted classification edge.

Default: ones(size(X,1))

CompactClassificationTree.edge

Output Arguments
 \section*{E}

Definitions

The edge, a scalar representing the weighted average value of the margin.

Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as the matrix X.

Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.

For example, consider classifying a predictor X as true when $\mathrm{X}<0.15$ or $X>0.95$, and X is false otherwise.

1
Generate 100 random points and classify them:

```
rng(0,'twister') % for reproducibility
X = rand(100,1);
Y = (abs(X - . 55) > .4);
tree = ClassificationTree.fit(X,Y);
view(tree,'mode','graph')
```


CompactClassificationTree.edge

2
Prune the tree:

```
tree1 = prune(tree,'level',1);
view(tree1,'mode','graph')
```


CompactClassificationTree.edge

The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than . 94 as false. Therefore, the score for observations that are greater than . 15 should be about $.05 / .85=.06$ for true, and about $.8 / .85=.94$ for false.

3

Compute the prediction scores for the first 10 rows of X :

```
[~,score] = predict(tree1,X(1:10));
[score X(1:10,:)]
ans =
\begin{tabular}{rrr}
0.9059 & 0.0941 & 0.8147 \\
0.9059 & 0.0941 & 0.9058 \\
0 & 1.0000 & 0.1270 \\
0.9059 & 0.0941 & 0.9134 \\
0.9059 & 0.0941 & 0.6324 \\
0 & 1.0000 & 0.0975
\end{tabular}
\(0.9059 \quad 0.0941 \quad 0.2785\)
```


CompactClassificationTree.edge

0.9059	0.0941	0.5469
0.9059	0.0941	0.9575
0.9059	0.0941	0.9649

Indeed, every value of X (the rightmost column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1, while the other values of X have associated scores of 0.91 and 0.09 . The difference (score 0.09 instead of the expected .06) is due to a statistical fluctuation: there are 8 observations in X in the range (. 95,1) instead of the expected 5 observations.

Edge

The edge is the weighted mean value of the classification margin. The weights are the class probabilities in tree. Prior. If you supply weights in the weights name-value pair, those weights are normalized to sum to the prior probabilities in the respective classes, and are then used to compute the weighted average.

Examples Compute the classification margin and edge for the Fisher iris data, trained on its first two columns of data, and view the last 10 entries:

```
load fisheriris
X = meas(:,1:2);
tree = ClassificationTree.fit(X,species);
E = edge(tree,X,species)
E =
    0.6299
M = margin(tree,X,species);
M(end-10:end)
ans =
    0.1111
    0 . 1 1 1 1
    0.1111
    -0.2857
```


CompactClassificationTree.edge

$$
\begin{aligned}
& 0.6364 \\
& 0.6364 \\
& 0.1111 \\
& 0.7500 \\
& 1.0000 \\
& 0.6364 \\
& 0.2000
\end{aligned}
$$

The classification tree trained on all the data is better:

```
tree = ClassificationTree.fit(meas,species);
E = edge(tree,meas,species)
E =
    0.9384
M = margin(tree,meas,species);
M(end-10: end)
ans =
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
    0.9565
```

See Also margin | loss | predict

Purpose Last index in indexing expression for categorical array

Syntax end (A, k, n)

Description end (A, k, n) indexes expressions involving the categorical array A when end is part of the k-th index out of n indices. For example, the expression $A(e n d-1,:)$ calls A's end method with end (A, 1,2).

See Also single

Purpose
Last index in indexing expression for dataset array

Syntax
 end (A, k, n)

Description end (A, k, n) is called for indexing expressions involving the dataset A when end is part of the k-th index out of n indices. For example, the expression A(end-1,:) calls A's end method with end (A, 1,2).

qrandset.end

Purpose Last index in indexing expression for point set

Syntax
 end ($\mathrm{p}, \mathrm{k}, \mathrm{n}$)

Description end (p, k, n) is called for indexing expressions involving the point set p when end is part of the k-th index out of n indices. For example, the expression p (end-1,:) calls p's end method with end $(p, 1,2)$.

See Also qrandset

Purpose
 Extreme value cumulative distribution function

Syntax

P = evcdf(X,mu,sigma)
[P,PLO,PUP] = evcdf(X,mu,sigma,pcov,alpha)
Description
$P=\operatorname{evcdf}(X, m u$, sigma) computes the cumulative distribution function
(cdf) for the type 1 extreme value distribution, with location parameter mu and scale parameter sigma, at each of the values in $\mathrm{X} . \mathrm{X}, \mathrm{mu}$, and sigma can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other inputs. The default values for mu and sigma are 0 and 1, respectively.
[P,PLO,PUP] = evcdf(X,mu,sigma,pcov,alpha) produces confidence bounds for P when the input parameters mu and sigma are estimates. pcov is a 2 -by- 2 covariance matrix of the estimated parameters. alpha has a default value of 0.05 , and specifies $100(1$ - alpha) $\%$ confidence bounds. PLO and PUP are arrays of the same size as P, containing the lower and upper confidence bounds.

The function evcdf computes confidence bounds for P using a normal approximation to the distribution of the estimate

$$
\frac{X-\hat{\mu}}{\hat{\sigma}}
$$

and then transforming those bounds to the scale of the output P. The computed bounds give approximately the desired confidence level when you estimate mu, sigma, and pcov from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The type 1 extreme value distribution is also known as the Gumbel distribution. The version used here is suitable for modeling minima; the mirror image of this distribution can be used to model maxima by negating X. See "Extreme Value Distribution" on page B-32 for more details. If x has a Weibull distribution, then $X=\log (x)$ has the type 1 extreme value distribution.

See Also cdf | evpdf | evinv \| evstat | evfit | evlike | evrnd
How To . "Extreme Value Distribution" on page B-32

Purpose
Syntax
Description
Extreme value parameter estimates

```
parmhat = evfit(data)
[parmhat,parmci] = evfit(data)
[parmhat,parmci] = evfit(data,alpha)
[...] = evfit(data,alpha,censoring)
[...] = evfit(data,alpha,censoring,freq)
[...] = evfit(data,alpha,censoring,freq,options)
```

parmhat = evfit(data) returns maximum likelihood estimates of the parameters of the type 1 extreme value distribution given the data in the vector data. parmhat (1) is the location parameter, , and parmhat(2) is the scale parameter, σ.
[parmhat, parmci] = evfit(data) returns 95% confidence intervals for the parameter estimates on the and σ parameters in the 2 -by- 2 matrix parmci. The first column of the matrix of the extreme value fit contains the lower and upper confidence bounds for the parameter , and the second column contains the confidence bounds for the parameter σ.
[parmhat,parmci] = evfit(data,alpha) returns 100(1-alpha)\% confidence intervals for the parameter estimates, where alpha is a value in the range [$\left.\begin{array}{ll}0 & 1\end{array}\right]$ specifying the width of the confidence intervals. By default, alpha is 0.05 , which corresponds to 95% confidence intervals.
[...] = evfit(data,alpha, censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = evfit(data,alpha,censoring,freq) accepts a frequency vector, freq of the same size as data. Typically, freq contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for alpha, censoring, or freq to use their default values.
[...] = evfit(data,alpha, censoring,freq,options) accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood
estimates. You can create options using the function statset. Enter statset('evfit') to see the names and default values of the parameters that evfit accepts in the options structure. See the reference page for statset for more information about these options.
The type 1 extreme value distribution is also known as the Gumbel distribution. The version used here is suitable for modeling minima; the mirror image of this distribution can be used to model maxima by negating X. See "Extreme Value Distribution" on page B-32 for more details. If x has a Weibull distribution, then $X=\log (x)$ has the type 1 extreme value distribution.

See Also

mle | evlike | evpdf | evcdf | evinv | evstat | evrnd

How To
 - "Extreme Value Distribution" on page B-32

Purpose
 Extreme value inverse cumulative distribution function

Syntax

Description
$X=\operatorname{evinv(P,mu,sigma)~}$
[X,XLO,XUP] = evinv(P,mu,sigma,pcov,alpha)
$X=\operatorname{evinv}(P, m u$, sigma) returns the inverse cumulative distribution function (cdf) for a type 1 extreme value distribution with location parameter mu and scale parameter sigma, evaluated at the values in P. P, mu, and sigma can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other inputs. The default values for mu and sigma are 0 and 1, respectively.
[X,XLO,XUP] = evinv(P,mu,sigma,pcov,alpha) produces confidence bounds for X when the input parameters mu and sigma are estimates. pcov is the covariance matrix of the estimated parameters. alpha is a scalar that specifies $100(1-a l p h a) \%$ confidence bounds for the estimated parameters, and has a default value of 0.05 . XLO and XUP are arrays of the same size as X containing the lower and upper confidence bounds.

The function evinv computes confidence bounds for P using a normal approximation to the distribution of the estimate

$$
\hat{\mu}+\hat{\sigma} q
$$

where q is the Pth quantile from an extreme value distribution with parameters $\mu=0$ and $\sigma=1$. The computed bounds give approximately the desired confidence level when you estimate mu, sigma, and pcov from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The type 1 extreme value distribution is also known as the Gumbel distribution. The version used here is suitable for modeling minima; the mirror image of this distribution can be used to model maxima by negating X. See "Extreme Value Distribution" on page B-32 for more details. If x has a Weibull distribution, then $X=\log (x)$ has the type 1 extreme value distribution.

evinv

See Also icdf | evcdf | evpdf | evstat | evfit | evlike | evrnd

Purpose Test handle equality

Syntax
h1 == h2
tf = eq(h1, h2)

Description $\quad \mathrm{h} 1==\mathrm{h} 2$ performs element-wise comparisons between handle arrays h 1 and h2. h 1 and h2 must be of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions, where each element is an element-wise equality result. If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the dimensions of the array that is not scalar.
$\mathrm{tf}=\mathrm{eq}(\mathrm{h} 1, \mathrm{~h} 2)$ stores the result in a logical array of the same dimensions.

See Also qrandstream | ge | gt | le | lt | ne

CompactTreeBagger.error

Purpose	Error (misclassification probability or MSE)
Syntax	$\operatorname{err}=\operatorname{error}(\mathrm{B}, \mathrm{X}, \mathrm{Y})$
	err = error(B,X,Y,'param1', val1,'param2', val2,...)

err $=\operatorname{error}(B, X, Y)$ computes the misclassification probability (for classification trees) or mean squared error (MSE, for regression trees) for each tree, for predictors X given true response Y. For classification, Y can be either a numeric vector, character matrix, cell array of strings, categorical vector or logical vector. For regression, Y must be a numeric vector. err is a vector with one error measure for each of the NTrees trees in the ensemble B.
err = error(B,X,Y,'param1',val1,'param2', val2,...) specifies optional parameter name/value pairs:
'mode ' String indicating how the method computes errors. If set to 'cumulative' (default), error computes cumulative errors and err is a vector of length NTrees, where the first element gives error from trees(1), second element gives error fromtrees(1:2) etc, up to trees(1:NTrees). If set to 'individual', err is a vector of length NTrees, where each element is an error from each tree in the ensemble. If set to 'ensemble', err is a scalar showing the cumulative error for the entire ensemble.
'trees ' Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'trees' is a numeric vector, the method returns a vector of length NTrees for 'cumulative' and 'individual' modes, where NTrees is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative ' mode, the first element gives error from trees (1), the second element gives error from trees(1:2) etc.

CompactTreeBagger.error

> 'treeweights ' Vector of tree weights. This vector must have the same length as the 'trees ' vector. The method uses these weights to combine output from the specified trees by taking a weighted average instead of the simple non-weighted majority vote. You cannot use this argument in the 'individual' mode.

See Also TreeBagger.error

TreeBagger.error

Purpose	Error (misclassification probability or MSE)
Syntax	```err = error(B,X,Y) err = error(B,X,Y,'param1',val1,'param2',val2,...)```
Description	err $=\operatorname{error}(B, X, Y)$ computes the misclassification probability for classification trees or mean squared error (MSE) for regression trees for each tree, for predictors X given true response Y. For classification, Y can be either a numeric vector, character matrix, cell array of strings, categorical vector or logical vector. For regression, Y must be a numeric vector. err is a vector with one error measure for each of the NTrees trees in the ensemble B.
	err $=\operatorname{error}(B, X, Y, ' p a r a m 1 '$, val1, 'param2', val2,..) specifies optional parameter name/value pairs:
	'mode ' String indicating how the method computes errors. If set to 'cumulative' (default), error computes cumulative errors and err is a vector of length NTrees, where the first element gives error from trees(1), second element gives error fromtrees (1:2) etc, up to trees(1:NTrees). If set to 'individual', err is a vector of length NTrees, where each element is an error from each tree in the ensemble. If set to 'ensemble', err is a scalar showing the cumulative error for the entire ensemble.
	'trees ' Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'trees' is a numeric vector, the method returns a vector of length NTrees for 'cumulative' and 'individual' modes, where NTrees is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative ' mode, the first element gives error from trees(1), the second element gives error from trees(1:2) etc.

> 'treeweights ' Vector of tree weights. This vector must have the same length as the 'trees' vector. The method uses these weights to combine output from the specified trees by taking a weighted average instead of the simple non-weighted majority vote. You cannot use this argument in the 'individual' mode.

See Also CompactTreeBagger.error

Purpose Predicted responses
Syntax \quad yfit $=\operatorname{eval}(t, x)$
yfit = eval(t, X,s)
[yfit, nodes] = eval(...)
[yfit,nodes,cnums] = eval(...)
[...] = t(X)
$[\ldots]=t(X, s)$

Description

yfit $=$ eval(t, X) takes a classification or regression tree t and a matrix X of predictors, and produces a vector yfit of predicted response values. For a regression tree, yfit(i) is the fitted response value for a point having the predictor values $\mathrm{X}(\mathrm{i},:$). For a classification tree, yfit(i) is the class into which the tree assigns the point with data X(i,:).
yfit $=$ eval($\mathrm{t}, \mathrm{x}, \mathrm{s})$ takes an additional vector s of pruning levels, with 0 representing the full, unpruned tree. t must include a pruning sequence as created by classregtree or by prune. If s has k elements and X has n rows, the output yfit is an n-by- k matrix, with the j th column containing the fitted values produced by the $s(j)$ subtree. s must be sorted in ascending order.

To compute fitted values for a tree that is not part of the optimal pruning sequence, first use prune to prune the tree.
[yfit, nodes] = eval(...) also returns a vector nodes the same size as yfit containing the node number assigned to each row of X. Use view to display the node numbers for any node you select.
[yfit,nodes,cnums] = eval(...) is valid only for classification trees. It returns a vector cnum containing the predicted class numbers.

NaN values in X are treated as missing. If eval encounters a missing value when it attempts to evaluate the split rule at a branch node, it cannot determine whether to proceed to the left or right child node. Instead, it sets the corresponding fitted value equal to the fitted value assigned to the branch node.

$$
[\ldots]=t(X) \text { or }[\ldots]=t(X, s) \text { also invoke eval. }
$$

Examples Create a classification tree for Fisher's iris data:

```
load fisheriris;
t = classregtree(meas,species,...
    'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2 class = setosa
3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
5 class = virginica
6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica
view(t)
```


Find assigned class names:
sfit = eval(t,meas);
Compute that proportion is correctly classified:

```
pct = mean(strcmp(sfit,species))
pct =
    0.9800
```

References

See Also
[1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.

Purpose	Extreme value negative log-likelihood
Syntax	nlogL = evlike(params,data)
	[nlogL,AVAR] = evlike(params,data)
	[...] = evlike(params,data, censoring)
	[...] = evlike(params,data, censoring,freq)

How To . "Extreme Value Distribution" on page B-32

Description

nlogL = evlike(params, data) returns the negative of the log-likelihood for the type 1 extreme value distribution. params(1) is the tail location parameter, mu, and params (2) is the scale parameter, sigma. nlogL is a scalar.
[nlogL,AVAR] = evlike(params, data) returns the inverse of Fisher's information matrix, AVAR. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of AVAR are their asymptotic variances. AVAR is based on the observed Fisher's information, not the expected information.
[...] = evlike(params,data, censoring) accepts a Boolean vector of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = evlike(params,data, censoring,freq) accepts a frequency vector of the same size as data. freq typically contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for censoring to use its default value.
The type 1 extreme value distribution is also known as the Gumbel distribution. The version used here is suitable for modeling minima; the mirror image of this distribution can be used to model maxima by negating data. See "Extreme Value Distribution" on page B-32 for more details. If x has a Weibull distribution, then $X=\log (x)$ has the type 1 extreme value distribution.

See Also evfit \| evpdf \| evcdf | evinv \| evstat \| evrnd

Purpose	Extreme value probability density function					
Syntax	$Y=\operatorname{evpdf}(\mathrm{X}, \mathrm{mu}$, sigma)					
Description	$Y=\operatorname{evpdf}(X, m u$, sigma $)$ returns the pdf of the type 1 extreme value distribution with location parameter mu and scale parameter sigma, evaluated at the values in $X . X$, mu, and sigma can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other inputs. The default values for mu and sigma are 0 and 1 , respectively.					
	The type 1 extreme value distribution is also known as the Gumbel distribution. The version used here is suitable for modeling minima; the mirror image of this distribution can be used to model maxima by negating X. See "Extreme Value Distribution" on page B- 32 for more details. If x has a Weibull distribution, then $X=\log (x)$ has the type 1 extreme value distribution.					
See Also	pdf \| evcdf	evinv	evstat	evfit	evlike	evrnd
How To	- "Extreme Value Distribution" on page B-32					

Purpose Extreme value random numbers

```
Syntax \(\quad R=\operatorname{evrnd}(m u\), sigma)
R = evrnd(mu,sigma,m,n,...)
\(R\) = evrnd(mu,sigma, [m,n,...])
```


Description

See Also

random | evpdf | evcdf | evinv | evstat | evfit \| evlike
How To

Purpose	Extreme value mean and variance				
Syntax	$[M, V]=$ evstat (mu, sigma)				
Description	$[M, V]=$ evstat(mu,sigma) returns the mean of and variance for the type 1 extreme value distribution with location parameter mu and scale parameter sigma. mu and sigma can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other input. The default values for mu and sigma are 0 and 1 , respectively.				
	The type 1 extreme value distribution is also known as the Gumbel distribution. The version used here is suitable for modeling minima; the mirror image of this distribution can be used to model maxima. See "Extreme Value Distribution" on page B-32 for more details. If x has a Weibull distribution, then $X=\log (x)$ has the type 1 extreme value distribution.				
See Also	evpdf \| evcdf	evinv	evfit	evlike	evrnd
How To	. "Extreme Value Distribution" on page B-32				

prob.ExponentialDistribution

Superclasses ToolboxFittableParametricDistribution
Purpose Exponential probability distribution object
Description prob.ExponentialDistribution is an object consisting of parameters, a model description, and sample data for an exponential probability distribution.

Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

Construction

pd $=$ makedist('Exponential') creates an exponential probability distribution object using the default parameter values.
pd = makedist('Exponential','mu',mu) creates an exponential probability distribution object using the specified parameter value.

Input Arguments

mu - Mean

1 (default) | positive scalar value
Mean of the exponential distribution, specified as a positive scalar value.

```
Data Types
single | double
```


Properties

mu
Mean of the exponential distribution, stored as a positive scalar value.

Data Types
 single | double
 DistributionName

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

Data Types
 char
 InputData

Data used for distribution fitting, stored as a structure containing the following:

- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.

Data Types

single | double
IsTruncated
Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated.
If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

Data Types

logical

NumParameters

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

Data Types

single | double

ParameterCovariance

Covariance matrix of the parameter estimates, stored as a p-by- p matrix, where p is the number of parameters in the distribution. The (i, j) element is the covariance between the estimates of the ith parameter and the j th parameter. The (i, i) element is the

prob.ExponentialDistribution

estimated variance of the ith parameter. If parameter i is fixed rather than estimated by fitting the distribution to data, then the (i, i) elements of the covariance matrix are 0 . This property is read-only.

Data Types

single | double

ParameterDescription

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

Data Types
 char

ParameterlsFixed

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

Data Types
 logical
 ParameterNames

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

Data Types
 char
 ParameterValues

Values of distribution parameters, stored as a vector. This property is read-only.

Data Types
single | double
Truncation

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.
Data Types
single | double

Methods Inherited Methods

cdf	Cumulative distribution function of probability distribution object icdf iqr
median	Inverse cumulative distribution function of probability distribution object
pdf	Interquartile range of probability distribution object
random	Median of probability distribution object
truncate	Probability density function of probability distribution object Generate random numbers from probability distribution object
mean	Truncate probability distribution object
negloglik	Mean of probability distribution object
paramci	Negative loglikelihood of probability distribution object

prob.ExponentialDistribution

proflik	Profile likelihood function for probability distribution object
std	Standard deviation of probability distribution object
var	Variance of probability distribution object

Definitions Exponential Distribution

The exponential distribution is used to model events that occur randomly over time, and its main application area is studies of lifetimes. It is a special case of the gamma distribution with the shape parameter $a=1$.

The exponential distribution uses the following parameters.

Parameter	Description	Support
mu	Mean	$\mu>0$

The probability density function (pdf) is

$$
f(x \mid \mu)=\frac{1}{\mu} e^{\frac{-x}{\mu}} \quad ; \quad x \geq 0
$$

Examples Create an Exponential Distribution Object Using Default Parameters

Create an exponential distribution object using the default parameter values.

```
pd = makedist('Exponential')
pd =
```

```
Exponential distribution
    mu = 1
```


Create an Exponential Distribution Object Using Specified Parameters

Create an exponential distribution object by specifying the parameter values.

```
pd = makedist('Exponential','mu',2)
pd =
```

 ExponentialDistribution
 Exponential distribution
 mu = 2
 Compute the variance of the distribution.
$v=\operatorname{var}(p d)$

```
v =
```


4

See Also makedist | fitdist | dfittool

Concepts - "Exponential Distribution" on page B-29

- Class Attributes
- Property Attributes

Purpose Exponential cumulative distribution function
Syntax $\quad \begin{aligned} & P=\operatorname{expcdf}(X, m u) \\ & {[P, \operatorname{PLO}, P U P]=\operatorname{expcdf}(X, m u, p c o v, \text { alpha })}\end{aligned}$
Description

Examples
The following code shows that the median of the exponential distribution is $* \log (2)$.

```
mu = 10:10:60;
p = expcdf(log(2)*mu,mu)
p =
    0.5000}00.5000 0.5000 0.5000 0.5000 0.5000
```

What is the probability that an exponential random variable is less than or equal to the mean, μ ?

```
mu = 1:6;
x = mu;
p = expcdf(x,mu)
p =
    0.6321 0.6321 0.6321 0.6321 0.6321 0.6321
```

See Also
cdf | exppdf | expinv | expstat | expfit | explike | exprnd
How To . "Exponential Distribution" on page B-29

Purpose Exponential parameter estimates

```
Syntax muhat = expfit(data)
[muhat,muci] = expfit(data)
[muhat,muci] = expfit(data,alpha)
[...] = expfit(data,alpha,censoring)
[...] = expfit(data,alpha,censoring,freq)
```


Description

Examples

muhat $=$ expfit(data) estimates the mean of an exponentially distributed sample data. Each entry of muhat corresponds to the data in a column of data.
[muhat,muci] = expfit(data) returns 95% confidence intervals for the mean parameter estimates in matrix muci. The first row of muci contains the lower bounds of the confidence intervals, and the second row contains the upper bounds.
[muhat,muci] = expfit(data,alpha) returns 100(1-alpha)\% confidence intervals for the parameter estimates, where alpha is a value in the range [0 1] specifying the width of the confidence intervals. By default, alpha is 0.05 , which corresponds to 95% confidence intervals.
[...] = expfit(data, alpha, censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly. data must be a vector in order to pass in the argument censoring.
[...] = expfit(data,alpha, censoring,freq) accepts a frequency vector, freq of the same size as data. Typically, freq contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for alpha, censoring, or freq to use their default values.

The following estimates the mean mu of exponentially distributed data, and returns a 95% confidence interval for the estimate:

```
mu = 3;
data = exprnd(mu,100,1); % Simulated data
```

```
[muhat,muci] = expfit(data)
muhat =
    2.7511
muci =
    2.2826
    3.3813
```


See Also

mle | explike | exppdf | expcdf | expinv | expstat | exprnd

ExhaustiveSearcher

Superclasses NeighborSearcher
Purpose Nearest neighbors search using exhaustive search
Description

An ExhaustiveSearcher object performs $k \mathrm{NN}$ (k-nearest neighbor) search using exhaustive search. Search objects store information about the data used, and the distance metric and parameters. The search performance for this object, compared with the KDTreeSearcher object, tends to be better for larger dimensions (10 or more) and worse for smaller dimensions. For more information on search objects, see "What Are Search Objects?" on page 15-17.

Construction NS = ExhaustiveSearcher(X, 'Name', Value) constructs an

 ExhaustiveSearcher object based on X, where rows of X correspond to observations and columns correspond to variables, using one or more optional name/value pairs. You can then use this object to find neighbors in X nearest to the query points.NS = createns(X,'NSMethod','exhaustive','Name',Value) creates an ExhaustiveSearcher object based on X using createns, where rows of X correspond to observations and columns correspond to variables, using one or more optional name/value pairs. You can use this object to find neighbors in X nearest to the query points.

Name-Value Pair Arguments

Both the ExhaustiveSearcher and the createns functions accept one or more of the following optional name/value pairs as input:

'Distance'

A string or function handle specifying the default distance metric used when you call the knnsearch method.

- 'euclidean' - Euclidean distance (default).
- 'seuclidean' - Standardized Euclidean distance. Each coordinate difference between rows in X and the query matrix is scaled by dividing by the corresponding element of the standard
deviation computed from X, S=nanstd (X). To specify another value for S, use the Scale argument.
- 'cityblock' - City block distance.
- 'chebychev' - Chebychev distance (maximum coordinate difference).
- 'minkowski' - Minkowski distance.
- 'mahalanobis' - Mahalanobis distance, computed using a positive definite covariance matrix C. The default value of C is nancov (X). To change the value of C , use the Cov parameter.
- 'cosine' - One minus the cosine of the included angle between observations (treated as vectors).
- 'correlation' - One minus the sample linear correlation between observations (treated as sequences of values).
- 'spearman' - One minus the sample Spearman's rank correlation between observations (treated as sequences of values).
- 'hamming' - Hamming distance, percentage of coordinates that differ.
- 'jaccard' - One minus the Jaccard coefficient, the percentage of nonzero coordinates that differ.
- custom distance function - A distance function specified using @ (for example, @distfun). A distance function must be of the form function D2 = distfun(ZI, ZJ), taking as arguments a 1-by- n vector ZI containing a single row from X or from the query points Y , an $m 2$-by- n matrix ZJ containing multiple rows of X or Y, and returning an $m 2$-by- 1 vector of distances D2, whose j th element is the distance between the observations ZI and $\mathrm{ZJ}(j,:)$.

For more information on these distance metrics, see "Distance Metrics" on page 15-9.

ExhaustiveSearcher

'P'

A positive scalar indicating the exponent of Minkowski distance. This parameter is only valid when Distance is 'minkowski'. Default is 2 .

'Cov'

A positive definite matrix indicating the covariance matrix when computing the Mahalanobis distance. This parameter is only valid when Distance is 'mahalanobis'. Default is nancov (X).

'Scale'

A vector S with the length equal to the number of columns in X. Each coordinate of X and each query point is scaled by the corresponding element of S when computing the standardized Euclidean distance. This parameter is only valid when Distance is 'seuclidean'. Default is nanstd (X).

Properties
 X

A matrix used to create the object

Distance

A string specifying a built-in distance metric or a function handle that you provide when you create the object. This property is the default distance metric used when you call the knnsearch method to find nearest neighbors for future query points.

DistParameter

Specifies the additional parameter for the chosen distance metric. The value is:

- If 'Distance' is 'minkowski': A positive scalar indicating the exponent of the Minkowski distance.
- If 'Distance' is 'mahalanobis': A positive definite matrix representing the covariance matrix used for computing the Mahalanobis distance.
- If 'Distance' is 'seuclidean': A vector representing the scale value of the data when computing the 'seuclidean' distance.
- Otherwise: Empty.

Create an ExhaustiveSearcher object using createns:

```
load fisheriris
x = meas(:,3:4);
NS = createns(x,'NsMethod','exhaustive',...
    'distance','minkowski')
```


ExhaustiveSearcher

NS =
ExhaustiveSearcher
Properties:
X: [150x2 double]
Distance: 'minkowski'
DistParameter: 2
For more in-depth examples using the knnsearch method, see the method reference page or see "Example: Classifying Query Data Using knnsearch" on page 15-18.

References
[1] Friedman, J. H., Bentely, J. and Finkel, R. A. (1977). An Algorithm for Finding Best Matches in Logarithmic Expected Time, ACM Transactions on Mathematical Software 3, 209.

See Also createns | KDTreeSearcher | NeighborSearcher
How To . " k-Nearest Neighbor Search and Radius Search" on page 15-12

- "Distance Metrics" on page 15-9

Purpose

Exponential inverse cumulative distribution function
Syntax
$\mathrm{X}=\operatorname{expinv}(\mathrm{P}, \mathrm{mu})$
[X,XLO,XUP] = expinv(X,mu,pcov,alpha)
$X=\operatorname{expinv}(P, m u)$ computes the inverse of the exponential cdf with parameters specified by mean parameter mu for the corresponding probabilities in P. P and mu can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in mu must be positive and the values in P must lie on the interval [01].
$[\mathrm{X}, \mathrm{XLO}, \mathrm{XUP}]=\operatorname{expinv}(\mathrm{X}, \mathrm{mu}, \mathrm{pcov}, \mathrm{alpha})$ produces confidence bounds for X when the input mean parameter $m u$ is an estimate. $p c o v$ is the variance of the estimated mu. alpha specifies $100(1-$ alpha $) \%$ confidence bounds. The default value of alpha is 0.05 . XLO and XUP are arrays of the same size as X containing the lower and upper confidence bounds. The bounds are based on a normal approximation for the distribution of the log of the estimate of mu. If you estimate mu from a set of data, you can get a more accurate set of bounds by applying expfit to the data to get a confidence interval for mu, and then evaluating expinv at the lower and upper end points of that interval.
The inverse of the exponential cdf is

$$
x=F^{-1}(p \mid \mu)=-\mu \ln (1-p)
$$

The result, x, is the value such that an observation from an exponential distribution with parameter μ will fall in the range $[0 x]$ with probability p.

Examples

Let the lifetime of light bulbs be exponentially distributed with $\mu=700$ hours. What is the median lifetime of a bulb?

```
expinv(0.50,700)
ans =
```

Suppose you buy a box of " 700 hour" light bulbs. If 700 hours is the mean life of the bulbs, half of them will burn out in less than 500 hours.

See Also
 icdf | expcdf | exppdf | expstat | expfit | explike | exprnd

- "Exponential Distribution" on page B-29

Purpose	Exponential negative log-likelihood				
Syntax	```nlogL = explike(param,data) [nlogL,avar] = explike(param,data) [...] = explike(param,data,censoring) [...] = explike(param,data,censoring,freq)```				
Description	nlogL = explike(param, data) returns the negative of the log-likelihood for the exponential distribution. param is the mean parameter, mu. nlogL is a scalar.				
	[nlogL, avar] = explike(param,data) returns the inverse of Fisher's information, avar, a scalar. If the input parameter value in param is the maximum likelihood estimate, avar is its asymptotic variance. avar is based on the observed Fisher's information, not the expected information.				
	[...] = explike(param,data,censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.				
	[...] = explike(param,data, censoring,freq) accepts a frequency vector, freq, of the same size as data. The vector freq typically contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for censoring to use its default value.				
See Also	expcdf \| exppdf	expstat	expfit	expinv	exprnd
How To	- "Exponential Distribution" on page B-29				

Purpose Write dataset array to file

```
Syntax export(DS,'file',filename)
export(DS)
export(DS,'file',filename,'Delimiter',delim)
export(DS,'XLSfile',filename)
export(DS,'XPTFile',filename)
export(DS,...,'WriteVarNames',false)
export(DS,...,'WriteObsNames',false)
```


Description

export(DS,'file',filename) writes the dataset array DS to a tab-delimited text file, including variable names and observation names, if present. If the observation names exist, the name in the first column of the first line of the file is the first dimension name for the dataset (by default, 'Observations'). export overwrites any existing file named filename.
export(DS) writes to a text file whose default name is the name of the dataset array DS appended by '.txt'. If export cannot construct the file name from the dataset array input, it writes to the file 'dataset.txt'. export overwrites any existing file.
export(DS,'file',filename,'Delimiter', delim) writes the dataset array DS to a text file using the delimiter delim. delim must be one of the following:

- ' ' or 'space'
- ' $\backslash t$ ' or 'tab'
- ', ' or 'comma'
- ';' or 'semi'
- '|' or 'bar'
export(DS,'XLSfile', filename) writes the dataset array DS to a Microsoft ${ }^{\circledR}$ Excel spreadsheet file, including variable names and observation names (if present). You can specify the 'Sheet' and
'Range' parameter name/value pairs, with parameter values as accepted by the xlsread function.
export(DS, 'XPTFile', filename) writes the dataset array DS to a SAS XPORT format file. When writing to an XPORT format file, variables must be scalar valued. export saves observation names to a variable called obsnames, unless the WriteObsNames parameter described below is false. The XPORT format restricts the length of variable names to eight characters; longer variable names are truncated.
export(DS,..., 'WriteVarNames', false) does not write the variable names to the text file. export(DS,..., 'WriteVarNames', true) is the default, writing the names as column headings in the first line of the file.
export(DS,...,'WriteObsNames',false) does not write the observation names to the text file. export(DS,...,'WriteObsNames', true) is the default, writing the names as the first column of the file.

In some cases, export creates a text file that does not represent A exactly, as described below. If you use dataset to read the file back into MATLAB, the new dataset array may not have exactly the same contents as the original dataset array. Save A as a MAT-file if you need to import it again as a dataset array.
export writes out numeric variables using long g format, and categorical or character variables as unquoted strings.

For non-character variables with more than one column, export writes out multiple delimiter-separated fields on each line, and constructs suitable column headings for the first line of the file.
export writes out variables that have more than two dimensions as a single empty field in each line of the file.
For cell-valued variables, export writes out the contents of each cell only when the cell contains a single row, and writes out a single empty field otherwise.

dataset.export

In some cases, export creates a file that cannot be read back into MATLAB using dataset. Writing a dataset array that contains a cell-valued variable whose cell contents are not scalars results in a mismatch in the file between the number of fields on each line and the number of column headings on the first line. Writing a dataset array that contains a cell-valued variable whose cell contents are not all the same length results in a different number of fields on each line in the file. Therefore, if you might need to import a dataset array again, save it as a .mat file.

Examples Move data between external text files and dataset arrays in the

 MATLAB workspace:```
A = dataset('file','sat2.dat','delimiter',',')
A =
 Test Gender Score
 'Verbal' 'Male' 470
 'Verbal' 'Female' 530
 'Quantitative' 'Male' 520
 'Quantitative' 'Female' 480
export(A(A.Score > 500,:),'file','HighScores.txt')
B = dataset('file','HighScores.txt','delimiter','\t')
B =
 Test
 'Verbal' 'Female' 530
 'Quantitative' 'Male' 520
```

See Also dataset

## Purpose

Exponential probability density function

## Syntax <br> $Y=\operatorname{exppdf}(X, m u)$

Description

## Examples

See Also
How To
The exponential pdf is

$$
y=f(x \mid \mu)=\frac{1}{\mu} e^{\frac{-x}{\mu}}
$$

The exponential distribution is appropriate for modeling waiting

```
y = exppdf(5,1:5)
y =
 0.0067
y = exppdf(1:5,1:5)
y =
 0.3679
```

pdf | expcdf | expinv | expstat | expfit | explike | exprnd

- "Exponential Distribution" on page B-29
$Y=\operatorname{exppdf}(X, m u)$ returns the pdf of the exponential distribution with mean parameter mu, evaluated at the values in $X . X$ and mu can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in mu must be positive.

The exponential pdf is the gamma pdf with its first parameter equal to 1 . times when the probability of waiting an additional period of time is independent of how long you have already waited. For example, the probability that a light bulb will burn out in its next minute of use is relatively independent of how many minutes it has already burned.
Purpose Exponential random numbers

```
Syntax \(\quad R=\operatorname{exprnd}(m u)\)
\(R=\operatorname{exprnd}(m u, m, n, \ldots)\)
\(R=\operatorname{exprnd}(m u,[m, n, \ldots])\)
```


## Description

## Examples

## See Also

How To
random | expcdf | exppdf | expstat | expfit | explike | expinv

- "Exponential Distribution" on page B-29
Purpose Exponential mean and variance
Syntax [m,v] = expstat(mu)
Description $[m, v]=$ expstat $(\mathrm{mu})$ returns the mean of and variance for theexponential distribution with parameters mu. mu can be a vectors,matrix, or multidimensional array. The mean of the exponentialdistribution is $\mu$, and the variance is $\mu^{2}$.
Examples


See Also expinv | expcdf | exppdf | expstat | expfit | explike | exprnd
How To - "Exponential Distribution" on page B-29

## prob.ExtremeValueDistribution

Superclasses ToolboxFittableParametricDistribution
Purpose Extreme value probability distribution object
Description prob.ExtremeValueDistribution is an object consisting of parameters, a model description, and sample data for an extreme value probability distribution.

Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

## Construction

pd = makedist('ExtremeValue') creates an extreme value probability distribution object using the default parameter values.
pd = makedist('ExtremeValue','mu',mu,'sigma',sigma) creates an extreme value probability distribution object using the specified parameter values.

## Input Arguments

## mu - Location parameter

0 (default) | scalar value
Location parameter of the extreme value distribution, specified as a scalar value.

Data Types
single | double

## sigma-Scale parameter

1 (default) | nonnegative scalar value
Scale parameter of the extreme value distribution, specified as a nonnegative scalar value.

Data Types<br>single | double

## Properties

mu
Location parameter of the extreme value distribution, stored as a scalar value.

## Data Types <br> single | double <br> sigma

Scale parameter of the extreme value distribution, stored as a nonnegative scalar value.

Data Types
single | double

## DistributionName

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

## Data Types

char

## InputData

Data used for distribution fitting, stored as a structure containing the following:

- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.
Data Types
single | double

## IsTruncated

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated.

## prob.ExtremeValueDistribution

If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

## Data Types

logical

## NumParameters

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

## Data Types <br> single | double

## ParameterCovariance

Covariance matrix of the parameter estimates, stored as a $p$-by- $p$ matrix, where $p$ is the number of parameters in the distribution. The ( $\mathrm{i}, \mathrm{j}$ ) element is the covariance between the estimates of the $i$ th parameter and the $j$ th parameter. The ( $i, i$ ) element is the estimated variance of the ith parameter. If parameter $i$ is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

## Data Types

single | double

## ParameterDescription

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

## Data Types <br> char

## Parameterlsfixed

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

## Data Types

logical

## ParameterNames

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

## Data Types

char

## ParameterValues

Values of distribution parameters, stored as a vector. This property is read-only.

## Data Types

single | double

## Truncation

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

## Data Types

single | double

## Methods Inherited Methods

| cdf | Cumulative distribution function <br> of probability distribution object |
| :--- | :--- |
| icdf | Inverse cumulative distribution <br> function of probability <br> distribution object |
| iqr | Interquartile range of probability <br> distribution object |
| median | Median of probability distribution <br> object |

## prob.ExtremeValueDistribution

| pdf | Probability density function of <br> probability distribution object |
| :--- | :--- |
| random | Generate random numbers from <br> probability distribution object |
| truncate | Truncate probability distribution <br> object |
| mean | Mean of probability distribution <br> object |
| negloglik | Negative loglikelihood of <br> probability distribution object <br> Confidence intervals for |
| paramci | probability distribution <br> parameters |
| proflik | Profile likelihood function for <br> probability distribution object |
| std | Standard deviation of probability <br> distribution object |
| var | Variance of probability <br> distribution object |

## Definitions Extreme Value Distribution

The extreme value distribution is appropriate for modeling the smallest value from a distribution whose tails decay exponentially fast, for example, the normal distribution. It can also model the largest value from a distribution, such as the normal or exponential distributions, by using the negative of the original values.

The extreme value distribution uses the following parameters.

| Parameter | Description | Support |
| :--- | :--- | :--- |
| mu | Location parameter | $-\infty<\mu<\infty$ |
| sigma | Scale parameter | $\sigma \geq 0$ |

The probability density function (pdf) is

$$
f(x \mid \mu, \sigma)=\sigma^{-1} \exp \left(\frac{x-\mu}{\sigma}\right) \exp \left(-\exp \left(\frac{x-\mu}{\sigma}\right)\right) ;-\infty<x<\infty .
$$

This form of the probability density function is suitable for modeling the minimum value. To model the maximum value, use the negative of the original values.

## Examples Create an Extreme Value Distribution Object Using Default Parameters

Create an extreme value distribution object using the default parameter values.

```
pd = makedist('ExtremeValue')
pd =
```


## ExtremeValueDistribution

```
Extreme Value distribution
 mu = 0
 sigma = 1
```


## Create an Extreme Value Distribution Object Using Specified Parameters

Create an extreme value distribution object by specifying the parameter values.

```
pd = makedist('ExtremeValue', 'mu',-1,'sigma',2)
```


## prob.ExtremeValueDistribution

```
pd =
 ExtremeValueDistribution
 Extreme Value distribution
 mu = -1
 sigma = 2
```

Compute the standard deviation for the distribution.
$s=s t d(p d)$
s =
2.5651

See Also makedist | fitdist | dfittool
Concepts - "Extreme Value Distribution" on page B-32

- Class Attributes
- Property Attributes


## Purpose Factor analysis

## Syntax

```
lambda = factoran(X,m)
[lambda,psi] = factoran(X,m)
[lambda,psi,T] = factoran(X,m)
[lambda,psi,T,stats] = factoran(X,m)
[lambda,psi,T,stats,F] = factoran(X,m)
[...] = factoran(...,param1,val1,param2,val2,...)
```


## Definitions

## Description

factoran computes the maximum likelihood estimate (MLE) of the factor loadings matrix $\Lambda$ in the factor analysis model

$$
x=\mu+\Lambda f+e
$$

where $x$ is a vector of observed variables, $\mu$ is a constant vector of means, $\Lambda$ is a constant d-by-m matrix of factor loadings, $f$ is a vector of independent, standardized common factors, and $e$ is a vector of independent specific factors. $x, \mu$, and $e$ are of length d . $f$ is of length m.
Alternatively, the factor analysis model can be specified as

$$
\operatorname{cov}(x)=\Lambda \Lambda^{T}+\Psi
$$

where $\Psi=\operatorname{cov}(e)$ is a d-by-d diagonal matrix of specific variances.
lambda $=$ factoran $(X, m)$ returns the maximum likelihood estimate, lambda, of the factor loadings matrix, in a common factor analysis model with $m$ common factors. $X$ is an $n$-by-d matrix where each row is an observation of $d$ variables. The ( $i, j$ ) th element of the $d-b y-m$ matrix lambda is the coefficient, or loading, of the $j$ th factor for the ith variable. By default, factoran calls the function rotatefactors to rotate the estimated factor loadings using the 'varimax' option.
[lambda,psi] = factoran(X,m) also returns maximum likelihood estimates of the specific variances as a column vector psi of length $d$.
[lambda, psi,T] = factoran(X,m) also returns the m-by-m factor loadings rotation matrix $T$.
[lambda, psi, T,stats] = factoran(X,m) also returns a structure stats containing information relating to the null hypothesis, $\mathrm{H}_{0}$, that the number of common factors is m . stats includes the following fields:

| Field | Description |
| :--- | :--- |
| loglike | Maximized log-likelihood value |
| $d f e$ | Error degrees of freedom $=\left((d-m)^{\wedge} 2-(d+m)\right) / 2$ |
| chisq | Approximate chi-squared statistic for the null hypothesis |
| $p$ | Right-tail significance level for the null hypothesis |

factoran does not compute the chisq and $p$ fields unless dfe is positive and all the specific variance estimates in psi are positive (see "Heywood Case" on page 20-718 below). If $X$ is a covariance matrix, then you must also specify the 'nobs ' parameter if you want factoran to compute the chisq and $p$ fields.
[lambda, psi, T, stats, F] = factoran(X,m) also returns, in F, predictions of the common factors, known as factor scores. $F$ is an $n$-by-m matrix where each row is a prediction of $m$ common factors. If $X$ is a covariance matrix, factoran cannot compute $F$. factoran rotates $F$ using the same criterion as for lambda.
[...] = factoran(..., param1, val1,param2, val2,...) enables you to specify optional parameter name/value pairs to control the model fit and the outputs. The following are the valid parameter/value pairs.

| Parameter | Value |  |
| :--- | :--- | :--- |
| 'xtype' | Type of input in the matrix X . 'xtype ' can be one <br> of: |  |
|  | 'data' | Raw data (default) |
|  | 'covariance | Positive definite covariance or <br> correlation matrix |


| Parameter | Value |  |
| :---: | :---: | :---: |
| 'scores' | Method for predicting factor scores. 'scores ' is ignored if X is not raw data. |  |
|  | $\begin{aligned} & \text { 'wls' } \\ & \hline \text { 'Bartlett' } \end{aligned}$ | Synonyms for a weighted least-squares estimate that treats F as fixed (default) |
|  | 'regression <br> 'Thomson' | Synonyms for a minimum mean squared error prediction that is equivalent to a ridge regression |
| 'start' | Starting point for the specific variances psi in the maximum likelihood optimization. Can be specified as: |  |
|  | 'random' | Chooses d uniformly distributed values on the interval $[0,1]$. |
|  | 'Rsquared' | Chooses the starting vector as a scale factor times diag (inv(corrcoef(X))) (default). For examples, see Jöreskog [2]. |
|  | Positive integer | Performs the given number of maximum likelihood fits, each initialized as with 'random'. factoran returns the fit with the highest likelihood. |
|  | Matrix | Performs one maximum likelihood fit for each column of the specified matrix. The ith optimization is initialized with the values from the ith column. The matrix must have d rows. |

$\left.\begin{array}{l|l|l}\hline \text { Parameter } & \text { Value } \\ \hline \text { 'rotate' } & \begin{array}{l}\text { Method used to rotate factor loadings and scores. } \\ \text { 'rotate' can have the same values as the } \\ \text { 'Method ' parameter of rotatefactors. See } \\ \text { the reference page for rotatefactors for a full } \\ \text { description of the available methods. }\end{array} \\ \hline & \text { 'none' } & \text { Performs no rotation. } \\ \hline & \text { 'equamax' } & \begin{array}{l}\text { Special case of the orthomax } \\ \text { rotation. Use the 'normalize', } \\ \text { 'reltol', and 'maxit 'parameters } \\ \text { to control the details of the rotation. }\end{array} \\ \hline & \text { 'orthomax' } & \begin{array}{l}\text { Orthogonal rotation that maximizes } \\ \text { a criterion based on the variance of } \\ \text { the loadings. } \\ \text { Use the ' coeff', 'normalize', }\end{array} \\ \text { 'reltol', and 'maxit 'parameters } \\ \text { to control the details of the rotation. }\end{array}\right\}$

| Parameter | Value |  |
| :---: | :---: | :---: |
|  | 'procrustes ${ }^{\text {' }}$ | Performs either an oblique (the default) or an orthogonal rotation to best match a specified target matrix in the least squares sense. <br> Use the 'type ' parameter to choose the type of rotation. Use 'target to specify the target matrix. |
|  | 'promax ' | Performs an oblique procrustes rotation to a target matrix determined by factoran as a function of an orthomax solution. <br> Use the 'power' parameter to specify the exponent for creating the target matrix. Because 'promax' uses 'orthomax' internally, you can also specify the parameters that apply to 'orthomax'. |
|  | 'quartimax' | Special case of the orthomax rotation (default). Use the 'normalize', 'reltol', and 'maxit' parameters to control the details of the rotation. |
|  | 'varimax' | Special case of the orthomax rotation (default). Use the 'normalize', <br> 'reltol', and 'maxit' parameters to control the details of the rotation. |


| Parameter | Value |
| :---: | :---: |
|  | Function <br> Function handle to rotation function of the form <br> $[B, T]=$ <br> myrotation(A,...) <br> where $A$ is a d-by-m matrix of unrotated factor loadings, $B$ is a d-by-m matrix of rotated loadings, and T is the corresponding m -by-m rotation matrix. <br> Use the factoran parameter 'userargs' to pass additional arguments to this rotation function. See "Example 4" on page 20-723. |
| 'coeff' | Coefficient, often denoted as $\gamma$, defining the specific 'orthomax' criterion. Must be from 0 to 1. The value 0 corresponds to quartimax, and 1 corresponds to varimax. Default is 1 . |
| 'normalize' | Flag indicating whether the loading matrix should be row-normalized (1) or left unnormalized (0) for 'orthomax' or 'varimax' rotation. Default is 1 . |
| 'reltol' | Relative convergence tolerance for 'orthomax' or 'varimax' rotation. Default is sqrt(eps). |
| 'maxit' | Iteration limit for 'orthomax' or 'varimax' rotation. Default is 250. |
| 'target' | Target factor loading matrix for 'procrustes' rotation. Required for 'procrustes ' rotation. No default value. |
| 'type' | Type of 'procrustes' rotation. Can be 'oblique' (default) or 'orthogonal'. |


| Parameter | Value | | |
|---|---|---|---|
| 'power' | Exponent for creating the target matrix in the <br> 'promax' rotation. Must be $\geq$ 1. Default is 4. |
| 'userargs' | Denotes the beginning of additional input values <br> for a user-defined rotation function. factoran <br> appends all subsequent values, in order and <br> without processing, to the rotation function <br> argument list, following the unrotated factor <br> loadings matrix A. See "Example 4" on page 20-723. |
| 'nobs' | If x is a covariance or correlation matrix, indicates <br> the number of observations that were used in its <br> estimation. This allows calculation of significance <br> for the null hypothesis even when the original data <br> are not available. There is no default. 'nobs ' is <br> ignored if X is raw data. |
| 'delta' | Lower bound for the specific variances psi during <br> the maximum likelihood optimization. Default is |
| 0.005. |  | | Structure that specifies control parameters for |
| :--- |
| the iterative algorithm the function uses to |
| compute maximum likelihood estimates. Create |
| this structure with the function statset. Enter |
| statset ( 'factoran' ) to see the names and |
| default values of the parameters that factoran |
| accepts in the options structure. See the reference |
| page for statset for more information about these |
| options. |

Tips

## Observed Data Variables

The variables in the observed data matrix $X$ must be linearly independent, i.e., $\operatorname{cov}(X)$ must have full rank, for maximum likelihood estimation to succeed. factoran reduces both raw data and a covariance matrix to a correlation matrix before performing the fit.
factoran standardizes the observed data $X$ to zero mean and unit variance before estimating the loadings lambda. This does not affect the model fit, because MLEs in this model are invariant to scale. However, lambda and psi are returned in terms of the standardized variables, i.e., lambda*lambda'+diag(psi) is an estimate of the correlation matrix of the original data $X$ (although not after an oblique rotation). See "Example 1" on page 20-718 and "Example 3" on page 20-720.

## Heywood Case

If elements of psi are equal to the value of the 'delta' parameter (i.e., they are essentially zero), the fit is known as a Heywood case, and interpretation of the resulting estimates is problematic. In particular, there can be multiple local maxima of the likelihood, each with different estimates of the loadings and the specific variances. Heywood cases can indicate overfitting (i.e., $m$ is too large), but can also be the result of underfitting.

## Rotation of Factor Loadings and Scores

Unless you explicitly specify no rotation using the 'rotate' parameter, factoran rotates the estimated factor loadings, lambda, and the factor scores, F. The output matrix T is used to rotate the loadings, i.e., lambda $=$ lambda0*T, where lambda0 is the initial (unrotated) MLE of the loadings. T is an orthogonal matrix for orthogonal rotations, and the identity matrix for no rotation. The inverse of T is known as the primary axis rotation matrix, while $T$ itself is related to the reference axis rotation matrix. For orthogonal rotations, the two are identical.
factoran computes factor scores that have been rotated by inv( $T^{\prime}$ ), i.e., $F=F 0$ * $\operatorname{inv}\left(T^{\prime}\right)$, where $F 0$ contains the unrotated predictions. The estimated covariance of $F$ is $\operatorname{inv}\left(T^{\prime} * T\right)$, which, for orthogonal or no rotation, is the identity matrix. Rotation of factor loadings and scores is an attempt to create a more easily interpretable structure in the loadings matrix after maximum likelihood estimation.

## Examples Example 1

Load the carbig data, and fit the default model with two factors.

```
load carbig
X = [Acceleration Displacement Horsepower MPG Weight];
X = X(all(~isnan(X),2),:);
[Lambda,Psi,T,stats,F] = factoran(X,2,...
 'scores','regression');
inv(T'*T) % Estimated correlation matrix of F, == eye(2)
Lambda*Lambda'+diag(Psi) % Estimated correlation matrix
Lambda*inv(T) % Unrotate the loadings
F*T' % Unrotate the factor scores
biplot(Lambda,... % Create biplot of two factors
 'LineWidth',2,...
 'MarkerSize',20)
```


## factoran



## Example 2

Although the estimates are the same, the use of a covariance matrix rather than raw data doesn't let you request scores or significance level:
[Lambda,Psi,T] = factoran(cov(X),2,'xtype','cov')
[Lambda,Psi,T] = factoran(corrcoef(X),2,'xtype','cov')

## Example 3

Use promax rotation:
[Lambda,Psi,T,stats,F] = factoran(X,2,'rotate','promax',... 'powerpm',4);

```
inv(T'*T) % Est'd corr of F,
 % no longer eye(2)
Lambda*inv(T'*T)*Lambda'+diag(Psi) % Est'd corr of X
```

Plot the unrotated variables with oblique axes superimposed.

```
invT = inv(T)
LambdaO = Lambda*invT
line([-invT(1,1) invT(1,1) NaN -invT(2,1) invT(2,1)], ...
 [-invT(1,2) invT(1,2) NaN -invT(2,2) invT(2,2)], ...
 'Color','r','linewidth',2)
hold on
biplot(Lambda0,...
 'LineWidth',2,...
 'MarkerSize',20)
xlabel('Loadings for unrotated Factor 1')
ylabel('Loadings for unrotated Factor 2')
```


## factoran



Plot the rotated variables against the oblique axes:
biplot(Lambda,'LineWidth', 2, 'MarkerSize', 20)


## Example 4

Syntax for passing additional arguments to a user-defined rotation function:
[Lambda,Psi,T] = ...
factoran(X,2,'rotate',@myrotation,'userargs',1,'two');

## References [1] Harman, H. H. Modern Factor Analysis. 3rd Ed. Chicago:

 University of Chicago Press, 1976.[2] Jöreskog, K. G. "Some Contributions to Maximum Likelihood Factor Analysis." Psychometrika. Vol. 32, Issue 4, 1967, pp. 443-482.

## factoran

[3] Lawley, D. N., and A. E. Maxwell. Factor Analysis as a Statistical Method. 2nd Ed. New York: American Elsevier Publishing Co., 1971.

See Also<br>biplot | pca | procrustes | pcacov | rotatefactors | statset

Purpose Fraction of in-bag observations
Description The FBoot property is the fraction of observations to be randomly selected with replacement for each bootstrap replica. The size of each replica is given by $n *$ FBoot, where $n$ is the number of observations in the training set. The default value is 1 .

Purpose $\quad F$ cumulative distribution function

## Syntax $\quad P=\operatorname{fcdf}(X, V 1, V 2)$

Description $\quad P=\operatorname{fcdf}(X, V 1, V 2)$ computes the $F$ cdf at each of the values in $X$ using the corresponding numerator degrees of freedom V1 and denominator degrees of freedom V2. X, V1, and V2 can be vectors, matrices, or multidimensional arrays that are all the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs. V1 and V2 parameters must contain real positive values.

The $F$ cdf is

$$
p=F\left(x \mid v_{1}, v_{2}\right)=\int_{0}^{x} \frac{\Gamma\left[\frac{\left(v_{1}+v_{2}\right)}{2}\right]}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}\left(\frac{v_{1}}{v_{2}}\right)^{\frac{v_{1}}{2}} \frac{t^{\frac{v_{1}-2}{2}}}{\left[1+\left(\frac{v_{1}}{v_{2}}\right) t\right]^{\frac{v_{1}+v_{2}}{2}}} d t
$$

The result, $p$, is the probability that a single observation from an $F$ distribution with parameters $v_{1}$ and $v_{2}$ will fall in the interval [ $\left.0 x\right]$.

Examples
The following illustrates a useful mathematical identity for the $F$ distribution:

```
nu1 = 1:5;
nu2 = 6:10;
x = 2:6;
F1 = fcdf(x,nu1,nu2)
F1 =
 0.7930
F2 = 1 - fcdf(1./x,nu2,nu1)
F2 =
 0.7930
```

| See Also | cdf \| fpdf | finv | fstat | frnd |
| :--- | :--- |
| How To | . "F Distribution" on page B-38 |

## GeneralizedLinearModel.feval

## Purpose Evaluate generalized linear regression model prediction

```
Syntax \(\quad\) ypred \(=\) feval \((m d l, \operatorname{Xnew}(1), \operatorname{Xnew}(2), \ldots\), Xnew \((n)\)
```

Description

Tips

Input
Arguments

## Output Arguments

ypred
Predicted mean values at Xnew. ypred is the same size as each component of Xnew.

## GeneralizedLinearModel.feval

For binomial models, feval uses 1 as the BinomialSize parameter, so ypred is predicted probabilities.

For models with an offset, feval uses 0 as the offset value.

## Examples Predict Responses Using feval

Generate a generalized linear model, and plot its responses to a range of input data.

Generate artificial data for the model, Poisson random numbers with two underlying predictors $\mathrm{X}(1)$ and $\mathrm{X}(2)$.

```
rng('default') % for reproducibility
rndvars = randn(100,2);
X = [2+rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);
```

Create a generalized linear regression model of Poisson data.

```
mdl = GeneralizedLinearModel.fit(X,y,...
 'y ~ x1 + x2','distr','poisson');
```

Generate a range of values for $X(1)$ and $X(2)$, and plot the model predictions at those values.

```
[Xtest1 Xtest2] = meshgrid(-1:.5:3,-2:.5:2);
Z = feval(mdl,Xtest1,Xtest2);
surf(Xtest1,Xtest2,Z)
```


## GeneralizedLinearModel.feval



Alternatives

Related Examples

## See Also

predict gives the same predictions, but uses a single input array with one observation in each row, rather than one component in each input argument.
random predicts with added noise.

GeneralizedLinearModel | predict | random |

- "feval" on page 9-169

Concepts

- "Generalized Linear Models" on page 9-143


## LinearModel.feval

## Purpose Evaluate linear regression model prediction

```
Syntax
ypred = feval(mdl,Xnew(1),Xnew(2),\ldots.,Xnew(n)
```

Description

## Input Arguments

## Output <br> Arguments

## Examples

ypred
Predicted mean values at Xnew. ypred is the same size as each component of Xnew.

For models with an offset, feval uses 0 as the offset value.

## Plot Different Categorical Levels

Fit a mileage model to the smallcar data, including the Year categorical predictor. Superimpose fitted curves on a scatter plot of the data.

Load the data and fit a model.

```
load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);
mdl = LinearModel.fit(ds,'MPG ~ Year + Weight^2');
```

Create a scatter plot of the mileage versus weight.
gscatter(ds.Weight,ds.MPG,ds.Year);


Use feval to plot curves of the model predictions for the various years and weights.

```
w = linspace(min(ds.Weight),max(ds.Weight))';
line(w, feval(mdl,w, '70'), 'Color', 'r')
line(w,feval(mdl,w,'76'),'Color', 'g')
line(w,feval(mdl,w,'82'),'Color','b')
```



## Alternatives

predict gives the same predictions, but uses a single input array with one observation in each row, rather than one component in each input argument. predict also gives confidence intervals on its predictions. random predicts with added noise.

[^5]Tutorials<br>- "feval" on page 9-40<br>- "Linear Regression Workflow" on page 9-43

How To . "Linear Regression" on page 9-11

## Purpose Evaluate nonlinear regression model prediction

```
Syntax
ypred = feval(mdl,Xnew(1),Xnew(2),\ldots.,Xnew(n)
```

Description

## Input

Arguments

## Output Arguments

## Examples

## ypred

Predicted mean values at Xnew. ypred is the same size as each component of Xnew.

## Predict a Nonlinear Model from a Dataset Array

Create a nonlinear model for auto mileage based on the carbig data. Predict the mileage of an average automobile.

Load the data and create a nonlinear model.

## NonLinearModel.feval

```
load carbig
ds = dataset(Horsepower,Weight,MPG);
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...
 b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = NonLinearModel.fit(ds,modelfun,beta0);
```

Find the predicted mileage of an average auto. The data contain some observations with NaN , so compute the mean using nanmean.

Xnew = nanmean([Horsepower Weight]); MPGnew = feval(mdl,Xnew)

MPGnew =
21.8073
Alternatives predict gives the same predictions, but uses a single input array withone observation in each row, rather than one component in each inputargument. predict also gives confidence intervals on its predictions.random predicts with added noise.
See Also NonLinearModel | predict | random |
Related
Examples- "feval" on page 9-211
Concepts - "Nonlinear Regression" on page 9-198
Purpose Two-level full factorial design
Syntax dFF2 = ff2n(n)
Description dFF2 $=f f 2 n(n)$ gives factor settings dFF2 for a two-level full factorialdesign with n factors. dFF2 is $m$-by-n, where $m$ is the number oftreatments in the full-factorial design. Each row of dFF2 correspondsto a single treatment. Each column contains the settings for a singlefactor, with values of 0 and 1 for the two levels.
Examples

dFF2 $=\mathrm{ff} 2 \mathrm{n}(3)$

dFF2 =

    \(0 \quad 0 \quad 0\)
    
    \(0 \quad 0 \quad 1\)
    
    \(0 \quad 1 \quad 0\)
    
    011
    
    100
    
    \(1 \quad 0 \quad 1\)
    
    \(1 \quad 10\)
    
    \(1 \quad 1 \quad 1\)
    See Also fullfact

## TreeBagger.fillProximities

Purpose Proximity matrix for training data

```
Syntax
\(B=\) fillProximities(B)
B = fillProximities(B,'param1',val1,'param2',val2,...)
```

Description $\quad B=$ fillProximities $(B)$ computes a proximity matrix for the training data and stores it in the Properties field of B.

B = fillProximities(B,'param1',val1,'param2', val2,...) specifies optional parameter name/value pairs:

| 'trees' | Either 'all' or a vector of indices of the trees in <br> the ensemble to be used in computing the proximity <br> matrix. Default is 'all'. |
| :--- | :--- |
| 'nprint' | Number of training cycles (grown trees) after which <br> TreeBagger displays a diagnostic message showing <br> training progress. Default is no diagnostic messages. |
|  |  |

See Also CompactTreeBagger.outlierMeasure | CompactTreeBagger.proximity

## Purpose Find objects matching specified conditions

Syntax $\quad h m=$ findobj(h, 'conditions')

Description The findobj method of the handle class follows the same syntax as the MATLAB findobj command, except that the first argument must be an array of handles to objects.
hm = findobj(h, 'conditions') searches the handle object array $h$ and returns an array of handle objects matching the specified conditions. Only the public members of the objects of $h$ are considered when evaluating the conditions.

See Also<br>findobj | qrandstream

## qrandstream.findprop

Purpose Find property of MATLAB handle object

## Syntax $\quad p=$ findprop(h,'propname')

Description $\quad p=$ findprop( $h$, 'propname') finds and returns the meta.property object associated with property name propname of scalar handle object h. propname must be a string. It can be the name of a property defined by the class of $h$ or a dynamic property added to scalar object $h$.

If no property named propname exists for object $h$, an empty meta.property array is returned.

See Also dynamicprops | findobj | meta.property | qrandstream

## Purpose $\quad F$ inverse cumulative distribution function

$$
\text { Syntax } \quad x=\operatorname{finv}(P, V 1, V 2)
$$

Description $\quad \mathrm{X}=\mathrm{finv}(\mathrm{P}, \mathrm{V} 1, \mathrm{~V} 2)$ computes the inverse of the $F$ cdf with numerator degrees of freedom V1 and denominator degrees of freedom V2 for the corresponding probabilities in P. P, V1, and V2 can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs.

V1 and V2 parameters must contain real positive values, and the values in $P$ must lie on the interval [01].

The $F$ inverse function is defined in terms of the $F$ cdf as

$$
x=F^{-1}\left(p \mid v_{1}, v_{2}\right)=\left\{x: F\left(x \mid v_{1}, v_{2}\right)=p\right\}
$$

where

$$
p=F\left(x \mid v_{1}, v_{2}\right)=\int_{0}^{x} \frac{\Gamma\left[\frac{\left(v_{1}+v_{2}\right)}{2}\right]}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}\left(\frac{v_{1}}{v_{2}}\right)^{\frac{v_{1}}{2}} \frac{t^{\frac{v_{1}-2}{2}}}{\left[1+\left(\frac{v_{1}}{v_{2}}\right) t^{\frac{v_{1}+v_{2}}{2}}\right.} d t
$$

Examples Find a value that should exceed $95 \%$ of the samples from an $F$ distribution with 5 degrees of freedom in the numerator and 10 degrees of freedom in the denominator.

$$
\begin{aligned}
& x=\operatorname{finv}(0.95,5,10) \\
& x= \\
& 3.3258
\end{aligned}
$$

You would observe values greater than 3.3258 only $5 \%$ of the time by chance.

See Also icdf | fcdf | fpdf | fstat | frnd
How To . "F Distribution" on page B-38

## ClassificationDiscriminant.fit

## Purpose

Fit discriminant analysis classifier
obj = ClassificationDiscriminant.fit(X,Y)
obj = ClassificationDiscriminant.fit(X,Y,Name, Value)

## Input

Arguments
obj $=$ ClassificationDiscriminant.fit( $\mathrm{X}, \mathrm{Y}$ ) returns a discriminant analysis classifier based on the input variables (also known as predictors, features, or attributes) $X$ and output (response) $Y$.
obj = ClassificationDiscriminant.fit(X,Y,Name, Value) fits a classifier with additional options specified by one or more Name, Value pair arguments. If you use one of the following five options, obj is of class ClassificationPartitionedModel: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. Otherwise, obj is of class ClassificationDiscriminant.

## X

Matrix of numeric predictor values. Each column of X represents one variable, and each row represents one observation.

ClassificationDiscriminant.fit considers NaN values in X as missing values. ClassificationDiscriminant.fit does not use observations with missing values for X in the fit.

## Y

Numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. Each row of $Y$ represents the classification of the corresponding row of $X$.

ClassificationDiscriminant.fit considers NaN values in $Y$ to be missing values. ClassificationDiscriminant.fit does not use observations with missing values for $Y$ in the fit.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding

## ClassificationDiscriminant.fit

value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

## 'ClassNames'

Array of class names. Use the data type that exists in Y.
Use ClassNames to order the classes or to select a subset of classes for training.

Default: Class names that exist in $Y$

## 'Cost'

Square matrix, where $\operatorname{Cost}(i, j)$ is the cost of classifying a point into class $j$ if its true class is i. Alternatively, Cost can be a structure S having two fields: $\mathrm{S} . \mathrm{Cl}$ assNames containing the group names as a variable of the same type as Y , and S.ClassificationCosts containing the cost matrix.

Default: $\operatorname{Cost}(i, j)=1$ if $i \sim=j$, and $\operatorname{Cost}(i, j)=0$ if $i=j$

## 'crossval'

If 'on ', creates a cross-validated classifier with 10 folds. You can use 'kfold', 'holdout', 'leaveout', or 'cvpartition' parameters to override this cross-validation setting. You can only use one of these options at a time for creating a cross-validated classifier: 'cvpartition', 'holdout', 'kfold', or 'leaveout'.

Alternatively, cross validate obj later using the crossval method.
Default: 'off'

## 'cvpartition'

Partition created with cvpartition to use in a cross-validated classifier. You can only use one of these options at a time for

## ClassificationDiscriminant.fit

creating a cross-validated classifier: 'cvpartition', 'holdout', 'kfold', or 'leaveout'.

## 'delta'

Threshold on linear coefficients, a nonnegative scalar. If a coefficient of obj has magnitude smaller than delta, obj sets this coefficient to 0 , and so you can eliminate the corresponding predictor from the model. Set delta to a higher value to eliminate more predictors.
delta must be 0 for quadratic discriminant models.
Default: 0

## 'discrimType'

String specifying the discriminant type. Case-insensitive. One of:

- 'linear'
- 'quadratic'
- 'diagLinear'
- 'diagQuadratic'
- 'pseudoLinear'
- 'pseudoQuadratic'

Default: 'linear'

## 'fillCoeffs'

String, either 'on' or 'off', specifying whether to populate the Coeffs property in the classifier object. Setting to 'on' can be computationally intensive, especially when cross validating.

Default: 'on', except 'off' when cross validating

## 'gamma'

## ClassificationDiscriminant.fit

Parameter for regularizing the correlation matrix of predictors.

- Linear discriminant - Scalar from 0 to 1.
- If you pass a value strictly between 0 and 1 , ClassificationDiscriminant.fit sets the discriminant type to 'Linear'.
- If you pass 0 for gamma and 'Linear' for DiscrimType, and if the correlation matrix is singular, ClassificationDiscriminant.fit sets gamma to the minimal value required for inverting the covariance matrix.
- If you set gamma to 1, ClassificationDiscriminant.fit sets the discriminant type to 'diagLinear'.
- Quadratic discriminant - Either 0 or 1.
- If you pass 0 for gamma and 'Quadratic' for DiscrimType, and if one of the classes has a singular covariance matrix, ClassificationDiscriminant.fit errors.
- If you set gamma to 1, ClassificationDiscriminant.fit sets the discriminant type to 'diagQuadratic'.


## 'holdout'

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training. Specify a numeric scalar from 0 to 1 . You can only use one of these options at a time for creating a cross-validated classifier: 'cvpartition', 'holdout', 'kfold', or 'leaveout'.

## 'kfold'

Number of folds to use in a cross-validated classifier, a positive integer. You can only use one of these options at a time for creating a cross-validated classifier: 'cvpartition', 'holdout', 'kfold', or 'leaveout'.

## ClassificationDiscriminant.fit

Default: 10

## 'leaveout'

Use leave-one-out cross validation by setting to 'on '. You can only use one of these options at a time for creating a cross-validated classifier: 'cvpartition', 'holdout', 'kfold', or 'leaveout'.

## 'PredictorNames'

Cell array of names for the predictor variables, in the order in which they appear in X .

Default: \{'x1', 'x2', ...\}

## 'prior'

Prior probabilities for each class. Specify as one of:

- A string:
- 'empirical' determines class probabilities from class frequencies in Y. If you pass observation weights, they are used to compute the class probabilities.
- 'uniform' sets all class probabilities equal.
- A vector (one scalar value for each class)
- A structure S with two fields:
- S.ClassNames containing the class names as a variable of the same type as Y
- S.ClassProbs containing a vector of corresponding probabilities

Default: 'empirical'

## 'ResponseName'

Name of the response variable Y , a string.

## ClassificationDiscriminant.fit

Default: ' $Y$ '

## 'SaveMemory'

When 'on', ClassificationDiscriminant.fit does not store the full covariance matrix, but instead stores enough information to compute the matrix. The predict method computes the full covariance matrix for prediction, and does not store the matrix. When 'off', ClassificationDiscriminant.fit computes and stores the full covariance matrix in obj.

Set SaveMemory to 'on' when X has thousands of predictors.
Default: 'off'

## 'ScoreTransform'

Function handle for transforming scores, or string representing a built-in transformation function.

| String | Formula |
| :--- | :--- |
| ' symmetric' | $2 x-1$ |
| 'invlogit' | $\log (x /(1-x))$ |
| 'ismax' | Set score for the class with the <br> largest score to 1, and scores for all <br> other classes to 0. |
| 'symmetricismax' | Set score for the class with the <br> largest score to 1, and scores for <br> all other classes to -1. |
| 'none' | $x$ |
| 'logit' | $1 /\left(1+e^{-x}\right)$ |
| 'doublelogit ' | $1 /\left(1+e^{-2 x}\right)$ |

## ClassificationDiscriminant.fit

| String | Formula |
| :--- | :--- |
| 'symmetriclogit' | $2 /\left(1+e^{-x}\right)-1$ |
| 'sign' | -1 for $x<0$ |
|  | 0 for $x=0$ |
|  | 1 for $x>0$ |

You can include your own function handle for transforming scores. Your function should accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Default: 'none'

## 'weights'

Vector of observation weights. The length of weights is the number of rows in X. ClassificationDiscriminant.fit normalizes the weights to sum to 1 .

Default: ones(size (X, 1), 1)

## Output obj

Arguments

## Definitions

Discriminant analysis classifier. You can use obj to predict the response of new data using the predict method.

## Discriminant Classification

The model for discriminant analysis is:

- Each class (Y) generates data (X) using a multivariate normal distribution. That is, the model assumes X has a Gaussian mixture distribution (gmdistribution).
- For linear discriminant analysis, the model has the same covariance matrix for each class, only the means vary.
- For quadratic discriminant analysis, both means and covariances of each class vary.


## ClassificationDiscriminant.fit

predict classifies so as to minimize the expected classification cost:

$$
\hat{y}=\underset{y=1, \ldots, K}{\arg \min } \sum_{k=1}^{K} \hat{P}(k \mid x) C(y \mid k),
$$

where

- $\hat{y}$ is the predicted classification.
- $K$ is the number of classes.
- $\hat{P}(k \mid x)$ is the posterior probability of class $k$ for observation $x$.
- $C(y \mid k)$ is the cost of classifying an observation as $y$ when its true class is $k$.

For details, see "How the predict Method Classifies" on page 14-6.

## Examples <br> Construct a discriminant analysis classifier for the Fisher iris data:

```
load fisheriris
obj = ClassificationDiscriminant.fit(meas,species)
obj =
ClassificationDiscriminant:
 PredictorNames: {'x1' 'x2' 'x3' 'x4'}
 ResponseName: 'Y'
 ClassNames: {'setosa' 'versicolor' 'virginica'}
 ScoreTransform: 'none'
 NObservations: 150
 DiscrimType: 'linear'
 Mu: [3x4 double]
 Coeffs: [3x3 struct]
```

Alternatives
The classify function also performs discriminant analysis. classify is usually more awkward to use:

## ClassificationDiscriminant.fit

- classify requires you to fit the classifier every time you make a new prediction.
- classify does not perform cross validation.
- classify requires you to fit the classifier when changing prior probabilities.

See Also
ClassificationDiscriminant | ClassificationTree.fit
How To . "Discriminant Analysis" on page 14-3

## ClassificationKNN.fit

Purpose Fit $k$-nearest neighbor classifier

Syntax $\quad$| $m d l$ | $=$ ClassificationKNN.fit $(X, Y)$ |
| :--- | :--- |
| $m d l$ | $=$ ClassificationKNN.fit $(X, Y$, Name, Value $)$ |

Description mdl = ClassificationKNN.fit( $\mathrm{X}, \mathrm{Y}$ ) returns a classification model based on the input variables (also known as predictors, features, or attributes) X and output (response) Y .
mdl = ClassificationKNN.fit(X,Y,Name, Value) fits a model with additional options specified by one or more Name, Value pair arguments.

If you use one of these options, mdl is of class ClassificationPartitionedModel: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. Otherwise, mdl is of class ClassificationKNN.

## Input $x$ <br> Arguments

Matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

## $\mathbf{Y}$

Grouping variables of response values with the same number of elements (rows) as $X$. Each entry in $Y$ is the response to the data in the corresponding row of $X$.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'BreakTies'

## ClassificationKNN.fit

String specifying the method predict uses to break ties if multiple classes have the same smallest cost. By default, ties occur when multiple classes have the same number of nearest points among the $K$ nearest neighbors.

- 'nearest' - Use the class with the nearest neighbor among tied groups.
- 'random' - Use a random tiebreaker among tied groups.
- 'smallest' - Use the smallest index among tied groups.

Default: 'smallest'

## 'BucketSize'

Maximum number of data points in the leaf node of the $k$ d-tree. This argument is meaningful only when NSMethod is 'kdtree'.

Default: 50

## 'CategoricalPredictors'

Specification of which predictors are categorical:

- 'all' - All predictors are categorical.
- [ ] - No predictors are categorical.

When you set CategoricalPredictors to 'all', the default Distance is 'hamming'.

Default: []

## 'ClassNames'

Array of class names. Use the data type that exists in Y .
Use ClassNames to order the classes or to select a subset of classes for training.

## ClassificationKNN.fit

Default: Class names in $Y$

## 'Cost'

Square matrix, where $\operatorname{Cost}(i, j)$ is the cost of classifying a point into class $j$ if its true class is i. Alternatively, Cost can be a structure S having two fields: S . ClassNames containing the group names as a variable of the same type as Y , and S.ClassificationCosts containing the cost matrix.

Default: $\operatorname{Cost}(i, j)=1$ if $i \sim=j$, and $\operatorname{Cost}(i, j)=0$ if $i=j$

## 'Cov'

Positive definite matrix, the covariance matrix when computing the Mahalanobis distance. This argument is only valid when 'Distance' is 'mahalanobis'.

Default: nancov (X)

## 'crossval'

If 'on', create a cross-validated model with 10 folds. Use the 'kfold', 'holdout', 'leaveout', or 'cvpartition' parameters to override this cross-validation setting. You can only use one parameter at a time to create a cross-validated model.

Alternatively, cross validate model later using the crossval method.

Default: 'off'

## 'cvpartition'

Partition created with cvpartition to use in a cross-validated model. You can only use one of these four options at a time for creating a cross-validated model: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

## 'Distance'

## ClassificationKNN.fit

String or function handle specifying the distance metric. The allowable strings depend on the NSMethod parameter, which you set in ClassificationKNN.fit, and which exists as a field in ModelParams.

| NSMethod | Distance Metric Names |
| :--- | :--- |
| exhaustive | Any distance metric of ExhaustiveSearcher |
| kdtree | 'cityblock', 'chebychev', 'euclidean ', or <br> 'minkowski' |

For definitions, see "Distance Metrics" on page 15-9.
The distance metrics of ExhaustiveSearcher:

| Value | Description |
| :--- | :--- |
| 'cityblock' | City block distance. |
| 'chebychev' | Chebychev distance (maximum coordinate <br> difference). |
| 'correlation' | One minus the sample linear correlation <br> between observations (treated as <br> sequences of values). |
| 'cosine' | One minus the cosine of the included angle <br> between observations (treated as vectors). |
| 'euclidean' | Euclidean distance. |
| 'hamming' | Hamming distance, percentage of <br> coordinates that differ. |
| 'jaccard' | One minus the Jaccard coefficient, the <br> percentage of nonzero coordinates that <br> differ. |

## ClassificationKNN.fit

\(\left.$$
\begin{array}{l|l}\hline \text { Value } & \text { Description } \\
\hline \text { 'mahalanobis' } & \begin{array}{l}\text { Mahalanobis distance, computed using a } \\
\text { positive definite covariance matrix C. The } \\
\text { default value of C is the sample covariance } \\
\text { matrix of X, as computed by nancov (X). } \\
\text { To specify a different value for C, use the } \\
\text { 'Cov' name-value pair. }\end{array} \\
\hline \text { 'minkowski' } & \begin{array}{l}\text { Minkowski distance. The default exponent } \\
\text { is 2. To specify a different exponent, use } \\
\text { the 'P' name-value pair. }\end{array} \\
\hline \text { 'seuclidean' } & \begin{array}{l}\text { Standardized Euclidean distance. Each } \\
\text { coordinate difference between X and a } \\
\text { query point is scaled, meaning divided by } \\
\text { a scale value S. The default value of S is } \\
\text { the standard deviation computed from X, } \\
\text { S = nanstd (X). To specify another value } \\
\text { for S, use the Scale name-value pair. }\end{array} \\
\hline \text { 'spearman' } & \begin{array}{l}\text { One minus the sample Spearman's rank } \\
\text { correlation between observations (treated } \\
\text { as sequences of values). }\end{array} \\
\hline \text { @distfun } & \begin{array}{l}\text { Distance function handle. distfun has } \\
\text { the form }\end{array}
$$ <br>
function D2 = DISTFUN(ZI , ZJ) <br>
\% calculation of distance <br>
I. <br>
where <br>
- ZI is a 1-by-N vector containing one row <br>

of X or Y.\end{array}\right\}\)| - ZJ is an M2-by-N matrix containing |
| :--- |
| multiple rows of X or Y. |

## ClassificationKNN.fit

| Value | Description |
| :--- | :--- |
|  | - D2 is an M2-by-1 vector of distances, <br> and D2 $(k)$ is the distance between <br> observations ZI and $\mathrm{ZJ}(J,:)$. |

Default: 'euclidean', except the default is 'hamming' when CategoricalPredictors is 'all'

## 'DistanceWeight'

String or function handle specifying the distance weighting function.

| DistanceWeight | Meaning |
| :--- | :--- |
| 'equal' | No weighting |
| 'inverse' | Weight is $1 /$ distance |
| 'squaredinverse' | Weight is $1 /$ distance $^{2}$ |
| @fcn | fcn is a function that accepts a matrix <br> of nonnegative distances, and returns <br> a matrix the same size containing |
| nonnegative distance weights. For |  |
| example, 'squaredinverse' is equivalent |  |
| to @(d)d.^(-2). |  |

Default: 'equal'

## 'Exponent'

Positive scalar specifying the exponent of Minkowski distance. This argument is only valid when 'Distance' is 'minkowski'.

Default: 2
'holdout'

## ClassificationKNN.fit

Holdout validation tests the specified fraction of the data, and uses the remaining data for training. Specify a numeric scalar from 0 to 1 . You can only use one of these four options at a time for creating a cross-validated model: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

## 'IncludeTies'

Logical value indicating whether predict includes all the neighbors whose distance values are equal to the Kth smallest distance. If IncludeTies is true, predict includes all these neighbors. Otherwise, predict uses exactly K neighbors.

Default: false

## 'kfold'

Number of folds to use in a cross-validated model, a positive integer. You can only use one of these four options at a time for creating a cross-validated model: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

Default: 10

## 'leaveout'

Use leave-one-out cross validation by setting to 'on'. You can only use one of these four options at a time for creating a cross-validated model: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

## 'NSMethod'

String specifying the nearest neighbor search method:

- 'kdtree' - Create and use a $k$ d-tree to find nearest neighbors. 'kdtree' is valid when the distance metric is one of the following:
- 'euclidean'


## ClassificationKNN.fit

- 'cityblock'
- 'minkowski'
- 'chebyshev'
- 'exhaustive' - Use the exhaustive search algorithm. The distance values from all points in X to each point in Y are computed to find nearest neighbors.

Default: 'kdtree' when $X$ has 10 or fewer columns, $X$ is not sparse, and the distance metric is a 'kdtree' type; otherwise, 'exhaustive'

## 'NumNeighbors'

Positive integer specifying the number of nearest neighbors in $X$ to find for classifying each point when predicting.

Default: 1

## 'PredictorNames'

Cell array of names for the predictor variables, in the order in which they appear in $X$.

Default: \{'x1', 'x2', ...\}

## 'prior'

Prior probabilities for each class. Specify as one of:

- A string:
- 'empirical' determines class probabilities from class frequencies in Y. If you pass observation weights, they are used to compute the class probabilities.
- 'uniform' sets all class probabilities equal.
- A vector (one scalar value for each class)


## ClassificationKNN.fit

- A structure S with two fields:
- S.ClassNames containing the class names as a variable of the same type as Y
- S.ClassProbs containing a vector of corresponding probabilities

If you set values for both weights and prior, the weights are renormalized to add up to the value of the prior probability in the respective class.

Default: 'empirical'

## 'ResponseName'

Name of the response variable Y , a string.
Default: 'Response'

## 'Scale'

Vector containing nonnegative values, with length equal to the number of columns in $X$. Each coordinate difference between $X$ and a query point is scaled by the corresponding element of Scale. This argument is only valid when 'Distance' is 'seuclidean'.

Default: nanstd (X)

## 'weights'

Vector of observation weights. The length of weights is the number of rows in X. ClassificationKNN. fit normalizes the weights in each class to add up to the value of the prior probability of the class.

Default: ones(size (X, 1), 1)

## ClassificationKNN.fit

Output mdl

mdl
$k$-nearest neighbor classifier model.

## Prediction

ClassificationKNN predicts the classification of a point Xnew using a procedure equivalent to this:

1 Find the NumNeighbors points in the training set $X$ that are nearest to Xnew.

2 Find the NumNeighbors response values $Y$ to those nearest points.
3 Assign the classification label Ynew that has largest posterior probability among the values in Y .

For details, see "Posterior Probability" on page 20-2181 in the predict documentation.

## Examples Construct a KNN Classifier

Construct a $k$-nearest neighbor classifier for the Fisher iris data, where $k=5$.

Load the data.
load fisheriris
$X=$ meas;
Y = species;
Construct a classifier for 5-nearest neighbors.
mdl = ClassificationKNN.fit(X,Y,'NumNeighbors',5)
mdl =
ClassificationKNN:
PredictorNames: \{'x1' 'x2' 'x3' 'x4'\}

## ClassificationKNN．fit

```
 ResponseName: 'Y'
 ClassNames: {'setosa' 'versicolor' 'virginica'}
ScoreTransform: 'none'
NObservations: 150
 Distance: 'euclidean'
 NumNeighbors: 5
```


## Use a Different Metric

To use the Minkowski metric，you must use an exhaustive searcher．
Load the data．
load fisheriris
$X=$ meas；
$Y=$ species；
Construct a classifier for 3－nearest neighbors with the Minkowski metric．

```
mdl = ClassificationKNN.fit(X,Y,'NumNeighbors',3,...
 'NSMethod','exhaustive','Distance','minkowski');
```

To examine mdl properties，double－click mdl in the Workspace window to open the Variable Editor．

| Workspace $\quad \rightarrow 1 \square$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 甸 $\square^{-1}$ 匋畦岛 | Stack：$\triangle$ Select | data to |  | $\checkmark$ |
| Name－ | Value | Min | Max |  |
| \＃x | ＜150x4 dou．．． | 0.1000 | 7.9000 |  |
| （3）Y | ＜150x1 cell＞ |  |  |  |
| （4）md | ＜1x1 Classi．．． |  |  |  |
| $\square$ meas | ＜150x4 dou．．． | 0.1000 | 7.9000 |  |
| （\}) species | ＜150x1 cell＞ |  |  |  |

## ClassificationKNN.fit



See Also
Related
Examples

## Concepts

ClassificationKNN I predict |

- "Construct a KNN Classifier" on page $15-25$
- "Modify a KNN Classifier" on page 15-27
- "Classification Using Nearest Neighbors" on page 15-9


## ClassificationTree.fit

## Purpose <br> Syntax <br> Description

## Input Arguments <br> X

Fit classification tree
tree = ClassificationTree.fit(X,Y)
tree = ClassificationTree.fit(X,Y,Name, Value)
tree $=$ ClassificationTree.fit $(X, Y)$ returns a classification tree based on the input variables (also known as predictors, features, or attributes) X and output (response) Y . tree is a binary tree, where each branching node is split based on the values of a column of $X$.
tree = ClassificationTree.fit(X,Y,Name, Value) fits a tree with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, ,NameN, ValueN.

Note that using the 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition' options results in a tree of class ClassificationPartitionedModel. You cannot use a partitioned tree for prediction, so this kind of tree does not have a predict method.
Otherwise, tree is of class ClassificationTree, and you can use the predict method to make predictions.

A matrix of floating-point predictor values. Each column of X represents one variable, and each row represents one observation.

ClassificationTree.fit considers NaN values in $X$ as missing values. ClassificationTree.fit does not use observations with all missing values for X in the fit. ClassificationTree.fit uses observations with some missing values for $X$ to find splits on variables for which these observations have valid values.

## $\mathbf{Y}$

A numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings. Each row of Y represents the classification of the corresponding

## ClassificationTree.fit

row of X . For numeric Y , consider using RegressionTree.fit instead of ClassificationTree.fit.

ClassificationTree.fit considers NaN values in $Y$ to be missing values. ClassificationTree.fit does not use observations with missing values for Y in the fit.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'AlgorithmForCategorical'

Algorithm to find the best split on a categorical predictor with $L$ levels for data with $K \geq 3$ classes. The available algorithms are:

| 'Exact' | Consider all $2^{L-1}-1$ <br> combinations |
| :--- | :--- |
| 'PullLeft' | Pull left by purity |
| 'PCA' | Principle component-based <br> partition[1] |
| 'OVAbyClass ' | One versus all by class |

Descriptions of the algorithms are in "Splitting Categorical Predictors" on page 15-55.

Default: ClassificationTree.fit selects the optimal subset of algorithms for each split using the known number of classes and levels of a categorical predictor. For $K=2$ classes, ClassificationTree.fit always performs the exact search.

## 'CategoricalPredictors'

## ClassificationTree.fit

List of categorical predictors. Pass CategoricalPredictors as one of:

- A numeric vector with indices from 1 to $p$, where $p$ is the number of columns of $X$.
- A logical vector of length $p$, where a true entry means that the corresponding column of X is a categorical variable.
- 'all', meaning all predictors are categorical.
- A cell array of strings, where each element in the array is the name of a predictor variable. The names must match entries in PredictorNames values.
- A character matrix, where each row of the matrix is a name of a predictor variable. The names must match entries in PredictorNames values. Pad the names with extra blanks so each row of the character matrix has the same length.


## Default: []

## 'ClassNames'

Array of class names. Use the data type that exists in $Y$.
Use ClassNames to order the classes or to select a subset of classes for training.

Default: The class names that exist in $Y$

## 'Cost'

Square matrix, where $\operatorname{Cost}(i, j)$ is the cost of classifying a point into class $j$ if its true class is $i$. Alternatively, Cost can be a structure S having two fields: S.ClassNames containing the group names as a variable of the same type as Y , and S.ClassificationCosts containing the cost matrix.

Default: $\operatorname{Cost}(i, j)=1$ if $i \sim=j$, and $\operatorname{Cost}(i, j)=0$ if $i=j$

## ClassificationTree.fit

## 'crossval'

Flag to grow a cross-validated decision tree. Possible value are 'on' or 'off'.

If 'on', ClassificationTree.fit grows a cross-validated decision tree with 10 folds. You can override this cross-validation setting using one of the 'kfold', 'holdout', 'leaveout', or 'cvpartition' name-value pair arguments. Note that you can only use one of these four options ('kfold', 'holdout', 'leaveout', or 'cvpartition') at a time when creating a cross-validated tree.

Alternatively, cross validate tree later using the crossval method.

Default: 'off'

## 'cvpartition'

Partition created with cvpartition to use in a cross-validated tree.

Note that if you use 'cvpartition', you cannot use any of the 'kfold', 'holdout', or 'leaveout ' name-value pair arguments.

## 'holdout'

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training. Specify a numeric scalar from 0 to 1 .

Note that if you use 'holdout', you cannot use any of the 'cvpartition', 'kfold', or 'leaveout' name-value pair arguments.

## 'kfold'

Number of folds to use in a cross-validated tree, a positive integer.

## ClassificationTree.fit

Note that if you use 'kfold', you cannot use any of the 'cvpartition', 'holdout', or 'leaveout' name-value pair arguments.

Default: 10

## 'leaveout'

Use leave-one-out cross validation by setting to 'on'.
Note that if you use 'leaveout', you cannot use any of the 'cvpartition', 'holdout', or 'kfold' name-value pair arguments.

## 'MaxCat'

ClassificationTree.fit splits a categorical predictor using the exact search algorithm if the predictor has at most MaxCat levels in the split node. Otherwise, ClassificationTree.fit finds the best categorical split using one of the inexact algorithms.

Specify MaxCat as a numeric nonnegative scalar value. Passing a small value can lead to loss of accuracy and passing a large value can lead to long computation time and memory overload.

Default: 10

## 'MergeLeaves'

When 'on', ClassificationTree.fit merges leaves that originate from the same parent node, and that give a sum of risk values greater or equal to the risk associated with the parent node. When 'off', ClassificationTree.fit does not merge leaves.

Default: 'on'

## 'MinLeaf'

Each leaf has at least MinLeaf observations per tree leaf. If you supply both MinParent and MinLeaf,

## ClassificationTree.fit

ClassificationTree.fit uses the setting that gives larger leaves: MinParent=max (MinParent, 2*MinLeaf).

Default: 1

## 'MinParent'

Each branch node in the tree has at least MinParent observations. If you supply both MinParent and MinLeaf, ClassificationTree.fit uses the setting that gives larger leaves: MinParent=max(MinParent, 2*MinLeaf).

Default: 10

## 'NVarToSample'

Number of predictors to select at random for each split. Can be a positive integer or 'all', which means use all available predictors.

Default: 'all'

## 'PredictorNames'

A cell array of names for the predictor variables, in the order in which they appear in $X$.

Default: \{'x1','x2',...\}

## 'prior'

Prior probabilities for each class. Specify as one of:

- A string:
- 'empirical' determines class probabilities from class frequencies in Y. If you pass observation weights, they are used to compute the class probabilities.
- 'uniform' sets all class probabilities equal.


## ClassificationTree.fit

- A vector (one scalar value for each class)
- A structure S with two fields:
- S.ClassNames containing the class names as a variable of the same type as Y
- S.ClassProbs containing a vector of corresponding probabilities

If you set values for both weights and prior, the weights are renormalized to add up to the value of the prior probability in the respective class.

Default: 'empirical'

## 'Prune'

When 'on', ClassificationTree.fit grows the classification tree, and computes the optimal sequence of pruned subtrees. When 'off' ClassificationTree.fit grows the classification tree without pruning.

Default: 'on'

## 'PruneCriterion'

String with the pruning criterion, either 'error' or 'impurity'.
Default: 'error'

## 'ResponseName'

Name of the response variable Y , a string.
Default: 'Response'

## 'ScoreTransform'

## ClassificationTree.fit

Function handle for transforming scores, or string representing a built-in transformation function.

| String | Formula |
| :--- | :--- |
| 'symmetric' | $2 x-1$ |
| 'invlogit' | $\log (x /(1-x))$ |
| 'ismax' | Set score for the class with the <br> largest score to 1, and scores for all <br> other classes to 0. |
| 'symmetricismax' | Set score for the class with the <br> largest score to 1, and scores for <br> all other classes to -1. |
| 'none' | $x$ |
| 'logit' | $1 /\left(1+e^{-x}\right)$ |
| 'doublelogit' | $1 /\left(1+e^{-2 x}\right)$ |
| 'symmetriclogit' | $2 /\left(1+e^{-x}\right)-1$ |
| 'sign' | -1 for $x<0$ <br> 0 for $x=0$ <br> 1 for $x>0$ |

You can include your own function handle for transforming scores. Your function should accept a matrix (the original scores) and return a matrix of the same size (the transformed scores).

Default: 'none'

## 'SplitCriterion'

Criterion for choosing a split. One of 'gdi' (Gini's diversity index), 'twoing' for the twoing rule, or 'deviance' for maximum deviance reduction (also known as cross entropy).

Default: 'gdi'

## ClassificationTree.fit

## 'Surrogate'

String describing whether to find surrogate decision splits at each branch node. Specify as 'on', 'off', 'all', or a positive scalar value.

- When 'on', ClassificationTree.fit finds at most 10 surrogate splits at each branch node.
- When set to a positive integer value, ClassificationTree.fit finds at most the specified number of surrogate splits at each branch node.
- When set to 'all', ClassificationTree.fit finds all surrogate splits at each branch node. The 'all' setting can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values. The setting also enables you to compute measures of predictive association between predictors.

Default: 'off'

## 'weights'

Vector of observation weights. The length of weights is the number of rows in X. ClassificationTree.fit normalizes the weights in each class to add up to the value of the prior probability of the class.

Default: ones(size(X,1),1)

## Output tree

Arguments
A classification tree object.
Note that using the 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition' options results in a tree of class ClassificationPartitionedModel. You cannot use a partitioned

## ClassificationTree.fit

tree for prediction, so this kind of tree does not have a predict method.

Otherwise, tree is of class ClassificationTree, and you can use the predict method to make predictions.

## Definitions Impurity and Node Error

ClassificationTree splits nodes based on either impurity or node error. Impurity means one of several things, depending on your choice of the SplitCriterion name-value pair:

- Gini's Diversity Index (gdi) - The Gini index of a node is

$$
1-\sum_{i} p^{2}(i),
$$

where the sum is over the classes $i$ at the node, and $p(i)$ is the observed fraction of classes with class $i$ that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of node impurity.

- Deviance ('deviance') - With $p(i)$ defined as for the Gini index, the deviance of a node is

$$
-\sum_{i} p(i) \log p(i)
$$

A pure node has deviance 0 ; otherwise, the deviance is positive.

- Twoing rule ('twoing') - Twoing is not a purity measure of a node, but is a different measure for deciding how to split a node. Let $L(i)$ denote the fraction of members of class $i$ in the left child node after a split, and $R(i)$ denote the fraction of members of class $i$ in the right child node after a split. Choose the split criterion to maximize


## ClassificationTree.fit

$$
P(L) P(R)\left(\sum_{i}|L(i)-R(i)|\right)^{2},
$$

where $P(L)$ and $P(R)$ are the fractions of observations that split to the left and right respectively. If the expression is large, the split made each child node purer. Similarly, if the expression is small, the split made each child node similar to each other, and hence similar to the parent node, and so the split did not increase node purity.

- Node error - The node error is the fraction of misclassified classes at a node. If $j$ is the class with largest number of training samples at a node, the node error is

$$
1-p(j)
$$

## Examples Construct a classification tree for the data in ionosphere.mat:

```
load ionosphere
tc = ClassificationTree.fit(X,Y)
tc =
 ClassificationTree
 PredictorNames: {1x34 cell}
 ResponseName: 'Y'
 ClassNames: {'b' 'g'}
 ScoreTransform: 'none'
 CategoricalPredictors: []
 NObservations: 351
 Properties, Methods
```


## ClassificationTree.fit

## References

[1] Coppersmith, D., S. J. Hong, and J. R. M. Hosking. "Partitioning Nominal Attributes in Decision Trees." Data Mining and Knowledge Discovery, Vol. 3, 1999, pp. 197-217.

See Also<br>predict | ClassificationTree

## GeneralizedLinearModel.fit

Purpose<br>Syntax<br>Description

Create generalized linear regression model

Tips

## Input <br> Arguments

 model of a dataset array ds.mdl = GeneralizedLinearModel.fit(X,y) creates a generalized linear model of the responses $y$ to a data matrix $X$.
mdl = GeneralizedLinearModel.fit(...,modelspec) creates a generalized linear model as specified by modelspec.
mdl = GeneralizedLinearModel.fit(...,Name, Value) or mdl = more Name, Value pair arguments. you specify otherwise with the Distribution name-value pair.

## ds

```
mdl = GeneralizedLinearModel.fit(ds)
mdl = GeneralizedLinearModel.fit(X,y)
mdl = GeneralizedLinearModel.fit(...,modelspec)
mdl = GeneralizedLinearModel.fit(...,Name,Value)
mdl = GeneralizedLinearModel.fit(...,modelspec,Name,Value)
```

mdl = GeneralizedLinearModel.fit(ds) creates a generalized linear GeneralizedLinearModel.fit(..., modelspec, Name,Value) creates a generalized linear model with additional options specified by one or

- The generalized linear model mdl is a standard linear model unless
- For other methods such as stepwise or devianceTest, or properties of the GeneralizedLinearModel object, see GeneralizedLinearModel.

Dataset array, where by default the last column is the response variable, and all other columns are the predictors. Predictors can be numeric, or can be any grouping variable type, such as logical or categorical (see "Grouping Variables" on page 2-51). The response must be numeric or logical.

To set a different column as the response variable, use the ResponseVar name-value pair. To use a subset of the columns as predictors, use the PredictorVars name-value pair.

## GeneralizedLinearModel.fit

## X

Matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

## $y$

Vector of response values with the same number of rows as X . Each entry in $y$ is the response to the data in the corresponding row of $X$.

## modelspec

Model specification. This is the starting model for the stepwise method. Possibilities:

- String specifying the type of model.

| String | Model Type |
| :--- | :--- |
| 'constant' | Model contains only a constant <br> (intercept) term. |
| 'linear' | Model contains an intercept and linear <br> terms for each predictor. |
| 'interactions' | Model contains an intercept, linear <br> terms, and all products of pairs of <br> distinct predictors (no squared terms). |
| 'purequadratic' | Model contains an intercept, linear <br> terms, and squared terms. |

## GeneralizedLinearModel.fit

| String | Model Type |
| :--- | :--- |
| 'quadratic' | Model contains an intercept, linear <br> terms, interactions, and squared terms. |
| 'polyijk' | Model is a polynomial with all terms <br> up to degree $i$ in the first predictor, <br> degree $j$ in the second predictor, <br> etc. Use numerals 0 through 9. For <br> example, 'poly2111' has a constant <br> plus all linear and product terms, and <br> also contains terms with predictor 1 <br> squared. |

- T-by-P+1 matrix, namely "Terms Matrix" on page 20-784, specifying terms to include in model, where $T$ is the number of terms and $P$ is the number of predictor variables, and plus one is for the response variable.
- String representing a "Formula" on page 20-787 in the form
'Y ~ terms',
where the terms are in "Wilkinson Notation" on page 20-788.


## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'BinomialSize'

Vector or name of a variable of the same length as the response, specifying the size of the sample (number of trials) used in fitting the binomial distribution. This is the $n$ parameter for the fitted binomial distribution. BinomialSize applies only when the Distribution parameter is 'binomial'.

## GeneralizedLinearModel.fit

BinomialSize can be a scalar, meaning all observations have the same number of trials.

As an alternative to BinomialSize, you can specify the response as a two-column vector with counts in column 1 and BinomialSize in column 2.

Default: 1

## 'CategoricalVars'

Identify the categorical variables. Choices:

- Cell array of strings of the variable names in the ds dataset array.
- Logical or numerical index vector indicating which data columns are categorical. For example, if predictors 2 and 3 out of 6 are categorical, pass either
$[2,3]$
or
logical([0 $\left.1 \begin{array}{lllll}1 & 1 & 0 & 0 & 0\end{array}\right]$

Default: For data matrix X, default is [] (none). For dataset array ds, default is to treat ds variables as categorical if they are categorical, logical, character arrays, or cell arrays of strings.

## 'DispersionFlag'

Logical value that applies only to 'binomial' and 'poisson' distributions. true causes the fitting function to estimate a dispersion parameter when computing standard errors. false causes the fitting function to use the theoretical value. The fitting function always estimates the dispersion for other distributions.

Default: false for 'binomial' and 'poisson' distributions

## GeneralizedLinearModel.fit

## 'Distribution'

Name of the distribution of the response, one of:

| 'normal' | Normal distribution |
| :--- | :--- |
| 'binomial' | Binomial distribution |
| 'poisson' | Poisson distribution |
| 'gamma' | Gamma distribution |
| 'inverse | Inverse Gaussian distribution |

Default: 'normal'

## 'Exclude'

Logical or numerical index vector indicating which observations to exclude from the fit. For example, to exclude observations 2 and 3 out of 6 , pass either
$[2,3]$
or
logical([0 $\left.1 \times 1 \begin{array}{lll}0 & 0\end{array}\right)$
Default: []

## 'Intercept'

Logical value indicating whether to include a constant term (intercept) in the model. Use Intercept only when you specify the model by a string, not a formula or matrix.

Default: true

## 'Link'

## GeneralizedLinearModel.fit

The link function to use in place of the canonical link. The link function defines the relationship $f(\mu)=X^{*} b$ between the mean response $\mu$ and the linear combination of predictors $X^{*} b$. Specify the link as follows.

| Link Function Name | Link Function | Mean (Inverse) Function |
| :---: | :---: | :---: |
| 'identity' | $f(\mu)=\mu$ | $\mu=X b$ |
| 'log' | $f(\mu)=\log (\mu)$ | $\mu=\exp (X b)$ |
| 'logit' | $f(\mu)=\log (\mu /(1-\mu))$ | $\mu=\exp (X b) /(1+\exp (X b))$ |
| 'probit' | $f(\mu)=\Phi^{-1}(\mu)$ | $\mu=\Phi(X b)$ |
| 'comploglog' | $f(\mu)=\log (-\log (1-\mu))$ | $\mu=1-\exp (-\exp (X b))$ |
| 'reciprocal' | $f(\mu)=\log (-\log (\mu))$ | $\mu=\exp (-\exp (X b))$ |
| p (a number) | $f(\mu)=\mu^{p}$ | $\mu=X b^{1 / p}$ |
| $S$ (a structure) <br> $S$ has three fields, each a function handle that accepts a vector of inputs and returns a vector the same size: <br> - S.Link - The link function <br> - S.Inverse - The inverse link function <br> - S.Derivative - The derivative of the link function | $f(\mu)=$ S. $\operatorname{Link}(\mu)$ | $\mu=$ S.Inverse( $X b$ ) |

Default: The canonical link function (see "Definitions" on page 20-784)

## 'Offset'

## GeneralizedLinearModel.fit

Vector or name of a variable with the same length as the response. GeneralizedLinearModel.fit and GeneralizedLinearModel.stepwise use Offset as an additional predictor, with a coefficient value fixed at 1.0. In other words, the formula for fitting is

```
\mu ~ Offset + (terms involving real predictors)
```

with the Offset predictor having coefficient 1.
For example, consider a Poisson regression model. Suppose the number of counts is known for theoretical reasons to be proportional to a predictor A. By using the log link function and by specifying $\log (A)$ as an offset, you can force the model to satisfy this theoretical constraint.

Default: []

## 'PredictorVars'

Identify the predictors to use for fitting. Choices:

- Cell array of strings of the variable names. The strings should be names in the ds dataset array, or the VarNames name-value pair.
- Logical or numerical index vector indicating which predictors to use. For example, to use predictors 2 and 3 out of 6, pass either
or
logical([0 1 1 0 O 0 ))
Default: All variables in X, or all variables in ds except for ResponseVar


## 'ResponseVar'

## GeneralizedLinearModel.fit

Variable that the fitting function uses for response data. Give either the variable name or its column number. Typically, you use ResponseVar when fitting a dataset array ds. Choices are:

- String of the variable name.
- Logical or numerical index vector indicating which predictors to use. For example, to use the fourth variable as the response out of six variables, pass either
'ResponseVar',[4]
or
'ResponseVar',logical([0 0001000$])$
Default: Last column of ds


## 'VarNames'

Cell array of strings, first naming the columns of $X$, and with the response variable y last. Not applicable to variables in a dataset array, because those variables already have names.

Default: \{'x1','x2', ...,'xn', 'y'\}, where $n$ is the number of columns of $X$

## 'Weights'

Vector of nonnegative observation weights.
Default: ones(size(y))

| Output mdl |  |
| :--- | :--- |
| Arguments | Generalized linear model representing a least-squares fit of the <br> link of the response to the data. |

## GeneralizedLinearModel.fit

## Definitions

## Terms Matrix

A terms matrix is a T-by- $\mathrm{P}+1$ matrix specifying terms in a model, where T is the number of terms, P is the number of predictor variables, and plus one is for the response variable. The value of $T(i, j)$ is the exponent of variable $j$ in term i. For example, if there are three predictor variables A, B, and C:

```
[0 0 0 0] % constant term or intercept
[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0
[1 0 1 0] % A*C
[2 0 0 0] % A^2
[0 1 2 0] % B*(C^2)
```

The 0 at the end of each term represents the response variable. In general,

- If you have the variables in a dataset array, then a 0 must represent the response variable depending on the position of the response variable in the dataset array. For example:

Load sample data and define the dataset array.

```
load hospital
```

ds = dataset(hospital.Sex,hospital.BloodPressure(:,1), hospital.Age,...
hospital.Smoker,'VarNames',\{'Sex','BloodPressure', 'Age', 'Smoker'\});

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in a terms matrix. The response variable is in the second column of the data set array, so there must be a column of zeros for the response variable in the second column of the term matrix.

```
T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]
\(\mathrm{T}=\)
```

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |

## GeneralizedLinearModel.fit

$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$
Redefine the dataset array.

```
ds = dataset(hospital.BloodPressure(:,1),hospital.Sex,hospital.Age,
```

hospital.Smoker, 'VarNames', \{'BloodPressure', 'Sex', 'Age', 'Smoker'\});

Now, the response variable is the first term in the data set array. Specify the same linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a term matrix.

```
T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
```

$\mathrm{T}=$

| 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 1 |

- If you have the predictor and response variables in a matrix and column vector, then you must include a 0 for the response variable at the end of each term. For example:

Load sample data and define the matrix of predictors.

```
load carsmall
X = [Acceleration,Weight];
```

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to data. This model includes the main effect and two way interaction terms for the variables, Acceleration and Weight, and a second order term for the variable, Weight.

```
T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]
T =
```


## GeneralizedLinearModel.fit

| 0 | 0 | 0 |
| :--- | :--- | :--- |
| 1 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 1 | 0 |
| 0 | 2 | 0 |

Fit a linear model.

```
mdl = LinearModel.fit(X,MPG,T)
mdl =
Linear regression model:
 y ~ 1 + x1*x2 + x2^2
```

Estimated Coefficients:

|  | Estimate | SE | tStat | PValue |
| :--- | ---: | ---: | ---: | ---: |
| ( Intercept) | 48.906 | 12.589 | 3.8847 | 0.00019665 |
| x1 | 0.54418 | 0.57125 | 0.95261 | 0.34337 |
| x2 | -0.012781 | 0.0060312 | -2.1192 | 0.036857 |
| x1: x2 | -0.00010892 | 0.00017925 | -0.6076 | 0.545 |
| x2^2 | $9.7518 e-07$ | $7.5389 e-07$ | 1.2935 | 0.19917 |

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 4.1
R-squared: 0.751, Adjusted R-Squared 0.739
F-statistic vs. constant model: 67, p-value $=4.99 \mathrm{e}-26$

Only the intercept and x2 term, which corresponds to the Weight variable, are significant at the $5 \%$ significance level.

Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.

```
T = [0 0 0;1 0 0;0 1 0;1 1 0];
mdl = LinearModel.stepwise(X,MPG,[0 O 0],'upper',T)
```


## GeneralizedLinearModel.fit

```
1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28
mdl =
Linear regression model:
 y ~ 1 + x2
Estimated Coefficients:
\begin{tabular}{lcrrl}
& Estimate & \multicolumn{1}{l}{ SE } & \multicolumn{1}{l}{ tStat } & pValue \\
(Intercept) & 49.238 & 1.6411 & 30.002 & \(2.7015 \mathrm{e}-49\) \\
x2 & -0.0086119 & 0.0005348 & -16.103 & \(1.6434 \mathrm{e}-28\)
\end{tabular}
Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738, Adjusted R-Squared 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28
```

The results of the stepwise regression are consistent with the results of LinearModel.fit in the previous step.

## Formula

A formula for model specification is a string of the form

```
'Y ~ terms',
```

where

- $Y$ is the response name.
- terms contains
- Variable names
-     + means include the next variable
-     - means do not include the next variable
- : defines an interaction, a product of terms
-     * defines an interaction and all lower-order terms


## GeneralizedLinearModel.fit

- ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as well
- () groups terms

Note Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include -1 in the formula.

For example,

```
'Y ~ A + B + C' means a three-variable linear model with
intercept.
'Y ~ A + B + C - 1' is a three-variable linear model without
intercept.
' Y ~ A + B + C + B^2' is a three-variable model with intercept
and a \(B^{\wedge} 2\) term.
' \(Y\) ~ \(A+B^{\wedge} 2+C '\) is the same as the previous example because
\(B^{\wedge} 2\) includes a \(B\) term.
' \(Y \sim A+B+C+A: B '\) includes an \(A * B\) term.
\(' Y \sim A * B+C\) ' is the same as the previous example because \(A * B=\)
A + B + A:B.
'Y ~ A*B*C - A:B:C' has all interactions among A, B, and C, except
the three-way interaction.
'Y ~ A* (B + C + D)' has all linear terms, plus products of A with
each of the other variables.
```


## Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

| Wilkinson Notation | Factors in Standard Notation |
| :--- | :--- |
| 1 | Constant (intercept) term |
| $A^{\wedge} k$, where $k$ is a positive integer | $A, A^{2}, \ldots, A^{k}$ |

## GeneralizedLinearModel.fit

| Wilkinson Notation | Factors in Standard Notation |
| :--- | :--- |
| $A+B$ | $A, B$ |
| $A * B$ | $A, B, A * B$ |
| $A: B$ | $A * B$ only |
| $-B$ | Do not include $B$ |
| $A * B+C$ | $A, B, C, A * B$ |
| $A+B+C+A: B$ | $A, B, C, A * B$ |
| $A * B * C-A: B: C$ | $A, B, C, A * B, A * C, B * C$ |
| $A *(B+C)$ | $A, B, C, A * B, A * C$ |

Statistics Toolbox notation always includes a constant term unless you explicitly remove the term using -1 .

## Canonical Link Function

The default link function for a generalized linear model is the canonical link function.

## Canonical Link Functions for Generalized Linear Models

| Distribution | Link Function <br> Name | Link Function | Mean (Inverse) <br> Function |
| :--- | :--- | :--- | :--- |
| 'normal' | 'identity' | $f(\mu)=\mu$ | $\mu=X b$ |
| 'binomial' | 'logit' | $f(\mu)=\log (\mu /(1-\mu))$ | $\mu=\exp (X b) /(1+\exp (X b))$ |
| 'poisson' | 'log' | $f(\mu)=\log (\mu)$ | $\mu=\exp (X b)$ |
| 'gamma' | -1 | $f(\mu)=1 / \mu$ | $\mu=1 /(X b)$ |
| 'inverse <br> gaussian' | -2 | $f(\mu)=1 / \mu^{2}$ | $\mu=(X b)^{-1 / 2}$ |

## GeneralizedLinearModel.fit

## Examples Fit a Generalized Linear Model

Make a logistic binomial model of the probability of smoking as a function of age, weight, and sex, using a two-way interactions model.

Load the hospital dataset array.

```
load hospital
ds = hospital; % just to use the ds name
```

Specify the model using a formula that allows up to two-way interactions.
modelspec = 'Smoker ~ Age*Weight*Sex - Age:Weight:Sex';
Create the generalized linear model.

```
mdl = GeneralizedLinearModel.fit(ds,...
 modelspec,'Distribution','binomial')
```

mdl $=$

Generalized Linear regression model:
logit(Smoker) ~ 1 + Sex*Age + Sex*Weight + Age*Weight
Distribution = Binomial

Estimated Coefficients:

|  | Estimate | SE | tStat | pValue |
| :--- | ---: | ---: | ---: | :--- |
| (Intercept) | -6.0492 | 19.749 | -0.3063 | 0.75938 |
| Sex_Male | -2.2859 | 12.424 | -0.18399 | 0.85402 |
| Age | 0.11691 | 0.50977 | 0.22934 | 0.81861 |
| Weight | 0.031109 | 0.15208 | 0.20455 | 0.83792 |
| Sex_Male:Age | 0.020734 | 0.20681 | 0.10025 | 0.92014 |
| Sex_Male:Weight | 0.01216 | 0.053168 | 0.22871 | 0.8191 |
| Age:Weight | -0.00071959 | 0.0038964 | -0.18468 | 0.85348 |

[^6]
## GeneralizedLinearModel.fit

Dispersion: 1
Chi^2-statistic vs. constant model: 5.07, p-value $=0.535$

The large $p$-value indicates the model might not differ statistically from a constant.

## Alternatives <br> References

Use GeneralizedLinearModel.stepwise to select a model specification automatically. Use step, addTerms, or removeTerms to adjust a fitted model.
[1] Collett, D. Modeling Binary Data. New York: Chapman \& Hall, 2002.
[2] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman \& Hall, 1990.
[3] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman \& Hall, 1990.

## See Also <br> GeneralizedLinearModel | GeneralizedLinearModel.stepwise |

## Related <br> Examples

- "Generalized Linear Model Workflow" on page 9-173


## Concepts <br> - "Generalized Linear Models" on page 9-143

Purpose
Gaussian mixture parameter estimates

## Syntax

Description
obj = gmdistribution.fit( $\mathrm{X}, \mathrm{k}$ )
obj = gmdistribution.fit(...,param1,val1,param2,val2,...)
obj $=$ gmdistribution.fit ( $\mathrm{X}, \mathrm{k}$ ) uses an Expectation Maximization (EM) algorithm to construct an object obj of the gmdistribution class containing maximum likelihood estimates of the parameters in a Gaussian mixture model with k components for data in the $n$-by- $d$ matrix X , where $n$ is the number of observations and $d$ is the dimension of the data.
gmdistribution treats NaN values as missing data. Rows of X with NaN values are excluded from the fit.
obj = gmdistribution.fit(...,param1,val1,param2,val2,...) provides control over the iterative EM algorithm. Parameters and values are listed below.

| Parameter | Value |
| :--- | :--- |
| 'Start' | Method used to choose initial component parameters. <br> One of the following: |
|  | - 'randSample ' - To select k observations from X at <br> random as initial component means. The mixing <br> proportions are uniform. The initial covariance <br> matrices for all components are diagonal, where <br> the element j on the diagonal is the variance of <br> $\mathrm{X}(:, \mathrm{j})$. This is the default. |
|  | - $\mathrm{s}-\mathrm{A}$ structure array with fields mu, Sigma, <br> and PComponents. See gmdistribution for <br> descriptions of values. <br> - s-A vector of length $n$ containing an initial guess <br> of the component index for each point. |
| 'Replicates' | A positive integer giving the number of times to <br> repeat the EM algorithm, each time with a new set of |


| Parameter | Value |
| :--- | :--- |
|  | parameters. The solution with the largest likelihood <br> is returned. A value larger than 1 requires the <br> 'randSample' start method. The default is 1. |
| 'CovType' | 'diagonal' if the covariance matrices are restricted <br> to be diagonal; ' full' otherwise. The default is <br> 'full'. |
| 'SharedCov' | Logical true if all the covariance matrices are <br> restricted to be the same (pooled estimate); logical <br> false otherwise. |
| 'Regularize' | A nonnegative regularization number added to <br> the diagonal of covariance matrices to make them <br> positive-definite. The default is 0. |
| 'Options' | Options structure for the iterative EM algorithm, as <br> created by statset. gmdistribution.fit uses the <br> parameters 'Display' with a default value of 'off ', <br> 'MaxIter' with a default value of 100, and 'TolFun' <br> with a default value of 1e-6. |

In some cases, gmdistribution may converge to a solution where one or more of the components has an ill-conditioned or singular covariance matrix.

The following issues may result in an ill-conditioned covariance matrix:

- The number of dimension of your data is relatively high and there are not enough observations.
- Some of the features (variables) of your data are highly correlated.
- Some or all the features are discrete.
- You tried to fit the data to too many components.

In general, you can avoid getting ill-conditioned covariance matrices by using one of the following precautions:

- Pre-process your data to remove correlated features.
- Set 'SharedCov' to true to use an equal covariance matrix for every component.
- Set 'CovType' to 'diagonal'.
- Use 'Regularize' to add a very small positive number to the diagonal of every covariance matrix.
- Try another set of initial values.

In other cases gmdistribution may pass through an intermediate step where one or more of the components has an ill-conditioned covariance matrix. Trying another set of initial values may avoid this issue without altering your data or model.

Examples $\begin{aligned} & \text { Generate data from a mixture of two bivariate Gaussian distributions } \\ & \text { using the mvnrnd function: }\end{aligned}$

```
MU1 = [1 2];
SIGMA1 = [2 0; 0 .5];
MU2 = [-3 -5];
SIGMA2 = [1 0; 0 1];
X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];
scatter(X(:,1),X(:,2),10,'.')
hold on
```



Next, fit a two-component Gaussian mixture model:

```
options = statset('Display','final');
obj = gmdistribution.fit(X,2,'Options',options);
10 iterations, log-likelihood = -7046.78
h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);
```



Among the properties of the fit are the parameter estimates:

```
ComponentMeans = obj.mu
ComponentMeans =
\[
\begin{array}{rr}
0.9391 & 2.0322 \\
-2.9823 & -4.9737
\end{array}
\]
```

```
ComponentCovariances = obj.Sigma
```

ComponentCovariances = obj.Sigma
ComponentCovariances(:,:,1) =

$$
\begin{array}{rr}
1.7786 & -0.0528 \\
-0.0528 & 0.5312
\end{array}
$$

```
```

ComponentCovariances(:,:,2) =
1.0491 -0.0150
-0.0150 0.9816
MixtureProportions = obj.PComponents
MixtureProportions =
0.5000 0.5000

```

The Akaike information is minimized by the two-component model:
```

AIC = zeros(1,4);
obj = cell(1,4);
for k = 1:4
obj{k} = gmdistribution.fit(X,k);
AIC(k)= obj{k}.AIC;
end
[minAIC,numComponents] = min(AIC);
numComponents
numComponents =
2
model = obj{2}
model =
Gaussian mixture distribution
with 2 components in 2 dimensions
Component 1:
Mixing proportion: 0.500000
Mean: 0.9391 2.0322
Component 2:
Mixing proportion: 0.500000
Mean: -2.9823 -4.9737

```

Both the Akaike and Bayes information are negative log-likelihoods for the data with penalty terms for the number of estimated parameters. They are often used to determine an appropriate number of components for a model when the number of components is unspecified.

\section*{gmdistribution.fit}

\author{
References [1] McLachlan, G., and D. Peel. Finite Mixture Models. Hoboken, NJ: John Wiley \& Sons, Inc., 2000. \\ See Also gmdistribution | cluster
}
\begin{tabular}{|c|c|}
\hline Purpose & Create linear regression model \\
\hline Syntax & ```
mdl = LinearModel.fit(ds)
mdl = LinearModel.fit(X,y)
mdl = LinearModel.fit(...,modelspec)
mdl = LinearModel.fit(...,Name,Value)
mdl = LinearModel.fit(...,modelspec,Name,Value)
``` \\
\hline Description & ```
mdl = LinearModel.fit(ds) creates a linear model of a dataset array
ds.
mdl = LinearModel.fit(X,y) creates a linear model of the responses
y to a data matrix X.
mdl = LinearModel.fit(...,modelspec) creates a linear model of the
specified type.
mdl = LinearModel.fit(...,Name,Value) or mdl =
LinearModel.fit(...,modelspec,Name,Value) creates a linear model
with additional options specified by one or more Name, Value pair
arguments.
``` \\
\hline Tips & \begin{tabular}{l}
- Use robust fitting (RobustOpts name-value pair) to reduce the effect of outliers automatically. \\
- Do not use robust fitting when you want to subsequently adjust a model using step. \\
- For other methods such as stepwise or anova, or properties of the LinearModel object, see LinearModel.
\end{tabular} \\
\hline Input Arguments & \begin{tabular}{l}
ds \\
Dataset array, where by default the last column is the response variable, and all other columns are the predictors. Predictors can be numeric, or can be any grouping variable type, such as logical or categorical (see "Grouping Variables" on page 2-51). The response must be numeric or logical.
\end{tabular} \\
\hline
\end{tabular}

\section*{LinearModel.fit}

To set a different column as the response variable, use the ResponseVar name-value pair. To use a subset of the columns as predictors, use the PredictorVars name-value pair.

\section*{X}

Matrix of predictor values. Each column of X represents one variable, and each row represents one observation.
\(y\)
Vector of response values with the same number of rows as X . Each entry in \(y\) is the response to the data in the corresponding row of \(X\).

\section*{modelspec}

Model specification. This is the starting model for the stepwise method. Possibilities:
\begin{tabular}{l|l}
\hline String & Model Type \\
\hline 'constant' & \begin{tabular}{l}
Model contains only a constant (intercept) \\
term.
\end{tabular} \\
\hline 'linear' & \begin{tabular}{l}
Model contains an intercept and linear \\
terms for each predictor.
\end{tabular} \\
\hline 'interactions' & \begin{tabular}{l}
Model contains an intercept, linear \\
terms, and all products of pairs of distinct \\
predictors (no squared terms).
\end{tabular} \\
\hline 'purequadratic' & \begin{tabular}{l}
Model contains an intercept, linear \\
terms, and squared terms.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline String & Model Type \\
\hline 'quadratic' & \begin{tabular}{l}
Model contains an intercept, linear \\
terms, interactions, and squared terms.
\end{tabular} \\
\hline 'polyijk' & \begin{tabular}{l}
Model is a polynomial with all terms \\
up to degree \(i\) in the first predictor, \\
degree \(j\) in the second predictor, etc. \\
Use numerals 0 through 9. For example, \\
'poly2111' has a constant plus all linear \\
and product terms, and also contains \\
terms with predictor 1 squared.
\end{tabular} \\
\hline
\end{tabular}
- T-by-P+1 matrix, namely "Terms Matrix" on page 20-805, specifying terms to include in model, where \(T\) is the number of terms and \(P\) is the number of predictor variables, and plus one is for the response variable.
- String representing a "Formula" on page 20-809 in the form
'Y ~ terms',
where the terms are in "Wilkinson Notation" on page 20-810.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'CategoricalVars'}

Identify the categorical variables. Choices:
- Cell array of strings of the variable names in the ds dataset array.

\section*{LinearModel.fit}
- Logical or numerical index vector indicating which data columns are categorical. For example, if predictors 2 and 3 out of 6 are categorical, pass either
\([2,3]\)
or
logical([0 \(\left.11 \begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)\)
Default: For data matrix X, default is [] (none). For dataset array ds, default is to treat ds variables as categorical if they are categorical, logical, character arrays, or cell arrays of strings.

\section*{'Exclude'}

Logical or numerical index vector indicating which observations to exclude from the fit. For example, to exclude observations 2 and 3 out of 6 , pass either
\([2,3]\)
or
logical([0 \(\left.1 \times 1 \begin{array}{llll}0 & 0 & 0\end{array}\right)\)

Default: []

\section*{'Intercept'}

Logical value indicating whether to include a constant term (intercept) in the model. Use Intercept only when you specify the model by a string, not a formula or matrix.

Default: true

\section*{'PredictorVars'}

Identify the predictors to use for fitting. Choices:
- Cell array of strings of the variable names. The strings should be names in the ds dataset array, or the VarNames name-value pair.
- Logical or numerical index vector indicating which predictors to use. For example, to use predictors 2 and 3 out of 6 , pass either \([2,3]\)
or
```

logical([0 1 1 0 0 0])

```

Default: All variables in X, or all variables in ds except for ResponseVar

\section*{'ResponseVar'}

Variable that the fitting function uses for response data. Give either the variable name or its column number. Typically, you use ResponseVar when fitting a dataset array ds. Choices are:
- String of the variable name.
- Logical or numerical index vector indicating which predictors to use. For example, to use the fourth variable as the response out of six variables, pass either
'ResponseVar',[4]
or
'ResponseVar',logical([0 0 0 1 0 0])
Default: Last column of ds

\section*{'RobustOpts'}

Indicator of which type of robust fitting to use:

\section*{LinearModel.fit}
- 'off' — No robust fitting, LinearModel.fit uses ordinary least squares.
- 'on' — Robust fitting using the 'bisquare ' weight function.
- String - Name of the robust fitting weight function from the following table. LinearModel.fit uses the listed default tuning constant.
- Structure with the string RobustWgtFun and optional scalar Tune fields - LinearModel.fit uses the RobustWgtFun weight function and Tune tuning constant from the structure. If you do not supply a Tune field, the fitting function uses the default tuning constant.
\begin{tabular}{|c|c|c|}
\hline Weight Function & Equation & Default Tuning Constant \\
\hline 'andrews ' & \[
\begin{aligned}
& w=(\operatorname{abs}(r)<p i) \cdot * \sin (r) \\
& . / r
\end{aligned}
\] & 1.339 \\
\hline \begin{tabular}{l}
'bisquare' \\
(default)
\end{tabular} & \[
\begin{aligned}
& w=(\operatorname{abs}(r)<1) \cdot *(1- \\
& \left.r . \wedge^{2}\right) \cdot{ }^{\wedge} 2
\end{aligned}
\] & 4.685 \\
\hline 'cauchy' & \(w=1 . /(1+r . \wedge 2)\) & 2.385 \\
\hline 'fair' & \(w=1 . /(1+\operatorname{abs}(r))\) & 1.400 \\
\hline 'huber' & \(w=1 . / \max (1, \operatorname{abs}(r))\) & 1.345 \\
\hline 'logistic' & \(w=\tanh (r) . / r\) & 1.205 \\
\hline 'ols' & Ordinary least squares (no weighting function) & None \\
\hline 'talwar' & \(w=1\) * (abs (r)<1) & 2.795 \\
\hline 'welsch' & \(w=\exp (-(r . \wedge 2))\) & 2.985 \\
\hline
\end{tabular}
- Structure with the function handle RobustWgtFun and optional scalar Tune fields - LinearModel.fit uses the RobustWgtFun weight function and Tune tuning constant from the structure. Specify RobustWgtFun as a function handle that accepts a

\section*{LinearModel.fit}
or of residuals, and returns a vector of weights the same size. The fitting function scales the residuals, dividing by the tuning constant (default 1) and by an estimate of the error standard deviation before it calls the weight function.

Default: 'off'

\section*{'VarNames'}

Cell array of strings, first naming the columns of \(X\), and with the response variable \(y\) last. Not applicable to variables in a dataset array, because those variables already have names.

Default: \{'x1','x2',...,'xn', 'y'\}, where \(n\) is the number of columns of \(X\)

\section*{'Weights'}

Vector of nonnegative observation weights.
Default: ones(size(y))

Output
Arguments

\section*{Definitions}
mdl
Linear model representing a least-squares fit of the response to the data. If the Robust name-value pair was not [] or 'ols', the model is not a least-squares fit, but uses the robust fitting function.

\section*{Terms Matrix}

A terms matrix is a T-by- \(\mathrm{P}+1\) matrix specifying terms in a model, where T is the number of terms, P is the number of predictor variables, and plus one is for the response variable. The value of \(T(i, j)\) is the exponent of variable \(j\) in term \(i\). For example, if there are three predictor variables \(\mathrm{A}, \mathrm{B}\), and C :
```

[0 0 0 0] % constant term or intercept
[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0

```

\section*{LinearModel.fit}
\(\left[\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right] \% A^{*} C\)
\(\left[\begin{array}{llll}2 & 0 & 0 & 0\end{array}\right] \% A^{\wedge} 2\)
\(\left[\begin{array}{llll}0 & 1 & 2 & 0\end{array}\right] \% B^{*}\left(C^{\wedge} 2\right)\)
The 0 at the end of each term represents the response variable. In general,
- If you have the variables in a dataset array, then a 0 must represent the response variable depending on the position of the response variable in the dataset array. For example:

Load sample data and define the dataset array.
```

load hospital

```
ds = dataset(hospital.Sex, hospital.BloodPressure(:,1), hospital.Age,...
hospital.Smoker,'VarNames', \{'Sex', 'BloodPressure', 'Age','Smoker'\});

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in a terms matrix. The response variable is in the second column of the data set array, so there must be a column of zeros for the response variable in the second column of the term matrix.
```

T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]

```
T =
\begin{tabular}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{tabular}

Redefine the dataset array.
```

ds = dataset(hospital.BloodPressure(:,1),hospital.Sex,hospital.Age,...
hospital.Smoker,'VarNames',{'BloodPressure','Sex','Age','Smoker'});
Now, the response variable is the first term in the data set array. Specify the same linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a term matrix.

```
```

T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
T =

0	0	0	0
0	1	0	0
0	0	1	0
0	0	0	1

```
- If you have the predictor and response variables in a matrix and column vector, then you must include a 0 for the response variable at the end of each term. For example:

Load sample data and define the matrix of predictors.
```

load carsmall

```
X = [Acceleration, Weight];

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to data. This model includes the main effect and two way interaction terms for the variables, Acceleration and Weight, and a second order term for the variable, Weight.
```

T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]

```

T =
\begin{tabular}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 2 & 0
\end{tabular}

Fit a linear model.
```

mdl = LinearModel.fit(X,MPG,T)

```
```

mdl =
Linear regression model:
y ~ 1 + x1*x2 + x2^2
Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	48.906	12.589	3.8847	0.00019665
x1	0.54418	0.57125	0.95261	0.34337
x2	-0.012781	0.0060312	-2.1192	0.036857
x1:x2	-0.00010892	0.00017925	-0.6076	0.545
x2^2	$9.7518 e-07$	$7.5389 e-07$	1.2935	0.19917

```

Number of observations: 94, Error degrees of freedom: 89 Root Mean Squared Error: 4.1
R-squared: 0.751, Adjusted R-Squared 0.739
F-statistic vs. constant model: 67, p-value \(=4.99 \mathrm{e}-26\)
Only the intercept and \(x 2\) term, which corresponds to the Weight variable, are significant at the \(5 \%\) significance level.

Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.
```

T = [0 0 0;1 0 0;0 1 0;1 1 0];
mdl = LinearModel.stepwise(X,MPG,[0 O O],'upper',T)

```
1. Adding \(x 2\), FStat \(=259.3087, p V a l u e=1.643351 \mathrm{e}-28\)
mdl =
Linear regression model:
 \(y \sim 1+x 2\)
Estimated Coefficients:
\begin{tabular}{ccccl}
& Estimate & SE & tStat & pValue \\
(Intercept) & 49.238 & & 1.6411 & 30.002
\end{tabular}
```

x2 -0.0086119 0.0005348 -16.103 1.6434e-28
Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738, Adjusted R-Squared 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28

```

The results of the stepwise regression are consistent with the results of LinearModel.fit in the previous step.

\section*{Formula}

A formula for model specification is a string of the form
' \(Y\) ~ terms',
where
- \(Y\) is the response name.
- terms contains
- Variable names
- + means include the next variable
- - means do not include the next variable
- : defines an interaction, a product of terms
- * defines an interaction and all lower-order terms
- ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as well
- () groups terms

\footnotetext{
Note Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include -1 in the formula.
}

\section*{LinearModel.fit}

For example,
' \(Y\) ~ A + B + C' means a three-variable linear model with intercept.
' \(Y \sim A+B+C-1 '\) is a three-variable linear model without intercept.
'Y ~ A + B + C + B^2' is a three-variable model with intercept and a \(B^{\wedge} 2\) term.
'Y ~ \(A+B^{\wedge} 2+C\) ' is the same as the previous example because \(\mathrm{B}^{\wedge} 2\) includes a \(B\) term.
\(' Y \sim A+B+C+A: B '\) includes an \(A * B\) term.
' \(Y \sim A * B+C\) ' is the same as the previous example because \(A * B=\) \(A+B+A: B\).
' \(Y\) ~ A*B*C - A:B:C' has all interactions among \(A, B\), and \(C\), except the three-way interaction.
'Y ~ A* (B + C + D) ' has all linear terms, plus products of A with each of the other variables.

\section*{Wilkinson Notation}

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.
\begin{tabular}{l|l}
\hline Wilkinson Notation & Factors in Standard Notation \\
\hline 1 & Constant (intercept) term \\
\hline\(A^{\wedge} k\), where \(k\) is a positive integer & \(A, A^{2}, \ldots, A^{k}\) \\
\hline\(A+B\) & \(A, B\) \\
\hline\(A * B\) & \(A, B, A * B\) \\
\hline\(A: B\) & \(A * B\) only \\
\hline\(-B\) & Do not include B \\
\hline\(A * B+C\) & \(A, B, C, A * B\) \\
\hline\(A+B+C+A: B\) & \(A, B, C, A * B\) \\
\hline
\end{tabular}

\section*{LinearModel.fit}
\begin{tabular}{l|l}
\hline Wilkinson Notation & Factors in Standard Notation \\
\hline\(A * B * C-A: B: C\) & \(A, B, C, A * B, A * C, B * C\) \\
\hline\(A *(B+C)\) & \(A, B, C, A * B, A * C\) \\
\hline
\end{tabular}

Statistics Toolbox notation always includes a constant term unless you explicitly remove the term using - 1 .

\section*{Examples Linear Regression Model of Matrix Data}

Fit a linear model of the Hald data.
Load the data.
load hald
X = ingredients; \% predictor variables
y = heat; \% response
Fit a default linear model to the data.
mdl = LinearModel.fit(X,y)
mdl =
Linear regression model:
\(y \sim 1+x 1+x 2+x 3+x 4\)
Estimated Coefficients:
\begin{tabular}{lrrrr}
& Estimate & \multicolumn{1}{l}{ SE } & tStat & \multicolumn{1}{c}{ pValue } \\
(Intercept) & 62.405 & 70.071 & 0.8906 & 0.39913 \\
x1 & 1.5511 & 0.74477 & 2.0827 & 0.070822 \\
x2 & 0.51017 & 0.72379 & 0.70486 & 0.5009 \\
x3 & 0.10191 & 0.75471 & 0.13503 & 0.89592 \\
x4 & -0.14406 & 0.70905 & -0.20317 & 0.84407
\end{tabular}

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 2.45
R-squared: 0.982, Adjusted R-Squared 0.974

F-statistic vs. constant model: 111, p-value \(=4.76 \mathrm{e}-07\)

\section*{Linear Regression with Categorical Predictor and Nonlinear Model}

Fit a model of a dataset array that contains a categorical predictor. Use a nonlinear response formula.

Load the carsmall data.
load carsmall
Construct a dataset containing continuous predictor variable Weight, nominal predictor variable Year, and response variable MPG.
```

ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);

```

Create a fitted model of MPG as a function of Year, Weight, and Weight \({ }^{2}\). (You don't have to include Weight explicitly in your formula because it is a lower-order term of Weight \({ }^{2}\). For details, see "Definitions" on page 20-805.)
```

mdl = LinearModel.fit(ds,'MPG ~ Year + Weight^2')

```
mdl =
Linear regression model:
 MPG ~ 1 + Weight + Year + Weight^2
Estimated Coefficients:
\begin{tabular}{lrrrr}
& Estimate & \multicolumn{1}{l}{ SE } & \multicolumn{1}{l}{ tStat } & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 54.206 & 4.7117 & 11.505 & \(2.6648 \mathrm{e}-19\) \\
Weight & -0.016404 & 0.0031249 & -5.2493 & \(1.0283 \mathrm{e}-06\) \\
Year_76 & 2.0887 & 0.71491 & 2.9215 & 0.0044137 \\
Year_82 & 8.1864 & 0.81531 & 10.041 & \(2.6364 \mathrm{e}-16\) \\
Weight^2 & \(1.5573 \mathrm{e}-06\) & \(4.9454 \mathrm{e}-07\) & 3.149 & 0.0022303
\end{tabular}

Number of observations: 94, Error degrees of freedom: 89

\section*{LinearModel.fit}
```

Root Mean Squared Error: 2.78
R-squared: 0.885, Adjusted R-Squared 0.88
F-statistic vs. constant model: 172, p-value = 5.52e-41

```

\section*{Simultaneously Specify the Variables and Use Formula}

Simultaneously identify response and predictor variables and specify the model using formula in linear regression.

Load sample data.
load hospital

Fit a linear model with interaction terms to the data.
```

mdl = LinearModel.fit(hospital,'Weight~1+Age*Sex*Smoker-Age:Sex:Smoker
mdl =
Linear regression model:
Weight ~ 1 + Sex*Age + Sex*Smoker + Age*Smoker
Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	118.7	7.0718	16.785	$6.821 \mathrm{e}-3$
Sex_Male	68.336	9.7153	7.0339	$3.3386 \mathrm{e}-1$
Age	0.31068	0.18531	1.6765	0.09699
Smoker_1	3.0425	10.446	0.29127	0.7714
Sex_Male:Age	-0.49094	0.24764	-1.9825	0.05037
Sex_Male:Smoker_1	0.9509	3.8031	0.25003	0.8031
Age:Smoker_1	-0.07288	0.26275	-0.27737	0.7821

```
```

Number of observations: 100, Error degrees of freedom: 93
Root Mean Squared Error: 8.75
R-squared: 0.898, Adjusted R-Squared 0.892
F-statistic vs. constant model: 137, p-value = 6.91e-44

```

\section*{LinearModel.fit}

The weight of the patients do not seem to differ significantly according to age, or the status of smoking, or interaction of these factors with gender at the \(5 \%\) significance level.

\section*{Robust Linear Regression Model}

Fit a linear regression model of the Hald data using robust fitting.
Load the data.
```

load hald
X = ingredients; % predictor variables
y = heat; % response

```

Fit a robust linear model to the data.
```

mdl = LinearModel.fit(X,y,'linear','RobustOpts','on')
mdl =
Linear regression model (robust fit):
y ~ 1 + x1 + x2 + x3 + x4

```

Estimated Coefficients:
\begin{tabular}{lrrrr}
& Estimate & \multicolumn{1}{l}{ SE } & tStat & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 60.09 & 75.818 & 0.79256 & 0.4509 \\
x1 & 1.5753 & 0.80585 & 1.9548 & 0.086346 \\
x2 & 0.5322 & 0.78315 & 0.67957 & 0.51596 \\
x3 & 0.13346 & 0.8166 & 0.16343 & 0.87424 \\
x4 & -0.12052 & 0.7672 & -0.15709 & 0.87906
\end{tabular}

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 2.65
R-squared: 0.979, Adjusted R-Squared 0.969
F-statistic vs. constant model: 94.6, p-value = 9.03e-07

\section*{Algorithms}

The main fitting algorithm is QR decomposition. For robust fitting, the algorithm is robustfit.

\section*{LinearModel.fit}
Alternatives You can construct a model in a range of possible models usingLinearModel.stepwise. However, you cannot use robust regressionand stepwise regression together.
See Also LinearModel | predict | LinearModel.stepwise
Tutorials - "Examine Quality and Adjust the Fitted Model" on page 9-20- "Predict or Simulate Responses to New Data" on page 9-39- "Linear Regression Workflow" on page 9-43
- "Regression with Categorical Covariates" on page 2-59
How To - "Linear Regression" on page 9-11

\section*{NaiveBayes.fit}
\begin{tabular}{|c|c|}
\hline Purpose & Create Naive Bayes classifier object by fitting training data \\
\hline Syntax & \[
\begin{aligned}
& \mathrm{nb}=\text { NaiveBayes.fit(training, class) } \\
& \mathrm{nb}=\text { NaiveBayes.fit(..., 'param1',val1, 'param2', val2, ...) }
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{Description} & \begin{tabular}{l}
\(\mathrm{nb}=\) NaiveBayes.fit(training, class) builds a NaiveBayes classifier object nb. training is an \(N\)-by-D numeric matrix of training data. Rows of training correspond to observations; columns correspond to features. class is a classing variable for training taking \(K\) distinct levels. Each element of class defines which class the corresponding row of training belongs to. training and class must have the same number of rows. \\
nb = NaiveBayes.fit(..., 'param1',val1, 'param2',val2, ...) specifies one or more of the following name/value pairs: \\
- 'Distribution' - a string or a 1-by-D cell vector of strings, specifying which distributions fit uses to model the data. If the value is a string, fit models all the features using one type of distribution. fit can also model different features using different types of distributions. If the value is a cell vector, its \(j\) th element specifies the distribution fit uses for the \(j\) th feature. The available types of distributions are:
\end{tabular} \\
\hline & 'normal' \({ }^{\text {(default) }}\) Normal (Gaussian) distribution. \\
\hline & 'kernel' Kernel smoothing density estimate. \\
\hline
\end{tabular}
'mvmn'
'mn' Multinomial distribution for classifying the count-based data such as the bag-of-tokens model. In the bag-of-tokens model, the value of the \(j\) th feature is the number of occurrences of the \(j\) th token in this observation, so it must be a non-negative integer. When 'mn' is used, fit considers each observation as multiple trials of a multinomial distribution, and considers each occurrence of a token as one trial. The number of categories (bins) in this multinomial model is the number of distinct tokens, i.e., the number of columns of training.
- 'Prior' - The prior probabilities for the classes, specified as one of the following:
\begin{tabular}{ll}
'empirical' & \begin{tabular}{l}
fit estimates the prior probabilities from the \\
(default)
\end{tabular} \\
relative frequencies of the classes in training.
\end{tabular}

\section*{NaiveBayes.fit}
\begin{tabular}{ll}
vector & \begin{tabular}{l}
A numeric vector of length K specifying the \\
prior probabilities in the class order of class.
\end{tabular} \\
structure & \begin{tabular}{l}
A structure S containing class levels and their \\
prior probabilities. \(S\) must have two fields:
\end{tabular}
\end{tabular}
- S.prob: A numeric vector of prior probabilities.
- S.class: A vector of the same type as class, containing unique class levels indicating the class for the corresponding element of prob. S.class must contain all the K levels in class. It can also contain classes that do not appear in class. This can be useful if training is a subset of a larger training set. fit ignores any classes that appear in S.class but not in class.

If the prior probabilities don't sum to one, fit will normalize them.
- 'KSWidth' - The bandwidth of the kernel smoothing window. The default is to select a default bandwidth automatically for each combination of feature and class, using a value that is optimal for a Gaussian distribution. You can specify the value as one of the following:
\[
\begin{array}{ll}
\text { scalar } & \text { Width for all features in all classes. } \\
\text { row } & \begin{array}{l}
\text { 1-by-D vector where the jth element is the bandwidth for } \\
\text { vector } \\
\text { the } j \text { th feature in all classes. }
\end{array} \\
\text { column } & \begin{array}{l}
\text { K-by-1 vector where the ith element specifies the }
\end{array} \\
\text { vector } & \begin{array}{l}
\text { bandwidth for all features in the ith class. K represents } \\
\text { the number of class levels. }
\end{array}
\end{array}
\]

\section*{NaiveBayes.fit}
matrix K-by-D matrix \(M\) where \(M(i, j)\) specifies the bandwidth for the \(j\) th feature in the ith class.
structure A structure \(S\) containing class levels and their bandwidths. S must have two fields:
- S.width - A numeric array of bandwidths specified as a row vector, or a matrix with \(D\) columns.
- S.class - A vector of the same type as class, containing unique class levels indicating the class for the corresponding row of width.
- 'KSSupport' - The regions where the density can be applied. It can be a string, a two-element vector as shown below, or a 1-by-D cell array of these values:
\begin{tabular}{ll}
\begin{tabular}{l}
'unbounded' \\
(default)
\end{tabular} & \begin{tabular}{l}
The density can extend over the whole real \\
line.
\end{tabular} \\
'positive' & The density is restricted to positive values. \\
{\([\mathrm{L}, \mathrm{U}]\)} & \begin{tabular}{l}
A two-element vector specifying the finite \\
lower bound L and upper bound \(U\) for the \\
support of the density.
\end{tabular}
\end{tabular}
- 'KSType ' - The type of kernel smoother to use. It can be a string or a 1-by-D cell array of strings. Each string can be 'normal' (default), 'box', 'triangle', or 'epanechnikov'.

How To
- "Naive Bayes Classification" on page 14-36
- "Grouping Variables" on page 2-51

\section*{NonLinearModel.fit}

Purpose Fit nonlinear regression model
```

Syntax
mdl = NonLinearModel.fit(ds,modelfun,betaO)
mdl = NonLinearModel.fit(X,y,modelfun,betaO)
mdl = NonLinearModel.fit(...,modelfun,beta0,Name,Value)

```

\section*{Description}

\section*{Input Arguments}
mdl = NonLinearModel.fit(ds,modelfun,beta0) fits the model specified by modelfun to variables in the dataset array ds, and returns the nonlinear model mdl. NonLinearModel.fit estimates model coefficients using an iterative procedure starting from the initial values in betao.
mdl = NonLinearModel.fit(X,y,modelfun,betaO) fits a nonlinear regression model using the column vector y as a response variable and the columns of the matrix \(X\) as predictor variables.
mdl = NonLinearModel.fit(..., modelfun, beta0, Name, Value) fits a nonlinear regression model with additional options specified by one or more Name, Value pair arguments.

\section*{ds}

Dataset array, where by default the last column is the response variable, and all other columns are the predictors. Predictors and response must be numeric.

To set a different column as the response variable, use the ResponseVar name-value pair. To use a subset of the columns as predictors, use the PredictorVars name-value pair.

\section*{X}

Matrix of predictor values. Each column of \(X\) represents one variable, and each row represents one observation.

\section*{\(y\)}

Vector of response values with the same number of rows as \(X\). Each entry in \(y\) is the response to the data in the corresponding row of \(X\).

\section*{NonLinearModel.fit}

\section*{modelfun}

Functional form of the model. Either a:
- Function handle @modelfun or \(@(b, x)\) modelfun, where
- b is a coefficient vector with the same number of elements as beta0.
- x is a matrix with the same number of columns as X or the data columns of ds.
modelfun (\(\mathrm{b}, \mathrm{x}\)) returns a column vector that contains the same number of rows as \(x\). Each row of the vector is the result of evaluating modelfun on the corresponding row of \(x\). In other words, modelfun is a vectorized function, one that operates on all data rows and returns all evaluations in one function call.
- String of the form
\[
' y \sim f(b 1, b 2, \ldots, b k, x 1, x 2, \ldots, x k) '
\]
\(f\) represents a scalar function of the scalar coefficient variables \(\mathrm{b} 1, \ldots, \mathrm{bk}\) and the scalar data variables \(\mathrm{x} 1, \ldots, \mathrm{xk}\).

\section*{beta0}

Numeric vector of coefficients for the modelfun nonlinear model. NonLinearModel.fit starts its search for optimal coefficients from beta0.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

\section*{'CoefficientNames'}

\section*{NonLinearModel.fit}

Cell array of strings specifying the names of the model coefficients. modelfun gives the model.

Default: \{'b1','b2',...,'bk'\}

\section*{'ErrorModel'}

String specifying the form of the error variance model. Each model defines the error using a standard mean-zero and unit-variance variable \(e\) in combination with independent components: the function value \(f\), and one or two parameters \(a\) and \(b\).
```

'constant' (default)
$y=f+a e$
'proportional'
$y=f+b f e$
'combined'
$y=f+(a+b|f|) e$

```

The only allowed error model when using Weights is 'constant'.

Note options.RobustWgtFun must have value [] when using an error model other than 'constant'.

Default: 'constant'

\section*{'ErrorParameters'}

Numeric array containing the initial estimates of the error model parameters for the chosen ErrorModel.

\section*{NonLinearModel.fit}
\begin{tabular}{l|l|l}
\hline Error Model & Parameters & Default Values \\
\hline 'constant' & \(a\) & 1 \\
\hline 'proportional' & \(b\) & 1 \\
\hline 'combined' & \(a, b\) & {\([1,1]\)} \\
\hline
\end{tabular}

For example, if 'ErrorModel' has the value 'combined', you can specify the starting value 1 for \(a\) and the starting value 2 for \(b\) as follows.

\section*{Example: 'ErrorParameters',[1,2]}

You can only use the 'constant ' error model when using Weights.

Note options.RobustWgtFun must have value [] when using an error model other than 'constant'.

Default: 1 or [1,1]

\section*{'Exclude'}

Logical or numerical index vector indicating which observations to exclude from the fit. For example, to exclude observations 2 and 3 out of 6 , pass either
[2,3]
or
logical([0 \(\left.1 \begin{array}{lllll}1 & 1 & 0 & 0\end{array}\right]\)
Default: []

\section*{'Options'}

\section*{NonLinearModel.fit}

Structure as created by statset for controlling the iterative fitting procedure. The relevant fields are the nonempty fields in the structure returned by the call statset('nlinfit').
\begin{tabular}{l|l|l}
\hline Option & Meaning & Default \\
\hline DerivStep & \begin{tabular}{l}
Relative difference used in finite difference \\
derivative calculations. A positive scalar, or \\
a vector of positive scalars the same size as \\
the vector of parameters estimated by the \\
Statistics Toolbox function using the options \\
structure.
\end{tabular} & \(\mathrm{eps}^{\wedge}(1 / 3)\) \\
\hline Display & \begin{tabular}{l}
Amount of information displayed by the fitting \\
algorithm. \\
- 'off' — Displays no information. \\
- 'final' — Displays the final output. \\
- 'iter' — Displays iterative output to the \\
Command Window.
\end{tabular} & \\
\hline FunValCheck & \begin{tabular}{l}
String indicating to check for invalid values, \\
such as NaN or Inf, from the model function.
\end{tabular} & 'on' \\
\hline MaxIter & \begin{tabular}{l}
Maximum number of iterations allowed. \\
Positive integer.
\end{tabular} & 200 \\
\hline RobustWgtFun & \begin{tabular}{l}
Weight function for robust fitting. Can also be \\
a function handle that accepts a normalized \\
residual as input and returns the robust \\
weights as output. If you use a function \\
handle, give a Tune constant. See "Robust \\
Options" on page 20-827.
\end{tabular} & [] \\
\hline
\end{tabular}

\section*{NonLinearModel.fit}
\begin{tabular}{l|l|l}
\hline Option & Meaning & Default \\
\hline Tune & \begin{tabular}{l}
Tuning constant used in robust fitting to \\
normalize the residuals before applying the \\
weight function. A positive scalar. Required if \\
the weight function is specified as a function \\
handle.
\end{tabular} & \begin{tabular}{l}
See "Robust \\
Options" on page \\
\(20-827\) for the \\
default, which \\
depends on \\
RobustWgtFun.
\end{tabular} \\
\hline TolFun & \begin{tabular}{l}
Termination tolerance for the objective \\
function value. Positive scalar.
\end{tabular} & \(1 \mathrm{e}-8\) \\
\hline TolX & \begin{tabular}{l}
Termination tolerance for the parameters. \\
Positive scalar.
\end{tabular} & \(1 \mathrm{e}-8\) \\
\hline
\end{tabular}

\section*{Default: []}

\section*{'PredictorVars'}

Description of the variables that NonLinearModel.fit uses for fitting. Either a:
- Cell array of strings of variable names in the ds dataset array, or in the VarNames name-value pair
- Vector of integer or logical indices into the variables in ds or the columns of X

Default: All variables in matrix X, or all variables except for the last in dataset array ds

\section*{'ResponseVar'}

Variable that NonLinearModel.fit uses for response data. Either a:
- Variable name in ds
- Index of variable in ds

\section*{NonLinearModel.fit}

Default: Last column of dataset array ds

\section*{'VarNames'}

Cell array of strings giving the variable names of the data, followed by the response variable name.

Default: \{'x1','x2',...,'xk','y'\}

\section*{'Weights'}

Vector of nonnegative weights or a function handle.
- If you specify a vector, then it must have \(N\) elements, where \(N\) is the number of rows in ds or \(y\).
- If you specify a function handle, then the function must accept a vector of predicted response values as input, and return a vector of real positive weights as output.

Given weights, W, NonLinearModel.fit estimates the error variance at observation \(i\) by \(\operatorname{MSE}^{*}(1 / \mathrm{W}(\mathrm{i}))\), where MSE is the mean squared error.

Default: Vector of 1s

\section*{Output Arguments}

Nonlinear model representing a least-squares fit of the response to the data. If the Options structure contains a nonempty RobustWgtFun field, the model is not a least-squares fit, but uses the RobustWgtFun robust fitting function.

\section*{NonLinearModel.fit}

\section*{Definitions Robust Options}
\begin{tabular}{|c|c|c|}
\hline Weight Function & Equation & Default Tuning Constant \\
\hline ' andrews ' & \[
\begin{aligned}
& w=(a b s(r)<p i) . * \sin (r) . / \\
& r
\end{aligned}
\] & 1.339 \\
\hline 'bisquare (default) & \[
\begin{aligned}
& w=(\operatorname{abs}(r)<1) \cdot *(1- \\
& r \cdot \wedge 2) .^{\wedge} 2
\end{aligned}
\] & 4.685 \\
\hline 'cauchy' & \(w=1 . /(1+r . \wedge 2)\) & 2.385 \\
\hline 'fair' & \(w=1 . /(1+\operatorname{abs}(r))\) & 1.400 \\
\hline 'huber' & \(w=1 . / \max (1, \operatorname{abs}(r))\) & 1.345 \\
\hline 'logistic' & \(w=\tanh (r) . / r\) & 1.205 \\
\hline 'talwar' & \(w=1 *(\operatorname{abs}(r)<1)\) & 2.795 \\
\hline 'welsch' & \(w=\exp (-(r . \wedge 2))\) & 2.985 \\
\hline [] & No robust fitting & - \\
\hline
\end{tabular}

\section*{Examples Nonlinear Model from a Dataset Array}

Create a nonlinear model for auto mileage based on the carbig data.
Load the data and create a nonlinear model.
```

load carbig
ds = dataset(Horsepower,Weight,MPG);
modelfun = a(b,x)b(1) + b(2)*x(:,1).^b(3) + ...
b(4)*x(:, 2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = NonLinearModel.fit(ds,modelfun,beta0)
mdl =

```

\section*{NonLinearModel.fit}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Estimated} & \multicolumn{4}{|l|}{Coefficients:} \\
\hline & Estimate & SE & tStat & pValue \\
\hline b1 & -49.383 & 119.97 & -0.41164 & 0.68083 \\
\hline b2 & 376.43 & 567.05 & 0.66384 & 0.50719 \\
\hline b3 & -0.78193 & 0.47168 & -1.6578 & 0.098177 \\
\hline b4 & 422.37 & 776.02 & 0.54428 & 0.58656 \\
\hline b5 & -0.24127 & 0.48325 & -0.49926 & 0.61788 \\
\hline
\end{tabular}
```

Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 3.96
R-Squared: 0.745, Adjusted R-Squared 0.743
F-statistic vs. constant model: 283, p-value = 1.79e-113

```

\section*{Nonlinear Model from Matrix Data}

Create a nonlinear model for auto mileage based on the carbig data.
Load the data and create a nonlinear model.
```

load carbig
X = [Horsepower,Weight];
y = MPG;
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...
b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = NonLinearModel.fit(X,y,modelfun,betaO)
mdl =

```
Nonlinear regression model:
 \(y\) ~ b1 + b2*x1^b3 + b4*x2^b5
Estimated Coefficients:
 Estimate SE tStat pValue

\section*{NonLinearModel.fit}
\begin{tabular}{lrrrr}
b1 & -49.383 & 119.97 & -0.41164 & 0.68083 \\
b2 & 376.43 & 567.05 & 0.66384 & 0.50719 \\
b3 & -0.78193 & 0.47168 & -1.6578 & 0.098177 \\
b4 & 422.37 & 776.02 & 0.54428 & 0.58656 \\
b5 & -0.24127 & 0.48325 & -0.49926 & 0.61788
\end{tabular}
```

Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 3.96
R-Squared: 0.745, Adjusted R-Squared 0.743
F-statistic vs. constant model: 283, p-value = 1.79e-113

```

\section*{Adjust Fitting Options in the Nonlinear Model}

Create a nonlinear model for auto mileage based on the carbig data. Strive for more accuracy by lowering the TolFun option, and observe the iterations by setting the Display option.

Load the data and create a nonlinear model.
```

load carbig
X = [Horsepower,Weight];
y = MPG;
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...
b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];

```

Create options to lower TolFun and to report iterative display, and create a model using the options.
```

opts = statset('Display','iter','TolFun',1e-10);
mdl = NonLinearModel.fit(X,y,modelfun,betaO,'Options',opts);

```
\begin{tabular}{|c|c|c|c|}
\hline Iteration & SSE & Norm of Gradient & Norm of Step \\
\hline 0 & \(1.82248 \mathrm{e}+06\) & & \\
\hline 1 & 678600 & 788810 & 1691.07 \\
\hline 2 & 616716 & \(6.12739 \mathrm{e}+06\) & 45.4738 \\
\hline
\end{tabular}

\section*{NonLinearModel.fit}
\%\%\% Many iterations deleted \%\%\%
\begin{tabular}{rrrr}
122 & 6068.48 & 1.56393 & 0.629325 \\
123 & 6068.48 & 1.13809 & 0.432543 \\
124 & 6068.48 & 0.295962 & 0.297511
\end{tabular}

Iterations terminated: relative change in SSE less than OPTIONS. TolFun

\section*{Specify Nonlinear Regression Using Model String Syntax}

Specify a nonlinear regression model for estimation using a function handle or model string syntax.

Load sample data.
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;
Use a function handle to specify the Hougen-Watson model for the rate data.
```

mdl = NonLinearModel.fit(X,y,@hougen,betaO)
mdl =

```
Nonlinear regression model:
 \(y \quad \sim \operatorname{hougen}(b, X)\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Estimated} & \multicolumn{4}{|l|}{Coefficients:} \\
\hline & Estimate & SE & tStat & pValue \\
\hline b1 & 1.2526 & 0.86701 & 1.4447 & 0.18654 \\
\hline b2 & 0.062776 & 0.043561 & 1.4411 & 0.18753 \\
\hline b3 & 0.040048 & 0.030885 & 1.2967 & 0.23089 \\
\hline b4 & 0.11242 & 0.075157 & 1.4957 & 0.17309 \\
\hline b5 & 1.1914 & 0.83671 & 1.4239 & 0.192 \\
\hline
\end{tabular}
```

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.193
R-Squared: 0.999, Adjusted R-Squared 0.998
F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

```

Alternatively, you can use a string expression to specify the Hougen-Watson model for the rate data.
```

myfun = 'y~(b1*x2-x3/b5)/(1+b2*x1+b3*x2+b4*x3)';
mdl2 = NonLinearModel.fit(X,y,myfun,beta0)
mdl2 =
Nonlinear regression model:
y ~ (b1*x2 - x3/b5)/(1 + b2*x1 + b3*x2 + b4*x3)
Estimated Coefficients:

	Estimate	SE	tStat	pValue
b1	1.2526	0.86701	1.4447	0.18654
b2	0.062776	0.043561	1.4411	0.18753
b3	0.040048	0.030885	1.2967	0.23089
b4	0.11242	0.075157	1.4957	0.17309
b5	1.1914	0.83671	1.4239	0.1923

```
```

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.193
R-Squared: 0.999, Adjusted R-Squared 0.998
F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

```

\section*{Estimate Nonlinear Regression Using Robust Fitting Options}

Generate sample data from the nonlinear regression model
\[
y=b_{1}+b_{2} \exp \left\{-b_{3} x\right\}+\varepsilon,
\]

\section*{NonLinearModel.fit}
where \(b_{1}, b_{2}\), and \(b_{3}\) are coefficients, and the error term is normally distributed with mean 0 and standard deviation 0.5 .
```

modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));
rng('default') % for reproducibility
b = [1;3;2];
x = exprnd(2,100,1);
y = modelfun(b,x) + normrnd(0,0.5,100,1);

```

Set robust fitting options.
```

opts = statset('nlinfit');
opts.RobustWgtFun = 'bisquare';

```

Fit the nonlinear model using the robust fitting options. Here, use a string expression to specify the model.
```

bO = [2;2;2];
modelstr = 'y ~ b1 + b2*exp(-b3*x)';
mdl = NonLinearModel.fit(x,y,modelstr,bO,'Options',opts)
mdl =
Nonlinear regression model (robust fit):
y ~ b1 + b2*exp( - b3*x)
Estimated Coefficients:

	Estimate	SE	tStat	pValue
b1	1.0218	0.07202	14.188	$2.1344 \mathrm{e}-25$
b2	3.6619	0.25429	14.401	$7.974 \mathrm{e}-26$
b3	2.9732	0.38496	7.7232	$1.0346 \mathrm{e}-11$

```

Number of observations: 100, Error degrees of freedom: 97
Root Mean Squared Error: 0.501
```

R-Squared: 0.807, Adjusted R-Squared 0.803
F-statistic vs. constant model: 203, p-value = 2.34e-35

```

\section*{Fit Nonlinear Regression Model Using Weights Function Handle}

Load sample data.
```

S = load('reaction');
X = S.reactants;
y = S.rate;
betaO = S.beta;

```

Specify a function handle for observation weights. The function accepts the model fitted values as input, and returns a vector of weights.
```

a = 1; b = 1;
weights = @(yhat) 1./((a + b*abs(yhat)).^2);

```

Fit the Hougen-Watson model to the rate data using the specified observation weights function.
```

mdl = NonLinearModel.fit(X,y,@hougen,beta0,'Weights',weights)
mdl =

```
Nonlinear regression model:
 \(y \sim \operatorname{hougen}(b, x)\)
\begin{tabular}{rrrrl}
Estimated Coefficients: \\
& Estimate & \multicolumn{1}{l}{ SE } & tStat & pValue \\
b1 & 0.83085 & 0.58224 & 1.427 & 0.19142 \\
b2 & 0.04095 & 0.029663 & 1.3805 & 0.20477 \\
b3 & 0.025063 & 0.019673 & 1.274 & 0.23842 \\
b4 & 0.080053 & 0.057812 & 1.3847 & 0.20353 \\
b5 & 1.8261 & 1.281 & 1.4256 & 0.19183
\end{tabular}

\section*{NonLinearModel.fit}
```

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 0.037
R-Squared: 0.998, Adjusted R-Squared 0.998
F-statistic vs. zero model: 1.14e+03, p-value = 3.49e-11

```

\section*{Nonlinear Regression Model Using Nonconstant Error Model}

Load sample data.
```

S = load('reaction');
X = S.reactants;
y = S.rate;
betaO = S.beta;

```

Fit the Hougen-Watson model to the rate data using the combined error variance model.
```

mdl = NonLinearModel.fit(X,y,@hougen,beta0,'ErrorModel','combined')
mdl =

```
Nonlinear regression model:
 \(y\) ~ hougen (b, \(x\))
Estimated Coefficients:
\begin{tabular}{lrrll}
& Estimate & SE & tStat & \multicolumn{1}{l}{ pValue } \\
b1 & 1.2526 & 0.86702 & 1.4447 & 0.18654 \\
b2 & 0.062776 & 0.043561 & 1.4411 & 0.18753 \\
b3 & 0.040048 & 0.030885 & 1.2967 & 0.23089 \\
b4 & 0.11242 & 0.075158 & 1.4957 & 0.17309 \\
b5 & 1.1914 & 0.83671 & 1.4239 & 0.1923
\end{tabular}
Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 1.27
R-Squared: O.999, Adjusted R-Squared 0.998
F-statistic vs. zero model: 3.91e+03, p-value = 2.54e-13

\section*{Algorithms}

NonLinearModel.fit uses the same fitting algorithm as nlinfit.

\section*{References}
[1] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-Interscience, 2003.
[2] DuMouchel, W. H., and F. L. O’Brien. "Integrating a Robust Option into a Multiple Regression Computing Environment." Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface. Alexandria, VA: American Statistical Association, 1989.
[3] Holland, P. W., and R. E. Welsch. "Robust Regression Using Iteratively Reweighted Least-Squares." Communications in Statistics: Theory and Methods, A6, 1977, pp. 813-827.

See Also NonLinearModel | nlinfit

\section*{Related} Examples
- "Examine Quality and Adjust the Fitted Model" on page 9-204
- "Predict or Simulate Responses to New Data" on page 9-208
- "Nonlinear Regression Workflow" on page 9-212

Concepts • "Nonlinear Regression" on page 9-198

\section*{RegressionTree.fit}

\section*{Purpose \\ Syntax \\ Description}

Binary decision tree for regression

\section*{Input Arguments \\ X}
tree = RegressionTree.fit(X,Y)
tree = RegressionTree.fit(X,Y,Name,Value) node is split based on the values of a column of \(X\). order as Name1, Value1, ,NameN, ValueN.

Note that using the 'crossval', 'kfold', 'holdout', predict method to make predictions.
tree \(=\) RegressionTree.fit \((X, Y)\) returns a regression tree based on the input variables (also known as predictors, features, or attributes) \(X\) and output (response) Y . tree is a binary tree where each branching
tree = RegressionTree.fit(X,Y,Name,Value) fits a tree with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any 'leaveout', or 'cvpartition' options results in a tree of class RegressionPartitionedModel. You cannot use a partitioned tree for prediction, so this kind of tree does not have a predict method.
Otherwise, tree is of class RegressionTree, and you can use the

A matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

RegressionTree.fit considers NaN values in X as missing values. RegressionTree.fit does not use observations with all missing values for X the fit. RegressionTree.fit uses observations with some missing values for \(X\) to find splits on variables for which these observations have valid values.

\section*{\(\mathbf{Y}\)}

A numeric column vector with the same number of rows as \(X\). Each entry in Y is the response to the data in the corresponding row of X .

RegressionTree.fit considers NaN values in \(Y\) to be missing values. RegressionTree.fit does not use observations with missing values for \(Y\) in the fit.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'CategoricalPredictors'}

List of categorical predictors. Pass CategoricalPredictors as one of:
- A numeric vector with indices from 1 to \(p\), where \(p\) is the number of columns of \(X\).
- A logical vector of length \(p\), where a true entry means that the corresponding column of X is a categorical variable.
- 'all', meaning all predictors are categorical.
- A cell array of strings, where each element in the array is the name of a predictor variable. The names must match entries in the PredictorNames property.
- A character matrix, where each row of the matrix is a name of a predictor variable. Pad the names with extra blanks so each row of the character matrix has the same length.

Default: []

\section*{'crossval'}

Flag to grow a cross-validated decision tree. Possible value are 'on' or 'off'.

\section*{RegressionTree.fit}

If 'on', RegressionTree.fit grows a cross-validated decision tree with 10 folds. You can override this cross-validation setting using one of the 'kfold', 'holdout', 'leaveout', or 'cvpartition' name-value pair arguments. Note that you can only use one of these four options ('kfold', 'holdout', 'leaveout', or 'cvpartition') at a time when creating a cross-validated tree.

Alternatively, cross-validate tree later using the crossval method.

Default: 'off'

\section*{'cvpartition'}

Partition created with cvpartition to use in cross-validated tree.
Note that if you use 'cvpartition', you cannot use any of the 'kfold', 'holdout', or 'leaveout' name-value pair arguments.

\section*{'holdout'}

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training. Specify a numeric scalar from 0 to 1 .

Note that if you use 'holdout ', you cannot use any of the 'cvpartition', 'kfold', or 'leaveout' name-value pair arguments.

\section*{'kfold'}

Number of folds to use in a cross-validated tree, a positive integer.
Note that if you use 'kfold', you cannot use any of the 'cvpartition', 'holdout', or 'leaveout' name-value pair arguments.

Default: 10

\section*{'leaveout'}

Use leave-one-out cross validation by setting to 'on'.
Note that if you use 'leaveout', you cannot use any of the 'cvpartition', 'holdout', or 'kfold' name-value pair arguments.

\section*{'MergeLeaves'}

When 'on', RegressionTree merges leaves that originate from the same parent node, and that give a sum of risk values greater or equal to the risk associated with the parent node. When 'off', RegressionTree does not merge leaves.

Default: 'on'

\section*{'MinLeaf'}

Each leaf has at least MinLeaf observations per tree leaf. If you supply both MinParent and MinLeaf, RegressionTree uses the setting that gives larger leaves: MinParent=max(MinParent, 2*MinLeaf).

Default: 1

\section*{'MinParent'}

Each branch node in the tree has at least MinParent observations. If you supply both MinParent and MinLeaf, RegressionTree uses the setting that gives larger leaves: MinParent=max (MinParent, 2*MinLeaf).

Default: 10

\section*{'NVarToSample'}

Number of predictors to select at random for each split. Can be a positive integer or 'all', which means use all available predictors.

Default: 'all'

\section*{RegressionTree.fit}

\section*{'PredictorNames'}

A cell array of names for the predictor variables, in the order in which they appear in \(X\).

Default: \{'x1','x2',...\}

\section*{'Prune'}

When 'on', RegressionTree computes the full tree and the optimal sequence of pruned subtrees. When 'off' RegressionTree computes the full tree without pruning.

Default: 'on'

\section*{'PruneCriterion'}

String with the pruning criterion, always 'error'.
Default: 'error'

\section*{'QEToler'}

Defines tolerance on quadratic error per node for regression trees. Splitting nodes stops when quadratic error per node drops below QEToler*QED, where QED is the quadratic error for the entire data computed before the decision tree is grown.

Default: 1e-6

\section*{'ResponseName'}

Name of the response variable Y , a string.
Default: ' \(\gamma\) '

\section*{'ResponseTransform'}

Function handle for transforming the raw response values. The function handle should accept a matrix of response values and
return a matrix of the same size. The default string ' none ' means \(@(x) x\), or no transformation.
Add or change a ResponseTransform function by dot addressing:
tree. ResponseTransform = @function
Default: 'none'

\section*{'SplitCriterion'}

Criterion for choosing a split, always the string 'MSE', meaning mean squared error.

Default: 'MSE'

\section*{'Surrogate'}

String describing whether to find surrogate decision splits at each branch node. Specify as 'on', 'off', 'all', or a positive scalar value.
- When 'on', RegressionTree.fit finds at most 10 surrogate splits at each branch node.
- When set to a positive integer value, RegressionTree.fit finds at most the specified number of surrogate splits at each branch node.
- When set to 'all', RegressionTree.fit finds all surrogate splits at each branch node. The 'all' setting can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values. The setting also enables you to compute measures of predictive association between predictors.

Default: 'off'

\section*{'Weights'}

\section*{RegressionTree.fit}

Vector of observation weights. The length of weights is the number of rows in \(X\).

Default: ones(size (X,1), 1)

\section*{Output tree}

A regression tree object.
Note that using the 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition' options results in a tree of class RegressionPartitionedModel. You cannot use a partitioned tree for prediction, so this kind of tree does not have a predict method.

Otherwise, tree is of class RegressionTree, and you can use the predict method to make predictions.

\section*{Examples}

Load the data in carsmall.mat, and make a regression tree to predict the mileage of cars based on their weights and numbers of cylinders:
```

load carsmall
tree = RegressionTree.fit([Weight, Cylinders],MPG,...
'MinParent',20,...
'PredictorNames',{'W','C'})
tree =
RegressionTree
PredictorNames: {'W' 'C'}
ResponseName: 'Y'
ResponseTransform: 'none'
CategoricalPredictors: []
NObservations: 94
Properties, Methods

```

Predict the mileage of a car that weighs 2200 lbs and has four cylinders:
predict(tree,[2200,4])
ans =
29.6111

See Also predict

\section*{fitdist}

Purpose Fit probability distribution object to data

Syntax
Description

Input Arguments
```

pd = fitdist(x,distname)
pd = fitdist(x,distname,Name,Value)
[pdca,gn,gl] = fitdist(x,distname,'By',groupvar)
[pdca,gn,gl] = fitdist(x,distname,'By',groupvar,Name,Value)

```
pd = fitdist(x,distname) creates a probability distribution object by fitting the distribution specified by distname to the data in column vector x .
pd = fitdist(x, distname, Name, Value) creates the probability distribution object with additional options specified by one or more name-value pair arguments. For example, you can indicate censored data or specify control parameters for the iterative fitting algorithm.
[pdca,gn,gl] = fitdist(x,distname,'By',groupvar) creates probability distribution objects by fitting the distribution specified by distname to the data in \(x\) based on the grouping variable groupvar. It returns a cell array of fitted probability distribution objects, pdca, a cell array of group labels, gn, and a cell array of grouping variable levels, gl .
[pdca,gn,gl] = fitdist(x,distname,'By',groupvar, Name, Value) returns the above output arguments using additional options specified by one or more name-value pair arguments. For example, you can indicate censored data or specify control parameters for the iterative fitting algorithm.

\section*{x - Input data}
column vector
Input data, specified as a column vector. fitdist ignores NaN values in \(x\). Additionally, any NaN values in the censoring vector or frequency vector causes fitdist to ignore the corresponding values in x .

\section*{Data Types}
single | double

\section*{distname - Distribution name}
string
Distribution name, specified as one of the following strings. The distribution specified by distname determines the class type of the returned probability distribution object.
\begin{tabular}{|c|c|c|}
\hline Distribution Name & Description & Distribution Class \\
\hline 'Beta' & Beta distribution & prob.BetaDistribution \\
\hline 'Binomial' & Binomial distribution & prob.BinomialDistribution \\
\hline 'BirnbaumSaunders' & Birnbaum-Saunders distribution & prob.BirnbaumSaundersDistribl \\
\hline 'Burr ' & Burr distribution & prob.BurrDistribution \\
\hline 'Exponential' & Exponential distribution & prob.ExponentialDistribution \\
\hline 'ExtremeValue' & Extreme Value distribution & prob.ExtremeValueDistributior \\
\hline 'Gamma ' & Gamma distribution & prob.GammaDistribution \\
\hline 'GeneralizedExtreme & V Value distribution & prob.GeneralizedExtremeValue \\
\hline 'GeneralizedPareto' & Generalized Pareto distribution & prob.GeneralizedParetoDistrit \\
\hline 'InverseGaussian ' & Inverse Gaussian distribution & prob.InverseGaussianDistribut \\
\hline 'Kernel' & Kernel distribution & prob.KernelDistribution \\
\hline 'Logistic' & Logistic distribution & prob.LogisticDistribution \\
\hline 'Loglogistic' & Loglogistic distribution & prob.LoglogisticDistribution \\
\hline
\end{tabular}

\section*{fitdist}
\begin{tabular}{l|l|l}
\hline Distribution Name & Description & Distribution Class \\
\hline 'Lognormal' & \begin{tabular}{l}
Lognormal \\
distribution
\end{tabular} & prob.LognormalDistribution \\
\hline 'Multinomial' & \begin{tabular}{l}
Multinomial \\
distribution
\end{tabular} & prob.MultinomialDistribution \\
\hline 'Nakagami' & \begin{tabular}{l}
Nakagami \\
distribution
\end{tabular} & prob.NakagamiDistribution \\
\hline 'NegativeBinomial' & \begin{tabular}{l}
Negative Binomial \\
distribution
\end{tabular} & prob.NegativeBinomialDistributio \\
\hline 'Normal' & Normal distribution & prob.NormalDistribution
\end{tabular}

\section*{groupvar - Grouping variable}
categorical array | logical or numeric vector | cell array of strings
Grouping variable, specified as a categorical array, logical or numeric vector, or cell array of strings. Each unique value in a grouping variable defines a group.

For example, if Gender is a cell array of strings with values 'Male' and 'Female', you can use Gender as a grouping variable to fit a distribution to your data by gender.

More than one grouping variable can be used by specifying a cell array of grouping variable names. Observations are placed in the same group if they have common values of all specified grouping variables.

For example, if Smoker is a logical vector with values 0 for nonsmokers and 1 for smokers, then specifying the cell array \{Gender, Smoker\}
divides observations into four groups: Male Smoker, Male Nonsmoker, Female Smoker, and Female Nonsmoker.

Example: \{Gender, Smoker\}

\section*{Data Types}
single | double | logical | cell | char

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: fitdist(x,'Kernel', 'Kernel', 'triangle') fits a kernel distribution object to the data in x using a triangular kernel function.

\section*{'Censoring' - Logical flag for censored data}

0 (default) | vector of logical values
Logical flag for censored data, specified as the comma-separated pair consisting of 'Censoring' and a vector of logical values that is the same size as input vector x . The value is 1 when the corresponding element in \(x\) is a right-censored observation and 0 when the corresponding elements is an exact observation. The default is a vector of 0 s , indicating that all observations are exact.
fitdist ignores any NaN values in this censoring vector. Additionally, any NaN values in X or the frequency vector causes fitdist to ignore the corresponding values in the censoring vector.

\section*{Data Types}
logical

\section*{'Frequency' - Observation frequency}

1 (default) | vector of nonnegative integer values
Observation frequency, specified as the comma-separated pair consisting of 'Frequency ' and a vector of nonnegative integer values

\section*{fitdist}
that is the same size as input vector \(x\). Each element of the frequency vector specifies the frequencies for the corresponding elements in \(x\). The default is a vector of 1 s , indicating that each value in X only appears once.
fitdist ignores any NaN values in this frequency vector are ignored by the fitting calculations. Additionally, any NaN values in X or the censoring vector causes fitdist to ignore the corresponding values in the frequency vector.

\section*{Data Types}
logical

\section*{'Options' - Control parameters}
structure
Control parameters for the iterative fitting algorithm, specified as the comma-separated pair consisting of 'Options' and a structure you create using statset.

\section*{Data Types \\ struct}

\section*{'NTrials' - Number of trials}
positive integer value
Number of trials for the binomial distribution, specified as the comma-separated pair consisting of 'NTrials' and a positive integer value. You must specify distname as 'Binomial' to use this option.

\section*{Data Types \\ single | double}

\section*{'Theta' - Threshold parameter}

\section*{0 (default) | scalar value}

Threshold parameter for the generalized Pareto distribution, specified as the comma-separated pair consisting of 'Theta' and a scalar value. You must specify distname as 'GeneralizedPareto' to use this option.
```

Data Types
single | double

```

\section*{'Kernel' - Kernel smoother type}
```

'normal' (default) | 'box' | 'triangle' | 'epanechnikov'

```

Kernel smoother type, specified as the comma-separated pair consisting of 'Kernel' and one of the following:
- 'normal'
- 'box'
- 'triangle'
- 'epanechnikov'

You must specify distname as 'Kernel' to use this option.

\section*{'Support' - Kernel density support}
'unbounded' (default) | 'positive' | two-element vector
Kernel density support, specified as the comma-separated pair consisting of 'Support' and a string or two-element vector. The string must be one of the following.
\begin{tabular}{ll}
'unbounded' & \begin{tabular}{l}
Density can extend over the whole real \\
line.
\end{tabular} \\
'positive' & Density is restricted to positive values.
\end{tabular}

Alternatively, you can specify a two-element vector giving finite lower and upper limits for the support of the density.

You must specify distname as 'Kernel' to use this option.
Data Types
single | double
'Width' - Bandwidth of kernel smoothing window
scalar value

\section*{fitdist}

Bandwidth of the kernel smoothing window, specified as the comma-separated pair consisting of 'Width' and a scalar value. The default value used by fitdist is optimal for estimating normal densities, but you might want to choose a smaller value to reveal features such as multiple modes. You must specify distname as 'Kernel' to use this option.

\section*{Data Types}
single | double

\section*{Output Arguments}

\section*{pd - Probability distribution}
probability distribution object
Probability distribution, returned as a probability distribution object. The distribution specified by distname determines the class type of the returned probability distribution object.

\section*{pdca - Probability distribution objects}
cell array
Probability distribution objects of the type specified by distname, returned as a cell array.

\section*{gn-Group labels}
cell array of strings
Group labels, returned as a cell array of strings.

\section*{gl - Grouping variable levels}
cell array of strings
Grouping variable levels, returned as a cell array of strings containing one column for each grouping variable.

\section*{Examples Fit a Normal Distribution to Data}

Load the sample data. Create a vector containing the patients' weight data.
```

load hospital;
x = hospital.Weight;

```

Create a normal distribution object by fitting it to the data.
```

pd = fitdist(x,'Normal')
pd =

```

NormalDistribution
```

    Normal distribution
        mu = 154 [148.728, 159.272]
        sigma = 26.5714 [23.3299, 30.8674]
    ```

Plot the pdf of the distribution.
x_values = 50:1:250;
pdf = pdf(pd,x_values);
plot(x_values,pdf,'LineWidth', 2)

\section*{fitdist}

\section*{Fit a Kernel Distribution to Data}

Load the sample data. Create a vector containing the patients' weight data.
load hospital;
x = hospital.Weight;
Create a kernel distribution object by fitting it to the data. Use the Epanechnikov kernel function.
```

pd = fitdist(x,'Kernel','Kernel','epanechnikov')
pd =
KernelDistribution
Kernel = epanechnikov
Bandwidth = 14.3792
Support = unbounded

```
Plot the pdf of the distribution.
x_values = 50:1:250;
pdf = pdf(pd,x_values);
plot(x_values,pdf)

\section*{fitdist}

\section*{Fit Normal Distributions to Grouped Data}

Load the sample data. Create a vector containing the patients' weight data.
load hospital;
x = hospital.Weight;
Create normal distribution objects by fitting them to the data, grouped by patient gender.
```

gender = hospital.Sex;
[pdca,gn,gl] = fitdist(x,'Normal','By',gender)
pdca =
Column 1
[1x1 prob.NormalDistribution]
Column 2
[1x1 prob.NormalDistribution]
gn =
'Female'
'Male'
gl =
'Female'
'Male'

```

The cell array pdca contains two probability distribution objects, one for each gender group. The cell array gn contains two strings of the group labels. The cell array gl contains two strings of the group levels.

View each distribution in the cell array pdca to compare the mean, mu, and the standard deviation, sigma, grouped by patient gender.
```

female = pdca{1} % distribution for females
female =

```

NormalDistribution

\section*{fitdist}
```

    Normal distribution
        mu = 130.472 [128.183, 132.76]
    sigma = 8.30339 [6.96947, 10.2736]
    male = pdca{2} % distribution for males
male =

```
 NormalDistribution
```

Normal distribution
mu = 180.532 [177.833, 183.231]
sigma = 9.19322 [7.63933, 11.5466]

```

Compute the pdf of each distribution.
```

x_values = 50:1:250;
femalepdf = pdf(female,x_values);
malepdf = pdf(male,x_values);

```

Plot the pdfs for a visual comparison of weight distribution by gender.
```

figure;
plot(x_values,femalepdf,'LineWidth',2)
hold on;
plot(x_values,malepdf,'Color','r','LineStyle',':','LineWidth',2)
legend(gn,'Location','NorthEast');
hold off;

```

\section*{Fit Kernel Distributions to Grouped Data}

Load the sample data. Create a vector containing the patients' weight data.
load hospital;
x = hospital.Weight;
Create kernel distribution objects by fitting them to the data, grouped by patient gender. Use a triangular kernel function.

\section*{fitdist}
```

gender = hospital.Sex;
[pdca,gn,gl] = fitdist(x,'Kernel','By',gender,'Kernel','triangle');

```

View each distribution in the cell array pdca to see the kernel distributions for each gender.
```

female = pdca{1} % distribution for females
female =

```
 KernelDistribution
 Kernel = triangle
 Bandwidth = 4.25894
 Support = unbounded
male \(=\operatorname{pdca}\{2\}\) \% distribution for males
male =

\section*{KernelDistribution}

Kernel = triangle
Bandwidth = 5.08961
Support = unbounded
Compute the pdf of each distribution.
```

x values = 50:1:250;
femalepdf = pdf(female,x_values);
malepdf = pdf(male,x_values);

```

Plot the pdfs for a visual comparison of weight distribution by gender.
figure;
plot(x_values,femalepdf,'LineWidth', 2)
hold on;
plot(x_values,malepdf,'Color','r','LineStyle',':','LineWidth',2)
```

legend(gn,'Location','NorthEast');
hold off;

```


\section*{Algorithms}

The fitdist function fits most distributions using maximum likelihood estimation. Two exceptions are the normal and lognormal distributions with uncensored data.
- For the uncensored normal distribution, the estimated value of the sigma parameter is the square root of the unbiased estimate of the variance.

\section*{fitdist}
- For the uncensored lognormal distribution, the estimated value of the sigma parameter is the square root of the unbiased estimate of the variance of the log of the data.

\section*{References}
[1] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol. 1, Hoboken, NJ: Wiley-Interscience, 1993.
[2] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol. 2, Hoboken, NJ: Wiley-Interscience, 1994.
[3] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for Data Analysis. New York: Oxford University Press, 1997.

\section*{Alternative Functionality}

\section*{App}
dfittool opens a graphical user interface for you to import data from the workspace and interactively fit a probability distribution to that data. You can then save the distribution to the workspace as a probability distribution object.

\section*{See Also \\ makedist | dfittool}

\section*{fitensemble}

\section*{Purpose Fitted ensemble for classification or regression}
```

Syntax ens = fitensemble(X,Y,method, nlearn, learners)
ens = fitensemble(X,Y,method,nlearn,learners,Name,Value)

```

Description

Tips
- If X has categorical predictors with many levels, use 'GentleBoost' or 'LogitBoost' for binary classification. Using other algorithms in this case would likely cause long training times and can exhaust memory.

\section*{X}

Matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

\section*{Y}

For classification, Y is a categorical variable, character array, or cell array of strings. Each row of \(Y\) represents the classification of the corresponding row of \(X\).

For regression, \(Y\) is a numeric column vector with the same number of rows as \(X\). Each entry in \(Y\) is the response to the data in the corresponding row of \(X\).
method
Case-insensitive string consisting of one of the following.
- For classification with two classes:

\section*{fitensemble}
- 'AdaBoostM1'
- 'LogitBoost'
- 'GentleBoost'
- 'RobustBoost' (requires an Optimization Toolbox license)
- 'LPBoost' (requires an Optimization Toolbox license)
- 'TotalBoost' (requires an Optimization Toolbox license)
- 'RUSBoost'
- 'Subspace'
- 'Bag'
- For classification with three or more classes:
- 'AdaBoostM2'
- 'LPBoost' (requires an Optimization Toolbox license)
- 'TotalBoost' (requires an Optimization Toolbox license)
- 'RUSBoost'
- 'Subspace'
- 'Bag'
- For regression:
- 'LSBoost'
- 'Bag'
'Bag' applies to all methods. So when you use 'Bag', indicate whether you want a classifier or regressor with the type name-value pair set to 'classification' or 'regression'.

\section*{nlearn}

Number of ensemble learning cycles, a positive integer (or the string 'AllPredictorCombinations', see the next paragraph). At every training cycle, fitensemble loops over all learner templates in
learners and trains one weak learner for every template. The total number of trained learners in ens is nlearn*numel(learners).
If you set method to 'Subspace', you can set nlearn to 'AllPredictorCombinations'. With this setting, fitensemble constructs learners for all possible combinations of predictors taken NPredToSample at a time. This gives a total of nchoosek (size (X,2), NPredToSample) learners in the ensemble. You can use only one learner template for this setting.
nlearn for ensembles can vary from a few dozen to a few thousand. Usually, an ensemble with a good predictive power needs from a few hundred to a few thousand weak learners. You do not have to train an ensemble for that many cycles at once. You can start by growing a few dozen learners, inspect the ensemble performance and, if necessary, train more weak learners using the resume method of the ensemble.

\section*{learners}

One of the following:
- A string with the name of a weak learner:
- 'Discriminant' (applies only to 'Subspace')
- 'KNN' (applies only to 'Subspace')
- 'tree' (applies to all methods except 'Subspace')
- A single weak learner template you create with ClassificationTree.template, RegressionTree.template, ClassificationKNN.template, or ClassificationDiscriminant.template.
- A cell array of weak learner templates. Usually you should supply only one weak learner template.
Ensemble performance depends on the parameters of the weak learners, and you can get poor performance using weak learners with default parameters. Specify the parameters for the weak learners in the template. Specify parameters for the ensemble in the fitensemble name-value pairs.

\section*{fitensemble}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{All Ensembles:}

\section*{'CategoricalPredictors'}

List of categorical predictors. Pass CategoricalPredictors as one of:
- A numeric vector with indices from 1 to \(p\), where \(p\) is the number of columns of \(X\).
- A logical vector of length \(p\), where a true entry means that the corresponding column of X is a categorical variable.
- 'all', meaning all predictors are categorical.
- A cell array of strings, where each element in the array is the name of a predictor variable. The names must match entries in the PredictorNames property.
- A character matrix, where each row of the matrix is the name of a predictor variable. The names must match entries in the PredictorNames property. Pad the names with extra blanks so each row of the character matrix has the same length.

You can set CategoricalPredictors for these learners:
- 'Tree'
- 'KNN ', when all predictors are categorical

Default: []

\section*{'crossval'}

If 'on', grows a cross-validated learner with 10 folds. You can use 'kfold', 'holdout', 'leaveout', or 'cvpartition' parameters to

\section*{fitensemble}
override this cross-validation setting. You can only use one of these four parameters ('kfold', 'holdout', 'leaveout', or 'cvpartition') at a time when creating a cross-validated learner.

Default: 'off'

\section*{'cvpartition'}

Partition created with cvpartition to use in a cross-validated learner. You can only use one of these four options at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

\section*{'fresample'}

Fraction of the training set to be selected by resampling for every weak learner. A numeric scalar from 0 to 1. This parameter has no effect unless you grow an ensemble by bagging or set 'resample' to 'on'. The default setting is the one used most often for an ensemble grown by resampling.

\section*{Default: 1}

\section*{'holdout'}

Holdout validation tests the specified fraction of the data, and uses the remaining data for training. Specify a numeric scalar from 0 to 1. You can only use one of these four options at a time for creating a cross-validated learner: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

\section*{'kfold \({ }^{\prime}\)}

Number of folds to use in a cross-validated learner, a positive integer. You can only use one of these four options at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

Default: 10

\section*{'leaveout'}

\section*{fitensemble}

Use leave-one-out cross validation by setting to 'on '. You can only use one of these four options at a time: 'kfold', 'holdout', 'leaveout', or 'cvpartition'.

\section*{'NPredToSample'}

Number of predictors in each random subspace learner, a positive integer from 1 to size (X,2).

Default: 1

\section*{'nprint'}

Printout frequency, a positive integer scalar. Set to 'off' for no printout. Use this parameter to track how many weak learners have been trained so far. This is useful when you train ensembles with many learners on large datasets. If you use one of the cross-validation options, this parameter defines the printout frequency per number of cross-validation folds.

\section*{Default: 'off'}

\section*{'PredictorNames'}

Cell array of names for the predictor variables, in the order in which they appear in \(X\).

Default: \{'x1','x2',...\}

\section*{'replace'}
'on' or 'off'. If 'on', sample with replacement. If 'off', sample without replacement. This parameter has no effect unless you grow an ensemble by bagging or set resample to 'on'. If you set resample to 'on' and replace to 'off', fitensemble samples training observations assuming uniform weights, and boosts by reweighting observations.

Default: 'on'

\section*{fitensemble}

\section*{'resample'}
'on' or 'off'. If 'on', grow an ensemble by resampling, with the resampling fraction given by fresample, and sampling with or without replacement given by replace.
- Boosting - When 'off', the boosting algorithm reweights observations at every learning iteration. When 'on ', the algorithm samples training observations using updated weights as the multinomial sampling probabilities.
- Bagging - You can use only the default value of this parameter ('on').

Default: 'off' for boosting, 'on' for bagging

\section*{'ResponseName'}

Name of the response variable Y , a string.
Default: ' \(Y\) '

\section*{'type'}

String, either 'classification' or 'regression'. Specify type when the method is 'bag'.

\section*{'weights'}

Vector of observation weights. The length of weights is the number of rows in X .

Default: ones(size (X, 1), 1)

\section*{Classification Ensembles:}

\section*{'classnames'}

Array of class names. Specify a data type the same as exists in Y.

\section*{fitensemble}

Default: Class names that exist in \(Y\)

\section*{'cost'}

Square matrix C, where \(C(i, j)\) is the cost of classifying a point into class \(j\) if its true class is i. Alternatively, cost can be a structure S having two fields: S.ClassNames containing the group names as a categorical variable, character array, or cell array of strings; and S.ClassificationCosts containing the cost matrix C.

Default: C(i,j) = 1 if \(i \sim=j\), and \(C(i, j)=0\) if \(i=j\)

\section*{'prior'}

Prior probabilities for each class. Specify as one of:
- A string:
- 'empirical' determines class probabilities from class frequencies in Y. If you pass observation weights, they are used to compute the class probabilities.
- 'uniform' sets all class probabilities equal.
- A vector (one scalar value for each class)
- A structure S with two fields:
- S.ClassNames containing the class names as a categorical variable, character array, or cell array of strings
- S.ClassProbs containing a vector of corresponding probabilities

If you set values for both weights and prior, the weights are renormalized to add up to the value of the prior probability in the respective class.

Default: 'empirical'

\section*{AdaBoostM1, AdaBoostM2, LogitBoost, GentleBoost, RUSBoost, and LSBoost:}

\section*{fitensemble}

\section*{'LearnRate'}

Learning rate for shrinkage, a numeric scalar from 0 to 1 . If you set the learning rate to less than 1 , the ensemble requires more learning iterations but often achieves a better accuracy. 0.1 is a popular choice for an ensemble grown with shrinkage.

Default: 1

\section*{RUSBoost:}

\section*{'RatioToSmallest'}

Either a numeric scalar or vector with \(K\) elements when there are \(K\) classes. Every element of this vector is the sampling proportion for this class with respect to the class with fewest observations in Y. If you pass a scalar, fitensemble uses this sampling proportion for all classes. For example, suppose you have class A with 100 observations and class B with 10 observations. If you pass [2 1] for 'RatioToSmallest', every learner in the ensemble is trained on 20 observations of class A and 10 observations of class B. If you pass 2 or [2 2], every learner is trained on 20 observations of class A and 20 observations of class B. If you pass 'ClassNames', fitensemble matches elements in the array of class names to elements in this vector.

Default: ones (K,1)

\section*{LPBoost and TotalBoost:}

\section*{'MarginPrecision'}

Margin precision, a numeric scalar between 0 and 1. MarginPrecision affects the number of boosting iterations required for conversion. Use a small value to grow an ensemble with many learners, and use a large value to grow an ensemble with few learners.

Default: 0.01

\section*{fitensemble}

\section*{RobustBoost:}

\section*{'RobustErrorGoal'}

Target classification error for RobustBoost, a numeric scalar from 0 to 1. Usually there is an optimal range for this parameter for your training data. If you set the error goal too low or too high, RobustBoost can produce a model with poor classification accuracy.

Default: 0.1

\section*{'RobustMarginSigma'}

Spread of the distribution of classification margins over the training set for RobustBoost, a numeric positive scalar. You should consult literature on RobustBoost before setting this parameter

Default: 0.1

\section*{'RobustMaxMargin'}

Maximal classification margin for RobustBoost in the training set, a nonnegative numeric scalar. RobustBoost minimizes the number of observations in the training set with classification margins below RobustMaxMargin.

\section*{Default: 0}

\section*{Output} Arguments

\section*{ens}

Ensemble object for predicting characteristics. The class of ens depends on settings. In the following table, cross-validation names are crossval, kfold, holdout, leaveout, and cvpartition.
\begin{tabular}{l|l}
\hline Settings & Class \\
\hline \begin{tabular}{l}
resample name-value pair is 'off', and you \\
don't set a cross-validation name-value pair.
\end{tabular} & ClassificationEnsemble \\
\hline \begin{tabular}{l}
resample name-value pair is 'off', and you \\
don't set a cross-validation name-value pair.
\end{tabular} & RegressionEnsemble \\
\hline \begin{tabular}{l}
resample name-value pair is 'on', type \\
is 'classification', and you don't set a \\
cross-validation name-value pair.
\end{tabular} & ClassificationBaggedEnsemble \\
\hline \begin{tabular}{l}
resample name-value pair is 'on ', type \\
is 'regression', and you don't set a \\
cross-validation name-value pair.
\end{tabular} & RegressionBaggedEnsemble \\
\hline \begin{tabular}{l}
method is a classification method, and you \\
set a cross-validation name-value pair.
\end{tabular} & ClassificationPartitionedEnsemble \\
\hline \begin{tabular}{l}
method is a regression method, and you set \\
a cross-validation name-value pair.
\end{tabular} & RegressionPartitionedEnsemble \\
\hline
\end{tabular}

Examples Train a boosting ensemble, and inspect the resubstitution loss:
```

load ionosphere;
ada = fitensemble(X,Y,'AdaBoostM1',100,'tree');
plot(resubLoss(ada,'mode','cumulative'));
xlabel('Number of decision trees');
ylabel('Resubstitution error');

```

\section*{fitensemble}

Train a regression ensemble to predict car mileage based on the number of cylinders, engine displacement, horsepower, and weight. Predict the mileage for a four-cylinder car with a 200 cubic inch displacement, 150 horsepower, and weighing 3000 lbs.

\section*{fitensemble}
```

load carsmall
X = [Cylinders,Displacement,Horsepower,Weight];
xnames = {'Cylinders','Displacement','Horsepower','Weight'};
t = RegressionTree.template('Surrogate','on');
rens = fitensemble(X,MPG,'LSBoost',100,t,'PredictorNames',xnames)
rens =
classreg.learning.regr.RegressionEnsemble:
PredictorNames: {'Cylinders' 'Displacement' 'Horsepower' 'Weight'}
CategoricalPredictors: []
ResponseName: 'Y'
ResponseTransform: 'none'
NObservations: 94
NTrained: 100
Method: 'LSBoost'
LearnerNames: {'Tree'}
ReasonForTermination: [1x77 char]
FitInfo: [100x1 double]
FitInfoDescription: [2x83 char]
Regularization: []
predict(rens,[4 200 150 3000])
ans =
20.4982

```

Train and estimate the generalization error on a holdout sample:
```

load ionosphere;
ada = fitensemble(X,Y,'AdaBoostM1',100,'Tree',...
'holdout',0.5);
plot(kfoldLoss(ada,'mode','cumulative'));
xlabel('Number of decision trees');
ylabel('Holdout error');

```

\section*{fitensemble}

Algorithms
See Also

How To

For details of boosting and bagging algorithms, see "Ensemble Algorithms" on page 15-145.

ClassificationEnsemble | RegressionEnsemble | ClassificationBaggedEnsemble | RegressionBaggedEnsemble | ClassificationPartitionedEnsemble
| RegressionPartitionedEnsemble | ClassificationDiscriminant.template | ClassificationKNN.template | ClassificationTree.template | RegressionTree.template
- "Supervised Learning (Machine Learning) Workflow and Algorithms" on page 15-2

\section*{fitensemble}
- "Ensemble Methods" on page 15-58

Purpose Flip categorical array along specified dimension

\section*{Syntax \\ \(B=\) flipdim(A,dim)}

Description \(\quad B=\) flipdim (A, dim) returns the categorical array A with dimension dim flipped.

See Also fliplr | flipud | permute | rot90
Purpose Flip categorical matrix in left/right direction
Syntax

\[
B=f l i p l r(A)
\]
Description \(B=f l i p l r(A)\) returns the \(2-D\) categorical matrix \(A\) with rows preserved and columns flipped in the left/right direction.
See Also flipdim | flipud | permute | rot90

\section*{categorical.flipud}

Purpose Flip categorical matrix in up/down direction

\section*{Syntax \\ \(B\) = flipud(A)}

Description \(\quad B=\) flipud \((A)\) returns the 2-D categorical matrix \(A\) with rows preserved and columns flipped in the up/down direction.

See Also flipdim | fliplr | permute | rot90

\section*{Purpose}
\(F\) probability density function

\section*{Syntax \\ \(Y=f p d f(X, V 1, V 2)\)}
\(Y=\operatorname{fpdf}(X, V 1, V 2)\) computes the \(F\) pdf at each of the values in \(X\) using the corresponding numerator degrees of freedom V1 and denominator degrees of freedom V2. X, V1, and V2 can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. V1 and V2 parameters must contain real positive values, and the values in X must lie on the interval \([0 \infty\)).

The probability density function for the \(F\) distribution is
\[
y=f\left(x \mid v_{1}, v_{2}\right)=\frac{\Gamma\left[\frac{\left(v_{1}+v_{2}\right)}{2}\right]}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}\left(\frac{v_{1}}{v_{2}}\right)^{\frac{v_{1}}{2}} \frac{x^{\frac{v_{1}-2}{2}}}{\left[1+\left(\frac{v_{1}}{v_{2}}\right) x\right]^{\frac{v_{1}+v_{2}}{2}}}
\]

\section*{Examples}
```

y = fpdf(1:6,2,2)
y =
0.2500}00.1111 0.0625 0.0400 0.0278 0.0204
z = fpdf(3,5:10,5:10)
z =
0.0689 0.0659

```
See Also
pdf | fcdf | finv | fstat | frnd

How To
- "F Distribution" on page B-38

Purpose Fractional factorial design
Syntax \(\quad X=\) fracfact \((\) gen \()\)
[X,conf] = fracfact(gen)
[X,conf] = fracfact(gen,Name,Value)

\section*{Description}

Input
Arguments
\(X=\) fracfact (gen) creates the two-level fractional factorial design defined by the generator string gen.
[\(\mathrm{X}, \mathrm{conf}\)] = fracfact (gen) returns a cell array of strings containing the confounding pattern for the design.
[X,conf] = fracfact(gen, Name, Value) creates a fractional factorial designs with additional options specified by one or more Name, Value pair arguments.

\section*{gen}

Either a cell array of strings where each cell contains one "word," or a string consisting of "words" separated by spaces. "Words" consist of case-sensitive letters or groups of letters, where 'a' represents string 1, 'b' represents string \(2, \ldots\), 'A' represents string \(27, \ldots\), 'Z' represents string 52.
Each word defines how the corresponding factor's levels are defined as products of generators from a \(2^{\wedge} \mathrm{K}\) full-factorial design. K is the number of letters of the alphabet in gen.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'FactorNames'}

Cell array specifying the name for each factor.

Default: \{'X1','X2', ...\}

\section*{'MaxInt'}

Positive integer setting the maximum level of interaction to include in the confounding output.

\section*{Default: 2}

\section*{Output} Arguments

\section*{X}

The two-level fractional factorial design. X is a matrix of size N -by- P , where
- \(N=2^{\wedge} K\), where \(K\) is the number of letters of the alphabet in gen.
- \(P\) is the number of words in gen.

Because \(X\) is a two-level design, the components of \(X\) are -1 . For the meaning of \(X\), see "Fractional Factorial Designs" on page 17-5.

\section*{conf}

Cell array of strings containing the confounding pattern for the design.
Examples Generate a fractional factorial design for four variables, where the fourth variable is the product of the first three:
```

x = fracfact('a b c abc')
x =

| -1 | -1 | -1 | -1 |
| ---: | ---: | ---: | ---: |
| -1 | -1 | 1 | 1 |
| -1 | 1 | -1 | 1 |
| -1 | 1 | 1 | -1 |
| 1 | -1 | -1 | 1 |
| 1 | -1 | 1 | -1 |
| 1 | 1 | -1 | -1 |
| 1 | 1 | 1 | 1 |

```

Find generators for a six-factor design that uses four factors and achieves resolution IV using fracfactgen. Use the result to specify the design:
```

generators = fracfactgen('a b c d e f',4, ... % 4 factors
4) % resolution 4
generators =
'a'
'b'
'c'
'd'
'bcd'
' acd'
x = fracfact(generators)
X =

| -1 | -1 | -1 | -1 | -1 | -1 |
| ---: | ---: | ---: | ---: | ---: | ---: |
| -1 | -1 | -1 | 1 | 1 | 1 |
| -1 | -1 | 1 | -1 | 1 | 1 |
| -1 | -1 | 1 | 1 | -1 | -1 |
| -1 | 1 | -1 | -1 | 1 | -1 |
| -1 | 1 | -1 | 1 | -1 | 1 |
| -1 | 1 | 1 | -1 | -1 | 1 |
| -1 | 1 | 1 | 1 | 1 | -1 |
| 1 | -1 | -1 | -1 | -1 | 1 |
| 1 | -1 | -1 | 1 | 1 | -1 |
| 1 | -1 | 1 | -1 | 1 | -1 |
| 1 | -1 | 1 | 1 | -1 | 1 |
| 1 | 1 | -1 | -1 | 1 | 1 |
| 1 | 1 | -1 | 1 | -1 | -1 |
| 1 | 1 | 1 | -1 | -1 | -1 |
| 1 | 1 | 1 | 1 | 1 | 1 |

```
References [1] Box, G. E. P., W. G. Hunter, and J. S. Hunter. Statistics for Experimenters. Hoboken, NJ: Wiley-Interscience, 1978.
See Also ff2n | fracfactgen | fullfact | hadamard
How To - "Fractional Factorial Designs" on page 17-5

Fractional factorial design generators
```

generators = fracfactgen(terms)
generators = fracfactgen(terms,k)
generators = fracfactgen(terms,k,R)
generators = fracfactgen(terms,k,R,basic)

```
generators \(=\) fracfactgen(terms) uses the Franklin-Bailey algorithm to find generators for the smallest two-level fractional-factorial design for estimating linear model terms specified by terms. terms is a string consisting of words formed from the 52 case-sensitive letters a-Z, separated by spaces. Use 'a'-'z' for the first 26 factors, and, if necessary, 'A' - 'Z' for the remaining factors. For example, terms \(=\) 'a b c ab ac'. Single-character words indicate main effects to be estimated; multiple-character words indicate interactions. Alternatively, terms is an \(m\)-by- \(n\) matrix of 0 s and 1 s where \(m\) is the number of model terms to be estimated and \(n\) is the number of factors. For example, if terms contains rows [\(\left.\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]\) and [\(\left.\begin{array}{llll}1 & 0 & 0 & 1\end{array}\right]\), then the factor \(b\) and the interaction between factors \(a\) and d are included in the model. generators is a cell array of strings with one generator per cell. Pass generators to fracfact to produce the fractional-factorial design and corresponding confounding pattern.
generators = fracfactgen(terms,k) returns generators for a two-level fractional-factorial design with \(2^{k}\)-runs, if possible. If \(k\) is [], fracfactgen finds the smallest design.
generators \(=\) fracfactgen(terms, \(k, R\)) finds a design with resolution \(R\), if possible. The default resolution is 3 .

A design of resolution \(R\) is one in which no \(n\)-factor interaction is confounded with any other effect containing less than \(R-n\) factors. Thus a resolution III design does not confound main effects with one another but may confound them with two-way interactions, while a resolution IV design does not confound either main effects or two-way interactions but may confound two-way interactions with each other.

If fracfactgen is unable to find a design at the requested resolution, it tries to find a lower-resolution design sufficient to calibrate the model.

If it is successful, it returns the generators for the lower-resolution design along with a warning. If it fails, it returns an error.
generators \(=\) fracfactgen(terms, \(k, R\), basic) also accepts a vector basic specifying the indices of factors that are to be treated as basic. These factors receive full-factorial treatments in the design. The default includes factors that are part of the highest-order interaction in terms.

\section*{Examples}

Suppose you wish to determine the effects of four two-level factors, for which there may be two-way interactions. A full-factorial design would require \(2^{4}=16\) runs. The fracfactgen function finds generators for a resolution IV (separating main effects) fractional-factorial design that requires only \(2^{3}=8\) runs:
```

generators = fracfactgen('a b c d',3,4)
generators =
'a'
'b'
'c'
'abc'

```

The more economical design and the corresponding confounding pattern are returned by fracfact:
```

[dfF,confounding] = fracfact(generators)
dfF =
-1
-1
-1
-1
1
1 -1
1 1-1
1 1 1 1 1 1
confounding =
'Term' 'Generator' 'Confounding'
'X1' 'a' 'X1'
'X2' 'b' 'X2'

```

\section*{fracfactgen}
\begin{tabular}{|c|c|c|}
\hline ' X3' & 'c' & ' X3' \\
\hline ' \(\mathrm{X} 4{ }^{\prime}\) & 'abc' & 'X4' \\
\hline ' X 1 * \(\mathrm{X}^{\prime}{ }^{\prime}\) & 'ab' & \({ }^{\prime} \mathrm{X} 1 * \mathrm{X} 2+\mathrm{X} 3^{*} \mathrm{X} 4{ }^{\prime}\) \\
\hline ' X 1 * \(\times 3{ }^{\prime}\) & 'ac' & \({ }^{\prime} \mathrm{X} 1^{*} \mathrm{X} 3+\mathrm{X} 2^{*} \mathrm{X} 4{ }^{\prime}\) \\
\hline ' X 1 * \(\mathrm{X4}^{\prime}\) & 'bc' & \({ }^{\prime} \mathrm{X} 1\) * \(\mathrm{X} 4+\mathrm{X} 2^{*} \mathrm{X} 3^{\prime}\) \\
\hline ' X 2 * \(\times 3{ }^{\prime}\) & 'bc' & \({ }^{\prime} \mathrm{X} 1 * \mathrm{X} 4+\mathrm{X} 2 * \mathrm{X}{ }^{\prime}\) \\
\hline ' \(\mathrm{X} 2 * \times 4{ }^{\prime}\) & 'ac' & \({ }^{\prime} \mathrm{X} 1 * \mathrm{X} 3+\mathrm{X} 2 * \mathrm{X} 4{ }^{\prime}\) \\
\hline ' X 3 * X4 \({ }^{\prime}\) & 'ab' & ' \(\mathrm{X} 1{ }^{*} \mathrm{X} 2\) + \(\mathrm{X} 3 * \mathrm{X} 4{ }^{\prime}\) \\
\hline
\end{tabular}

The confounding pattern shows, for example, that the two-way interaction between X1 and X2 is confounded by the two-way interaction between X3 and X4.

\author{
References [1] Box, G. E. P., W. G. Hunter, and J. S. Hunter. Statistics for Experimenters. Hoboken, NJ: Wiley-Interscience, 1978.
}

See Also fracfact | hadamard
How To . "Fractional Factorial Designs" on page 17-5

\section*{Purpose Friedman's test}
Syntax \(\quad\)\begin{tabular}{l}
\(p=\) friedman \((X\), reps \()\) \\
\\
\(p=\) friedman \((X\), reps, displayopt \()\) \\
\\
\\
\\
{\([p\), table \(]=\) friedman \((\ldots)\)} \\
\end{tabular}

\section*{Description}
\(p\) = friedman(X, reps) performs the nonparametric Friedman's test to compare column effects in a two-way layout. Friedman's test is similar to classical balanced two-way ANOVA, but it tests only for column effects after adjusting for possible row effects. It does not test for row effects or interaction effects. Friedman's test is appropriate when columns represent treatments that are under study, and rows represent nuisance effects (blocks) that need to be taken into account but are not of any interest.

The different columns of \(X\) represent changes in a factor \(A\). The different rows represent changes in a blocking factor \(B\). If there is more than one observation for each combination of factors, input reps indicates the number of replicates in each "cell," which must be constant.

The matrix below illustrates the format for a set-up where column factor A has three levels, row factor B has two levels, and there are two replicates (reps=2). The subscripts indicate row, column, and replicate, respectively.
\(\left[\begin{array}{lll}x_{111} & x_{121} & x_{131} \\ x_{112} & x_{122} & x_{132} \\ x_{211} & x_{221} & x_{231} \\ x_{212} & x_{222} & x_{232}\end{array}\right]\)

Friedman's test assumes a model of the form
\[
x_{i j k}=\mu+\alpha_{i}+\beta_{j}+\varepsilon_{i j k}
\]
where \(\mu\) is an overall location parameter, \(\alpha_{i}\) represents the column effect, \(\beta_{j}\) represents the row effect, and \(\varepsilon_{i j k}\) represents the error. This test ranks the data within each level of B, and tests for a difference across levels of A. The p that friedman returns is the \(p\) value for the null hypothesis that \(\alpha_{i}=0\). If the \(p\) value is near zero, this casts doubt on the null hypothesis. A sufficiently small \(p\) value suggests that at least one column-sample median is significantly different than the others; i.e., there is a main effect due to factor A. The choice of a critical \(p\) value to determine whether a result is "statistically significant" is left to the researcher. It is common to declare a result significant if the \(p\) value is less than 0.05 or 0.01 .
friedman also displays a figure showing an ANOVA table, which divides the variability of the ranks into two or three parts:
- The variability due to the differences among the column effects
- The variability due to the interaction between rows and columns (if reps is greater than its default value of 1)
- The remaining variability not explained by any systematic source

The ANOVA table has six columns:
- The first shows the source of the variability.
- The second shows the Sum of Squares (SS) due to each source.
- The third shows the degrees of freedom (df) associated with each source.
- The fourth shows the Mean Squares (MS), which is the ratio SS/df.
- The fifth shows Friedman's chi-square statistic.
- The sixth shows the \(p\) value for the chi-square statistic.
\(\mathrm{p}=\mathrm{friedman}(\mathrm{X}, \mathrm{reps}\), displayopt) enables the ANOVA table display when displayopt is 'on' (default) and suppresses the display when displayopt is 'off'.
[p,table] = friedman(...) returns the ANOVA table (including column and row labels) in cell array table. (You can copy a text version of the ANOVA table to the clipboard by selecting Copy Text from the Edit menu.
[p,table,stats] = friedman(...) returns a stats structure that you can use to perform a follow-up multiple comparison test. The friedman test evaluates the hypothesis that the column effects are all the same against the alternative that they are not all the same. Sometimes it is preferable to perform a test to determine which pairs of column effects are significantly different, and which are not. You can use the multcompare function to perform such tests by supplying the stats structure as input.

\section*{Assumptions}

Friedman's test makes the following assumptions about the data in X :
- All data come from populations having the same continuous distribution, apart from possibly different locations due to column and row effects.
- All observations are mutually independent.

The classical two-way ANOVA replaces the first assumption with the stronger assumption that data come from normal distributions.

\section*{Examples}

Let's repeat the example from the anova2 function, this time applying Friedman's test. Recall that the data below come from a study of popcorn brands and popper type (Hogg 1987). The columns of the matrix popcorn are brands (Gourmet, National, and Generic). The rows are popper type (Oil and Air). The study popped a batch of each brand three times with each popper. The values are the yield in cups of popped popcorn.
```

load popcorn
popcorn
popcorn =
5.5000 4.5000 3.5000
5.5000 4.5000 4.0000

```

\section*{friedman}

The small \(p\) value of 0.001 indicates the popcorn brand affects the yield of popcorn. This is consistent with the results from anova2.

\section*{References [1] Hogg, R. V., and J. Ledolter. Engineering Statistics. New York: MacMillan, 1987.}
[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods. Hoboken, NJ: John Wiley \& Sons, Inc., 1999.

\author{
See Also anova2 \\ How To • multcompare \\ - kruskalwallis
}
Purpose \(F\) random numbers
Syntax \(\mathrm{R}=\mathrm{frnd}(\mathrm{V} 1, \mathrm{~V} 2)\)

R = frnd(V1,V2,m,n,...)

\(R=f r n d(V 1, V 2,[m, n, \ldots])\)
Description\(\mathrm{R}=\mathrm{frnd}(\mathrm{V} 1, \mathrm{~V} 2)\) generates random numbers from the \(F\) distributionwith numerator degrees of freedom V1 and denominator degrees offreedom V2. V1 and V2 can be vectors, matrices, or multidimensionalarrays that all have the same size. A scalar input for V1 or V2 isexpanded to a constant array with the same dimensions as the otherinput.
\(R=f r n d(V 1, V 2, m, n, \ldots)\) or \(R=f r n d(V 1, V 2,[m, n, \ldots])\) generates
an m-by-n-by-... array containing random numbers from the \(F\)
distribution with parameters V1 and V2. V1 and V2 can each be scalars
or arrays of the same size as \(R\).

\section*{Examples}
```

n1 = frnd(1:6,1:6)
n1 =
0.0022 0.3121 3.0528

```
n2 \(=\) frnd (2,2,[23])
n2 =
 \(0.3186 \quad 0.9727 \quad 3.0268\)
 \(0.2052148 .5816 \quad 0.2191\)
n3 = frnd([1 2 3;4 5 6],1,2,3)
n3 \(=\)
 \(\begin{array}{lll}0.6233 & 0.2322 & 31.5458\end{array}\)
 \(2.5848 \quad 0.2121 \quad 4.4955\)
See Also random | fpdf | fcdf | finv | fstat
How To . "F Distribution" on page B-38

Purpose \(\quad F\) mean and variance

\section*{Syntax \(\quad[M, V]=\operatorname{fstat}(V 1, V 2)\)}

Description
\([\mathrm{M}, \mathrm{V}]=\mathrm{fstat}(\mathrm{V} 1, \mathrm{~V} 2)\) returns the mean of and variance for the \(F\) distribution with numerator degrees of freedom V1 and denominator degrees of freedom V2. V1 and V2 can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of M and V . A scalar input for V 1 or V 2 is expanded to a constant arrays with the same dimensions as the other input.

The mean of the \(F\) distribution for values of \(v_{2}\) greater than 2 is
\[
\frac{v_{2}}{v_{2}-2}
\]

The variance of the \(F\) distribution for values of \(v_{2}\) greater than 4 is
\[
\frac{2 v_{2}^{2}\left(v_{1}+v_{2}-2\right)}{v_{1}\left(v_{2}-2\right)^{2}\left(v_{2}-4\right)}
\]

The mean of the \(F\) distribution is undefined if \(v_{2}\) is less than 3. The variance is undefined for \(v_{2}\) less than 5 .

\section*{Examples fstat returns \(N a N\) when the mean and variance are undefined.}
```

[m,v] = fstat(1:5,1:5)
m =
NaN NaN 3.0000 2.0000 1.6667
v =
NaN NaN NaN NaN 8.8889

```
See Also fpdf | fcdf | finv | frnd
How To - "F Distribution" on page B-38

\section*{Purpose}

Interactive contour plot

\section*{Syntax}

Description

\section*{Examples}
```

fsurfht(fun,xlims,ylims)
fsurfht(fun,xlims,ylims,p1, p2,p3,p4,p5)

```
fsurfht(fun, xlims, ylims) is an interactive contour plot of the function specified by the text variable fun. The \(x\)-axis limits are specified by xlims in the form [xmin xmax], and the \(y\)-axis limits are specified by ylims in the form [ymin ymax].
fsurfht(fun, xlims, ylims, p1, p2, p3, p4, p5) allows for five optional parameters that you can supply to the function fun.

The intersection of the vertical and horizontal reference lines on the plot defines the current \(x\) value and \(y\) value. You can drag these reference lines and watch the calculated \(z\)-values (at the top of the plot) update simultaneously. Alternatively, you can type the \(x\) value and \(y\) value into editable text fields on the \(x\)-axis and \(y\)-axis.

Plot the Gaussian likelihood function for the gas.mat data.
```

load gas

```

Create a function containing the following commands, and name it gauslike.m.
```

function z = gauslike(mu,sigma,p1)
n = length(p1);
z = ones(size(mu));
for i = 1:n
z = z .* (normpdf(p1(i),mu,sigma));
end

```

The gauslike function calls normpdf, treating the data sample as fixed and the parameters \(\mu\) and \(\sigma\) as variables. Assume that the gas prices are normally distributed, and plot the likelihood surface of the sample.
```

fsurfht('gauslike',[112 118],[3 5],price1)

```

\section*{fsurfht}

The sample mean is the \(x\) value at the maximum, but the sample standard deviation is not the \(y\) value at the maximum.
```

mumax = mean(price1)
mumax =
115.1500
sigmamax = std(price1)*sqrt(19/20)
sigmamax =
3.7719

```
Purpose Full factorial design
Syntax dFF = fullfact(levels)
Description dFF = fullfact(levels) gives factor settings dFF for a full factorialdesign with \(n\) factors, where the number of levels for each factor is givenby the vector levels of length \(n\). dFF is \(m\)-by- \(n\), where \(m\) is the numberof treatments in the full-factorial design. Each row of dFF correspondsto a single treatment. Each column contains the settings for a singlefactor, with integer values from one to the number of levels.
Examples The following generates an eight-run full-factorial design with twolevels in the first factor and four levels in the second factor:

dFF = fullfact([24])

\(\mathrm{dFF}=\)

 \(1 \quad 1\)

 21

 12

 22

 13

 23

 14

 24
See Also
ff2n

Gage repeatability and reproducibility study
```

gagerr(y,{part,operator})
gagerr(y,GROUP)
gagerr(y,part)
gagerr(...,param1,val1,param2,val2,...)
[TABLE, stats] = gagerr(...)

```
gagerr(y,\{part,operator\}) performs a gage repeatability and reproducibility study on measurements in y collected by operator on part. y is a column vector containing the measurements on different parts. part and operator are categorical variables, numeric vectors, character matrices, or cell arrays of strings. The number of elements in part and operator should be the same as in \(y\).
gagerr prints a table in the command window in which the decomposition of variance, standard deviation, study var (5.15 x standard deviation) are listed with respective percentages for different sources. Summary statistics are printed below the table giving the number of distinct categories (NDC) and the percentage of Gage R\&R of total variations (PRR).
gagerr also plots a bar graph showing the percentage of different components of variations. Gage \(R \& R\), repeatability, reproducibility, and part-to-part variations are plotted as four vertical bars. Variance and study var are plotted as two groups.
To determine the capability of a measurement system using NDC, use the following guidelines:
- If NDC \(>5\), the measurement system is capable.
- If NDC \(<2\), the measurement system is not capable.
- Otherwise, the measurement system may be acceptable.

To determine the capability of a measurement system using PRR, use the following guidelines:
- If \(\operatorname{PRR}<10 \%\), the measurement system is capable.
- If PRR \(>30 \%\), the measurement system is not capable.
- Otherwise, the measurement system may be acceptable.
gagerr (y, GROUP) performs a gage R\&R study on measurements in \(y\) with part and operator represented in GROUP. GROUP is a numeric matrix whose first and second columns specify different parts and operators, respectively. The number of rows in GROUP should be the same as the number of elements in \(y\).
gagerr(y, part) performs a gage R\&R study on measurements in y without operator information. The assumption is that all variability is contributed by part.
gagerr(..., param1,val1, param2,val2,...) performs a gage \(R \& R\) study using one or more of the following parameter name/value pairs:
- 'spec' - A two-element vector that defines the lower and upper limit of the process, respectively. In this case, summary statistics printed in the command window include Precision-to-Tolerance Ratio (PTR). Also, the bar graph includes an additional group, the percentage of tolerance.

To determine the capability of a measurement system using PTR, use the following guidelines:
- If PTR \(<0.1\), the measurement system is capable.
- If PTR \(>0.3\), the measurement system is not capable.
- Otherwise, the measurement system may be acceptable.
- 'printtable' - A string with a value 'on' or 'off' that indicates whether the tabular output should be printed in the command window or not. The default value is 'on'.
- 'printgraph' - A string with a value 'on' or 'off' that indicates whether the bar graph should be plotted or not. The default value is 'on'.
- 'randomoperator' - A logical value, true or false, that indicates whether the effect of operator is random or not. The default value is true.
- 'model' - The model to use, specified by one of:
- 'linear' - Main effects only (default)
- 'interaction' - Main effects plus two-factor interactions
- 'nested' - Nest operator in part

The default value is 'linear'.
[TABLE, stats] = gagerr(...) returns a 6-by-5 matrix TABLE and a structure stats. The columns of TABLE, from left to right, represent variance, percentage of variance, standard deviations, study var, and percentage of study var. The rows of TABLE, from top to bottom, represent different sources of variations: gage \(R \& R\), repeatability, reproducibility, operator, operator and part interactions, and part. stats is a structure containing summary statistics for the performance of the measurement system. The fields of stats are:
- ndc - Number of distinct categories
- prr - Percentage of gage R\&R of total variations
- ptr - Precision-to-tolerance ratio. The value is NaN if the parameter 'spec ' is not given.

\section*{Examples}

Conduct a gage R\&R study for a simulated measurement system using a mixed ANOVA model without interactions:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\(y=\operatorname{randn}(100,1)\);} & \multicolumn{3}{|l|}{\% measurements} \\
\hline \multicolumn{3}{|l|}{part \(=\) ceil (3*rand (100,1));} & \multicolumn{2}{|l|}{\% parts} & \\
\hline \multicolumn{3}{|l|}{operator \(=\operatorname{ceil}(4 *\) rand (100,1)) ;} & \multicolumn{2}{|l|}{\% operators} & \\
\hline \multicolumn{6}{|l|}{gagerr(y, \{part, operator\},'randomoperator',true) \% analysis} \\
\hline Source & Variance & \% Variance & sigma & 5.15*sigma & \% 5.15*sigma \\
\hline Gage R\&R & 0.77 & 100.00 & 0.88 & 4.51 & 100.00 \\
\hline Repeatability & 0.76 & 99.08 & 0.87 & 4.49 & 99.54 \\
\hline Reproducibility & 0.01 & 0.92 & 0.08 & 0.43 & 9.61 \\
\hline Operator & 0.01 & 0.92 & 0.08 & 0.43 & 9.61 \\
\hline Part & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\hline
\end{tabular}
Total
0.77
100.00
0.88
4.51

Number of distinct categories (NDC): 0
\% of Gage R\&R of total variations (PRR): 100.00

Note: The last column of the above table does not have to sum to \(100 \%\)

How To . "Grouping Variables" on page 2-51

Purpose Gamma cumulative distribution function
```

Syntax gamcdf(X,A,B)
[P,PLO,PUP] = gamcdf(X,A,B,pcov,alpha)

```

\section*{Description}
gamcdf \((X, A, B)\) computes the gamma cdf at each of the values in \(X\) using the corresponding shape parameters in \(A\) and scale parameters in \(B\). \(X, A\), and \(B\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in \(A\) and \(B\) must be positive.

The gamma cdf is
\[
p=F(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} \int_{0}^{x} t^{a-1} e^{\frac{-t}{b}} d t
\]

The result, \(p\), is the probability that a single observation from a gamma distribution with parameters \(a\) and \(b\) will fall in the interval \([0 x]\).
[P,PLO,PUP] = gamcdf(X,A,B,pcov,alpha) produces confidence bounds for \(P\) when the input parameters \(A\) and \(B\) are estimates. pcov is a 2-by- 2 matrix containing the covariance matrix of the estimated parameters. alpha has a default value of 0.05 , and specifies \(100(1\)-alpha) \(\%\) confidence bounds. PLO and PUP are arrays of the same size as P containing the lower and upper confidence bounds.
gammainc is the gamma distribution with \(b\) fixed at 1 .

\section*{Examples}
```

a = 1:6;
b = 5:10;
prob = gamcdf(a.*b,a,b)
prob =
0.6321}00.5940 0.5768 0.5665 0.5595 0.5543

```

The mean of the gamma distribution is the product of the parameters, \(a b\). In this example, the mean approaches the median as it increases (i.e., the distribution becomes more symmetric).
\begin{tabular}{ll}
See Also & cdf | gampdf | gaminv | gamstat | gamfit | gamlike | gamrnd | gamma \\
How To & . "Gamma Distribution" on page B-40
\end{tabular}

\section*{Purpose Gamma parameter estimates}
```

Syntax phat = gamfit(data)
[phat,pci] = gamfit(data)
[phat,pci] = gamfit(data,alpha)
[...] = gamfit(data,alpha,censoring,freq,options)

```

\section*{Description}

\section*{Examples}
phat \(=\) gamfit(data) returns the maximum likelihood estimates (MLEs) for the parameters of the gamma distribution given the data in vector data.
[phat,pci] = gamfit(data) returns MLEs and 95\% percent confidence intervals. The first row of pci is the lower bound of the confidence intervals; the last row is the upper bound.
[phat,pci] = gamfit(data,alpha) returns 100(1-alpha)\% confidence intervals. For example, alpha \(=0.01\) yields \(99 \%\) confidence intervals.
[...] = gamfit(data, alpha, censoring) accepts a Boolean vector of the same size as data that is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = gamfit(data,alpha, censoring,freq) accepts a frequency vector of the same size as data. freq typically contains integer frequencies for the corresponding elements in data, but may contain any nonnegative values.
[...] = gamfit(data, alpha, censoring,freq,options) accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood estimates. The gamma fit function accepts an options structure which can be created using the function statset. Enter statset('gamfit') to see the names and default values of the parameters that gamfit accepts in the options structure.

Fit a gamma distribution to random data generated from a specified gamma distribution:
```

a = 2; b = 4;
data = gamrnd(a,b,100,1);
[p,ci] = gamfit(data)
p =
2.1990 3.7426
ci =
1.6840 2.8298
2.7141 4.6554

```
References \(\quad\) [1] Hahn, Gerald J., and S. S. Shapiro. Statistical Models in
Engineering. Hoboken, NJ: John Wiley \& Sons, Inc., 1994, p. 88.
See Also
mle | gamlike | gampdf | gamcdf | gaminv | gamstat | gamrnd
How To - "Gamma Distribution" on page B-40

\section*{prob.GammaDistribution}

Superclasses ToolboxFittableParametricDistribution

\section*{Purpose Gamma probability distribution object}

Description prob.GammaDistribution is an object consisting of parameters, a model description, and sample data for a gamma probability distribution.
Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

\section*{Construction}
pd = makedist('Gamma') creates a gamma probability distribution object using the default parameter values.
pd = makedist('Gamma','a',a,'b',b) creates a gamma probability distribution object using the specified parameter values.

\section*{Input Arguments}

\section*{a-Shape parameter}

\section*{1 (default) | positive scalar value}

Shape parameter for the gamma distribution, specified as a positive scalar value.
```

Data Types
single | double
b - Scale parameter

```
1 (default) | nonnegative scalar value

Scale parameter for the gamma distribution, specified as a nonnegative scalar value.

\section*{Data Types}
single | double

\section*{Properties}

\section*{a}

Shape parameter for the gamma distribution, stored as a positive scalar value.
```

Data Types
single | double
b

```

Scale parameter for the gamma distribution, stored as a nonnegative scalar value.

\section*{Data Types}
single | double

\section*{DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{Data Types}
char

\section*{InputData}

Data used for distribution fitting, stored as a structure containing the following:
- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.

\section*{Data Types}
single | double

\section*{IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated. If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

\section*{Data Types}
logical

\section*{prob.GammaDistribution}

\section*{NumParameters}

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

\author{
Data Types \\ single | double
}

\section*{ParameterCovariance}

Covariance matrix of the parameter estimates, stored as a \(p\)-by- \(p\) matrix, where \(p\) is the number of parameters in the distribution. The (\(i, j\)) element is the covariance between the estimates of the \(i\) ith parameter and the \(j\) th parameter. The (\(i, i\)) element is the estimated variance of the ith parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterDescription}

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

\section*{Data Types \\ char}

\section*{ParameterlsFixed}

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

\author{
Data Types
}
logical
ParameterNames

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

\section*{Data Types}
char

\section*{ParameterValues}

Values of distribution parameters, stored as a vector. This property is read-only.

\section*{Data Types}
single | double

\section*{Truncation}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.
```

Data Types
single | double

```

\section*{Methods Inherited Methods}
\begin{tabular}{ll}
cdf & \begin{tabular}{l}
Cumulative distribution function \\
of probability distribution object
\end{tabular} \\
icdf & \begin{tabular}{l}
Inverse cumulative distribution \\
function of probability \\
distribution object
\end{tabular} \\
iqr & \begin{tabular}{l}
Interquartile range of probability \\
distribution object
\end{tabular} \\
median & \begin{tabular}{l}
Median of probability distribution \\
object
\end{tabular} \\
pdf & \begin{tabular}{l}
Probability density function of \\
probability distribution object
\end{tabular}
\end{tabular}

\section*{prob.GammaDistribution}
\begin{tabular}{ll}
random & \begin{tabular}{l}
Generate random numbers from \\
probability distribution object \\
Truncate probability distribution \\
object
\end{tabular} \\
truncate & \begin{tabular}{l}
Mean of probability distribution \\
object
\end{tabular} \\
mean & \begin{tabular}{l}
Negative loglikelihood of \\
probability distribution object
\end{tabular} \\
negloglik & \begin{tabular}{l}
Confidence intervals for \\
probability distribution \\
parameters
\end{tabular} \\
proflik & \begin{tabular}{l}
Profile likelihood function for \\
probability distribution object
\end{tabular} \\
std & \begin{tabular}{l}
Standard deviation of probability \\
distribution object
\end{tabular} \\
var & \begin{tabular}{l}
Variance of probability \\
distribution object
\end{tabular} \\
\hline
\end{tabular}

\section*{Definitions Gamma Distribution}

The gamma distribution is a two-parameter family of distributions used to model sums of exponentially distributed random variables. The chi-square and the exponential distributions, which are children of the gamma distribution, are one-parameter distributions that fix one of the two gamma parameters.

The gamma distribution uses the following parameters.
\begin{tabular}{l|l|l}
\hline Parameter & Description & Support \\
\hline a & Shape parameter & \(a>0\) \\
\hline b & Scale parameter & \(b \geq 0\) \\
\hline
\end{tabular}

The probability density function (pdf) is
\[
f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{\frac{-x}{b}} \quad ; \quad x>0
\]
where \(\Gamma(\cdot)\) is the Gamma function.

\section*{Examples}

\section*{Create a Gamma Distribution Object Using Default Parameters}

Create a gamma distribution object using the default parameter values.
```

pd = makedist('Gamma')
pd =

```

GammaDistribution

Gamma distribution
\(a=1\)
\(b=1\)

\section*{Create a Gamma Distribution Object Using Specified Parameters}

Create a gamma distribution object by specifying the parameter values.
```

pd = makedist('Gamma', 'a',2,'b',4)
pd =

```

GammaDistribution
Gamma distribution
a \(=2\)
b \(=4\)
Compute the mean of the distribution.

\section*{prob.GammaDistribution}
```

m = mean(pd)
m =
8

```

See Also makedist | fitdist | dfittool
Concepts - "Gamma Distribution" on page B-40
- Class Attributes
- Property Attributes

\section*{Purpose \\ Gamma inverse cumulative distribution function}

Syntax
\(X=\operatorname{gaminv}(P, A, B)\)
[X,XLO,XUP] = gamcdf(P,A,B,pcov,alpha)

\section*{Algorithms}

Examples
\(X=\) gaminv \((P, A, B)\) computes the inverse of the gamma cdf with shape parameters in \(A\) and scale parameters in \(B\) for the corresponding probabilities in P. P, A, and B can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in A and B must all be positive, and the values in \(P\) must lie on the interval [01].

The gamma inverse function in terms of the gamma cdf is
\[
x=F^{-1}(p \mid a, b)=\{x: F(x \mid a, b)=p\}
\]
where
\[
p=F(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} \int_{0}^{x} t^{a-1} e^{\frac{-t}{b}} d t
\]
[X,XLO,XUP] = gamcdf(P,A,B,pcov,alpha) produces confidence bounds for \(P\) when the input parameters \(A\) and \(B\) are estimates. pcov is a 2 -by- 2 matrix containing the covariance matrix of the estimated parameters. alpha has a default value of 0.05 , and specifies \(100(1\)-alpha) \% confidence bounds. PLO and PUP are arrays of the same size as P containing the lower and upper confidence bounds.

There is no known analytical solution to the integral equation above. gaminv uses an iterative approach (Newton's method) to converge on the solution.

This example shows the relationship between the gamma cdf and its inverse function.
```

a = 1:5;
b = 6:10;
x = gaminv(gamcdf(1:5,a,b),a,b)
x =
1.0000 2.0000 3.0000 4.0000 5.0000

```
See Also icdf | gamcdf | gampdf | gamstat | gamfit | gamlike | gamrnd
How To - "Gamma Distribution" on page B-40

\section*{Purpose Gamma negative log-likelihood}

Syntax

Description

\section*{Examples}
```

nlogL = gamlike(params,data)
[nlogL,AVAR] = gamlike(params,data)

```
nlogL = gamlike(params, data) returns the negative of the gamma log-likelihood of the parameters, params, given data. params (1)=A, shape parameters, and params (2) \(=B\), scale parameters.
[nlogL,AVAR] = gamlike(params,data) also returns AVAR, which is the asymptotic variance-covariance matrix of the parameter estimates when the values in params are the maximum likelihood estimates. AVAR is the inverse of Fisher's information matrix. The diagonal elements of AVAR are the asymptotic variances of their respective parameters.
[...] = gamlike(params,data, censoring) accepts a Boolean vector of the same size as data that is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = gamfit(params,data, censoring,freq) accepts a frequency vector of the same size as data. freq typically contains integer frequencies for the corresponding elements in data, but may contain any non-negative values.
gamlike is a utility function for maximum likelihood estimation of the gamma distribution. Since gamlike returns the negative gamma log-likelihood function, minimizing gamlike using fminsearch is the same as maximizing the likelihood.

Compute the negative log-likelihood of parameter estimates computed by the gamfit function:
```

a = 2; b = 3;
$r=\operatorname{gamrnd}(a, b, 100,1) ;$
[nlogL,AVAR] = gamlike(gamfit(r), r)
nlogL =
267.5648
AVAR $=$

```
\[
\begin{array}{cl}
0.0788 & -0.1104 \\
-0.1104 & 0.1955
\end{array}
\]
See Also gamfit | gampdf | gamcdf | gaminv | gamstat | gamrnd
How To - "Gamma Distribution" on page B-40

\section*{Purpose \\ Gamma probability density function}

\section*{Syntax \\ \(Y=\operatorname{gampdf}(X, A, B)\)}

Description

\section*{Examples}
mu \(=1: 5\);
\(y=\operatorname{gampdf}(1,1, m u)\)
\(y=\)
\(\begin{array}{lllll}0.3679 & 0.3033 & 0.2388 & 0.1947 & 0.1637\end{array}\)
\(\mathrm{y} 1=\operatorname{exppdf}(1, \mathrm{mu})\)
y1 =
\(\begin{array}{lllll}0.3679 & 0.3033 & 0.2388 & 0.1947 & 0.1637\end{array}\)
See Also

\author{
How To \\ - "Gamma Distribution" on page B-40
}
Purpose Gamma random numbers
Syntax \(R=\operatorname{gamrnd}(A, B)\)
\(R=\operatorname{gamrnd}(A, B, m, n, \ldots)\)
\(R=\operatorname{gamrnd}(A, B,[m, n, \ldots])\)
Description
Examples
```

n1 = gamrnd(1:5,6:10)
n1 =
9.1132 12.8431 24.8025 38.5960 106.4164

```
\(\mathrm{n} 2=\operatorname{gamrnd}\left(5,10,\left[\begin{array}{ll}15\end{array}\right]\right)\)
n2 \(=\)
 \(\begin{array}{lllll}30.9486 & 33.5667 & 33.6837 & 55.2014 & 46.8265\end{array}\)
n3 \(=\) gamrnd \((2: 6,3,1,5)\)
n3 =
 \(\begin{array}{lllll}12.8715 & 11.3068 & 3.0982 & 15.6012 & 21.6739\end{array}\)
See Also randg | random | gampdf | gamcdf | gaminv | gamstat | gamfit | gamlike
How To - "Gamma Distribution" on page B-40

Purpose Gamma mean and variance

\section*{Syntax \\ [M, V] = gamstat(A, B)}
\([M, V]=\operatorname{gamstat}(A, B)\) returns the mean of and variance for the gamma distribution with shape parameters in \(A\) and scale parameters in \(B\). A and B can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of \(M\) and \(V\). A scalar input for \(A\) or \(B\) is expanded to a constant array with the same dimensions as the other input.

The mean of the gamma distribution with parameters \(a\) and \(b\) is \(a b\). The variance is \(a b^{2}\).

\section*{Examples}
\([\mathrm{m}, \mathrm{v}]=\operatorname{gamstat}(1: 5,1: 5)\)
\(\mathrm{m}=\)
\(\begin{array}{lllll}1 & 4 & 9 & 16 & 25\end{array}\)
\(\mathrm{v}=\)
\(\begin{array}{lllll}1 & 8 & 27 & 64 & 125\end{array}\)
\([m, v]=\operatorname{gamstat}(1: 5,1 . /(1: 5))\)
\(\mathrm{m}=\)
\(\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}\)
\(\mathrm{v}=\)
\(1.0000 \quad 0.5000 \quad 0.3333 \quad 0.2500 \quad 0.2000\)

\section*{See Also}
gampdf | gamcdf | gaminv | gamfit | gamlike | gamrnd
How To . "Gamma Distribution" on page B-40

\section*{Purpose Greater than or equal relation for handles}

\section*{Syntax \\ h1 >= h2}

Description h1 >= h2 performs element-wise comparisons between handle arrays h 1 and h2. h 1 and h2 must be of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions, where each element is an element-wise \(>=\) result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the dimensions of the array that is not scalar.
\(\mathrm{tf}=\mathrm{ge}(\mathrm{h} 1, \mathrm{~h} 2)\) stores the result in a logical array of the same dimensions.

See Also
qrandstream | eq | gt | le | lt | ne

\section*{prob.GeneralizedExtremeValueDistribution}

Superclasses ToolboxFittableParametricDistribution
Purpose Generalized extreme value probability distribution object
Description prob.GeneralizedExtremeValueDistribution is an object consisting of parameters, a model description, and sample data for a generalized extreme value probability distribution.

Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

\section*{Construction}
pd = makedist('GeneralizedExtremeValue') creates a generalized extreme value probability distribution object using the default parameter values.
pd =
makedist('GeneralizedExtremeValue', 'k',k,'sigma', sigma, 'mu', mu)
creates a generalized extreme value probability distribution object using the specified parameter values.

\section*{Input Arguments}

\section*{k - Shape parameter}

0 (default) | scalar value
Shape parameter for the generalized extreme value distribution, specified as a scalar value.

\section*{Data Types}
single | double

\section*{sigma-Scale parameter}

1 (default) | nonnegative scalar value
Scale parameter for the generalized extreme value distribution, specified as a nonnegative scalar value.

\author{
Data Types \\ single | double
}

\section*{mu - Location parameter}

0 (default) | scalar value
Location parameter for the generalized extreme value distribution, specified as a scalar value.
```

Data Types
single | double

```

\section*{Properties \\ k}

Shape parameter of the generalized extreme value distribution, stored as a scalar value.

\section*{Data Types}
single | double

\section*{sigma}

Scale parameter of the generalized extreme value distribution, stored as a nonnegative scalar value.
```

Data Types
single | double
mu

```

Location parameter of the generalized extreme value distribution, stored as a scalar value.

\section*{Data Types \\ single | double}

\section*{DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{Data Types}
char

\section*{InputData}

\section*{prob.GeneralizedExtremeValueDistribution}

Data used for distribution fitting, stored as a structure containing the following:
- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.

\section*{Data Types}
single | double

\section*{IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated. If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

\section*{Data Types}
logical

\section*{NumParameters}

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterCovariance}

Covariance matrix of the parameter estimates, stored as a \(p\)-by- \(p\) matrix, where \(p\) is the number of parameters in the distribution. The (\(i, j\)) element is the covariance between the estimates of the ith parameter and the \(j\) th parameter. The (\(i, i\)) element is the estimated variance of the ith parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the (\(\mathrm{i}, \mathrm{i}\)) elements of the covariance matrix are 0 . This property is read-only.

\title{
prob.GeneralizedExtremeValueDistribution
}

Data Types
single | double

\section*{ParameterDescription}

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

\section*{Data Types}
char

\section*{ParameterlsFixed}

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

\section*{Data Types}
logical

\section*{ParameterNames}

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

\section*{Data Types}
char

\section*{ParameterValues}

Values of distribution parameters, stored as a vector. This property is read-only.

\section*{Data Types}
single | double

\section*{Truncation}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

\section*{prob.GeneralizedExtremeValueDistribution}
\begin{tabular}{|c|c|c|}
\hline & Data Types single | double & \\
\hline Methods & Inherited Methods & \\
\hline & cdf & Cumulative distribution function of probability distribution object \\
\hline & icdf & Inverse cumulative distribution function of probability distribution object \\
\hline & iqr & Interquartile range of probability distribution object \\
\hline & median & Median of probability distribution object \\
\hline & pdf & Probability density function of probability distribution object \\
\hline & random & Generate random numbers from probability distribution object \\
\hline & truncate & Truncate probability distribution object \\
\hline & mean & Mean of probability distribution object \\
\hline & negloglik & Negative loglikelihood of probability distribution object \\
\hline & paramci & Confidence intervals for probability distribution parameters \\
\hline & proflik & Profile likelihood function for probability distribution object \\
\hline
\end{tabular}
std
var

Standard deviation of probability distribution object
Variance of probability distribution object

\section*{Definitions}

\section*{Generalized Extreme Value Distribution}

The generalized extreme value distribution is often used to model the smallest or largest value among a large set of independent, identically distributed random values representing measurements or observations. It combines three simpler distributions into a single form, allowing a continuous range of possible shapes that include all three of the simpler distributions.

The three distribution types correspond to the limiting distribution of block maxima from different classes of underlying distributions:
- Type 1 - Distributions whose tails decrease exponentially, such as the normal distribution
- Type 2 - Distributions whose tails decrease as a polynomial, such as Student's \(t\) distribution
- Type 3 - Distributions whose tails are finite, such as the beta distribution

The generalized extreme value distribution uses the following parameters.
\begin{tabular}{l|l|l}
\hline Parameter & Description & Support \\
\hline k & Shape parameter & \(-\infty \leq k \leq \infty\) \\
\hline sigma & Scale parameter & \(\sigma \geq 0\) \\
\hline mu & Location parameter & \(-\infty \leq \mu \leq \infty\) \\
\hline
\end{tabular}

\section*{prob.GeneralizedExtremeValueDistribution}

The probability density function (pdf) for a Type 1 distribution, where shape parameter \(k=0\), is
\[
f(x \mid 0, \mu, \sigma)=\left(\frac{1}{\sigma}\right) \exp \left(-\exp \left(-\frac{(x-\mu)}{\sigma}\right)-\frac{(x-\mu)}{\sigma}\right) ;-\infty<x<\infty .
\]

When \(k \neq 0\), the pdf is
\[
f(x \mid k, \mu, \sigma)=\left(\frac{1}{\sigma}\right) \exp \left(-\left(1+k \frac{(x-\mu)}{\sigma}\right)^{-\frac{1}{k}}\right)\left(1+k \frac{(x-\mu)}{\sigma}\right)^{-1-\frac{1}{k}}
\]
for
\[
1+k \frac{(x-\mu)}{\sigma}>0
\]

For the Type 2 case, \(k>0\) and \(x \geq \mu-\frac{\sigma}{k}\). For the Type 3 case, \(k<0\) and \(x<\mu-\frac{\sigma}{k}\).

\section*{Examples Create a Generalized Extreme Value Distribution Object Using Default Parameters}

Create a generalized extreme value distribution object using the default parameter values.
pd = makedist('GeneralizedExtremeValue')
pd \(=\)
GeneralizedExtremeValueDistribution

Generalized Extreme Value distribution
\[
k=0
\]

\title{
prob.GeneralizedExtremeValueDistribution
}
```

sigma = 1
mu = 0

```

\section*{Create a Generalized Extreme Value Distribution Object Using Specified Parameters}

Create a generalized extreme value distribution object by specifying values for the parameters.
```

pd = makedist('GeneralizedExtremeValue','k',0,'sigma',2,'mu',1)
pd =

```

GeneralizedExtremeValueDistribution

Generalized Extreme Value distribution
\(\mathrm{k}=0\)
sigma \(=2\)
mu = 1

Compute the mean of the distribution.
\(m=\operatorname{mean}(p d)\)
\(\mathrm{m}=\)
2.1544

See Also makedist | fitdist | dfittool
Concepts - "Generalized Extreme Value Distribution" on page B-45
- Class Attributes
- Property Attributes

\section*{GeneralizedLinearModel}
Purpose Generalized linear regression model class
DescriptionAn object comprising training data, model description, diagnosticinformation, and fitted coefficients for a generalized linear regression.Predict model responses with the predict or feval methods.
Construction
mdl = GeneralizedLinearModel.fit(ds) or mdl =
GeneralizedLinearModel.fit(X,y) creates a generalizedlinear model of a dataset array ds, or of the responses y to a data matrixX. For details, see GeneralizedLinearModel.fit.
mdl = GeneralizedLinearModel.stepwise(ds) or mdl =
GeneralizedLinearModel.stepwise(X,y) creates a generalized
linear model of a dataset array ds, or of the responses \(y\) to a data
matrix X, with unimportant predictors excluded. For details, see
GeneralizedLinearModel.stepwise.

\section*{Input Arguments}

\section*{ds}
Dataset array, where by default the last column is the response variable, and all other columns are the predictors. Predictors can be numeric, or can be any grouping variable type, such as logical or categorical (see "Grouping Variables" on page 2-51). The response must be numeric or logical.
To set a different column as the response variable, use the ResponseVar name-value pair. To use a subset of the columns as predictors, use the PredictorVars name-value pair.

\section*{X}
Matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

\section*{y}
Vector of response values with the same number of rows as X . Each entry in \(y\) is the response to the data in the corresponding row of X.

\section*{GeneralizedLinearModel}

\section*{Properties}

\section*{CoefficientCovariance}

Covariance matrix of coefficient estimates.

\section*{CoefficientNames}

Cell array of strings containing a label for each coefficient.

\section*{Coefficients}

Table of coefficient values in a dataset array. Coefficients has one row for each coefficient and these columns:
- Estimate - Estimated coefficient value
- SE - Standard error of the estimate
- tStat - \(t\) statistic for a test that the coefficient is zero
- pValue - \(p\)-value for the \(t\) statistic

To obtain any of these columns as a vector, index into the property using dot notation. For example, in mdl the estimated coefficient vector is
beta \(=\) mdl.Coefficients.Estimate

Use coefTest to perform other tests on the coefficients.

\section*{Deviance}

Deviance of the fit, equal to -2*LogLikelihood.
Deviance is useful for comparing two models when one is a special case of the other. The difference \(D\) between the deviance of the two models is -2 times the log of the likelihood ratio. Asymptotically, \(D\) has a chi-square distribution with degrees of freedom \(V\) equal to the number of parameters that are estimated in one model but fixed (typically at 0) in the other. The \(p\)-value for this test is 1 - chi2cdf(\(\mathrm{D}, \mathrm{V}\)).

\section*{DFE}

\section*{GeneralizedLinearModel}

Degrees of freedom for error (residuals), equal to the number of observations minus the number of estimated coefficients.

\section*{Diagnostics}

Dataset array with diagnostics helpful in finding outliers and influential observations. The structure contains the following fields:
\begin{tabular}{l|l|l}
\hline Field & Meaning & Utility \\
\hline Leverage & \begin{tabular}{l}
Diagonal elements of \\
HatMatrix
\end{tabular} & \begin{tabular}{l}
Leverage indicates to what extent the predicted \\
value for an observation is determined by \\
the observed value for that observation. A \\
value close to 1 indicates that the prediction is \\
largely determined by that observation, with \\
little contribution from the other observations. \\
A value close to 0 indicates the fit is largely \\
determined by the other observations. For a \\
model with P coefficients and N observations, the \\
average value of Leverage is P/N. An observation \\
with Leverage larger than 2*P/N can be an \\
outlier.
\end{tabular} \\
\hline CooksDistance & \begin{tabular}{l}
Cook's measure of \\
scaled change in \\
fitted values
\end{tabular} & \begin{tabular}{l}
CooksDistance is a measure of scaled \\
change in fitted values. An observation with \\
CooksDistance larger than three times the \\
mean Cook's distance can be an outlier.
\end{tabular} \\
\hline HatMatrix & \begin{tabular}{l}
Projection matrix to \\
compute fitted from \\
observed responses
\end{tabular} & \begin{tabular}{l}
HatMatrix is an N-by-N matrix such that \\
Fitted = HatMatrix*Y, where Y is the response \\
vector and Fitted is the vector of fitted response \\
values.
\end{tabular} \\
\hline
\end{tabular}

All of these quantities are computed on the scale of the linear predictor. So, for example, in the equation that defines the hat matrix,

Yfit = glm.Fitted.LinearPredictor
Y = glm.Fitted.LinearPredictor + glm.Residuals.LinearPredictor

\section*{GeneralizedLinearModel}

\section*{Dispersion}

Scale factor of the variance of the response. Dispersion multiplies the variance function for the distribution.

For example, the variance function for the binomial distribution is \(p(1-p) / n\), where \(p\) is the probability parameter and \(n\) is the sample size parameter. If Dispersion is near 1 , the variance of the data appears to agree with the theoretical variance of the binomial distribution. If Dispersion is larger than 1, the data are "overdispersed" relative to the binomial distribution.

\section*{DispersionEstimated}

Logical value indicating whether GeneralizedLinearModel.fit used the Dispersion property to compute standard errors for the coefficients in Coefficients.SE. If DispersionEstimated is false, GeneralizedLinearModel.fit used the theoretical value of the variance.
- DispersionEstimated can be false only for 'binomial' or 'poisson' distributions.
- Set DispersionEstimated by setting the DispersionFlag name-value pair in GeneralizedLinearModel.fit.

\section*{Distribution}

Structure with the following fields relating to the generalized distribution:

\section*{GeneralizedLinearModel}
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Name & \begin{tabular}{l}
Name of the distribution, one of 'normal ', 'binomial', \\
'poisson', 'gamma', or 'inverse gamma'.
\end{tabular} \\
\hline DevianceFunction & \begin{tabular}{l}
Function that computes the components of the deviance as a \\
function of the fitted parameter values and the response values.
\end{tabular} \\
\hline VarianceFunction & \begin{tabular}{l}
Function that computes the theoretical variance for the \\
distribution as a function of the fitted parameter values. When \\
DispersionEstimated is true, Dispersion multiplies the \\
variance function in the computation of the coefficient standard \\
errors.
\end{tabular} \\
\hline
\end{tabular}

Fitted
Table of predicted (fitted) values based on the training data, a dataset array with one row for each observation and the following columns.
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Response & Predicted values on the scale of the response. \\
\hline LinearPredictor & \begin{tabular}{l}
Predicted values on the scale of the linear predictor. These are the \\
same as the link function applied to the Response fitted values.
\end{tabular} \\
\hline Probability & \begin{tabular}{l}
Fitted probabilities (this column is included only with the \\
binomial distribution).
\end{tabular} \\
\hline
\end{tabular}

To obtain any of the columns as a vector, index into the property using dot notation. For example, in the model mdl, the vector \(f\) of fitted values on the response scale is
f = mdl.Fitted.Response
Use predict to compute predictions for other predictor values, or to compute confidence bounds on Fitted.

\section*{Formula}

Object containing information about the model.

\section*{GeneralizedLinearModel}

\section*{Link}

Structure with fields relating to the link function. The link is a function \(f\) that links the distribution parameter \(\mu\) to the fitted linear combination \(X b\) of the predictors:
\[
f(\mu)=X b .
\]

The structure has the following fields.
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Name & \begin{tabular}{l}
Name of the link function, or ' ' if you specified the link as a \\
function handle rather than a string.
\end{tabular} \\
\hline LinkFunction & The function that defines \(f\), a function handle. \\
\hline DevianceFunction & Derivative of \(f\), a function handle. \\
\hline VarianceFunction & Inverse of \(f\), a function handle. \\
\hline
\end{tabular}

\section*{LogLikelihood}

Log likelihood of the model distribution at the response values, with mean fitted from the model, and other parameters estimated as part of the model fit.

\section*{ModelCriterion}

AIC and other information criteria for comparing models. A structure with fields:
- AIC - Akaike information criterion
- AICc - Akaike information criterion corrected for sample size
- BIC - Bayesian information criterion
- CAIC - Consistent Akaike information criterion

To obtain any of these values as a scalar, index into the property using dot notation. For example, in a model mdl, the AIC value aic is:

\section*{GeneralizedLinearModel}
aic \(=\) mdl.ModelCriterion.AIC

\section*{NumCoefficients}

Number of coefficients in the model, a positive integer. NumCoefficients includes coefficients that are set to zero when the model terms are rank deficient.

\section*{NumEstimatedCoefficients}

Number of estimated coefficients in the model, a positive integer. NumEstimatedCoefficients does not include coefficients that are set to zero when the model terms are rank deficient. NumEstimatedCoefficients is the degrees of freedom for regression.

\section*{NumObservations}

Number of observations the fitting function used in fitting. This is the number of observations supplied in the original dataset or matrix, minus any excluded rows (set with the Excluded name-value pair) or rows with missing values.

\section*{NumPredictors}

Number of variables LinearModel.fit used as predictors for fitting.

\section*{NumVariables}

Number of variables in the data. NumVariables is the number of variables in the original dataset when the fit is based on a dataset, or the total number of columns in the predictor matrix and response vector when the fit is based on those arrays. It includes variables, if any, that are not used as predictors or as the response.

\section*{ObservationInfo}

Dataset with the same number of rows as the input data (ds or X).

\section*{GeneralizedLinearModel}
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Weights & Observation weights. Default is all 1. \\
\hline Excluded & \begin{tabular}{l}
Logical value, 1 indicates an observation that \\
you excluded from the fit with the Exclude \\
name-value pair.
\end{tabular} \\
\hline Missing & \begin{tabular}{l}
Logical value, 1 indicates a missing value in \\
the input. Missing values are not used in the \\
fit.
\end{tabular} \\
\hline Subset & \begin{tabular}{l}
Logical value, 1 indicates the observation is \\
not excluded or missing, so is used in the fit.
\end{tabular} \\
\hline
\end{tabular}

\section*{ObservationNames}

Cell array of strings containing the names of the observations used in the fit.
- If the fit is based on a dataset containing observation names, ObservationNames uses those names.
- Otherwise, ObservationNames is an empty cell array

\section*{Offset}

Vector with the same length as the number of rows in the data, passed from GeneralizedLinearModel.fit or GeneralizedLinearModel.stepwise in the Offset name-value pair. The fitting function used Offset as a predictor variable, but with the coefficient set to exactly 1 . In other words, the formula for fitting was
```

~ Offset + (terms involving real predictors)

```
with the Offset predictor having coefficient 1.
For example, consider a Poisson regression model. Suppose the number of counts is known for theoretical reasons to be proportional to a predictor A. By using the log link function and by

\section*{GeneralizedLinearModel}
specifying \(\log (A)\) as an offset, you can force the model to satisfy this theoretical constraint.

\section*{PredictorNames}

Cell array of strings, the names of the predictors used in fitting the model.

\section*{Residuals}

Dataset array containing a table of residuals, with one row for each observation and these variables.
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Raw & Observed minus fitted values. \\
\hline LinearPredictorResiduals on the linear predictor scale, equal \\
to the adjusted response value minus the \\
fitted linear combination of the predictors.
\end{tabular}, \begin{tabular}{l}
Raw residuals divided by the estimated \\
standard deviation of the response.
\end{tabular}

To obtain any of these columns as a vector, index into the property using dot notation. For example, in a model mdl, the ordinary raw residual vector \(r\) is:
\(r=\) mdl.Residuals.Raw
Rows not used in the fit because of missing values (in ObservationInfo.Missing) contain NaN values.

Rows not used in the fit because of excluded values (in ObservationInfo.Excluded) contain NaN values, with the following exceptions:

\section*{GeneralizedLinearModel}
- raw contains the difference between the observed and predicted values.
- standardized is the residual, standardized in the usual way.
- studentized matches the standardized values because this residual is not used in the estimate of the residual standard deviation.

\section*{ResponseName}

String giving naming the response variable.

\section*{Rsquared}

Proportion of total sum of squares explained by the model. The ordinary R-squared value relates to the SSR and SST properties:
\[
\text { Rsquared }=\text { SSR/SST }=1 \text { - SSE/SST. }
\]

Rsquared is a structure with two fields:
- Ordinary - Ordinary (unadjusted) R-squared
- Adjusted - R-squared adjusted for the number of coefficients

To obtain any of these values as a scalar, index into the property using dot notation. For example, the adjusted \(R\)-squared value in mdl is
r2 = mdl.Rsquared.Adjusted

\section*{SSE}

Sum of squared errors (residuals).
The Pythagorean theorem implies
SST = SSE + SSR.

\section*{GeneralizedLinearModel}

Regression sum of squares, the sum of squared deviations of the fitted values from their mean.

The Pythagorean theorem implies
SST = SSE + SSR.

\section*{SST}

Total sum of squares, the sum of squared deviations of \(y\) from mean(y).

The Pythagorean theorem implies
SST = SSE + SSR.

\section*{Steps}

Structure that is empty unless LinearModel.stepwise constructed the model.
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Start & Formula representing the starting model \\
\hline Lower & \begin{tabular}{l}
Formula representing the lower bound model, \\
these terms that must remain in the model
\end{tabular} \\
\hline Upper & \begin{tabular}{l}
Formula representing the upper bound model, \\
model cannot contain more terms than Upper
\end{tabular} \\
\hline Criterion & \begin{tabular}{l}
Criterion used for the stepwise algorithm, \\
such as 'sse '
\end{tabular} \\
\hline PEnter & Value of the parameter, such as 0.05 \\
\hline PRemove & Value of the parameter, such as 0.10 \\
\hline History & Dataset representing the steps taken in the fit \\
\hline
\end{tabular}

The History dataset has one row for each step including the initial fit, and the following variables (columns).

\section*{GeneralizedLinearModel}
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline Action & \begin{tabular}{l}
Action taken during this step, one of: \\
- 'Start' - First step \\
- 'Add' - A term is added \\
- 'Remove' - A term is removed
\end{tabular} \\
\hline TermName & \begin{tabular}{l}
- 'Start' step: The starting model specification \\
- 'Add' or 'Remove' steps: The term moved in that step
\end{tabular} \\
\hline Terms & Terms matrix (see modelspec in "Input Arguments" on page 20-799 of LinearModel.fit) \\
\hline DF & Regression degrees of freedom after this step \\
\hline deldF & Change in regression degrees of freedom from previous step (negative for steps that remove a term) \\
\hline Deviance & Deviance (residual sum of squares) at that step \\
\hline FStat & \(F\) statistic that led to this step \\
\hline PValue & \(p\)-value of the \(F\) statistic \\
\hline
\end{tabular}

\section*{Variablelnfo}

Dataset array containing metadata about Variables. There is one row for each term in the model, and the following columns.

\section*{GeneralizedLinearModel}
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Class & String giving variable class, such as 'double ' \\
\hline Range & \begin{tabular}{l}
Cell array giving variable range: \\
• Continuous variable - Two-element vector \\
[min, max], the minimum and maximum \\
values
\end{tabular} \\
- Categorical variable - Cell array of \\
distinct variable values
\end{tabular}\(|\)\begin{tabular}{l}
Logical vector, where true indicates the \\
variable is in the model
\end{tabular}

\section*{VariableNames}

Cell array of strings containing names of the variables in the fit.
- If the fit is based on a dataset, this property provides the names of the variables in that dataset.
- If the fit is based on a predictor matrix and response vector, VariableNames is the values in the VarNames name-value pair of the fitting method.
- Otherwise the variables have the default fitting names.

\section*{Variables}

Dataset array containing the data, both observations and responses, that the fitting function used to construct the fit. If the fit is based on a dataset array, Variables is a copy of that dataset. Otherwise, Variables is a dataset created from the input data matrix \(X\) and response vector \(y\).

\section*{GeneralizedLinearModel}

\section*{Methods}
\begin{tabular}{|c|c|}
\hline addTerms & Add terms to generalized linear model \\
\hline coefCI & Confidence intervals of coefficient estimates of generalized linear model \\
\hline coefTest & Linear hypothesis test on generalized linear regression model coefficients \\
\hline devianceTest & Analysis of deviance \\
\hline disp & Display generalized linear regression model \\
\hline feval & Evaluate generalized linear regression model prediction \\
\hline fit & Create generalized linear regression model \\
\hline plotDiagnostics & Plot diagnostics of generalized linear regression model \\
\hline plotResiduals & Plot residuals of generalized linear regression model \\
\hline plotSlice & Plot of slices through fitted generalized linear regression surface \\
\hline predict & Predict response of generalized linear regression model \\
\hline random & Simulate responses for generalized linear regression model \\
\hline removeTerms & Remove terms from generalized linear model \\
\hline
\end{tabular}

\section*{GeneralizedLinearModel}
\[
\begin{array}{ll}
\text { step } & \begin{array}{l}
\text { Improve generalized linear } \\
\text { regression model by adding or } \\
\text { removing terms }
\end{array} \\
\text { stepwise } & \begin{array}{l}
\text { Create generalized linear } \\
\text { regression model by stepwise } \\
\text { regression }
\end{array}
\end{array}
\]

\section*{Definitions \\ Canonical Link Function}

The default link function for a generalized linear model is the canonical link function.

\section*{Canonical Link Functions for Generalized Linear Models}
\begin{tabular}{l|l|l|l}
\hline Distribution & \begin{tabular}{l}
Link Function \\
Name
\end{tabular} & Link Function & \begin{tabular}{l}
Mean (Inverse) \\
Function
\end{tabular} \\
\hline 'normal' & 'identity' & \(f(\mu)=\mu\) & \(\mu=X b\) \\
\hline 'binomial' & 'logit' & \(f(\mu)=\log (\mu /(1-\mu))\) & \(\mu=\exp (X b) /(1+\exp (X b))\) \\
\hline 'poisson' & 'log' & \(f(\mu)=\log (\mu)\) & \(\mu=\exp (X b)\) \\
\hline 'gamma' & -1 & \(f(\mu)=1 / \mu\) & \(\mu=1 /(X b)\) \\
\hline \begin{tabular}{l}
'inverse \\
gaussian'
\end{tabular} & -2 & \(f(\mu)=1 / \mu^{2}\) & \(\mu=(X b)^{-1 / 2}\) \\
\hline
\end{tabular}

\section*{Hat Matrix}

The hat matrix \(H\) is defined in terms of the data matrix \(X\) and a diagonal weight matrix \(W\) :
\[
H=X\left(X^{T} W X\right)^{-1} X^{T} W^{T} .
\]
\(W\) has diagonal elements \(w_{i}\) :

\section*{GeneralizedLinearModel}
\[
w_{i}=\frac{g^{\prime}\left(\mu_{i}\right)}{\sqrt{V\left(\mu_{i}\right)}},
\]
where
- \(g\) is the link function mapping \(y_{i}\) to \(x_{i} b\).
- \(g^{\prime}\) is the derivative of the link function \(g\).
- \(V\) is the variance function.
- \(\mu_{i}\) is the \(i\) th mean.

The diagonal elements \(H_{i i}\) satisfy
\[
\begin{aligned}
& 0 \leq h_{i i} \leq 1 \\
& \sum_{i=1}^{n} h_{i i}=p
\end{aligned}
\]
where \(n\) is the number of observations (rows of \(X\)), and \(p\) is the number of coefficients in the regression model.

\section*{Leverage}

The leverage of observation \(i\) is the value of the \(i\) th diagonal term of the hat matrix \(H_{i i}\). Because the sum of the leverage values is \(p\) (the number of coefficients in the regression model), an observation \(i\) can be considered to be an outlier if its leverage substantially exceeds \(p / n\), where \(n\) is the number of observations.

\section*{Cook's Distance}

The Cook's distance \(D_{i}\) of observation \(i\) is
\[
D_{i}=w_{i} \frac{e_{i}^{2}}{p \hat{\varphi}} \frac{h_{i i}}{\left(1-h_{i i}\right)^{2}},
\]
where

\section*{GeneralizedLinearModel}
- \(\hat{\varphi}\) is the dispersion parameter (estimated or theoretical).
- \(e_{i}\) is the linear predictor residual, \(g\left(y_{i}\right)-x_{i} \hat{\beta}\), where
- \(g\) is the link function.
- \(y_{i}\) is the observed response.
- \(x_{i}\) is the observation.
- \(\hat{\beta}\) is the estimated coefficient vector.
- \(p\) is the number of coefficients in the regression model.
- \(h_{i i}\) is the \(i\) th diagonal element of the Hat Matrix \(H\).

Copy
Semantics

\section*{Examples}

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

\section*{Fit a Generalized Linear Model}

Make a logistic binomial model of the probability of smoking as a function of age, weight, and sex, using a two-way interactions model.

Load the hospital dataset array.
load hospital
ds = hospital; \% just to use the ds name
Specify the model using a formula that allows up to two-way interactions.
```

modelspec = 'Smoker ~ Age*Weight*Sex - Age:Weight:Sex';

```

Create the generalized linear model.
```

mdl = GeneralizedLinearModel.fit(ds,...
modelspec,'Distribution','binomial')

```
md1 \(=\)

\section*{GeneralizedLinearModel}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{```
logit(Smoker) ~ 1 + Sex*Age + Sex*Weight + Age*Weight
Distribution = Binomial
```} \\
\hline \multicolumn{5}{|l|}{Estimated Coefficients:} \\
\hline & Estimate & SE & tStat & pValue \\
\hline (Intercept) & -6.0492 & 19.749 & -0.3063 & 0.75938 \\
\hline Sex_Male & -2.2859 & 12.424 & -0.18399 & 0.85402 \\
\hline Age & 0.11691 & 0.50977 & 0.22934 & 0.81861 \\
\hline Weight & 0.031109 & 0.15208 & 0.20455 & 0.83792 \\
\hline Sex_Male:Age & 0.020734 & 0.20681 & 0.10025 & 0.92014 \\
\hline Sex_Male:Weight & 0.01216 & 0.053168 & 0.22871 & 0.8191 \\
\hline Age:Weight & -0.00071959 & 0.0038964 & -0.18468 & 0.85348 \\
\hline
\end{tabular}

100 observations, 93 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 5.07, p-value \(=0.535\)
The large \(p\)-value indicates the model might not differ statistically from a constant.

\section*{Create a Generalized Linear Model Stepwise}

Create response data using just three of 20 predictors, and create a generalized linear model stepwise to see if it uses just the correct predictors.

Create data with 20 predictors, and Poisson response using just three of the predictors, plus a constant.
```

rng('default') % for reproducibility
X = randn(100,20);
mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);
y = poissrnd(mu);

```

Fit a generalized linear model using the Poisson distribution.

\section*{GeneralizedLinearModel}
```

mdl = GeneralizedLinearModel.stepwise(X,y,···.
'constant','upper','linear','Distribution','poisson')

1. Adding x5, Deviance = 134.439, Chi2Stat = 52.24814, PValue = 4.891229e-13
2. Adding x15, Deviance = 106.285, Chi2Stat = 28.15393, PValue = 1.1204e-07
3. Adding x10, Deviance = 95.0207, Chi2Stat = 11.2644, PValue = 0.000790094
mdl =
```
Generalized Linear regression model:
    \(\log (y) \sim 1+x 5+x 10+x 15\)
    Distribution \(=\) Poisson

Estimated Coefficients:
\begin{tabular}{lclll} 
& Estimate & SE & tStat & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 1.0115 & 0.064275 & 15.737 & \(8.4217 \mathrm{e}-56\) \\
x5 & 0.39508 & 0.066665 & 5.9263 & \(3.0977 \mathrm{e}-09\) \\
x10 & 0.18863 & 0.05534 & 3.4085 & 0.0006532 \\
x15 & 0.29295 & 0.053269 & 5.4995 & \(3.8089 \mathrm{e}-08\)
\end{tabular}

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 91.7, \(p\)-value \(=9.61 \mathrm{e}-20\)

\section*{See Also \\ GeneralizedLinearModel.fit | GeneralizedLinearModel.stepwise | LinearModel | NonLinearModel |}

\section*{Related} Examples

\section*{Concepts}
- "Generalized Linear Model Workflow" on page 9-173
- "Generalized Linear Models" on page 9-143

Superclasses ToolboxFittableParametricDistribution
Purpose Generalized Pareto probability distribution object
Description prob.GeneralizedParetoDistribution is an object consisting of parameters, a model description, and sample data for a generalized Pareto probability distribution.
Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

\section*{Construction}
pd = makedist('GeneralizedParetoDistribution') creates a generalized Pareto probability distribution object using default parameter values.
pd =
makedist('GeneralizedParetoDistribution', 'k',k,'sigma', sigma, 'theta', creates a generalized Pareto probability distribution object using the specified parameter values.

\section*{Input Arguments}

\section*{k - Shape parameter}

1 (default) | scalar value
Shape parameter for the generalized Pareto distribution, specified as a scalar value.

\section*{Data Types}
single | double

\section*{sigma-Scale parameter}

\section*{1 (default) | nonnegative scalar value}

Scale parameter for the generalized Pareto distribution, specified as a nonnegative scalar value.

\author{
Data Types \\ single | double
}

\section*{prob.GeneralizedParetoDistribution}

\section*{theta- Location parameter}

\author{
1 (default) | scalar value
}

Location parameter for the generalized Pareto distribution, specified as a scalar value.

\author{
Data Types \\ single | double
}

\section*{Properties \\ k}

Shape parameter for the generalized Pareto distribution, stored as a scalar value.

\section*{Data Types \\ single | double \\ sigma}

Scale parameter for the generalized Pareto distribution, stored as a nonnegative scalar value.
```

Data Types
single | double
theta

```

Location parameter for the generalized Pareto distribution, stored as a scalar value.

\section*{Data Types \\ single | double \\ DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{Data Types}
char

\section*{InputData}

Data used for distribution fitting, stored as a structure containing the following:
- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.

\section*{Data Types}
single | double

\section*{IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated. If IsTruncated equals 1, the distribution is truncated. This property is read-only.

\section*{Data Types}
logical

\section*{NumParameters}

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterCovariance}

Covariance matrix of the parameter estimates, stored as a \(p\)-by- \(p\) matrix, where \(p\) is the number of parameters in the distribution. The ( \(i, j\) ) element is the covariance between the estimates of the ith parameter and the \(j\) th parameter. The ( \(i, i\) ) element is the estimated variance of the ith parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the ( \(i, i\) ) elements of the covariance matrix are 0 . This property is read-only.

\section*{prob.GeneralizedParetoDistribution}

\section*{Data Types \\ single | double \\ ParameterDescription}

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

\section*{Data Types}
char

\section*{ParameterlsFixed}

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

\section*{Data Types}
logical

\section*{ParameterNames}

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

\section*{Data Types \\ char}

\section*{ParameterValues}

Values of distribution parameters, stored as a vector. This property is read-only.

\section*{Data Types}
single | double

\section*{Truncation}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.
\begin{tabular}{cl} 
Methods \begin{tabular}{l} 
Data Types \\
single | double
\end{tabular} \\
Inherited Methods \\
cdf \\
icdf \\
& iqr \\
median \\
pdf \\
random \\
truncate \\
mean \\
negloglik \\
paramci \\
proflik
\end{tabular}

Cumulative distribution function of probability distribution object

Inverse cumulative distribution function of probability distribution object
Interquartile range of probability distribution object
Median of probability distribution object

Probability density function of probability distribution object

Generate random numbers from probability distribution object

Truncate probability distribution object

Mean of probability distribution object
Negative loglikelihood of probability distribution object
Confidence intervals for probability distribution parameters

Profile likelihood function for probability distribution object

\section*{prob.GeneralizedParetoDistribution}
std
var

Standard deviation of probability distribution object
Variance of probability distribution object

\section*{Definitions Generalized Pareto Distribution}

The generalized Pareto distribution is used to model the tails of another distribution. It allows a continuous range of possible shapes that include both the exponential and Pareto distributions as special cases. It has three basic forms, each corresponding to a limiting distribution of exceedence data from a different class of underlying distributions.
- Distributions whose tails decrease exponentially, such as the normal, lead to a generalized Pareto shape parameter of zero.
- Distributions whose tails decrease polynomially, such as the Student's \(t\), lead to a positive shape parameter.
- Distributions whose tails are finite, such as the beta, lead to a negative shape parameter.

The generalized Pareto distribution uses the following parameters.
\begin{tabular}{l|l|l}
\hline Parameter & Description & Support \\
\hline k & Shape parameter & \(-\infty<k<\infty\) \\
\hline sigma & Scale parameter & \(\sigma \geq 0\) \\
\hline theta & Location parameter & \(-\infty<\theta<\infty\) \\
\hline
\end{tabular}

The probability density function (pdf) of the generalized Pareto distribution with shape parameter \(k \neq 0\) is
\[
f(x \mid k, \sigma, \theta)=\left(\frac{1}{\sigma}\right)\left(1+k \frac{(x-\theta)}{\sigma}\right)^{-1-\frac{1}{k}}
\]
for \(x>\theta\), when \(k>0\), or for \(\theta<x<-\frac{\sigma}{k}\), when \(k<0\).
For \(k=0\), the pdf is
\[
y=f(x \mid 0, \sigma, \theta)=\left(\frac{1}{\sigma}\right) \exp \left(-\frac{(x-\theta)}{\sigma}\right)
\]
for \(x>\theta\).
If \(k=0\) and \(\theta=0\), the generalized Pareto distribution is equivalent
to the exponential distribution. If \(k>0\) and \(\theta=\frac{\sigma}{k}\), the generalized Pareto distribution is equivalent to the Pareto distribution.

\section*{Examples}

\section*{Create a Generalized Pareto Distribution Object Using Default Parameters}

Create a generalized Pareto distribution object using the default parameter values.
```

pd = makedist('GeneralizedPareto')
pd =

```

GeneralizedParetoDistribution

Generalized Pareto distribution
\[
\begin{aligned}
\mathrm{k} & =1 \\
\text { sigma } & =1 \\
\text { theta } & =1
\end{aligned}
\]

\section*{prob.GeneralizedParetoDistribution}

\section*{Create a Generalized Pareto Distribution Object Using Specified Parameters}

Create a generalized Pareto distribution object by specifying parameter values.
```

pd = makedist('GeneralizedPareto','k',0,'sigma',2,'theta',1)
pd =

```
    GeneralizedParetoDistribution
    Generalized Pareto distribution
            \(\mathrm{k}=0\)
        sigma \(=2\)
        theta \(=1\)

Compute the mean of the distribution.
```

m = mean(pd)

```
m =
2.1544

\section*{See Also makedist | fitdist | dfittool}

Concepts - "Generalized Pareto Distribution" on page B-50
- Class Attributes
- Property Attributes

\section*{Purpose}

Geometric cumulative distribution function

\section*{Syntax}

Description

\section*{Examples}
\(Y=\operatorname{geocdf}(X, P)\) \(X\) using the corresponding probabilities in \(P . X\) and \(P\) can be vectors, matrices, or multidimensional arrays that all have the same size. A as the other input. The parameters in P must lie on the interval [01].

The geometric cdf is
\[
y=F(x \mid p)=\sum_{i=0}^{\text {floor }(x)} p q^{i}
\]
where \(q=1-p\).
The result, \(y\), is the probability of observing up to \(x\) trials before a success, when the probability of success in any given trial is \(p\).
\(Y=\operatorname{geocdf}(X, P)\) computes the geometric cdf at each of the values in scalar input is expanded to a constant array with the same dimensions

Suppose you toss a fair coin repeatedly. If the coin lands face up (heads), that is a success. What is the probability of observing three or fewer tails before getting a heads?
```

p = geocdf(3,0.5)
p =
0.9375

```

See Also cdf | geopdf | geoinv | geostat | geornd | mle
How To - "Geometric Distribution" on page B-54

Purpose Geometric inverse cumulative distribution function
\[
\text { Syntax } \quad X=\operatorname{geoinv}(Y, P)
\]

Description

Examples

\section*{See Also}

How To
\(X=\) geoinv \((Y, P)\) returns the smallest positive integer \(X\) such that the geometric cdf evaluated at \(X\) is equal to or exceeds \(Y\). You can think of \(Y\) as the probability of observing \(X\) successes in a row in independent trials where \(P\) is the probability of success in each trial.
\(Y\) and \(P\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input for P or Y is expanded to a constant array with the same dimensions as the other input. The values in \(P\) and \(Y\) must lie on the interval [01].

The probability of correctly guessing the result of 10 coin tosses in a row is less than 0.001 (unless the coin is not fair).
```

psychic = geoinv(0.999,0.5)
psychic =
9

```

The example below shows the inverse method for generating random numbers from the geometric distribution.
```

rndgeo = geoinv(rand (2,5),0.5)
rndgeo =

0	1	3	1	0

 0
    ```
icdf | geocdf | geopdf | geostat | geornd
- "Geometric Distribution" on page B-54

\section*{Purpose}

Geometric mean

\section*{Syntax}
\(m=\) geomean \((x)\)
geomean \((X\), dim \()\)
Description
\(m=\) geomean \((x)\) calculates the geometric mean of a sample. For vectors, geomean \((x)\) is the geometric mean of the elements in \(x\). For matrices, geomean \((X)\) is a row vector containing the geometric means of each column. For N-dimensional arrays, geomean operates along the first nonsingleton dimension of \(X\).
geomean ( \(\mathrm{X}, \mathrm{dim}\) ) takes the geometric mean along the dimension dim of \(X\).

The geometric mean is
\[
m=\left[\prod_{i=1}^{n} x_{i}\right]^{\frac{1}{n}}
\]

\section*{Examples}

The arithmetic mean is greater than or equal to the geometric mean.
```

x = exprnd(1,10,6);
geometric = geomean(x)
geometric =
0.7466
average = mean(x)
average =
1.3509 1.1583 0.9741 0.5319 1.0088

```
See Also mean | median | harmmean | trimmean
How To

Purpose Geometric probability density function

\section*{Syntax \(\quad Y=\operatorname{geopdf}(X, P)\)}

Description \(\quad Y=\) geopdf \((X, P)\) computes the geometric pdf at each of the values in \(X\) using the corresponding probabilities in \(P\). \(X\) and \(P\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in P must lie on the interval [01].

The geometric pdf is
\[
y=f(x \mid p)=p q^{x} I_{(0,1, \ldots)}(x)
\]
where \(q=1-p\).

\section*{Examples \\ ```
p = geopdf(3,0.5) \\ p = \\ 0.0625
```}

Suppose you toss a fair coin repeatedly. If the coin lands face up (heads), that is a success. What is the probability of observing exactly three tails before getting a heads?
See Also pdf | geocdf | geoinv | geostat | geornd
How To . "Geometric Distribution" on page B-54
\begin{tabular}{|c|c|}
\hline Purpose & Geometric random numbers \\
\hline Syntax & \[
\begin{aligned}
& R=\operatorname{geornd}(P) \\
& R=\operatorname{geornd}(P, m, n, \ldots) \\
& R=\operatorname{geornd}(P,[m, n, \ldots])
\end{aligned}
\] \\
\hline Description & \begin{tabular}{l}
\(R=\) geornd(\(P\)) generates geometric random num parameter P. P can be a vector, a matrix, or a mu The size of \(R\) is the size of \(P\). The geometric distr when you want to model the number of successive a success, where the probability of success in any constant \(P\). The parameters in \(P\) must lie in the in \\
\(R=\) geornd(\(\mathrm{P}, \mathrm{m}, \mathrm{n}, \ldots\)) or \(\mathrm{R}=\) geornd \((\mathrm{P},[\mathrm{m}, \mathrm{n}\) \(m\)-by-n-by-... array containing random numbers f distribution with probability parameter P. P can of the same size as R .
\end{tabular} \\
\hline Examples & ```
r1 = geornd(1 ./ 2.^(1:6))
r1 =
 2 10 2 5 % 60
``` \\
\hline & ```
r2 = geornd(0.01,[1 5])
r2 =
    65
``` \\
\hline & \[
\begin{array}{rl}
r 3 & =\operatorname{geornd}(0.5,1,6) \\
r 3 & = \\
0 & 7
\end{array} 1
\] \\
\hline See Also & random | geopdf | geocdf | geoinv | geostat \\
\hline How To & - "Geometric Distribution" on page B-54 \\
\hline
\end{tabular}

Purpose Geometric mean and variance

\section*{Syntax \(\quad[M, V]=\operatorname{geostat}(P)\)}

Description \([M, V]=\) geostat \((P)\) returns the mean of and variance for the geometric distribution with corresponding probabilities in \(P\).

The mean of the geometric distribution with parameter \(p\) is \(q / p\), where \(q\) \(=1-p\). The variance is \(q / p^{2}\).
```

Examples [m,v] = geostat(1./(1:6))

$m=$					
$v=$	1.0000	2.0000	3.0000	4.0000	5.0000
0	2.0000	6.0000	12.0000	20.0000	30.0000

```
See Also geopdf | geocdf | geoinv | geornd
How To - "Geometric Distribution" on page B-54
\begin{tabular}{ll}
Purpose & Access dataset array properties \\
Syntax & \begin{tabular}{l}
get \((\mathrm{A})\) \\
\\
\\
\\
\\
\(\mathrm{p}=\operatorname{get}(\mathrm{A})\) \\
\(\mathrm{p}=\operatorname{get}(\mathrm{A}\), PropertyName \()\) \\
\end{tabular}
\end{tabular}

Description

\section*{Examples}
get (A) displays a list of property/value pairs for the dataset array \(A\).
\(s=\operatorname{get}(A)\) returns the values in a scalar structure \(s\) with field names given by the properties.
\(p=\operatorname{get}(A, P r o p e r t y N a m e)\) returns the value of the property specified by the string PropertyName.
\(\mathrm{p}=\operatorname{get}(\mathrm{A},\{\) PropertyName1,PropertyName2, ...\}) allows multiple property names to be specified and returns their values in a cell array.

Create a dataset array from Fisher's iris data and access the information:
```

load fisheriris
NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));
iris = dataset({nominal(species),'species'},...
{meas,'SL','SW','PL','PW'},...
'ObsNames ',NameObs);
get(iris)
Description:
Units: {}
DimNames: {'Observations' 'Variables'}
UserData: []
ObsNames: {150x1 cell}
VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}
ON = get(iris,'ObsNames');
ON(1:3)

```

\section*{dataset.get}
ans =
'Obs1'
'Obs2'
' Obs3'
See Also
set | summary

\section*{Purpose Access categorical array labels}

\section*{Syntax labels = getlabels(A)}

Description labels = getlabels \((A)\) returns the labels of the levels in the categorical array A as a cell array of strings labels. For ordinal A, the labels are returned in the order of the levels.

\section*{Examples}

\section*{Example 1}

Display levels in a nominal and an ordinal array:
```

standings = nominal({'Leafs','Canadiens','Bruins'});
getlabels(standings)
ans =
'Bruins' 'Canadiens' 'Leafs'
standings = ordinal(1:3,{'Leafs','Canadiens','Bruins'});
getlabels(standings)
ans =
'Leafs' 'Canadiens' 'Bruins'

```

\section*{Example 2}

Display age groups containing data in hospital.mat:
```

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);
AgeGroup = droplevels(AgeGroup);
getlabels(AgeGroup)
ans =
'20s' '30s' '40s' '50s'

```

See Also getlevels | setlabels
Purpose Get categorical array levels

\section*{Syntax \(\quad S=\) getlevels \((A)\)}

Description \(S=\) getlevels \((A)\) returns the levels for the categorical array \(A . S\) is a vector with the same type as A.

See Also getlabels

\section*{Purpose}

Generalized extreme value cumulative distribution function

\section*{Syntax}

Description

\section*{References}

See Also
How To

P = gevcdf(X,k,sigma,mu)
\(P=\operatorname{gevcdf}(X, k\), sigma, mu \()\) returns the cdf of the generalized extreme value (GEV) distribution with shape parameter \(k\), scale parameter sigma, and location parameter, mu, evaluated at the values in \(X\). The size of \(P\) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values for k , sigma, and mu are 0,1 , and 0 , respectively.
When \(\mathrm{k}<0\), the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If \(w\) has a Weibull distribution as computed by the wblcdf function, then -w has a type III extreme value distribution and \(1 / w\) has a type II extreme value distribution. In the limit as \(k\) approaches 0 , the GEV is the mirror image of the type I extreme value distribution as computed by the evcdf function.

The mean of the GEV distribution is not finite when \(k \geq 1\), and the variance is not finite when \(k \geq 1 / 2\). The GEV distribution has positive density only for values of X such that \(\mathrm{k}^{*}(\mathrm{X}-\mathrm{mu}) /\) sigma \(>-1\).
[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance. New York: Springer, 1997.
[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London: Imperial College Press, 2000.
cdf | gevpdf | gevinv | gevstat | gevfit | gevlike | gevrnd
- "Generalized Extreme Value Distribution" on page B-45

Purpose Generalized extreme value parameter estimates
Syntax
```

parmhat = gevfit(X)
[parmhat,parmci] = gevfit(X)
[parmhat,parmci] = gevfit(X,alpha)
[...] = gevfit(X,alpha,options)

```

\section*{References}
parmhat \(=\) gevfit \((X)\) returns maximum likelihood estimates of the parameters for the generalized extreme value (GEV) distribution given the data in X. parmhat (1) is the shape parameter, \(k\), parmhat (2) is the scale parameter, sigma, and parmhat (3) is the location parameter, mu.
[parmhat, parmci] = gevfit(X) returns \(95 \%\) confidence intervals for the parameter estimates.
[parmhat, parmci] = gevfit(X,alpha) returns 100(1-alpha)\% confidence intervals for the parameter estimates.
[...] = gevfit(X,alpha,options) specifies control parameters for the iterative algorithm used to compute ML estimates. This argument can be created by a call to statset. See statset('gevfit') for parameter names and default values. Pass in [] for alpha to use the default values.

When \(\mathrm{k}<0\), the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If whas a Weibull distribution as computed by the wblfit function, then -w has a type III extreme value distribution and \(1 / w\) has a type II extreme value distribution. In the limit as \(k\) approaches 0 , the GEV is the mirror image of the type I extreme value distribution as computed by the evfit function.

The mean of the GEV distribution is not finite when \(k \geq 1\), and the variance is not finite when \(k \geq 1 / 2\). The GEV distribution is defined for \(k^{*}(X-m u) /\) sigma > -1 .
[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance. New York: Springer, 1997.
[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London: Imperial College Press, 2000.

See Also
How To
mle | gevlike | gevpdf | gevcdf | gevinv | gevstat | gevrnd
- "Generalized Extreme Value Distribution" on page B-45
\begin{tabular}{|c|c|}
\hline Purpose & Generalized extreme value inverse cumulative distribution function \\
\hline Syntax & \(X=\operatorname{gevinv}(P, k\), sigma,mu) \\
\hline \multirow[t]{3}{*}{Description} & \(X=\operatorname{gevinv}(P, k\), sigma,mu) returns the inverse cdf of the generalized extreme value (GEV) distribution with shape parameter \(k\), scale parameter sigma, and location parameter mu, evaluated at the values in \(P\). The size of \(X\) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs. \\
\hline & \begin{tabular}{l}
Default values for k , sigma, and mu are 0,1 , and 0 , respectively. \\
When \(\mathrm{k}<0\), the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If \(w\) has a Weibull distribution as computed by the wblinv function, then -w has a type III extreme value distribution and \(1 / w\) has a type II extreme value distribution. In the limit as \(k\) approaches 0 , the GEV is the mirror image of the type I extreme value distribution as computed by the evinv function.
\end{tabular} \\
\hline & The mean of the GEV distribution is not finite when \(k \geq 1\), and the variance is not finite when \(k \geq 1 / 2\). The GEV distribution has positive density only for values of \(X\) such that \(\mathrm{k}^{*}(\mathrm{X}-\mathrm{mu}) /\) sigma \(>-1\). \\
\hline \multirow[t]{2}{*}{References} & [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance. New York: Springer, 1997. \\
\hline & [2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London: Imperial College Press, 2000. \\
\hline See Also & icdf | gevcdf | gevpdf | gevstat | gevfit | gevlike | gevrnd \\
\hline How To & - "Generalized Extreme Value Distribution" on page B-45 \\
\hline
\end{tabular}

\section*{Purpose}

Generalized extreme value negative log-likelihood

\section*{Syntax}

Description

\section*{References}

See Also
How To
```

nlogL = gevlike(params,data)

```
[nlogL,ACOV] = gevlike(params,data)
nlogL = gevlike(params, data) returns the negative of the log-likelihood nlogL for the generalized extreme value (GEV) distribution, evaluated at parameters params. params(1) is the shape parameter, \(k\), params(2) is the scale parameter, sigma, and params (3) is the location parameter, mu.
[nlogL,ACOV] = gevlike(params, data) returns the inverse of Fisher's information matrix, ACOV. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of ACOV are their asymptotic variances. ACOV is based on the observed Fisher's information, not the expected information.
When \(\mathrm{k}<0\), the GEV is the type III extreme value distribution. When \(k>0\), the GEV distribution is the type II, or Frechet, extreme value distribution. If whas a Weibull distribution as computed by the wbllike function, then -w has a type III extreme value distribution and 1/w has a type II extreme value distribution. In the limit as \(k\) approaches 0 , the GEV is the mirror image of the type I extreme value distribution as computed by the evlike function.

The mean of the GEV distribution is not finite when \(k \geq 1\), and the variance is not finite when \(k \geq 1 / 2\). The GEV distribution has positive density only for values of \(X\) such that \(k *(X-m u) /\) sigma \(>-1\).
[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance. New York: Springer, 1997.
[2] Kotz, S., and S. Nadarajah.Extreme Value Distributions: Theory and Applications. London: Imperial College Press, 2000.
gevfit | gevpdf | gevcdf | gevinv | gevstat | gevrnd
- "Generalized Extreme Value Distribution" on page B-45
\begin{tabular}{|c|c|}
\hline Purpose & Generalized extreme value probability density function \\
\hline Syntax & \(Y=\operatorname{gevpdf}(\mathrm{X}, \mathrm{k}\), sigma,mu) \\
\hline \multirow[t]{3}{*}{Description} & \(Y=\operatorname{gevpdf}(X, k\), sigma, mu) returns the pdf of the generalized extreme value (GEV) distribution with shape parameter \(k\), scale parameter sigma, and location parameter, mu, evaluated at the values in \(X\). The size of \(Y\) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs. \\
\hline & \begin{tabular}{l}
Default values for k , sigma, and mu are 0,1 , and 0 , respectively. \\
When \(\mathrm{k}<0\), the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If \(w\) has a Weibull distribution as computed by the wblpdf function, then -w has a type III extreme value distribution and \(1 / w\) has a type II extreme value distribution. In the limit as \(k\) approaches 0 , the GEV is the mirror image of the type I extreme value distribution as computed by the evcdf function.
\end{tabular} \\
\hline & The mean of the GEV distribution is not finite when \(k \geq 1\), and the variance is not finite when \(k \geq 1 / 2\). The GEV distribution has positive density only for values of \(X\) such that \(\mathrm{k}^{*}(\mathrm{X}-\mathrm{mu}) /\) sigma \(>-1\). \\
\hline \multirow[t]{2}{*}{References} & [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance. New York: Springer, 1997. \\
\hline & [2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London: Imperial College Press, 2000. \\
\hline See Also & pdf | gevcdf | gevinv | gevstat | gevfit | gevlike | gevrnd \\
\hline How To & - "Generalized Extreme Value Distribution" on page B-45 \\
\hline
\end{tabular}

\section*{Purpose}

Generalized extreme value random numbers
Syntax
\(R=\) gevrnd(k,sigma,mu)
R = gevrnd(k,sigma,mu,m,n,...)
R = gevrnd(k,sigma,mu,[m,n,...])

\section*{References}

See Also
\(R=\) gevrnd(\(k\), sigma, mu) returns an array of random numbers chosen from the generalized extreme value (GEV) distribution with shape parameter k, scale parameter sigma, and location parameter, mu. The size of \(R\) is the common size of the input arguments if all are arrays. If any parameter is a scalar, the size of \(R\) is the size of the other parameters.
\(R=\) gevrnd(k,sigma,mu,m,n,...) or \(R=\) gevrnd(k, sigma, mu, [m, n, ...]) generates an m-by-n-by-... array containing random numbers from the GEV distribution with parameters k, sigma, and mu. The k, sigma, mu parameters can each be scalars or arrays of the same size as R.

When \(\mathrm{k}<0\), the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If whas a Weibull distribution as computed by the wblrnd function, then -w has a type III extreme value distribution and \(1 / w\) has a type II extreme value distribution. In the limit as \(k\) approaches 0 , the GEV is the mirror image of the type I extreme value distribution as computed by the evrnd function.
The mean of the GEV distribution is not finite when \(k \geq 1\), and the variance is not finite when \(k \geq 1 / 2\). The GEV distribution has positive density only for values of \(X\) such that \(k *(X-m u) /\) sigma \(>-1\).
[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance. New York: Springer, 1997.
[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London: Imperial College Press, 2000.
random | gevpdf | gevcdf | gevinv \| gevstat | gevfit | gevlike

\author{
How To \\ - "Generalized Extreme Value Distribution" on page B-45
}

\section*{Purpose}

Generalized extreme value mean and variance

\section*{Syntax}

Description

\section*{References}

See Also
How To
\([M, V]=\) gevstat(\(k\), sigma, mu)
\([M, V]=\operatorname{gevstat}(k\), sigma, mu) returns the mean of and variance for the generalized extreme value (GEV) distribution with shape parameter k , scale parameter sigma, and location parameter, mu. The sizes of \(M\) and V are the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.
Default values for k , sigma, and mu are 0,1 , and 0 , respectively.
When \(\mathrm{k}<0\), the GEV is the type III extreme value distribution. When k > 0, the GEV distribution is the type II, or Frechet, extreme value distribution. If \(w\) has a Weibull distribution as computed by the wblstat function, then -w has a type III extreme value distribution and \(1 / w\) has a type II extreme value distribution. In the limit as \(k\) approaches 0 , the GEV is the mirror image of the type I extreme value distribution as computed by the evstat function.

The mean of the GEV distribution is not finite when \(k \geq 1\), and the variance is not finite when \(k \geq 1 / 2\). The GEV distribution has positive density only for values of X such that \(\mathrm{k}^{*}(\mathrm{X}-\mathrm{mu}) /\) sigma \(>-1\).
[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance. New York: Springer, 1997.
[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London: Imperial College Press, 2000.
gevpdf | gevcdf | gevinv | gevfit | gevlike | gevrnd
- "Generalized Extreme Value Distribution" on page B-45

\section*{gline}

Purpose Interactively add line to plot
```

Syntax gline(h)
gline
hline = gline(...)

```

Description
gline (h) allows you to draw a line segment in the figure with handle \(h\) by clicking the pointer at the two endpoints. A rubber-band line tracks the pointer movement.
gline with no input arguments defaults to \(\mathrm{h}=\) gcf and draws in the current figure.
hline = gline(...) returns the handle hline to the line.

\section*{Examples}

Use gline to connect two points in a plot:
```

x = 1:10;
y = x + randn(1,10);
scatter(x,y,25,'b','*')
lsline
mu = mean(y);
hold on
plot([1 10],[mu mu],'ro')
hline = gline; % Connect circles
set(hline,'Color','r')

```


\section*{See Also}
refline | refcurve | lsline

\section*{glmfit}

Purpose Generalized linear model regression
```

Syntax $\quad b=\operatorname{glmfit}(X, y$, distr $)$
b = glmfit(X,y,distr,param1,val1,param2,val2,...)
[b,dev] = glmfit(...)
[b,dev,stats] = glmfit(...)

```

\section*{Description}
\(\mathrm{b}=\operatorname{glmfit}(\mathrm{X}, \mathrm{y}\), distr) returns a \(p\)-by- 1 vector b of coefficient estimates for a generalized linear regression of the responses in y on the predictors in X , using the distribution distr. X is an \(n\)-by- \(p\) matrix of \(p\) predictors at each of \(n\) observations. distr can be any of the following strings: 'binomial', 'gamma', 'inverse gaussian', 'normal' (the default), and 'poisson'.

In most cases, y is an \(n\)-by- 1 vector of observed responses. For the binomial distribution, y can be a binary vector indicating success or failure at each observation, or a two column matrix with the first column indicating the number of successes for each observation and the second column indicating the number of trials for each observation.

This syntax uses the canonical link (see below) to relate the distribution to the predictors.

Note By default, glmfit adds a first column of 1 s to X , corresponding to a constant term in the model. Do not enter a column of 1s directly into \(X\). You can change the default behavior of glmfit using the 'constant' parameter, below.
glmfit treats NaNs in either X or y as missing values, and ignores them. b = glmfit(X,y,distr,param1,val1,param2,val2,...) additionally allows you to specify optional parameter name/value pairs to control the model fit. Acceptable parameters are as follows:
\begin{tabular}{|c|c|c|}
\hline Parameter & Value & Description \\
\hline \multirow[t]{9}{*}{'link'} & 'identity ', default for the distribution 'normal' & \(\mu=X b\) \\
\hline & \(\log\) ', default for the distribution 'poisson' & \(\log (\mu)=X b\) \\
\hline & logit', default for the distribution 'binomial' & \(\log (\mu /(1-\mu))=X b\) \\
\hline & 'probit' & \(\operatorname{norminv}(\mu)=X b\) \\
\hline & 'comploglog' & \(\log (-\log (1-\mu))=X b\) \\
\hline & 'reciprocal', default for the distribution 'gamma & \(1 / \mu=X b\) \\
\hline & ' loglog' & \(\log (-\log (\mu))=X b\) \\
\hline & p (a number), default for the distribution 'inverse gaussian' (with \(p=-2\)) & \(\mu^{p}=X b\) \\
\hline & cell array of the form \{FL FD FI\}, containing three function handles, created using @, that define the link (FL), the derivative of the link (FD), and the inverse link (FI). & User-specified link function \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Parameter & Value & Description \\
\hline 'estdisp' & 'on' & \begin{tabular}{l}
Estimates a dispersion \\
parameter for the binomial \\
or Poisson distribution
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{l}
'off' (Default for \\
binomial or Poisson \\
distribution)
\end{tabular} & \begin{tabular}{l}
Uses the theoretical value of \\
1.0 for those distributions
\end{tabular} \\
\hline 'offset' & Vector & \begin{tabular}{l}
Used as an additional \\
predictor variable, but with a \\
coefficient value fixed at 1.0
\end{tabular} \\
\hline 'weights' & \begin{tabular}{l}
Vector of prior \\
weights, such as \\
the inverses of the \\
relative variance of \\
each observation
\end{tabular} & 'on' (default) \\
\hline 'constant' & \begin{tabular}{l}
Includes a constant term in \\
the model. The coefficient of \\
the constant term is the first \\
element of b.
\end{tabular} \\
\hline & 'off' & Omit the constant term \\
\hline
\end{tabular}
[b, dev] = glmfit(...)returns dev, the deviance of the fit at the solution vector. The deviance is a generalization of the residual sum of squares. It is possible to perform an analysis of deviance to compare several models, each a subset of the other, and to test whether the model with more terms is significantly better than the model with fewer terms.
[b,dev,stats] = glmfit(...) returns dev and stats.
stats is a structure with the following fields:
- beta - Coefficient estimates b
- dfe - Degrees of freedom for error
- s-Theoretical or estimated dispersion parameter
- sfit - Estimated dispersion parameter
- se - Vector of standard errors of the coefficient estimates \(b\)
- coeffcorr - Correlation matrix for b
- covb - Estimated covariance matrix for B
- \(\mathrm{t}-t\) statistics for b
- \(\mathrm{p}-p\)-values for b
- resid - Vector of residuals
- residp - Vector of Pearson residuals
- residd - Vector of deviance residuals
- resida - Vector of Anscombe residuals

If you estimate a dispersion parameter for the binomial or Poisson distribution, then stats.s is set equal to stats.sfit. Also, the elements of stats.se differ by the factor stats.s from their theoretical values.

\section*{Examples}

Fit a probit regression model for \(y\) on \(x\). Each \(y(i)\) is the number of successes in \(n\) (i) trials.
```

x = [2100 2300 2500 2700 2900 3100 ...
3300 3500 3700 3900 4100 4300]';
n = [48 42 31 34 31 21 23 23 21 16 17 21]';
y = [1 2 0 0 3 8 8 14 17 19 15 17 21]';
b = glmfit(x,[y n],'binomial','link','probit');
yfit = glmval(b, x,'probit','size', n);
plot(x, y./n,'o',x,yfit./n,'-','LineWidth',2)

```

\section*{glmfit}

\footnotetext{
References [1] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman \& Hall, 1990.
[2] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman \& Hall, 1990.
[3] Collett, D. Modeling Binary Data. New York: Chapman \& Hall, 2002.

See Also
glmval | regress | regstats
}

Purpose Generalized linear model values
Syntax \(\quad\) yhat \(=\operatorname{glmval}(b, x\), link \()\)
[yhat,dylo,dyhi] = glmval(b,X,link,stats)
[...] = glmval(...,param1,val1,param2,val2,...)

\section*{Description}
yhat \(=\) glmval (\(b, X, l i n k)\) computes predicted values for the
generalized linear model with link function link and predictors \(X\). Distinct predictor variables should appear in different columns of X. b is a vector of coefficient estimates as returned by the glmfit function. link can be any of the strings used as values for the link parameter in the glmfit function.

Note By default, glmval adds a first column of 1 s to \(X\), corresponding to a constant term in the model. Do not enter a column of 1 s directly into \(X\). You can change the default behavior of glmval using the 'constant' parameter, below.
[yhat,dylo,dyhi] = glmval(b,X,link,stats) also computes 95\% confidence bounds for the predicted values. When the stats structure output of the glmfit function is specified, dylo and dyhi are also returned. dylo and dyhi define a lower confidence bound of yhat-dylo, and an upper confidence bound of yhat+dyhi. Confidence bounds are nonsimultaneous, and apply to the fitted curve, not to a new observation.
[...] = glmval(...,param1,val1,param2,val2,...) specifies optional parameter name/value pairs to control the predicted values. Acceptable parameters are:
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline \begin{tabular}{l}
' confidence ' - the confidence \\
level for the confidence bounds
\end{tabular} & A scalar between 0 and 1 \\
\hline \begin{tabular}{l}
'size' - the size parameter (N) \\
for a binomial model
\end{tabular} & \begin{tabular}{l}
A scalar, or a vector with one \\
value for each row of X
\end{tabular} \\
\hline \begin{tabular}{l}
'offset' - used as an additional \\
predictor variable, but with a \\
coefficient value fixed at 1.0
\end{tabular} & A vector \\
\hline 'constant' & \begin{tabular}{l}
- 'on' - Includes a constant \\
term in the model. The \\
coefficient of the constant term \\
is the first element of b.
\end{tabular} \\
- 'off' - Omit the constant \\
term
\end{tabular}

\section*{Examples}

Fit a probit regression model for y on x . Each \(\mathrm{y}(\mathrm{i})\) is the number of successes in \(n\) (i) trials.
```

x = [l2100 2300 2500 2700 2900 3100 ···.
3300 3500 3700 3900 4100 4300]';
n = [llllllllllllllllll
y = [llllllllllllllll}
b = glmfit(x,[y n],'binomial','link','probit');
yfit = glmval(b,x,'probit','size',n);
plot(x, y./n,'o',x,yfit./n,'-','LineWidth',2)

```


\section*{References}
[1] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman \& Hall, 1990.
[2] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman \& Hall, 1990.
[3] Collett, D. Modeling Binary Data. New York: Chapman \& Hall, 2002.

See Also

\section*{glyphplot}

Purpose Glyph plot
```

Syntax
glyphplot(X)
glyphplot(X,'glyph','face')
glyphplot(X,'glyph','face','features',f)
glyphplot(X,...,'grid',[rows,cols])
glyphplot(X,...,'grid',[rows,cols],'page', p)
glyphplot(X,...,'centers',C)
glyphplot(X,...,'centers',C,'radius',r)
glyphplot(X,...,'obslabels',labels)
glyphplot(X,...,'standardize',method)
glyphplot(X,...,prop1,val1,...)
h = glyphplot(X,...)

```

\section*{Description}
glyphplot(X) creates a star plot from the multivariate data in the \(n\)-by- \(p\) matrix X . Rows of X correspond to observations, columns to variables. A star plot represents each observation as a "star" whose \(i\) th spoke is proportional in length to the \(i\) th coordinate of that observation. glyphplot standardizes \(X\) by shifting and scaling each column separately onto the interval \([0,1]\) before making the plot, and centers the glyphs on a rectangular grid that is as close to square as possible. glyphplot treats NaNs in X as missing values, and does not plot the corresponding rows of X . glyphplot(X,'glyph', 'star') is a synonym for glyphplot(X).
glyphplot(X, 'glyph', 'face') creates a face plot from X. A face plot represents each observation as a "face," whose \(i\) th facial feature is drawn with a characteristic proportional to the \(i\) th coordinate of that observation. The features are described in "Face Features" on page 20-988Face Features.
glyphplot(X,'glyph','face','features',f) creates a face plot where the \(i\) th element of the index vector \(f\) defines which facial feature will represent the \(i\) th column of \(X\). f must contain integers from 0 to 17, where 0 indicate that the corresponding column of \(X\) should not be plotted. See "Face Features" on page 20-988 for more information.
glyphplot(X,...,'grid', [rows, cols]) organizes the glyphs into a rows-by-cols grid.
glyphplot(X,...,'grid',[rows, cols],'page', p) organizes the glyph into one or more pages of a rows-by-cols grid, and displays the page \(p\). If \(p\) is a vector, glyphplot displays multiple pages in succession. If \(p\) is 'all', glyphplot displays all pages. If \(p\) is 'scroll', glyphplot displays a single plot with a scrollbar.
glyphplot(X,...,'centers', C) creates a plot with each glyph centered at the locations in the \(n\)-by- 2 matrix C .
glyphplot(X,..., 'centers', C, 'radius', r) creates a plot with glyphs positioned using \(C\), and scale the glyphs so the largest has radius \(r\).
glyphplot(X, .., 'obslabels', labels) labels each glyph with the text in the character array or cell array of strings labels. By default, the glyphs are labelled \(1: \mathrm{N}\). Use ' ' for blank labels.
glyphplot(X,...,'standardize', method) standardizes X before making the plot. Choices for method are
- 'column' - Maps each column of \(X\) separately onto the interval [0,1\(]\). This is the default.
- 'matrix' - Maps the entire matrix \(X\) onto the interval [0,1].
- 'PCA' - Transforms \(X\) to its principal component scores, in order of decreasing eigenvalue, and maps each one onto the interval \([0,1]\).
- 'off' - No standardization. Negative values in X may make a star plot uninterpretable.
glyphplot(X,..., prop1, val1, ...) sets properties to the specified property values for all line graphics objects created by glyphplot.
\(\mathrm{h}=\) glyphplot \((\mathrm{X}, \ldots)\) returns a matrix of handles to the graphics objects created by glyphplot. For a star plot, \(h(:, 1)\) and \(h(:, 2)\) contain handles to the line objects for each star's perimeter and spokes, respectively. For a face plot, h(: 1) and h(: 2) contain object handles

\section*{glyphplot}
to the lines making up each face and to the pupils, respectively. \(\mathrm{h}(:, 3)\) contains handles to the text objects for the labels, if present.

\section*{Face Features}

The following table describes the correspondence between the columns of the vector \(f\), the value of the 'Features' input parameter, and the facial features of the glyph plot. If \(x\) has fewer than 17 columns, unused features are displayed at their default value.
\begin{tabular}{l|l}
\hline Column & Facial Feature \\
\hline 1 & Size of face \\
\hline 2 & Forehead/jaw relative arc length \\
\hline 3 & Shape of forehead \\
\hline 4 & Shape of jaw \\
\hline 5 & Width between eyes \\
\hline 6 & Vertical position of eyes \\
\hline 7 & Height of eyes \\
\hline 8 & Width of eyes (this also affects eyebrow width) \\
\hline 9 & Angle of eyes (this also affects eyebrow angle) \\
\hline 10 & Vertical position of eyebrows \\
\hline 11 & Width of eyebrows (relative to eyes) \\
\hline 12 & Angle of eyebrows (relative to eyes) \\
\hline 13 & Direction of pupils \\
\hline 14 & Length of nose \\
\hline 15 & Vertical position of mouth \\
\hline 16 & Shape of mouth \\
\hline 17 & Mouth arc length \\
\hline
\end{tabular}

\section*{Examples}
load carsmall
X = [Acceleration Displacement Horsepower MPG Weight];
glyphplot(X,'standardize', 'column',... 'obslabels', Model,... 'grid',[2 2],... 'page', 'scroll');

```

glyphplot(X,'glyph','face',...
'obslabels',Model,...
'grid',[2 3],...
'page',9);

```

\section*{glyphplot}

pontiac ventura sj amc pacer \(\mathrm{d} / \mathrm{l}\). volkswagen rabbit

datsun b-210
toyota corolla

ford pinto

\section*{gmdistribution}
\begin{tabular}{|c|c|}
\hline Purpose & Gaussian mixture models \\
\hline Description & An object of the gmdistribution class defines a Gaussian mixture distribution, which is a multivariate distribution that consists of a mixture of one or more multivariate Gaussian distribution components. The number of components for a given gmdistribution object is fixed. Each multivariate Gaussian component is defined by its mean and covariance, and the mixture is defined by a vector of mixing proportions. \\
\hline \multirow[t]{3}{*}{Construction} & To create a Gaussian mixture distribution by specifying the distribution parameters, use the gmdistribution constructor. To fit a Gaussian mixture distribution model to data, use gmdistribution.fit. \\
\hline & \begin{tabular}{l}
fit \\
Gaussian mixture parameter estimates
\end{tabular} \\
\hline & gmdistribution \(\quad\)\begin{tabular}{l}
Construct Gaussian mixture \\
distribution
\end{tabular} \\
\hline \multirow[t]{9}{*}{Properties} & All objects of the class have the properties listed in the following table. \\
\hline & CovType Type of covariance matrices \\
\hline & DistName Type of distribution \\
\hline & Mu (Input matrix of means MU \\
\hline & NComponents Number \(k\) of mixture components \\
\hline & \begin{tabular}{ll}
NDimensions & \begin{tabular}{l}
Dimension \(d\) of multivariate \\
Gaussian distributions
\end{tabular}
\end{tabular} \\
\hline & PComponents Input vector of mixing proportions \\
\hline & \begin{tabular}{l}
SharedCov \\
true if all covariance matrices are restricted to be the same
\end{tabular} \\
\hline & Sigma Input array of covariances \\
\hline
\end{tabular}

\section*{gmdistribution}

Objects constructed with fit have the additional properties listed in the following table.
\begin{tabular}{ll}
AIC & Akaike Information Criterion \\
BIC & Bayes Information Criterion \\
Converged & Determine if algorithm converged \\
Iters & Number of iterations \\
NlogL & Negative of log-likelihood \\
RegV & Value of 'Regularize ' parameter
\end{tabular}

\section*{Methods}
\begin{tabular}{ll}
cdf & \begin{tabular}{l}
Cumulative distribution function \\
for Gaussian mixture distribution
\end{tabular} \\
cluster & \begin{tabular}{l}
Construct clusters from Gaussian \\
mixture distribution
\end{tabular} \\
disp & \begin{tabular}{l}
Display Gaussian mixture \\
distribution object
\end{tabular} \\
display & \begin{tabular}{l}
Display Gaussian mixture \\
distribution object
\end{tabular} \\
fit & \begin{tabular}{l}
Gaussian mixture parameter \\
estimates
\end{tabular} \\
mahal & \begin{tabular}{l}
Mahalanobis distance to \\
component means
\end{tabular} \\
pdf & \begin{tabular}{l}
Probability density function for \\
Gaussian mixture distribution
\end{tabular} \\
posterior & \begin{tabular}{l}
Posterior probabilities of \\
components
\end{tabular} \\
random & \begin{tabular}{l}
Random numbers from Gaussian \\
mixture distribution
\end{tabular} \\
&
\end{tabular}
\begin{tabular}{ll}
subsasgn & \begin{tabular}{l}
Subscripted reference for \\
Gaussian mixture distribution \\
object
\end{tabular} \\
subsref & \begin{tabular}{l}
Subscripted reference for \\
Gaussian mixture distribution \\
object
\end{tabular}
\end{tabular}

\section*{Copy Semantics}

\section*{Examples}

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

\section*{Fit a Gaussian Mixture Model}

Generate data from a mixture of two bivariate Gaussian distributions using the mvnrnd function. Fit the resulting data.

Generate the data using 1000 points from each distribution.
```

MU1 = [1 2];
SIGMA1 = [2 0; 0 .5];
MU2 = [-3 -5];
SIGMA2 = [1 0; 0 1];
X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];
scatter(X(:,1),X(:,2),10,'.')
hold on

```

\section*{gmdistribution}

Fit a two-component Gaussian mixture model.
```

options = statset('Display','final');
obj = gmdistribution.fit(X,2,'Options',options);
1 8 iterations, log-likelihood = -7058.35
h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);

```

\(\begin{array}{ll}\text { References [1] McLachlan, G., and D. Peel. Finite Mixture Models. Hoboken, NJ: } \\ & \text { John Wiley \& Sons, Inc., 2000. }\end{array}\)
See Also gmdistribution.fit
Related
- "Normal Distribution" on page B-96
Examples

\section*{Concepts}

\section*{Purpose Construct Gaussian mixture distribution}
```

Syntax obj = gmdistribution(mu,sigma,p)

```

Description

Examples
obj \(=\) gmdistribution(mu, sigma, \(p\)) constructs an object obj of the gmdistribution class defining a Gaussian mixture distribution.
mu is a \(k\)-by- \(d\) matrix specifying the \(d\)-dimensional mean of each of the \(k\) components.
sigma specifies the covariance of each component. The size of sigma is:
- \(d\)-by- \(d\)-by- \(k\) if there are no restrictions on the form of the covariance. In this case, sigma(\(:,:, I)\) is the covariance of component I.
- 1-by- \(d\)-by- \(k\) if the covariance matrices are restricted to be diagonal, but not restricted to be same across components. In this case, sigma(:,: I) contains the diagonal elements of the covariance of component I.
- \(d\)-by- \(d\) matrix if the covariance matrices are restricted to be the same across components, but not restricted to be diagonal. In this case, sigma is the pooled estimate of covariance.
- 1-by- \(d\) if the covariance matrices are restricted to be diagonal and the same across components. In this case, sigma contains the diagonal elements of the pooled estimate of covariance.
\(p\) is an optional 1-by- \(k\) vector specifying the mixing proportions of each component. If \(p\) does not sum to 1 , gmdistribution normalizes it. The default is equal proportions.

Create a gmdistribution object defining a two-component mixture of bivariate Gaussian distributions:
```

mu = [1 2;-3 -5];
sigma = cat(3,[2 0;0 .5],[1 0;0 1]);
p = ones(1,2)/2;
obj = gmdistribution(mu,sigma,p);

```


\section*{References}

See Also
[1] McLachlan, G., and D. Peel. Finite Mixture Models. Hoboken, NJ: John Wiley \& Sons, Inc., 2000.
```

fit | pdf | cdf | random | cluster | posterior | mahal

```

Purpose Add case names to plot
Syntax gname(cases)
gname
h = gname(cases,line_handle)

\section*{Description}

\section*{Examples}

This example uses the city ratings data sets to find out which cities are the best and worst for education and the arts.
```

load cities
education = ratings(:,6);
arts = ratings(:,7);

```
```

plot(education,arts,'+')
gname(names)

```


Click the point at the top of the graph to display its label, "New York."

\section*{See Also}
gtext | gscatter | gplotmatrix

Purpose Generalized Pareto cumulative distribution function
Syntax \(\quad P=\operatorname{gpcdf}(X, K\), sigma, theta \()\)
Description \(\quad P=\operatorname{gpcdf}(X, K\), sigma, theta) returns the cdf of the generalized Pareto (GP) distribution with the tail index (shape) parameter K, scale parameter sigma, and threshold (location) parameter, theta, evaluated at the values in \(X\). The size of \(P\) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values for K, sigma, and theta are 0,1 , and 0 , respectively.
When \(K=0\) and theta \(=0\), the GP is equivalent to the exponential distribution. When \(K>0\) and theta \(=\) sigma/K, the GP is equivalent to the Pareto distribution. The mean of the GP is not finite when \(\mathrm{K} \geq\) 1 , and the variance is not finite when \(K \geq 1 / 2\). When \(K \geq 0\), the GP has positive density for

X > theta, or, when
\(\mathrm{K}<0,0 \leq \frac{X-\theta}{\sigma} \leq-\frac{1}{K}\).

\section*{References}
[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance. New York: Springer, 1997.
[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London: Imperial College Press, 2000.

\author{
See Also \\ cdf | gppdf | gpinv | gpstat | gpfit | gplike | gprnd \\ How To . "Generalized Pareto Distribution" on page B-50
}

Purpose
Generalized Pareto parameter estimates
Syntax
parmhat = gpfit(X)
[parmhat, parmci] = gpfit(X)
[parmhat, parmci] = gpfit(X,alpha)
[...] = gpfit(X,alpha,options)
parmhat \(=\) gpfit \((X)\) returns maximum likelihood estimates of the parameters for the two-parameter generalized Pareto (GP) distribution given the data in X . parmhat (1) is the tail index (shape) parameter, K and parmhat(2) is the scale parameter, sigma. gpfit does not fit a threshold (location) parameter.
[parmhat, parmci] = gpfit(X) returns 95\% confidence intervals for the parameter estimates.
[parmhat, parmci] = gpfit(X,alpha) returns 100(1-alpha)\% confidence intervals for the parameter estimates.
[...] = gpfit(X, alpha,options) specifies control parameters for the iterative algorithm used to compute ML estimates. This argument can be created by a call to statset. See statset('gpfit') for parameter names and default values.

Other functions for the generalized Pareto, such as gpcdf allow a threshold parameter, theta. However, gpfit does not estimate theta. It is assumed to be known, and subtracted from \(X\) before calling gpfit.
When \(\mathrm{K}=0\) and theta \(=0\), the GP is equivalent to the exponential distribution. When \(K>0\) and theta \(=\) sigma/ \(K\), the GP is equivalent to the Pareto distribution. The mean of the GP is not finite when \(K \geq\) 1 , and the variance is not finite when \(K \geq 1 / 2\). When \(K \geq 0\), the GP has positive density for

X > theta, or, when
\[
0 \leq \frac{X-\theta}{\sigma} \leq-\frac{1}{K}
\]
\(\begin{array}{ll}\text { References } & \begin{array}{l}\text { [1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal } \\ \text { Events for Insurance and Finance. New York: Springer, 1997. }\end{array} \\ & \begin{array}{l}\text { [2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory } \\ \text { and Applications. London: Imperial College Press, 2000. }\end{array} \\ \text { See Also } & \text { mle | gplike | gppdf | gpcdf | gpinv | gpstat | gprnd } \\ \text { How To } & \text { - "Generalized Pareto Distribution" on page B-50 }\end{array}\)

\section*{Purpose}

Syntax
Description

\section*{References}

How To

\author{
See Also
}

Generalized Pareto inverse cumulative distribution function

X = gpinv(P,K,sigma,theta)
\(X=\) gpinv(\(P, K\), sigma, theta) returns the inverse cdf for a generalized Pareto (GP) distribution with tail index (shape) parameter K, scale parameter sigma, and threshold (location) parameter theta, evaluated at the values in \(P\). The size of \(X\) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values for K, sigma, and theta are 0,1 , and 0 , respectively.
When \(\mathrm{K}=0\) and theta \(=0\), the GP is equivalent to the exponential distribution. When \(K>0\) and theta \(=\) sigma/K, the GP is equivalent to the Pareto distribution. The mean of the GP is not finite when \(\mathrm{K} \geq\) 1 , and the variance is not finite when \(K \geq 1 / 2\). When \(K \geq 0\), the GP has positive density for

X > theta, or, when
\(\mathrm{K}<0,0 \leq \frac{X-\theta}{\sigma} \leq-\frac{1}{K}\).
[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance. New York: Springer, 1997.
[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London: Imperial College Press, 2000.
icdf | gpcdf | gppdf | gpstat | gpfit | gplike | gprnd
- "Generalized Pareto Distribution" on page B-50

\section*{Purpose Generalized Pareto negative log-likelihood}
```

Syntax nlogL = gplike(params,data)
[nlogL,ACOV] = gplike(params,data)

```

\section*{Description}
nlogL = gplike(params, data) returns the negative of the log-likelihood nlogL for the two-parameter generalized Pareto (GP) distribution, evaluated at parameters params. params(1) is the tail index (shape) parameter, K, params (2) is the scale parameter, sigma, and params (3) is the threshold (location) parameter, mu.
[nlogL,ACOV] = gplike(params, data) returns the inverse of Fisher's information matrix, ACOV. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of ACOV are their asymptotic variances. ACOV is based on the observed Fisher's information, not the expected information.

When \(K=0\) and theta \(=0\), the GP is equivalent to the exponential distribution. When K > 0 and theta \(=\) sigma/K, the GP is equivalent to the Pareto distribution. The mean of the GP is not finite when \(\mathrm{K} \geq\) 1 , and the variance is not finite when \(K \geq 1 / 2\). When \(K \geq 0\), the GP has positive density for
\(X>\) theta, or, when
\(\mathrm{K}<0,0 \leq \frac{X-\theta}{\sigma} \leq-\frac{1}{K}\).

\section*{References}

See Also
gpfit | gppdf | gpcdf | gpinv | gpstat | gprnd
How To . "Generalized Pareto Distribution" on page B-50

\section*{Purpose}

Generalized Pareto probability density function

\section*{Syntax}

Description

\section*{References}

See Also
How To . "Generalized Pareto Distribution" on page B-50
\(P=\operatorname{gppdf}(X, K\), sigma, theta \()\)
\(P=\operatorname{gppdf}(X, K\), sigma, theta) returns the pdf of the generalized Pareto (GP) distribution with the tail index (shape) parameter K, scale parameter sigma, and threshold (location) parameter, theta, evaluated at the values in \(X\). The size of \(P\) is the common size of the input arguments. A scalar input functions as a constant matrix of the same size as the other inputs.

Default values for K, sigma, and theta are 0,1 , and 0 , respectively.
When \(K=0\) and theta \(=0\), the GP is equivalent to the exponential distribution. When \(K>0\) and theta \(=\) sigma/K, the GP is equivalent to the Pareto distribution. The mean of the GP is not finite when \(\mathrm{K} \geq\) 1 , and the variance is not finite when \(K \geq 1 / 2\). When \(K \geq 0\), the GP has positive density for
\(X>\) theta, or, when
\(\mathrm{K}<0,0 \leq \frac{X-\theta}{\sigma} \leq-\frac{1}{K}\).
[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance. New York: Springer, 1997.
[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London: Imperial College Press, 2000.

\section*{See Also pdf \| gpcdf | gpinv \| gpstat \| gpfit \| gplike | gprnd}

Purpose Matrix of scatter plots by group
Syntax gplotmatrix(x,y,group)
gplotmatrix(x,y,group, clr,sym,siz)
gplotmatrix(x,y,group, clr,sym, siz,doleg)
gplotmatrix(x,y,group, clr,sym, siz, doleg, dispopt)
gplotmatrix(x,y,group, clr, sym,siz, doleg,dispopt, xnam, ynam)
[h,ax,bigax] = gplotmatrix(...)

\section*{Description}
gplotmatrix (\(\mathrm{x}, \mathrm{y}\), group) creates a matrix of scatter plots. Each individual set of axes in the resulting figure contains a scatter plot of a column of \(x\) against a column of \(y\). All plots are grouped by the grouping variable group.
x and y are matrices with the same number of rows. If x has \(p\) columns and y has \(q\) columns, the figure contains a \(p\)-by- \(q\) matrix of scatter plots. If you omit \(y\) or specify it as the empty matrix, [], gplotmatrix creates a square matrix of scatter plots of columns of \(x\) against each other.
group is a grouping variable that can be a categorical variable, vector, string array, or cell array of strings. group must have the same number of rows as \(x\) and \(y\). Points with the same value of group are placed in the same group, and appear on the graph with the same marker and color. Alternatively, group can be a cell array containing several grouping variables (such as \(\{\mathrm{g} 1 \mathrm{~g} 2 \mathrm{~g} 3\}\)); in that case, observations are in the same group if they have common values of all grouping variables.
gplotmatrix (\(\mathrm{x}, \mathrm{y}\), group, clr, sym, siz) specifies the color, marker type, and size for each group. clr is a string array of colors recognized by the plot function. The default for clr is 'bgrcmyk'. sym is a string array of symbols recognized by the plot command, with the default value '.'. siz is a vector of sizes, with the default determined by the DefaultLineMarkerSize property. If you do not specify enough values for all groups, gplotmatrix cycles through the specified values as needed.
gplotmatrix(x,y,group, clr, sym,siz, doleg) controls whether a legend is displayed on the graph (doleg is 'on', the default) or not (doleg is 'off').
gplotmatrix(x,y,group, clr,sym,siz,doleg,dispopt) controls what appears along the diagonal of a plot matrix of \(y\) versus x. Allowable values are 'none', to leave the diagonals blank, 'hist', to plot histograms, or 'variable', to write the variable names. gplotmatrix displays histograms along the diagonal only when there is only one variable (i.e., gplotmatrix(x,[],[],[],[],[],'hist').
gplotmatrix(x,y,group,clr,sym,siz,doleg,dispopt,xnam, ynam) specifies the names of the columns in the x and y arrays. These names are used to label the \(x\) - and \(y\)-axes. xnam and ynam must be character arrays or cell arrays of strings, with one name for each column of \(x\) and y , respectively.
[h,ax,bigax] = gplotmatrix(...) returns three arrays of handles. \(h\) is an array of handles to the lines on the graphs. The array's third dimension corresponds to groups in G. ax is a matrix of handles to the axes of the individual plots. If dispopt is 'hist', ax contains one extra row of handles to invisible axes in which the histograms are plotted. bigax is a handle to big (invisible) axes framing the entire plot matrix. bigax is fixed to point to the current axes, so a subsequent title, xlabel, or ylabel command will produce labels that are centered with respect to the entire plot matrix.

\section*{Examples}

Load the cities data. The ratings array has ratings of the cities in nine categories (category names are in the array categories). group is a code whose value is 2 for the largest cities. You can make scatter plots of the first three categories against the other four, grouped by the city size code:
```

load discrim
gplotmatrix(ratings(:,1:2),ratings(:,[4 7]),group)

```

The output figure (not shown) has an array of graphs with each city group represented by a different color. The graphs are a little easier to read if you specify colors and plotting symbols, label the axes with the rating categories, and move the legend off the graphs:
```

gplotmatrix(ratings(:,1:2),ratings(:,[4 7]),group,...

```
```

'br','.o',[],'on','', categories(1:2,:),...
categories([4 7],:))

```

\begin{tabular}{ll}
See Also & grpstats | gscatter | plotmatrix \\
How To & - "Grouping Variables" on page 2-51
\end{tabular}

\section*{Purpose \\ Syntax \\ Description}

Generalized Pareto random numbers
\(R=\) gprnd \((K\), sigma, theta)
R = gprnd(K, sigma, theta,m,n,...)
R = gprnd(K, sigma, theta,[m,n,...])

References the size of the other parameters.
\(R=\operatorname{gprnd}(K\), sigma, theta, \(m, n, \ldots)\) or \(R=\) same size as R. positive density for

X > theta, or, when
\[
0 \leq \frac{X-\theta}{\sigma} \leq-\frac{1}{K}
\] Events for Insurance and Finance. New York: Springer, 1997. and Applications. London: Imperial College Press, 2000.
```

See Also
random | gppdf | gpcdf | gpinv | gpstat | gpfit | gplike

```
\(R=\) gprnd(\(K\), sigma, theta) returns an array of random numbers chosen from the generalized Pareto (GP) distribution with tail index (shape) parameter K, scale parameter sigma, and threshold (location) parameter, theta. The size of \(R\) is the common size of the input arguments if all are arrays. If any parameter is a scalar, the size of \(R\) is
gprnd(K, sigma, theta, [m,n,...]) generates an m-by-n-by-... array. The K, sigma, theta parameters can each be scalars or arrays of the

When \(K=0\) and theta \(=0\), the GP is equivalent to the exponential distribution. When \(K>0\) and theta \(=\) sigma \(/ K\), the GP is equivalent to the Pareto distribution. The mean of the GP is not finite when \(K \geq\) 1 , and the variance is not finite when \(K \geq 1 / 2\). When \(K \geq 0\), the GP has
[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal
[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory

Purpose Generalized Pareto mean and variance
Syntax \(\quad[M, V]=\) gpstat (K, sigma, theta)
Description

References

See Also
gppdf | gpcdf | gpinv | gpfit | gplike | gprnd

\section*{Purpose}

Train additional trees and add to ensemble
Syntax
\(B=\) growTrees (\(B\), ntrees)
B = growTrees(B,ntrees,'param1',val1,'param2',val2,...)
Description
\(B=\) growTrees(\(B\), ntrees) grows ntrees new trees and appends them
to those trees already stored in the ensemble B .
B = growTrees(B,ntrees,'param1',val1,'param2',val2,...) pecifies optional parameter name/value pairs:
\begin{tabular}{ll}
'nprint' & \begin{tabular}{l}
Specifies that a diagnostic message showing \\
training progress should display after every \\
value training cycles (grown trees). Default is \\
no diagnostic messages.
\end{tabular} \\
'options ' & \begin{tabular}{l}
A struct that specifies options that govern \\
computation when growing the ensemble of \\
decision trees. One option requests that the \\
computation of decision trees on multiple
\end{tabular} \\
bootstrap replicates uses multiple processors, \\
if the Parallel Computing Toolbox is available. \\
Two options specify the random number streams \\
to use in selecting bootstrap replicates. You can \\
create this argument with a call to statset. You \\
can retrieve values of the individual fields with a \\
call to statget. Applicable statset parameters \\
are:
\end{tabular}
- 'UseParallel' - If true and if a matlabpool of the Parallel Computing Toolbox is open, compute decision trees drawn on separate boostrap replicates in parallel. If the Parallel Computing Toolbox is not installed, or a matlabpool is not open, computation occurs in serial mode. Default is false, or serial computation.

\section*{TreeBagger.growTrees}
- UseSubstreams - Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.
- Streams - A RandStream object or cell array of such objects. If you do not specify Streams, growTrees uses the default stream or streams. If you choose to specify Streams, use a single object except in the case
- You have an open MATLAB pool
- UseParallel is true
- UseSubstreams is false

In that case, use a cell array the same size as the MATLAB pool.

\section*{See Also \\ classregtree}

\section*{Purpose Create index vector from grouping variable}

\section*{Syntax}
[G,GN]=grp2idx(S) [G,GN,GL] = grp2idx(S)
[G,GN]=grp2idx(S) creates an index vector \(G\) from the grouping variable S. S can be a categorical, numeric, or logical vector; a cell vector of strings; or a character matrix with each row representing a group label. The result \(G\) is a vector taking integer values from 1 up to the number K of distinct groups. GN is a cell array of strings representing group labels. \(G N(G)\) reproduces \(S\) (aside from any differences in type).

The order of GN depends on the grouping variable:
- For numeric and logical grouping variables, the order is the sorted order of S .
- For categorical grouping variables, the order is the order of getlabels(S).
- For string grouping variables, the order is the order of first appearance in S .
[G,GN,GL] = grp2idx(S) returns a column vector GL representing the group levels. The set of groups and their order in GL and GN are the same, except that GL has the same type as S . If S is a character matrix, GL(\(\mathrm{G}, \mathrm{:}\)) reproduces S , otherwise \(\mathrm{GL}(\mathrm{G})\) reproduces S .
grp2idx treats NaNs (numeric or logical), empty strings (char or cell array of strings), or <undefined> values (categorical) in S as missing values and returns NaNs in the corresponding rows of G. GN and GL don't include entries for missing values.

\section*{Examples}

Load the data in hospital.mat and create a categorical grouping variable:
```

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);

```

\section*{grp2idx}
```

ages = hospital.Age(1:5)
ages =
38
4 3
38
4 0
4 9
group = AgeGroup(1:5)
group =
30s
40s
30s
40s
40s
indices = grp2idx(group)
indices =
4
5
4
5
5

```

\section*{See Also}
gscatter | grpstats | crosstab | getlabels
How To
- "Grouping Variables" on page 2-51
\begin{tabular}{l}
Purpose \\
Syntax \\
\\
\hline \\
\\
\hline
\end{tabular}
Summary statistics organized by group
```

statarray = grpstats(ds,groupvar)
statarray = grpstats(ds,groupvar,whichstats)
statarray = grpstats(ds,groupvar,whichstats,Name,Value)
means = grpstats(X,group)
[stats1,...,statsN] = grpstats(X,group,whichstats)
[stats1,...,statsN] = grpstats(X,group,whichstats,'Alpha',
alpha)
grpstats(X,group,alpha)

```
statarray = grpstats(ds, groupvar) returns a dataset array with the means for the data groups in the dataset array ds determined by the values of the grouping variable or variables specified in groupvar.
- If there is a single grouping variable, then there is a row in statarray for each value of the grouping variable. grpstats sorts the groups by order of appearance (if the grouping variable is a character array), in ascending numeric order (if the grouping variable is numeric), or in order of the levels (if the grouping variable is categorical).
- If groupvar is a cell array of strings containing multiple grouping variable names, or a vector of column numbers, then there is a row in statarray for each observed unique combination of values of the grouping variables. grpstats sorts the groups by the values of the first grouping variable, then the second grouping variable, and so on.
- If any variables in ds (other than those specified in groupvar) are not numeric or logical arrays, then you must specify the names or column numbers of the numeric and logical variables for which you want to calculate means using the name-value pair argument, DataVars.
statarray \(=\) grpstats(ds, groupvar, whichstats) returns the group values for the summary statistics types specified in whichstats.
statarray \(=\) grpstats(ds,groupvar, whichstats, Name, Value) uses additional options specified by one or more Name, Value pair arguments.
means \(=\) grpstats \((X\), group \()\) returns a column vector or matrix with the means of the groups of the data in the matrix or vector \(X\) determined by the values of the grouping variable or variables, group. The rows of means correspond to the grouping variable values.
- If there is a single grouping variable, then there is a row in means for each value of the grouping variable. grpstats sorts the groups by order of appearance (if the grouping variable is a character array), in ascending numeric order (if the grouping variable is numeric), or in order of the levels (if the grouping variable is categorical).
- If group is a cell array of grouping variables, then there is a row in means for each observed unique combination of values of the grouping variables. grpstats sorts the groups by the values of the first grouping variable, then the second grouping variable, and so on.
- If \(X\) is a matrix, then means is a matrix with the same number of columns as \(X\). Each column of means has the group means for the corresponding column of \(X\).
[stats1,...,statsN] = grpstats(X,group, whichstats) returns column vectors or arrays with group values for the summary statistic types specified in whichstats.
```

[stats1,...,statsN] =
grpstats(X,group,whichstats,'Alpha',alpha) specifies the
significance level for confidence and prediction intervals.

```
grpstats (\(X\), group, alpha) plots the means of the groups of data in the vector or matrix \(X\) determined by the values of the grouping variable, group. The grouping variable values are on the horizontal plot axis. Each group mean has \(100 \times(1-a l p h a) \%\) confidence intervals.
- If \(X\) is a matrix, then grpstats plots the means and confidence intervals for each column of \(X\).
- If group is a cell array of grouping variables, then grpstats plots the means and confidence intervals for the groups of data in \(X\) determined by the unique combinations of values of the grouping variables. For example, if there are two grouping variables, each with two values, there are four possible combinations of grouping variable values. The plot includes only the combinations of values that exist in the input grouping variables (not all possible combinations).

\section*{Input \\ Arguments}
ds - Input data
dataset array
Input data, specified as a dataset array. The dataset array must include at least one variable that is a grouping variable.

Summary statistics can only be calculated for dataset array variables that have a numeric or logical data type. If any variables in ds (other than the grouping variables) are not numeric or logical arrays, then use the name-value pair argument DataVars to specify the names or column numbers of the numeric and logical variables for which to calculate summary statistics.

\section*{groupvar - Identifiers for the grouping variables}
cell array of strings | vector of positive integers | logical vector | []
Identifiers for the grouping variables in the input dataset array, ds, specified as one of the following:

String or cell array of strings Names of the grouping variables
Positive integer or vector of Variable numbers of the grouping positive integers

Vector of logical values with number of elements equal to the number of variables in ds

\section*{[]}

Logical indicator with value true for grouping variables and false otherwise

No groups (returns summary statistics for all data)

Any variable that is identified by groupvar as a grouping variable must have a valid grouping variable data type: categorical array, logical or numeric vector, or cell array of strings.

For example, consider an input dataset array, ds, with six variables. The fourth variable is named Gender. To be a valid grouping variable, the data type of Gender might be a cell array of strings or a nominal array, with the unique values Male and Female. To specify the variable Gender as the grouping variable, you can use any of these syntaxes:
- statarray = grpstats(ds,'Gender')
- statarray = grpstats(ds,4)
- statarray = grpstats(ds,logical([0 0001000\(])\))

\section*{Data Types \\ double | logical | cell | char}

\section*{whichstats - Types of summary statistics}

\section*{string | function handle}

Types of summary statistics to compute, specified as a string or function handle, or a cell array of strings and function handles. Use a cell array to specify multiple types of summary statistics.
Possible string values are:
\begin{tabular}{ll}
'mean' & Mean \\
'sem' & Standard error of the mean \\
'numel' & Count, or number, of non-NaN elements \\
'gname' & Group name
\end{tabular}
\begin{tabular}{ll}
'std' & Standard deviation \\
'var' & Variance \\
'min' & Minimum \\
'max' & Maximum \\
'range' & Range \\
'meanci' & \(95 \%\) confidence interval for the mean \\
'predci' & \(95 \%\) prediction interval for a new observation
\end{tabular}
```

Example: [stat1,stat2] = grpstats(X,group,{'mean','sem'})

```

You can specify different significance levels for the 'meanci' and 'predci' options using the name-value pair argument, Alpha.

To specify other types of summary statistics, you can use function handles. You can use the handle to any function that accepts a column or matrix of data, and returns the same size output each time grpstats calls it (even if the output for some groups is empty).

If the function accepts a column of data, then the function can return either a scalar value, or an nuals-by- 1 column vector for descriptive statistics of length nuals (for example, confidence intervals have length two). If the function accepts a matrix, it must either return a 1-by-ncols row vector, or an nuals-by-ncols matrix, where ncols is the number of columns in the input data matrix.

Example: [stat1,stat2,stat3] =
grpstats(X,group,\{'mean','std', @skewness\})

\section*{Data Types}
char | function_handle

\section*{alpha-Significance level}
scalar value in the range \((0,1)\)
Significance level, specified as a scalar value in the range \((0,1)\).
- When you specify 'meanci' or 'predci' in whichstats, you can use alpha to specify the significance level for the confidence or prediction
intervals. If you specify alpha, then grpstats returns \(100 \times(1-\) alpha) \(\%\) confidence or prediction intervals. If you do not specify alpha, then grpstats returns \(95 \%\) intervals (alpha \(=0.05\)).
- Use alpha with the grpstats (X, group, alpha) syntax to plot group means and corresponding \(100 \times(1-\) alpha \() \%\) confidence intervals.

\section*{Data Types}
double

\section*{X - Input data}
vector | matrix
Input data, specified as a vector or a matrix. If \(x\) is a matrix, then grpstats returns summary statistics for each column of \(X\).

\section*{Data Types}
double | single

\section*{group - Grouping variable}
categorical array | logical or numeric vector | cell array of strings | []
Grouping variable, specified as a categorical array, logical or numeric vector, or cell array of strings. Each unique value in a grouping variable defines a group. grpstats groups data for summary statistics using the grouping variable values.

There must be a grouping variable value for each row of the input data X. Observations (rows) with the same value of the grouping variable are in the same group. Use [] to compute summary statistics for all data, without using groups.

For example, if Gender is a cell array of strings with values 'Male ' and 'Female', you can use Gender as a grouping variable to summarize your data by gender.
You can also use more than one grouping variable to group data for summary statistics. In this case, specify a cell array of grouping variables.

For example, if Smoker is a logical vector with values 0 for nonsmokers and 1 for smokers, then specifying the cell array \{Gender, Smoker\} divides observations into four groups: Male Smoker, Male Nonsmoker, Female Smoker, and Female Nonsmoker. grpstats returns summary statistics only for the combinations of values that exist in the input grouping variables (not all possible combinations).

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'DataVars', [1, 3, 4],'Alpha', 0.01 specifies that summary statistics be calculated for the 1st, 3rd, and 4th variables in a dataset array, with \(99 \%\) confidence intervals.

\section*{'Alpha' - Significance level}
0.05 (default) | scalar value in the range \((0,1)\)

Significance level for confidence and prediction intervals, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range \((0,1)\).
When you include 'meanci' or 'predci' in whichstats, you can use Alpha to specify the significance level for confidence or prediction intervals. If you specify the value \(\alpha\), then grpstats returns \(100 \times(1-\) \(a) \%\) confidence or prediction intervals.
If you do not specify a value for Alpha, then grpstats returns \(95 \%\) intervals (\(\alpha=0.05\)).

Example: 'Alpha', 0.1
Data Types
double
'DataVars' - Variable names or columns
cell array of strings | vector of positive integers | logical vector

Variable names or columns indicating which variables in the input dataset array you want to compute summary statistics for, specified as the comma-separated pair consisting of 'DataVars ' and a cell array of strings, vector of positive integers, or a logical vector. Use a string to specify a variable name, a positive integer to specify a variable column number, or logical values to indicate which variables to include (true if you want to compute summary statistics, false otherwise).

You must specify DataVars if there are any variables in ds (other than the grouping variables specified in groupvar) that are not numeric or logical arrays. Summary statistics can only be calculated for dataset array variables that have a numeric or logical data type.
Example: 'DataVars', \{'Height', 'Weight'\}
```

Data Types
double | cell | char

```

\section*{'VarNames' - Variable names for output dataset array cell array of strings}

Variable names for the output dataset array, statarray, specified as the comma-separated pair consisting of 'VarNames' and a cell array of strings. By default, grpstats constructs output variable names by appending a prefix to the variable names from the input dataset array, ds. This prefix corresponds to the summary statistic name.
```

Example: 'VarNames',{'MaleMean','FemaleMean'}

```

\section*{Data Types}
cell

\section*{Output Arguments}

\section*{statarray - Group summary statistics}
dataset array
Group summary statistics, returned as a dataset array. statarray contains summary statistic values for the groups of data in the dataset array ds determined by the levels of the grouping variables specified by groupvar. There is a row in statarray for each observed value
or combination of values in the variables specified by groupvar. The dataset array, statarray, contains:
- All grouping variables specified by groupvar.
- The variable GroupCount, containing the number of observations in each group.
- Group summary statistic values for all variables in ds (other than those specified by groupvar), or for only the variables specified using DataVars.

The total number of variables in statarray is ngroupvars \(+1+\) ndatavars \(\times\) nstats, where ngroupvars is the number of variables in groupvar, ndatavars is the number of variables for which summary statistics are computed, and nstats is the number of summary statistic types specified in whichstats.
grpstats assigns default names to the variables in statarray, unless you specify variable names using the name-value pair argument VarNames.

\section*{means - Group means}
column vector | array
Group means for the groups of data in the vector or matrix \(X\) determined by the levels of group, returned as an ngroups-by-ncols array. Here, ngroups is the number of unique values in the grouping variable, and ncols is the number of columns in X . If X is a vector, then means is a column vector.

\section*{stats \(1, \ldots\), stats \(\mathbf{N}\) - Group summary statistics}
column vectors | arrays
Group summary statistics for the groups of data in the vector or matrix X determined by the levels of group, returned as ngroups-by-ncols arrays. Here, ngroups is the number of unique values in the grouping variable, and ncols is the number of columns in \(X\). You must specify an output argument for each type of summary statistic specified in whichstats.

If a summary statistic type in whichstats returns a value of length nuals (for example, a confidence interval is a descriptive statistic of length two), then the corresponding output argument is an ngroups-by-ncols-by-nvals array.

\section*{Examples}

\section*{Dataset Array Summary Statistics Organized by Group}

Load the sample data.
```

load('hospital')

```

The dataset array, hospital, has 100 observations and 7 variables.
Create a dataset array with only the variables Sex, Age, Weight, and Smoker.
```

ds = hospital(:,{'Sex','Age','Weight','Smoker'});

```

Sex is a nominal array, with levels Male and Female. The variables Age and Weight have numeric values, and Smoker has logical values.

Compute the mean for the numeric and logical arrays, Age, Weight, and Smoker, grouped by the levels in Sex.
```

statarray = grpstats(ds,'Sex')

```
statarray =
\begin{tabular}{lllll}
& Sex & GroupCount & mean_Age & mean_Weight \\
Female & Female & 53 & 37.717 & 130.47 \\
Male & Male & 47 & 38.915 & 180.53
\end{tabular}
statarray is a dataset array with two rows, corresponding to the levels in Sex. GroupCount is the number of observations in each group. The means of Age, Weight, and Smoker, grouped by Sex, are given in mean_Age, mean_Weight, and mean_Smoker.

Compute the mean for Age and Weight, grouped by the values in Smoker.
```

statarray = grpstats(ds,'Smoker','mean','DataVars',{'Age','Weight'})
statarray =

	Smoker	GroupCount	mean_Age	mean_Weight
0	false	66	37.97	149.91
1	true	34	38.882	161.94

```

In this case, not all variables in ds (excluding the grouping variable, Smoker) are numeric or logical arrays; the variable Sex is a nominal array. When not all variables in the input dataset array are numeric or logical arrays, you must specify the variables for which you want to calculate summary statistics using DataVars.

Compute the minimum and maximum weight, grouped by the combinations of values in Sex and Smoker.
```

statarray = grpstats(ds,{'Sex','Smoker'},{'min','max'},...
'DataVars','Weight')
statarray =

```
\begin{tabular}{llllll}
& Sex & Smoker & GroupCount & min_Weight & max_ \\
Female_0 & Female & false & 40 & 111 & 147 \\
Female_1 & Female & true & 13 & 115 & 146 \\
Male_0 & Male & false & 26 & 158 & 194 \\
Male_1 & Male & true & 21 & 164 & 202
\end{tabular}

There are two unique values in Smoker and two levels in Sex, for a total of four possible combinations of values: Female Nonsmoker (Female_0), Female Smoker (Female_1), Male Nonsmoker (Male_0), and Male Smoker (Male_1).

\section*{Summary Statistics for a Dataset Array Without Grouping}

Load the sample data.
```

load('hospital')

```

The dataset array, hospital, has 100 observations and 7 variables.
Create a dataset array with only the variables Age, Weight, and Smoker.
```

ds = hospital(:,{'Age','Weight','Smoker'});

```

The variables Age and Weight have numeric values, and Smoker has logical values.

Compute the mean, minimum, and maximum for the numeric and logical arrays, Age, Weight, and Smoker, with no grouping.
```

statarray = grpstats(ds,[],{'mean','min','max'})
statarray =

	GroupCount	mean_Age	min_Age	max_Age	mean_Weight
All	100	38.28	25	50	154

```
min_Weight max_Weight mean_Smoker min_Smoker \(\begin{array}{llll}\text { All } 111 & 202 & 0.34 & f a l s e\end{array}\)

The observation name All indicates that all observations in ds were used to compute the summary statistics.

\section*{Group Means for a Matrix Using One or More Grouping Variables}

Load the sample data.
```

load('carsmall')

```

All variables are measured for 100 cars. Origin is the country of origin for each car (France, Germany, Italy, Japan, Sweden, or USA). Cylinders has three unique values, 4,6 , and 8 , indicating the number of cylinders in each car.

Calculate the mean acceleration, grouped by country of origin.
```

means = grpstats(Acceleration,Origin)
means =

```
 18.0500
 16.3778
 15.5000
 15.8867
 16.6000
 14.4377
means is a 6-by- 1 vector of mean accelerations, where each value corresponds to a country of origin.

Calculate the mean acceleration, grouped by both country of origin and number of cylinders.
```

means = grpstats(Acceleration,{Origin,Cylinders})

```
means =
18.0500
16.3375
16.7000
15.5000
15.9143
15.5000
16.6000
17.0818
16.5267
11.6406

There are 18 possible combinations of grouping variable values because Origin has 6 unique values and Cylinders has 3 unique values. Only 10 of the possible combinations appear in the data, so means is a 10 -by- 1 vector of group means corresponding to the observed combinations of values.

Return the group names along with the mean acceleration for each group.
```

[means,grps] = grpstats(Acceleration,{Origin,Cylinders},...
{'mean','gname'})
means =
17.0818
16.5267
11.6406
18.0500
15.9143
15.5000
16.3375
16.7000
16.6000
15.5000

```
grps =
\begin{tabular}{|c|}
\hline ' USA ' \\
\hline 'USA' \\
\hline 'USA' \\
\hline France' \\
\hline 'Japan' \\
\hline 'Japan' \\
\hline 'Germany ' \\
\hline 'Germany ' \\
\hline 'Sweden' \\
\hline Italy ' \\
\hline
\end{tabular}

The output grps shows the 10 observed combinations of grouping variable values. For example, the mean acceleration of 4 -cylinder cars made in France is 18.05.

\section*{Multiple Summary Statistics for a Matrix Organized by Group}

Load the sample data.
load('carsmall')
The variable Acceleration was measured for 100 cars. The variable Origin is the country of origin for each car (France, Germany, Italy, Japan, Sweden, or USA).

Return the minimum, median, and maximum acceleration, grouped by country of origin.
[grpMin, grpMed, grpMax, grp] \(=\)
\(\quad\) grpstats(Acceleration, Origin, \(\ldots\),
grpMin =
8.0000
15.3000
13.9000
12.2000
15.7000
15.5000
grpMed =
14.7000
17.5000
15.7000
15.3000
16.6000
15.5000
grpMax =
```

22.2000
21.9000
18.2000
24.6000
17.5000
15.5000
' USA'
' France
'Japan
Germany
Sweden
Italy'

```
grp \(=\)

The sample car with the lowest acceleration is made in the USA, and the sample car with the highest acceleration is made in Germany.

\section*{Plot Prediction Intervals for a New Observation in Each Group}

Load the sample data.
load('carsmall')

The variable Weight was measured for 100 cars. The variable Model_Year has three unique values, 70, 76, and 82, which correspond to model years 1970, 1976, and 1982.

Calculate the mean weight and \(90 \%\) prediction intervals for each model year.
```

[means,pred,grp] = grpstats(Weight,Model_Year,...
{'mean','predci','gname'},'Alpha',0.1);

```

Plot error bars showing the mean weight and \(90 \%\) prediction intervals, grouped by model year. Label the horizontal axis with the group names.
```

ngrps = length(grp); % Number of groups

```
```

figure()

```
errorbar((1:ngrps)', means, pred(:,2)-means)
set(gca, 'xtick',1:ngrps,'xticklabel',grp)
title('90\% Prediction Intervals for Weight by Year')

\section*{Plot Group Means and Confidence Intervals}

Load the sample data.
```

load('carsmall')

```

The variables Acceleration and Weight are the acceleration and weight values measured for 100 cars. The variable Cylinders is the number of cylinders in each car. The variable Model_Year has three unique values, 70,76 , and 82 , which correspond to model years 1970, 1976, and 1982.

Plot mean acceleration, grouped by Cylinders, with \(95 \%\) confidence intervals.
grpstats(Acceleration, Cylinders, 0.05)

The mean acceleration for cars with 8 cylinders is significantly lower than for cars with 4 or 6 cylinders.

Plot mean acceleration and weight, grouped by Cylinders, and \(95 \%\) confidence intervals. Scale the Weight values by 1000 so the means of Weight and Acceleration are the same order of magnitude.
grpstats([Acceleration, Weight/1000],Cylinders,0.05)

The average weight of cars increases with the number of cylinders, and the average acceleration decreases with the number of cylinders.

Plot mean acceleration, grouped by both Cylinders and Model_Year. Specify \(95 \%\) confidence intervals.
```

grpstats(Acceleration,{Cylinders,Model_Year},0.05)

```


There are nine possible combinations of grouping variable values because there are three unique values in Cylinders and three unique values in Model_Year. The plot does not show 8 -cylinder cars with model year 1982 because the data did not include this combination.

The mean acceleration of 8-cylinder cars made in 1976 is significantly larger than the mean acceleration of 8 -cylinder cars made in 1970.

\section*{Algorithms}
- grpstats treats NaNs as missing values, and removes them from the input data before calculating summary statistics.
- grpstats ignores empty group names.

See Also dataset I
Related - "Summary Statistics Grouped by Category" on page 2-37Examples- "Test Differences Between Category Means" on page 2-28
- "Plot Data Grouped by Category" on page 2-24
- "Calculations on Dataset Arrays" on page 2-111
Concepts • "Dataset Arrays" on page 2-135
- "Grouping Variables" on page 2-51
- "Categorical Arrays" on page 2-41

\section*{Purpose Scatter plot by group}
```

Syntax gscatter(x,y,group)
gscatter(x,y,group,clr,sym,siz)
gscatter(x,y,group,clr,sym,siz,doleg)
gscatter(x,y,group,clr,sym,siz,doleg,xnam, ynam)
h = gscatter(...)

```

\section*{Description}
gscatter (\(x, y\), group) creates a scatter plot of \(x\) and \(y\), grouped by group. \(x\) and \(y\) are vectors of the same size. group is a grouping variable in the form of a categorical variable, vector, string array, or cell array of strings. Alternatively, group can be a cell array containing several grouping variables (such as \{g1 g2 g3\}), in which case observations are in the same group if they have common values of all grouping variables. Points in the same group and appear on the graph with the same marker and color.
gscatter (\(\mathrm{x}, \mathrm{y}\), group, clr, sym, siz) specifies the color, marker type, and size for each group. clr is a string array of colors recognized by the plot function. The default for clr is 'bgrcmyk'. sym is a string array of symbols recognized by the plot command, with the default value '.'. siz is a vector of sizes, with the default determined by the 'DefaultLineMarkerSize' property. If you do not specify enough values for all groups, gscatter cycles through the specified values as needed.
gscatter(\(\mathrm{x}, \mathrm{y}\), group, clr,sym,siz,doleg) controls whether a legend is displayed on the graph (doleg is 'on', the default) or not (doleg is 'off').
gscatter(\(\mathrm{x}, \mathrm{y}\), group, clr, sym, siz,doleg, xnam, ynam) specifies the name to use for the \(x\)-axis and \(y\)-axis labels. If the x and y inputs are simple variable names and xnam and ynam are omitted, gscatter labels the axes with the variable names.
\(\mathrm{h}=\) gscatter (...) returns an array of handles to the lines on the graph.

Examples
Load the cities data and look at the relationship between the ratings for climate (first column) and housing (second column) grouped by city size. We'll also specify the colors and plotting symbols.
load discrim
gscatter(ratings(:,1), ratings(: , 2), group,'br','xo')

\section*{See Also}
gplotmatrix | grpstats | scatter

\section*{gscatter}
How To
- "Grouping Variables" on page 2-51

\section*{Purpose Greater than relation for handles}

\section*{Syntax \\ h1 > h2}

Description \(\quad \mathrm{h} 1>\mathrm{h} 2\) performs element-wise comparisons between handle arrays h 1 and h2. h1 and h2 must be of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions, where each element is an element-wise > result.

If one of h 1 or h2 is scalar, scalar expansion is performed and the result will match the dimensions of the array that is not scalar.
\(\mathrm{tf}=\mathrm{gt}(\mathrm{h} 1, \mathrm{~h} 2)\) stores the result in a logical array of the same dimensions.

\author{
See Also \\ qrandstream \| eq | ge | le | lt | ne
}

\section*{haltonset}

Superclasses qrandset
Purpose Halton quasi-random point sets
Description haltonset is a quasi-random point set class that produces points from the Halton sequence.

\section*{Construction}
haltonset

> Construct Halton quasi-random point set

\section*{Methods Inherited Methods}

Methods in the following table are inherited from qrandset.
\begin{tabular}{ll}
disp & Display qrandset object \\
end & \begin{tabular}{l}
Last index in indexing expression \\
for point set
\end{tabular} \\
length & \begin{tabular}{l}
Length of point set
\end{tabular} \\
ndims & Number of dimensions in matrix \\
net & Generate quasi-random point set \\
scramble & Scramble quasi-random point set \\
size & \begin{tabular}{l}
Number of dimensions in matrix \\
subsref
\end{tabular} \\
& \begin{tabular}{l}
Subscripted reference for \\
qrandset
\end{tabular}
\end{tabular}

\section*{Properties Inherited Properties}

Properties in the following table are inherited from qrandset.
\begin{tabular}{ll}
Dimensions & Number of dimensions \\
Leap & Interval between points
\end{tabular}
\begin{tabular}{ll}
ScrambleMethod & Settings that control scrambling \\
Skip & \begin{tabular}{l}
Number of initial points to omit \\
from sequence
\end{tabular} \\
Type & \begin{tabular}{l}
Name of sequence on which point \\
set \(P\) is based
\end{tabular}
\end{tabular}

\section*{Copy \\ Semantics}

References

See Also
How To

Handle. To learn how this affects your use of the class, see Comparing Handle and Value Classes in the MATLAB Object-Oriented Programming documentation.
[1] Kocis, L., and W. J. Whiten, "Computational Investigations of Low-Discrepancy Sequences," ACM Transactions on Mathematical Software, Vol. 23, No. 2, pp. 266-294, 1997.
sobolset
- "Quasi-Random Point Sets" on page 6-16

\section*{haltonset}

\section*{Examples}

\section*{Purpose Construct Halton quasi-random point set}
```

Syntax
p = haltonset(d)
p = haltonset(d,prop1,val1,prop2,val2,...)
p = haltonset(d,prop1,val1,prop2,val2,...)

```

\section*{Description \\ Syntax}
\(p=\) haltonset \((d)\) constructs a d-dimensional point set \(p\) of the
haltonset class, with default property settings.
p = haltonset(d,prop1,val1,prop2,val2,...) specifies property name/value pairs used to construct \(p\).

The object \(p\) returned by haltonset encapsulates properties of a specified quasi-random sequence. The point set is finite, with a length determined by the Skip and Leap properties and by limits on the size of point set indices (maximum value of \(2^{53}\)). Values of the point set are not generated and stored in memory until you access p using net or parenthesis indexing.

Generate a 3-D Halton point set, skip the first 1000 values, and then retain every 101st point:
```

p = haltonset(3,'Skip',1e3,'Leap',1e2)
p =
Halton point set in 3 dimensions (8.918019e+013 points)
Properties:
Skip : 1000
Leap : 100
ScrambleMethod : none

```

Use scramble to apply reverse-radix scrambling:
p = scramble(\(\mathrm{p}, \mathrm{CR}^{\prime}\) R2')
p =
Halton point set in 3 dimensions (8.918019e+013 points) Properties:

Skip : 1000
Leap : 100
ScrambleMethod : RR2

Use net to generate the first four points:
```

XO = net(p,4)
XO =
0.0928 0.6950 0.0029
0.6958 0.2958 0.8269
0.3013 0.6497 0.4141
0.9087 0.7883 0.2166

```

Use parenthesis indexing to generate every third point, up to the 11th point:
```

X = p(1:3:11,:)
X =
0.0928 0.6950 0.0029
0.9087 0.7883 0.2166
0.3843 0.9840 0.9878
0.6831 0.7357 0.7923

```

\section*{References}

See Also
net | scramble | sobolset

\section*{harmmean}

Purpose Harmonic mean

\section*{Syntax \\ \(\mathrm{m}=\) harmmean \((\mathrm{X})\) harmmean(X,dim)}

Description
\(m=\) harmmean \((X)\) calculates the harmonic mean of a sample. For vectors, harmmean \((x)\) is the harmonic mean of the elements in \(x\). For matrices, harmmean \((X)\) is a row vector containing the harmonic means of each column. For \(N\)-dimensional arrays, harmmean operates along the first nonsingleton dimension of X .
harmmean (\(\mathrm{X}, \mathrm{dim}\)) takes the harmonic mean along dimension dim of X .
The harmonic mean is
\[
m=\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}
\]

Examples The arithmetic mean is greater than or equal to the harmonic mean.
```

x = exprnd(1,10,6);
harmonic = harmmean(x)
harmonic =
0.3382 0.3200 0.3710 0.0540 0.4936 0.0907
average = mean(x)
average =
1.3509 1.1583 0.9741 0.5319 1.0088 0.8122

```

\section*{See Also mean | median | geomean \| trimmean}

Purpose
Syntax
Description
Bivariate histogram
```

hist3(X)
hist3(X,nbins)
hist3(X,ctrs)
hist3(X,'Edges',edges)
N = hist3(X,...)
[N,C] = hist3(X,...)
hist3(...,param1,val1,param2,val2,...)

```
hist3(X) bins the elements of the \(m\)-by- 2 matrix \(X\) into a 10 -by- 10 grid of equally spaced containers, and plots a histogram. Each column of \(\mathbf{X}\) corresponds to one dimension in the bin grid.
hist3(X, nbins) plots a histogram using an nbins(1)-by-nbins (2) grid of bins. hist3(\(X\), 'Nbins', nbins) is equivalent to hist3(\(X\), nbins).
hist3 (\(\mathrm{X}, \mathrm{ctrs}\)), where ctrs is a two-element cell array of numeric vectors with monotonically non-decreasing values, uses a 2 -D grid of bins centered on \(\operatorname{ctrs}\{1\}\) in the first dimension and on \(\operatorname{ctrs}\{2\}\) in the second. hist3 assigns rows of \(X\) falling outside the range of that grid to the bins along the outer edges of the grid, and ignores rows of \(X\) containing NaNs. hist3 (X, ' Ctrs', ctrs) is equivalent to hist3(X, ctrs).
hist3(\(X\), 'Edges ', edges), where edges is a two-element cell array of numeric vectors with monotonically non-decreasing values, uses a 2-D grid of bins with edges at edges \(\{1\}\) in the first dimension and at edges \(\{2\}\) in the second. The \((i, j)\) th bin includes the value \(X(k,:)\) if
```

edges{1}(i) <= X(k,1) < edges{1}(i+1)
edges{2}(j) <= X(k,2) < edges{2}(j+1)

```

Rows of \(X\) that fall on the upper edges of the grid, edges \(\{1\}\) (end) or edges \(\{2\}\) (end), are counted in the (\(I, j\))th or (\(i, J\)) th bins, where I and \(J\) are the lengths of edges \(\{1\}\) and edges \(\{2\}\). hist 3 does not count rows of \(X\) falling outside the range of the grid. Use - Inf and Inf in edges to include all non- NaN values.
\(N=\) hist3(X,...) returns a matrix containing the number of elements of \(X\) that fall in each bin of the grid, and does not plot the histogram.
\([N, C]=\) hist \(3(X, \ldots)\) returns the positions of the bin centers in a 1 -by-2 cell array of numeric vectors, and does not plot the histogram. hist3(ax, \(x, \ldots\)) plots onto an axes with handle ax instead of the current axes. See the axes reference page for more information about handles to plots.
hist3(...,param1, val1,param2, val2,...) allows you to specify graphics parameter name/value pairs to fine-tune the plot.

\section*{Examples}

\section*{Example 1}

Make a 3-D figure using a histogram with a density plot underneath:
```

load seamount
dat = [-y,x]; % Grid corrected for negative y-values
hold on
hist3(dat) % Draw histogram in 2D
n = hist3(dat); % Extract histogram data;
% default to 10x10 bins
n1 = n';
n1( size(n,1) + 1 , size(n,2) + 1 ) = 0;

```

Generate grid for 2-D projected view of intensities:
```

xb = linspace(min(dat(:,1)),max(dat(:,1)),size(n,1)+1);
yb = linspace(min(dat(:,2)),max(dat(:,2)),size(n,1)+1);

```

Make a pseudocolor plot:
h = pcolor(xb,yb,n1);
Set the z-level and colormap of the displayed grid:
```

set(h, 'zdata', ones(size(n1)) * -max(max(n)))
colormap(hot) % heat map
title('Seamount: ...

```

\section*{Data Point Density Histogram and Intensity Map'); grid on}

Display the default 3-D perspective view:
view(3);

Seamount: Data Point Density Histogram and Intensity Map

\section*{Example 2}

Use the car data to make a histogram on a 7 -by- 7 grid of bins.
load carbig
X = [MPG,Weight];
hist3(X,[7 7]);
xlabel('MPG'); ylabel('Weight');

Make a histogram with semi-transparent bars:
hist3(X,[7 7],'FaceAlpha',.65);
xlabel('MPG'); ylabel('Weight');
set(gcf,'renderer','opengl');

Specify bin centers, different in each direction; get back counts, but don't make the plot.
```

cnt = hist3(X, {0:10:50 2000:500:5000});

```

\section*{Example 3}

Make a histogram with bars colored according to height.
```

load carbig
X = [MPG,Weight];
hist3(X,[7 7]);
xlabel('MPG'); ylabel('Weight');
set(gcf,'renderer','opengl');
set(get(gca,'child'),'FaceColor','interp','CDataMode',...
'auto');

```


See Also accumarray | bar | bar3 | hist | histc

\section*{Purpose Plot histogram of categorical data}

Syntax
```

hist(Y)
hist(Y,X)
hist(ax,...)
N = hist(...)
[N,X] = hist(...)

```

Description
hist (Y) plots a histogram bar plot of the counts for each level of the categorical vector \(Y\). If \(Y\) is an \(m\)-by- \(n\) categorical matrix, hist computes counts for each column of \(Y\), and plots a group of \(n\) bars for each categorical level.
hist \((\mathrm{Y}, \mathrm{X})\) plots bars only for the levels specified in \(\mathrm{X} . \mathrm{X}\) is a categorical vector or a cell array of level names as strings.
hist (\(\mathrm{ax}, \ldots\)) plots into the axes with handle ax instead of gca.
\(N=\) hist (...) returns the counts for each categorical level. If \(Y\) is a matrix, hist works down the columns of \(Y\) and returns a matrix of counts with one column for each coluimn of \(Y\) and one row for each cetegorical level.
\([\mathrm{N}, \mathrm{X}]=\) hist (...) returns the categorical levels corresponding to each count in \(N\), or corresponding to each column of \(N\) if \(Y\) is a matrix.

\section*{Examples \\ Create a histogram of age groups from the hospital.mat dataset:}
```

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);
AgeGroup = droplevels(AgeGroup);
hist(AgeGroup)

```


See Also
hist | categorical.levelcounts | categorical.getlevels

\section*{Purpose Histogram with a distribution fit}

Syntax
```

histfit(data)
histfit(data,nbins)
histfit(data,nbins,dist)
h = histfit(___)

```

Description

\section*{Input} Arguments
histfit(data) plots a histogram of values in data using the number of bins equal to the square root of the number of elements in data and fits a normal density function.
histfit(data, nbins) plots a histogram using nbins bins and fits a normal density function.
histfit(data, nbins, dist) plots a histogram with nbins bins and fits a density function from the distribution specified by dist.
h = histfit(\(\qquad\)) returns a vector of handles h , where \(\mathrm{h}(1)\) is the handle to the histogram and \(\mathrm{h}(2)\) is the handle to the density curve. It can include any of the input arguments in previous syntaxes.

\section*{data- Input data}
vector
Input data, specified as a vector.
Example: data \(=\left[\begin{array}{lll}1.5 & 2.5 & 4.6 \\ 1.2 & 3.4\end{array}\right]\)
Example: data \(=\left[\begin{array}{llll}1.5 & 2.5 & 4.6 & 1.2 \\ 3.4\end{array}\right]\)

\section*{Data Types}
double | single
nbins - Number of bins
positive integer | []

Number of bins for the histogram, specified as a positive integer. Default value is the square root of the number of elements in data, rounded up. Use [] for the default number of bins when fitting a distribution.

Example: y \(=\) histfit(\(x, 8\))
Example: y = histfit(x,10,'gamma')
Example: y = histfit(x, [],'weibull')

\section*{Data Types}
double | single

\section*{dist - Distribution to fit}
'normal' (default) | string
Distribution to fit to the histogram, specified as a string. The following table shows the supported distributions.
\begin{tabular}{l|l}
\hline dist & Description \\
\hline 'beta' & Beta \\
\hline 'birnbaumsaunders' & Birnbaum-Saunders \\
\hline 'burr' & Burr Type XII \\
\hline 'exponential' & Exponential \\
\hline 'extreme value' or 'ev' & Extreme value \\
\hline 'gamma' & Gamma \\
\hline \begin{tabular}{l}
'generalized extreme value' \\
or 'gev'
\end{tabular} & Generalized extreme value \\
\hline 'generalized pareto' or 'gp' & Generalized Pareto (threshold 0) \\
\hline 'inversegaussian' & Inverse Gaussian \\
\hline 'logistic' & Logistic \\
\hline 'loglogistic' & Loglogistic \\
\hline 'lognormal' & Lognormal \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline dist & Description \\
\hline 'nakagami' & Nakagami \\
\hline 'negative binomial' or 'nbin' & Negative binomial \\
\hline 'normal' & Normal \\
\hline 'poisson' & Poisson \\
\hline 'rayleigh' & Rayleigh \\
\hline 'rician' & Rician \\
\hline 'tlocationscale' & t location-scale \\
\hline 'weibull' or 'wbl' & \begin{tabular}{l}
Weibull \\
distribution. The density is \\
evaluated at 100 equally spaced \\
points that cover the range of the \\
data in data. It works best with \\
continuously distributed samples.
\end{tabular} \\
\hline 'kernel' & \begin{tabular}{l}
'
\end{tabular} \\
\hline
\end{tabular}

\section*{Data Types \\ char}

\section*{Output \\ Arguments}

\section*{Examples}

\section*{h-Handles for the plot}

Handles for the plot, returned as a vector, where \(\mathrm{h}(1)\) is the handle to the histogram, and \(h(2)\) is the handle to the density curve.

\section*{Data Types}
function_handle

\section*{Histogram with a Normal Distribution Fit}

Generate a sample of size 100 from a normal distribution with mean 10 and variance 1.
rng('default'); \% for reproducibility
\(r=\operatorname{normrnd}(10,1,100,1) ;\)
Construct a histogram with a normal distribution fit.
histfit(r)

\section*{Histogram for a Given Number of Bins}

Generate a sample of size 100 from a normal distribution with mean 10 and variance 1 .
rng('default'); \% for reproducibility
\(r=\operatorname{normrnd}(10,1,100,1)\);
Construct a histogram using six bins with a normal distribution fit.
histfit(r,6)

\section*{Histogram with a Specified Distribution Fit}

Generate a sample of size 100 from a beta distribution with parameters \((3,10)\).
```

rng('default') % for reproducibility
b = betarnd(3,10,100,1);

```

Construct a histogram using 10 bins with a beta distribution fit. histfit(b,10,'beta')

\section*{Histogram with a Kernel Smoothing Function Fit}

Generate a sample of size 100 from a beta distribution with parameters \((3,10)\).
```

rng('default') % for reproducibility
b = betarnd(3,10,[100,1]);

```

Construct a histogram using 10 bins with a smoothing function fit.
histfit(b,10,'kernel')

\section*{Handle for a Histogram with a Distribution Fit}

Generate a sample of size 100 from a normal distribution with mean 10 and variance 1 .

\section*{histfit}
rng('default'); \% for reproducibility
\(r=\operatorname{normrnd}(10,1,100,1) ;\)
Construct a histogram with a normal distribution fit.
h = histfit(r, 10,'normal')
Change the bar colors of the histogram.
set(h(1),'FaceColor',[. 8 . 8 1])
Change the color of the density curve.
set(h(2),'Color',[.2 .2 .2])

See Also
hist | normfit | dfittool

\section*{hmmdecode}

\author{
Purpose \\ \section*{Syntax} \\ \section*{Description}
}

Hidden Markov model posterior state probabilities

PSTATES = hmmdecode(seq,TRANS, EMIS)
[PSTATES,logpseq] = hmmdecode(...)
[PSTATES,logpseq,FORWARD,BACKWARD,S] = hmmdecode(...)
hmmdecode(..., 'Symbols', SYMBOLS)
PSTATES = hmmdecode(seq,TRANS,EMIS) calculates the posterior state probabilities, PSTATES, of the sequence seq, from a hidden Markov model. The posterior state probabilities are the conditional probabilities of being at state \(k\) at step \(i\), given the observed sequence of symbols, sym. You specify the model by a transition probability matrix, TRANS, and an emissions probability matrix, EMIS. TRANS \((i, j)\) is the probability of transition from state \(i\) to state \(j\). EMIS (\(k\), seq) is the probability that symbol seq is emitted from state \(k\).

PSTATES is an array with the same length as seq and one row for each state in the model. The \((i, j)\) th element of PSTATES gives the probability that the model is in state \(i\) at the \(j\) th step, given the sequence seq.

Note The function hmmdecode begins with the model in state 1 at step 0 , prior to the first emission. hmmdecode computes the probabilities in PSTATES based on the fact that the model begins in state 1 .
[PSTATES,logpseq] = hmmdecode(...) returns logpseq, the logarithm of the probability of sequence seq, given transition matrix TRANS and emission matrix EMIS.
[PSTATES,logpseq,FORWARD,BACKWARD,S] = hmmdecode(...) returns the forward and backward probabilities of the sequence scaled by \(S\).
hmmdecode(..., 'Symbols', SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a numeric array or a cell array of the names of the symbols. The default symbols are integers 1 through \(N\), where \(N\) is the number of possible emissions.
```

References [1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological
Sequence Analysis. Cambridge, UK: Cambridge University Press, }1998

```

\section*{Examples}

See Also
hmmgenerate | hmmestimate | hmmviterbi | hmmtrain

\section*{hmmestimate}

Purpose
Syntax

Description

Hidden Markov model parameter estimates from emissions and states
[TRANS,EMIS] = hmmestimate(seq,states)
hmmestimate(...,'Symbols',SYMBOLS)
hmmestimate(...,'Statenames',STATENAMES)
hmmestimate(...,'Pseudoemissions', PSEUDOE)
hmmestimate(...,'Pseudotransitions', PSEUDOTR)
[TRANS,EMIS] = hmmestimate(seq,states) calculates the maximum likelihood estimate of the transition, TRANS, and emission, EMIS, probabilities of a hidden Markov model for sequence, seq, with known states, states.
hmmestimate(...,'Symbols', SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a numeric array or a cell array of the names of the symbols. The default symbols are integers 1 through N , where N is the number of possible emissions.
hmmestimate(...,'Statenames', STATENAMES) specifies the names of the states. STATENAMES can be a numeric array or a cell array of the names of the states. The default state names are 1 through \(M\), where M is the number of states.
hmmestimate(...,'Pseudoemissions', PSEUDOE) specifies pseudocount emission values in the matrix PSEUDO. Use this argument to avoid zero probability estimates for emissions with very low probability that might not be represented in the sample sequence. PSEUDOE should be a matrix of size \(m\)-by- \(n\), where \(m\) is the number of states in the hidden Markov model and \(n\) is the number of possible emissions. If the \(i \rightarrow k\) emission does not occur in seq, you can set \(\operatorname{PSEUDOE}(i, k)\) to be a positive number representing an estimate of the expected number of such emissions in the sequence seq.
hmmestimate(...,'Pseudotransitions',PSEUDOTR) specifies pseudocount transition values. You can use this argument to avoid zero probability estimates for transitions with very low probability that might not be represented in the sample sequence. PSEUDOTR should be a matrix of size \(m\)-by- \(m\), where \(m\) is the number of states in the hidden

Markov model. If the \(i \rightarrow j\) transition does not occur in states, you can set PSEUDOTR (\(i, j\)) to be a positive number representing an estimate of the expected number of such transitions in the sequence states.

\section*{Pseudotransitions and Pseudoemissions}

If the probability of a specific transition or emission is very low, the transition might never occur in the sequence states, or the emission might never occur in the sequence seq. In either case, the algorithm returns a probability of 0 for the given transition or emission in TRANS or EMIS. You can compensate for the absence of transition with the 'Pseudotransitions' and 'Pseudoemissions' arguments. The simplest way to do this is to set the corresponding entry of PSEUDO or
PSEUDOTR to 1. For example, if the transition \(i \rightarrow j\) does not occur in states, set PSEUOTR \((i, j)=1\). This forces \(\operatorname{TRANS}(i, j)\) to be positive.

If you have an estimate for the expected number of transitions \(i \rightarrow j\) in a sequence of the same length as states, and the actual number of transitions \(i \rightarrow j\) that occur in seq is substantially less than what you expect, you can set \(\operatorname{PSEUOTR}(i, j)\) to the expected number. This increases the value of \(\operatorname{TRANS}(i, j)\). For transitions that do occur in states with the frequency you expect, set the corresponding entry of PSEUDOTR to 0 , which does not increase the corresponding entry of TRANS.
If you do not know the sequence of states, use hmmtrain to estimate the model parameters.

\section*{References}

Examples
[1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cambridge, UK: Cambridge University Press, 1998.
```

trans = [0.95,0.05; 0.10,0.90];
emis = [1/6 1/6 1/6 1/6 1/6 1/6;
1/10 1/10 1/10 1/10 1/10 1/2];
[seq,states] = hmmgenerate(1000,trans,emis);
[estimateTR,estimateE] = hmmestimate(seq,states);

```

\section*{hmmestimate}

See Also hmmgenerate | hmmdecode | hmmviterbi \| hmmtrain

\section*{hmmgenerate}

\section*{Purpose Hidden Markov model states and emissions}

Syntax

Description
[seq,states] = hmmgenerate(len,TRANS,EMIS)
hmmgenerate(...,'Symbols',SYMBOLS)
hmmgenerate(...,'Statenames', STATENAMES)
[seq, states] = hmmgenerate(len, TRANS,EMIS) takes a known Markov model, specified by transition probability matrix TRANS and emission probability matrix EMIS, and uses it to generate
- A random sequence seq of emission symbols
- A random sequence states of states

The length of both seq and states is len. TRANS \((i, j)\) is the probability of transition from state \(i\) to state \(j\). EMIS \((k, l)\) is the probability that symbol \(l\) is emitted from state \(k\).

Note The function hmmgenerate begins with the model in state 1 at step 0, prior to the first emission. The model then makes a transition to state \(\mathrm{i}_{1}\), with probability \(T_{1 i}\), and generates an emission \(a_{k_{I}}\) with probability \(E_{i, k_{l} .}\). hmmgenerate returns \(\mathrm{i}_{1}\) as the first entry of states, and \(a_{k_{1}}\) as the first entry of seq.
hmmgenerate(..., 'Symbols', SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a numeric array or a cell array of the names of the symbols. The default symbols are integers 1 through \(N\), where \(N\) is the number of possible emissions.
hmmgenerate(...,'Statenames', STATENAMES) specifies the names of the states. STATENAMES can be a numeric array or a cell array of the names of the states. The default state names are 1 through \(M\), where \(M\) is the number of states.

Since the model always begins at state 1 , whose transition probabilities are in the first row of TRANS, in the following example, the first entry of

\section*{hmmgenerate}
the output states is be 1 with probability 0.95 and 2 with probability 0.05 .
```

Examples
trans = [0.95,0.05;
0.10,0.90];
emis = [1/6 1/6 1/6 1/6 1/6 1/6;
1/10 1/10 1/10 1/10 1/10 1/2];
[seq,states] = hmmgenerate(100,trans,emis)
[seq,states] = hmmgenerate(100,trans,emis,...
'Symbols',{'one','two','three','four','five','six'},...
'Statenames',{'fair';'loaded'})

```

\author{
See Also hmmviterbi | hmmdecode | hmmestimate | hmmtrain
}

Purpose
Hidden Markov model parameter estimates from emissions

\section*{Syntax}

\section*{Description}
```

[ESTTR,ESTEMIT] = hmmtrain(seq,TRGUESS,EMITGUESS)
hmmtrain(...,'Algorithm',algorithm)
hmmtrain(...,'Symbols',SYMBOLS)
hmmtrain(...,'Tolerance',tol)
hmmtrain(...,'Maxiterations',maxiter)
hmmtrain(...,'Verbose', true)
hmmtrain(...,'Pseudoemissions',PSEUDOE)
hmmtrain(...,'Pseudotransitions',PSEUDOTR)

```
[ESTTR,ESTEMIT] = hmmtrain(seq,TRGUESS,EMITGUESS) estimates the transition and emission probabilities for a hidden Markov model using the Baum-Welch algorithm. seq can be a row vector containing a single sequence, a matrix with one row per sequence, or a cell array with each cell containing a sequence. TRGUESS and EMITGUESS are initial estimates of the transition and emission probability matrices. \(\operatorname{TRGUESS}(i, j)\) is the estimated probability of transition from state \(i\) to state \(j\). EMITGUESS (\(i, k\)) is the estimated probability that symbol \(k\) is emitted from state i.
hmmtrain(...,'Algorithm', algorithm) specifies the training algorithm. algorithm can be either 'BaumWelch' or 'Viterbi'. The default algorithm is 'BaumWelch'.
hmmtrain(...,'Symbols', SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a numeric array or a cell array of the names of the symbols. The default symbols are integers 1 through \(N\), where \(N\) is the number of possible emissions.
hmmtrain(...,'Tolerance', tol) specifies the tolerance used for testing convergence of the iterative estimation process. The default tolerance is 1e-4.
hmmtrain(...,'Maxiterations', maxiter) specifies the maximum number of iterations for the estimation process. The default maximum is 100 .

\section*{hmmtrain}
hmmtrain(..., 'Verbose', true) returns the status of the algorithm at each iteration.
hmmtrain(..., 'Pseudoemissions', PSEUDOE) specifies pseudocount emission values for the Viterbi training algorithm. Use this argument to avoid zero probability estimates for emissions with very low probability that might not be represented in the sample sequence. PSEUDOE should be a matrix of size \(m\)-by- \(n\), where \(m\) is the number of states in the hidden Markov model and \(n\) is the number of possible emissions. If the \(i \rightarrow k\) emission does not occur in seq, you can set PSEUDOE (\(\mathrm{i}, \mathrm{k}\)) to be a positive number representing an estimate of the expected number of such emissions in the sequence seq.
hmmtrain(..., 'Pseudotransitions', PSEUDOTR) specifies pseudocount transition values for the Viterbi training algorithm. Use this argument to avoid zero probability estimates for transitions with very low probability that might not be represented in the sample sequence. PSEUDOTR should be a matrix of size \(m\)-by- \(m\), where \(m\) is the number of states in the hidden Markov model. If the \(i \rightarrow j\) transition does not occur in states, you can set PSEUDOTR (\(i, j\)) to be a positive number representing an estimate of the expected number of such transitions in the sequence states.

If you know the states corresponding to the sequences, use hmmestimate to estimate the model parameters.

\section*{Tolerance}

The input argument 'tolerance' controls how many steps the hmmtrain algorithm executes before the function returns an answer. The algorithm terminates when all of the following three quantities are less than the value that you specify for tolerance:
- The log likelihood that the input sequence seq is generated by the currently estimated values of the transition and emission matrices
- The change in the norm of the transition matrix, normalized by the size of the matrix
- The change in the norm of the emission matrix, normalized by the size of the matrix

The default value of 'tolerance' is .0001. Increasing the tolerance decreases the number of steps the hmmtrain algorithm executes before it terminates.

\section*{maxiterations}

The maximum number of iterations, 'maxiterations ', controls the maximum number of steps the algorithm executes before it terminates. If the algorithm executes maxiter iterations before reaching the specified tolerance, the algorithm terminates and the function returns a warning. If this occurs, you can increase the value of 'maxiterations' to make the algorithm reach the desired tolerance before terminating.

\author{
\section*{References} \\ Examples \\ trans \(=[0.95,0.05 ;\) \\ 0.10,0.90]; \\ emis \(=[1 / 6,1 / 6,1 / 6,1 / 6,1 / 6,1 / 6 ;\) \\ 1/10, 1/10, 1/10, 1/10, 1/10, 1/2]; \\ seq1 \(=\) hmmgenerate(100,trans,emis); \\ seq2 = hmmgenerate(200,trans,emis); \\ seqs = \{seq1,seq2\}; \\ [estTR,estE] = hmmtrain(seqs,trans,emis); \\ See Also hmmgenerate | hmmdecode | hmmestimate | hmmviterbi
}

\section*{hmmviterbi}
\begin{tabular}{|c|c|}
\hline Purpose & Hidden Markov model most probable state path \\
\hline Syntax & \[
\begin{aligned}
& \text { STATES = hmmviterbi(seq, TRANS, EMIS) } \\
& \text { hmmviterbi(...,'Symbols', SYMBOLS) } \\
& \text { hmmviterbi(...,'Statenames', STATENAMES) }
\end{aligned}
\] \\
\hline Description & STATES = hmmviterbi(seq,TRANS,EMIS) given a sequence, seq, calculates the most likely path through the hidden Markov model specified by transition probability matrix, TRANS, and emission probability matrix EMIS. TRANS (\(\mathrm{i}, \mathrm{j}\)) is the probability of transition from state \(i\) to state \(j\). \(\operatorname{EMIS}(i, k)\) is the probability that symbol \(k\) is emitted from state i. \\
\hline
\end{tabular}

Note The function hmmviterbi begins with the model in state 1 at step 0 , prior to the first emission. hmmviterbi computes the most likely path based on the fact that the model begins in state 1 .
hmmviterbi(...,'Symbols',SYMBOLS) specifies the symbols that are emitted. SYMBOLS can be a numeric array or a cell array of the names of the symbols. The default symbols are integers 1 through \(N\), where \(N\) is the number of possible emissions.
hmmviterbi(..., 'Statenames', STATENAMES) specifies the names of the states. STATENAMES can be a numeric array or a cell array of the names of the states. The default state names are 1 through \(M\), where \(M\) is the number of states.

\section*{Examples}
```

trans = [0.95,0.05;
0.10,0.90];
emis = [1/6 1/6 1/6 1/6 1/6 1/6;
1/10 1/10 1/10 1/10 1/10 1/2];
[seq,states] = hmmgenerate(100,trans,emis);
estimatedStates = hmmviterbi(seq,trans,emis);

```
```

```
[seq,states] = ...
```

```
[seq,states] = ...
 hmmgenerate(100,trans,emis,...
 hmmgenerate(100,trans,emis,...
 'Statenames',{'fair';'loaded'});
 'Statenames',{'fair';'loaded'});
estimatesStates = ...
estimatesStates = ...
 hmmviterbi(seq,trans,emis,...
 hmmviterbi(seq,trans,emis,...
 'Statenames',{'fair';'loaded'});
```

```
 'Statenames',{'fair';'loaded'});
```

```

\section*{References}

See Also
[1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cambridge, UK: Cambridge University Press, 1998.
hmmgenerate | hmmdecode | hmmestimate | hmmtrain

Purpose Horizontal concatenation for categorical arrays
```

Syntax $\quad C=\operatorname{horzcat}(\operatorname{dim}, A, B, \ldots)$
$C=\operatorname{horzcat}(A, B)$

```

Description \(\quad C=\) horzcat (dim, \(A, B, \ldots\)) horizontally concatenates the categorical arrays A, B, .. . For matrices, all inputs must have the same number of rows. For n-D arrays, all inputs must have the same sizes except in the second dimension. The set of categorical levels for C is the sorted union of the sets of levels of the inputs, as determined by their labels. \(C=\) horzcat \((A, B)\) is called for the syntax [A B].

\section*{See Also \\ cat | vertcat}

\section*{Purpose Horizontal concatenation for dataset arrays}

Syntax ds = horzcat(ds1, ds2, ...)
Description ds = horzcat(ds1, ds2, ...) horizontally concatenates the dataset arrays ds1, ds2, You may concatenate dataset arrays that have duplicate variable names, however, the variables must contain identical data, and horzcat includes only one copy of the variable in the output dataset.

Observation names for all dataset arrays that have them must be identical except for order. horzcat concatenates by matching observation names when present, or by position for datasets that do not have observation names.

\section*{See Also}
cat | vertcat

Purpose Hougen-Watson model

\section*{Syntax \(\quad\) yhat \(=\) hougen \((\) beta,\(x)\)}

Description \(\quad y\) hat \(=\) hougen \((b e t a, x)\) returns the predicted values of the reaction rate, yhat, as a function of the vector of parameters, beta, and the matrix of data, \(X\). beta must have 5 elements and \(X\) must have three columns.
hougen is a utility function for rsmdemo.
The model form is:
\[
\hat{y}=\frac{\beta_{1} x_{2}-x_{3} / \beta_{5}}{1+\beta_{2} x_{1}+\beta_{3} x_{2}+\beta_{4} x_{3}}
\]

\author{
References \\ [1] Bates, D. M., and D. G. Watts. Nonlinear Regression Analysis and Its Applications. Hoboken, NJ: John Wiley \& Sons, Inc., 1988.
}

\section*{See Also \\ rsmdemo}

\section*{Purpose}

Hypergeometric cumulative distribution function

\section*{Syntax}
hygecdf(\(\mathrm{X}, \mathrm{M}, \mathrm{K}, \mathrm{N}\))
Description

\section*{Examples}

See Also

\section*{hygeinv}

Purpose Hypergeometric inverse cumulative distribution function

\section*{Syntax hygeinv (\(\mathrm{P}, \mathrm{M}, \mathrm{K}, \mathrm{N}\))}

Description
hygeinv (\(P, M, K, N\)) returns the smallest integer \(X\) such that the hypergeometric cdf evaluated at \(X\) equals or exceeds P. You can think of P as the probability of observing X defective items in N drawings without replacement from a group of \(M\) items where \(K\) are defective.

\section*{Examples Suppose you are the Quality Assurance manager for a floppy disk} manufacturer. The production line turns out floppy disks in batches of 1,000. You want to sample 50 disks from each batch to see if they have defects. You want to accept \(99 \%\) of the batches if there are no more than 10 defective disks in the batch. What is the maximum number of defective disks should you allow in your sample of 50 ?
```

x = hygeinv(0.99,1000,10,50)
X =

```
 3

What is the median number of defective floppy disks in samples of 50 disks from batches with 10 defective disks?
```

$x=h y g e i n v(0.50,1000,10,50)$
$x=$
0

```

\section*{See Also icdf | hygecdf | hygepdf | hygestat | hygernd}

\section*{Purpose}

Hypergeometric probability density function

\section*{Syntax \\ \(Y=\operatorname{hygepdf}(X, M, K, N)\)}

Description

\section*{Examples}

See Also
\(Y=\) hygepdf(\(X, M, K, N\)) computes the hypergeometric pdf at each of the values in \(X\) using the corresponding size of the population, \(M\), number of items with the desired characteristic in the population, K , or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs.

The parameters in \(M, K\), and \(N\) must all be positive integers, with \(N \leq M\).

The hypergeometric pdf is
\[
y=f(x \mid M, K, N)=\frac{\binom{K}{x}\binom{M-K}{N-x}}{\binom{M}{N}}
\]

The result, \(y\), is the probability of drawing exactly \(x\) of a possible \(K\) items in \(n\) drawings without replacement from a group of \(M\) objects. floppy disks if you select 10 at random?
```

p = hygepdf(0:5,100,20,10)
p =
0.0951 0.2679

```
pdf | hygecdf | hygeinv | hygestat | hygernd
and number of samples drawn, \(N . X, M, K\), and \(N\) can be vectors, matrices, The values in \(X\) must be less than or equal to all the parameter values.

Suppose you have a lot of 100 floppy disks and you know that 20 of them are defective. What is the probability of drawing 0 through 5 defective

Purpose Hypergeometric random numbers
Syntax \(\quad \begin{aligned} R & =\operatorname{hygernd}(M, K, N) \\ R & =\operatorname{hygernd}(M, K, N, m, n, \ldots) \\ R & =\operatorname{hygernd}(M, K, N,[m, n, \ldots])\end{aligned}\)
\(R=\) hygernd \((M, K, N)\) generates random numbers from the hypergeometric distribution with corresponding size of the population, M, number of items with the desired characteristic in the population, K, and number of samples drawn, N. M, K, and N can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of R. A scalar input for \(M, K\), or \(N\) is expanded to a constant array with the same dimensions as the other inputs.
\(R=\) hygernd (\(M, K, N, m, n, \ldots\)) or \(R=\) hygernd (\(M, K, N,[m, n, \ldots]\)) generates an m-by-n-by-... array. The M, K, N parameters can each be scalars or arrays of the same size as \(R\).

Examples numbers \(=\) hygernd \((1000,40,50)\) numbers \(=\)

1
See Also random | hygepdf | hygecdf | hygeinv | hygestat

\section*{Purpose}

Hypergeometric mean and variance

\section*{Syntax}
[MN, V] = hygestat (M, K, N)
[MN, V] = hygestat (\(M, K, N\)) returns the mean of and variance for the hypergeometric distribution with corresponding size of the population, M , number of items with the desired characteristic in the population, K , and number of samples drawn, \(N\). Vector or matrix inputs for M, K, and N must have the same size, which is also the size of MN and V. A scalar input for \(\mathrm{M}, \mathrm{K}\), or N is expanded to a constant matrix with the same dimensions as the other inputs.

The mean of the hypergeometric distribution with parameters \(\mathrm{M}, \mathrm{K}\), and \(N\) is \(N K / M\), and the variance is \(N K(M-K)(M-N) /\left[M^{\wedge} 2(M-1)\right]\).

\section*{Examples}

The hypergeometric distribution approaches the binomial distribution, where \(p=K / M\), as \(M\) goes to infinity.
```

[m,v] = hygestat(10.^(1:4),10.^(0:3),9)
m =
0.9000}00.9000 0.9000 0.9000
v =
0.0900}00.7445 0.8035 0.8094
[m,v] = binostat(9,0.1)
m =
0.9000
v =
0.8100

```

\section*{See Also hygepdf | hygecdf | hygeinv | hygernd}

Purpose Inverse cumulative distribution functions
Syntax \(\quad \begin{aligned} Y & =\operatorname{icdf}(\text { name }, X, A) \\ Y & =\operatorname{icdf}(\text { name }, X, A, B) \\ Y & =\operatorname{icdf}(\text { name }, X, A, B, C)\end{aligned}\)

\section*{Description}
\(Y=\operatorname{icdf}(\) name \(, X, A)\) computes the inverse cumulative distribution function for the one-parameter family of distributions specified by name. Parameter values for the distribution are given in A. The inverse cumulative distribution function is evaluated at the values in \(X\) and its values are returned in Y .

If \(X\) and \(A\) are arrays, they must be the same size. If \(X\) is a scalar, it is expanded to a constant matrix the same size as \(A\). If \(A\) is a scalar, it is expanded to a constant matrix the same size as \(X\).
\(Y\) is the common size of \(X\) and \(A\) after any necessary scalar expansion.
\(Y=\operatorname{icdf}(\) name \(, X, A, B)\) computes the inverse cumulative distribution function for two-parameter families of distributions, where parameter values are given in \(A\) and \(B\).

If \(X, A\), and \(B\) are arrays, they must be the same size. If \(X\) is a scalar, it is expanded to a constant matrix the same size as A and B. If either A or B are scalars, they are expanded to constant matrices the same size as \(X\).
\(Y\) is the common size of \(X, A\), and \(B\) after any necessary scalar expansion.
\(Y=\operatorname{icdf}(\) name \(, X, A, B, C)\) computes the inverse cumulative distribution function for three-parameter families of distributions, where parameter values are given in \(A, B\), and \(C\).

If \(X, A, B\), and \(C\) are arrays, they must be the same size. If \(X\) is a scalar, it is expanded to a constant matrix the same size as \(A, B\), and \(C\). If any of \(A, B\) or \(C\) are scalars, they are expanded to constant matrices the same size as \(X\).
\(Y\) is the common size of \(X, A, B\) and \(C\) after any necessary scalar expansion.
Acceptable strings for name are:
\begin{tabular}{|c|c|c|c|c|}
\hline name & Distribution & \begin{tabular}{l}
Input \\
Parameter \\
A
\end{tabular} & Input Parameter B & Input Parameter C \\
\hline 'beta' or 'Beta' & "Beta Distribution" on page B-4 & a & b & - \\
\hline \begin{tabular}{l}
'bino' or \\
'Binomial'
\end{tabular} & "Binomial Distribution" on page B-7 & n : number of trials & \begin{tabular}{l}
p : \\
probability \\
of success \\
for each trial
\end{tabular} & - \\
\hline birnbaumsaunder & s"Birnbaum-Saunders Distribution" on page B-10 & \(\beta\) & \(\gamma\) & - \\
\hline 'burr' or 'Burr' & "Burr Type XII Distribution" on page B-12 & a: scale parameter & c: shape parameter & k: shape parameter \\
\hline 'chi2' or 'Chisquare & "Chi-Square Distribution" on page B-25 & \(v\) : degrees of freedom & - & - \\
\hline 'exp' or 'Exponential' & "Exponential Distribution" on page B-29 & \(\mu\) : mean & - & - \\
\hline 'ev' or 'Extreme Value' & "Extreme Value Distribution" on page B-32 & \(\mu\) : location parameter & \(\sigma\) : scale parameter & - \\
\hline 'f' or 'F' & "F Distribution" on page B-38 & \begin{tabular}{l}
\(v 1\) : \\
numerator \\
degrees of freedom
\end{tabular} & \(v 2\) : denominator degrees of freedom & - \\
\hline 'gam' or 'Gamma ' & "Gamma Distribution" on page B-40 & a: shape parameter & b: scale parameter & - \\
\hline 'gev' or 'Generalized Extreme Value' & "Generalized Extreme Value Distribution" on page B-45 & k: shape parameter & \(\sigma\) : scale parameter & \(\mu\) : location parameter \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l|l}
\hline name & Distribution & \begin{tabular}{l}
Input \\
Parameter \\
A
\end{tabular} & \begin{tabular}{l}
Input \\
Parameter \\
B
\end{tabular} & \begin{tabular}{l}
Input \\
Parameter \\
C
\end{tabular} \\
\hline \begin{tabular}{l}
'gp' or \\
'Generalized \\
Pareto'
\end{tabular} & \begin{tabular}{l}
"Generalized Pareto \\
Distribution" on page B-50
\end{tabular} & \begin{tabular}{l}
k: tail index \\
(shape) \\
parameter
\end{tabular} & \begin{tabular}{l}
\(\sigma:\) scale \\
parameter
\end{tabular} & \begin{tabular}{l}
\(\mu:\) \\
threshold \\
(location) \\
parameter
\end{tabular} \\
\hline \begin{tabular}{l}
'geo' or \\
'Geometric'
\end{tabular} & \begin{tabular}{l}
"Geometric Distribution" \\
on page B-54
\end{tabular} & \begin{tabular}{l}
p: \\
probability \\
parameter
\end{tabular} & - & - \\
\hline \begin{tabular}{l}
'hyge' or \\
'Hypergeometric'
\end{tabular} & \begin{tabular}{l}
"Hypergeometric \\
Distribution" on page \\
B-56
\end{tabular} & \begin{tabular}{l}
M: size of the \\
population
\end{tabular} & \begin{tabular}{l}
K: number of \\
items with \\
the desired \\
characteristic \\
in the \\
population
\end{tabular} & \begin{tabular}{l}
n: number samples \\
drawn
\end{tabular} \\
\hline \begin{tabular}{l}
'inversegaussian
\end{tabular} & \begin{tabular}{l}
'"Inverse Gaussian \\
Distribution" on page \\
B-58
\end{tabular} & \(\mu\) & \begin{tabular}{l}
\(\lambda\)
\end{tabular} & - \\
\hline 'logistic' & \begin{tabular}{l}
"Logistic Distribution" on \\
page B-62
\end{tabular} & \(\mu\) & \begin{tabular}{l}
\(\mu\) \\
\hline 'loglogistic' \\
"Loglogistic Distribution" \\
on page B-63
\end{tabular} & \(\mu\) \\
\hline \begin{tabular}{l}
\(\mu\)
\end{tabular} & \begin{tabular}{l}
\(\sigma\)
\end{tabular} \\
\hline \begin{tabular}{l}
'logn' or \\
'Lognormal'
\end{tabular} & \begin{tabular}{l}
"Lognormal Distribution" \\
on page B-64
\end{tabular} & \(\mu\) & - \\
\hline 'nakagami' & \begin{tabular}{l}
"Nakagami Distribution" \\
on page B-83
\end{tabular} & \(\mu\) & - \\
\hline \begin{tabular}{l}
'nbin' or \\
'Negative \\
Binomial'
\end{tabular} & \begin{tabular}{l}
"Negative Binomial \\
Distribution" on page \\
B-85
\end{tabular} & \begin{tabular}{l}
r: number \\
of successes
\end{tabular} & \begin{tabular}{l}
p: \\
probability \\
of success in \\
a single trial
\end{tabular} & - \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l|l}
\hline name & Distribution & \begin{tabular}{l}
Input \\
Parameter \\
A
\end{tabular} & \begin{tabular}{l}
Input \\
Parameter \\
B
\end{tabular} & \begin{tabular}{l}
Input \\
Parameter \\
C
\end{tabular} \\
\hline \begin{tabular}{l}
'ncf' or \\
'Noncentral F'
\end{tabular} & \begin{tabular}{l}
"Noncentral F \\
Distribution" on page \\
B-91
\end{tabular} & \begin{tabular}{l}
\(v 1:\) \\
numerator \\
degrees of \\
freedom
\end{tabular} & \begin{tabular}{l}
\(v 2:\) \\
denominator \\
degrees of \\
freedom
\end{tabular} & \begin{tabular}{l}
\(\delta:\) \\
noncentrality \\
parameter
\end{tabular} \\
\hline \begin{tabular}{l}
'nct' or \\
'Noncentral t'
\end{tabular} & \begin{tabular}{l}
"Noncentral t Distribution" \\
on page B-93
\end{tabular} & \begin{tabular}{l}
\(v:\) degrees of \\
freedom
\end{tabular} & \begin{tabular}{l}
\(\delta:\) \\
noncentrality \\
parameter
\end{tabular} & - \\
\hline \begin{tabular}{l}
'ncx2' or \\
'Noncentral \\
Chi-square'
\end{tabular} & \begin{tabular}{l}
"Noncentral Chi-Square \\
Distribution" on page B-89
\end{tabular} & \begin{tabular}{l}
\(v:\) degrees of \\
freedom
\end{tabular} & \begin{tabular}{l}
\(\delta:\) \\
noncentrality \\
parameter
\end{tabular} & - \\
\hline \begin{tabular}{l}
'norm' or \\
'Normal'
\end{tabular} & \begin{tabular}{l}
"Normal Distribution" on \\
page B-96
\end{tabular} & \(\mu:\) mean & \begin{tabular}{l}
\(\sigma:\) standard \\
deviation
\end{tabular} & - \\
\hline \begin{tabular}{l}
'poiss' or \\
'Poisson'
\end{tabular} & \begin{tabular}{l}
"Poisson Distribution" on \\
page B-102
\end{tabular} & \begin{tabular}{l}
\(\lambda:\) mean
\end{tabular} & - & - \\
\hline \begin{tabular}{l}
'rayl' or \\
'Rayleigh'
\end{tabular} & \begin{tabular}{l}
"Rayleigh Distribution" on \\
page B-104
\end{tabular} & \begin{tabular}{l}
b: scale \\
parameter
\end{tabular} & - & - \\
\hline 'rician' & "Rician Distribution" on & \begin{tabular}{l}
s: \\
noncentrality \\
parameter
\end{tabular} & \begin{tabular}{l}
\(\sigma:\) scale \\
parameter
\end{tabular} & - \\
\hline 't' or 'T' & "Student's t Distribution" & \begin{tabular}{l}
\(v:\) degrees of \\
freedom
\end{tabular} & - & - \\
\hline on page B-108
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline name & Distribution & Input Parameter A & Input Parameter B & Input Parameter C \\
\hline 'unid' or 'Discrete Uniform' & \begin{tabular}{l}
"Uniform Distribution \\
(Discrete)" on page B-114
\end{tabular} & N : maximum observable value & - & - \\
\hline \begin{tabular}{l}
'wbl' or \\
'Weibull'
\end{tabular} & "Weibull Distribution" on page B-116 & a: scale parameter & b: shape parameter & - \\
\hline
\end{tabular}

\section*{Examples}

Compute the icdf of the normal distribution with mean 0 and standard deviation 1 at inputs \(0.1,0.3, \ldots, 0.9\) :
```

x1 = icdf('Normal',0.1:0.2:0.9,0,1)
x1 =
-1.2816 -0.5244 0

```

The order of the parameters is the same as for norminv.
Compute the icdfs of Poisson distributions with rate parameters \(0,1, \ldots\), 4 at inputs \(0.1,0.3, \ldots, 0.9\), respectively:
x2 \(=\) icdf('Poisson', 0.1:0.2:0.9, 0:4)
\(\mathrm{x} 2=\)
\(\begin{array}{lllll}\mathrm{NaN} & 0 & 2 & 4 & 7\end{array}\)

The order of the parameters is the same as for poissinv.

\section*{See Also}
cdf | mle | pdf | random
```

Purpose Inverse cumulative distribution function for piecewise distribution
Syntax }\quadX=icdf(obj,P
Description X = icdf(obj,P) returns an array X of values of the inverse cumulative
distribution function for the piecewise distribution object obj, evaluated
at the values in the array P.
Examples Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and
0.9:
t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj)
p =
0.1000
0.9000
q =
-1.7766
1.8432
icdf(obj,p)
ans =
-1.7766
1.8432

```
See Also paretotails | cdf

\section*{ProbDistUnivKernel.icdf}
\begin{tabular}{|c|c|}
\hline Purpose & Return inverse cumulative distribution function (ICDF) for ProbDistUnivKernel object \\
\hline Syntax & \(Y=\operatorname{icdf}(P D, P)\) \\
\hline Description & \(Y=\operatorname{icdf}(P D, P)\) returns \(Y\), an array containing the inverse cumulative distribution function (ICDF) for the ProbDistUnivKernel object \(P D\), evaluated at values in \(P\). \\
\hline Input & PD An object of the class ProbDistunivkernel. \\
\hline & A numeric array of values from 0 to 1 where you want to evaluate the ICDF. \\
\hline Output Arguments & An array containing the inverse cumulative distribution function (ICDF) for the ProbDistUnivKernel object PD. \\
\hline See Also & icdf \\
\hline
\end{tabular}
See Also icdf
\begin{tabular}{ll}
Purpose & \begin{tabular}{l}
Return inverse cumulative distribution function (ICDF) for \\
ProbDistUnivParam object
\end{tabular} \\
Syntax & \(Y=\) icdf \((P D, P)\) \\
Description & \begin{tabular}{l}
\(Y=\) icdf \((P D, P)\) returns \(Y\), an array containing the inverse cumulative \\
distribution function (ICDF) for the ProbDistUnivParam object \(P D\), \\
evaluated at values in \(P\).
\end{tabular} \\
\begin{tabular}{ll}
Input \\
Arguments & \(P D\) \\
Output & \(P\)
\end{tabular}\(\quad\)\begin{tabular}{l}
An object of the class ProbDistUnivParam. \\
Arguments
\end{tabular} & \begin{tabular}{l}
A numeric array of values from 0 to 1 where \\
you want to evaluate the ICDF.
\end{tabular} \\
See Also & icdf
\end{tabular}

\section*{prob.TruncatableDistribution.icdf}
\begin{tabular}{|c|c|}
\hline Purpose & Inverse cumulative distribution function of probability distribution object \\
\hline Syntax & \(y=\operatorname{icdf}(\mathrm{pd}, \mathrm{prob})\) \\
\hline Description & \(\mathrm{y}=\mathrm{icdf}(\mathrm{pd}, \mathrm{prob})\) returns the inverse cumulative distribution function (icdf) values of the probability distribution pd at the probabilities in prob. \\
\hline \multirow[t]{5}{*}{Input Arguments} & pd - Probability distribution probability distribution object \\
\hline & Probability distribution, specified as a probability distribution object. Create a probability distribution object with specified parameter values using makedist. Alternatively, for fittable distributions, create a probability distribution object by fitting it to data using fitdist or dfittool. \\
\hline & \begin{tabular}{l}
prob - Probabilities \\
array of scalar values in the range \([0,1]\)
\end{tabular} \\
\hline & Probabilities at which to compute the icdf, specified as an array of scalar values in the range [0,1]. For example, specifying [. 25 . 5 .75] returns a vector containing three icdf values corresponding to these probabilities. \\
\hline & Data Types single | double \\
\hline \multirow[t]{2}{*}{Output Arguments} & \(y\) - Inverse cumulative distribution function array \\
\hline & Inverse cumulative distribution function (icdf) values of the specified probability distribution, evaluated at the probabilities in prob, returned as an array. y has the same dimensions as x . \\
\hline \multirow[t]{2}{*}{Examples} & Compute Standard Normal Critical Values \\
\hline & Create a standard normal distribution object. \\
\hline
\end{tabular}
```

pd = makedist('Normal')
pd =
NormalDistribution
Normal distribution
mu = 0
sigma = 1

```

Determine the critical values at the \(5 \%\) significance level for a test statistic with a standard normal distribution, by computing the upper and lower \(2.5 \%\) values.
y = icdf(pd,[.025,.975])
\(y=\)
-1.9600 1.9600
Plot the cdf and shade the critical regions.
\(p=\) normspec (y, 0,1, 'outside')

Probability Outside Limits is 0.05

See Also
makedist | fitdist | cdf | pdf | normspec | dfittool

\section*{Purpose Inconsistency coefficient}

Syntax \(\quad Y=\) inconsistent \((Z)\)
Y = inconsistent(Z,d)
Description \(\quad Y=\) inconsistent \((Z)\) computes the inconsistency coefficient for each link of the hierarchical cluster tree \(\mathbf{Z}\), where \(\mathbf{Z}\) is an (\(m-1\))-by-3 matrix generated by the linkage function. The inconsistency coefficient characterizes each link in a cluster tree by comparing its height with the average height of other links at the same level of the hierarchy. The higher the value of this coefficient, the less similar the objects connected by the link.
\(Y=\) inconsistent (\(Z, d\)) computes the inconsistency coefficient for each link in the hierarchical cluster tree \(Z\) to depth \(d\), where \(d\) is an integer denoting the number of levels of the cluster tree that are included in the calculation. By default, \(\mathrm{d}=2\).

The output, Y , is an (\(m-1\))-by- 4 matrix formatted as follows.
\begin{tabular}{l|l}
\hline Column & Description \\
\hline 1 & \begin{tabular}{l}
Mean of the heights of all the links included in the \\
calculation.
\end{tabular} \\
\hline 2 & \begin{tabular}{l}
Standard deviation of the heights of all the links included \\
in the calculation.
\end{tabular} \\
\hline 3 & Number of links included in the calculation. \\
\hline 4 & Inconsistency coefficient. \\
\hline
\end{tabular}

For each link, \(k\), the inconsistency coefficient is calculated as:
\[
Y(k, 4)=(z(k, 3)-Y(k, 1)) / Y(k, 2)
\]

For leaf nodes, nodes that have no further nodes under them, the inconsistency coefficient is set to 0 .

\section*{inconsistent}

\footnotetext{
References [1] Jain, A., and R. Dubes. Algorithms for Clustering Data. Upper Saddle River, NJ: Prentice-Hall, 1988.
[2] Zahn, C. T. "Graph-theoretical methods for detecting and describing Gestalt clusters." IEEE Transactions on Computers. Vol. C-20, Issue 1, 1971, pp. 68-86.

See Also cluster | cophenet | clusterdata | dendrogram | linkage | pdist | squareform
}

\section*{ProbDist.InputData property}

\section*{Purpose Read-only structure containing information about input data to ProbDist object}

\author{
Description
}

InputData is a read-only property of the ProbDist class. InputData is a structure containing information about input data to a ProbDist object. It includes the following fields:
- data
- cens
- freq

\section*{Values}

Possible values for the three fields in the structure are any data supplied to the fitdist function:
- data - Data passed to the fitdist function when creating the ProbDist object. This field is empty if the ProbDist object was created without fitting to data, that is by using the ProbDistUnivParam. ProbDistUnivParam constructor.
- cens - The vector supplied with the 'censoring' parameter when creating the ProbDist object using the fitdist function. This field is empty if the ProbDist object was created without fitting to data, that is by using the ProbDistUnivParam. ProbDistUnivParam constructor.
- freq - The vector supplied with the 'frequency ' parameter when creating the ProbDist object using the fitdist function. This field is empty if the ProbDist object was created without fitting to data, that is by using the ProbDistUnivParam. ProbDistUnivParam constructor.

Use this information to view and compare the data supplied to create distributions.
Purpose Convert categorical array to signed 8-bit integer array
Syntax B = int8(A)
Description \(B=\) int8(A) converts the categorical array \(A\) to a signed 8-bit integerarray. Each element of B contains the internal categorical level code forthe corresponding element of \(A\).Undefined elements of A are assigned the value 0 in B. If A containsmore than intmax ('int8') levels, the internal codes will saturate tointmax('int8') when cast to int8.
See Also double | uint8
How To - "Integers"

\section*{categorical.int16}

Purpose Convert categorical array to signed 16-bit integer array

\section*{Syntax \\ \(B=\) int16(A)}

Description \(B=\) int16(A) converts the categorical array A to a signed 16-bit integer array. Each element of B contains the internal categorical level code for the corresponding element of A.

Undefined elements of A are assigned the value 0 in B.
See Also double | uint16
How To . "Integers"
Purpose Convert categorical array to signed 32 -bit integer array
Syntax B = int32(A)
Description \(B=\) int32(A) converts the categorical array A to a signed 32-bit integerarray. Each element of B contains the internal categorical level code forthe corresponding element of A.Undefined elements of A are assigned the value 0 in B.
See Also double | uint32
How To - "Integers"

Purpose Convert categorical array to signed 64-bit integer array

\section*{Syntax \\ \(B=i n t 64(A)\)}

Description \(\quad B=\) int64 (A) converts the categorical array A to a signed 64-bit integer array. Each element of \(B\) contains the internal categorical level code for the corresponding element of A.
Undefined elements of A are assigned the value 0 in B.
See Also double | uint64
How To . "Integers"

\section*{Purpose Interaction plot for grouped data}
```

Syntax
interactionplot(Y,GROUP)
interactionplot(Y,GROUP,'varnames',VARNAMES)
[h,AX,bigax] = interactionplot(...)

```

\section*{Description}

Examples
Display interaction plots for data with four 3-level factors named 'A', 'B','C', and 'D':
y = randn(1000,1); \% response

\section*{interactionplot}
```

group = ceil(3*rand(1000,4)); % four 3-level factors
interactionplot(y,group,'varnames',{'A','B','C','D'})

```

\(\begin{array}{ll}\text { See Also } & \text { maineffectsplot | multivarichart } \\ \text { How To } & \text { - "Grouping Variables" on page 2-51 }\end{array}\)

\section*{Purpose Set intersection for categorical arrays}

Note In a future release, the behavior of categorical.intersect will change to be consistent with the MATLAB function intersect. This behavior change is optional in R2012a. For a demonstration of using the 'R2012a' flag to preview the future behavior, or the 'legacy' flag to preserve the current behavior in your existing code, see the documentation for intersect.

Syntax
\(C=\) intersect \((A, B)\)
[C,IA,IB] = intersect(A, B)
[...] = intersect(A,B,'rows')
[...] = intersect(...,'R2012a')
[...] = intersect(...,'legacy')
[...] = intersect(A,B, setOrder)
[...] = intersect(A,B,'rows',setOrder)

\section*{Description}
\(C=\) intersect \((A, B)\) for categorical vectors \(A\) and \(B\), returns a categorical vector \(C\) containing the values common to the two vectors with no repetitions. The result C is sorted. The set of categorical levels for \(C\) is the sorted union of the sets of levels of the inputs.
[C,IA,IB] = intersect(A,B) also returns index vectors IA and IB such that \(C=A(I A)\) and \(C=B(I B)\). If there are repeated common values in \(A\) or \(B\), then the index of the last occurrence of each repeated value is returned.
\([\ldots]=\) intersect \((A, B\), 'rows') for categorical matrices \(A\) and \(B\) with the same number of columns, returns the rows common to the two matrices. The rows of the matrix C are sorted. The set of categorical levels for C is the sorted union of the sets of levels of the inputs. The optional outputs IA and IB are index vectors such that \(C=A(I A,:)\) and \(C=B(I B,:)\).
[...] = intersect(...,'R2012a') adopts the future behavior of intersect. You can specify the flag as the final argument with any previous syntax that accepts A, B, or 'rows'.
[...] = intersect(...,'legacy') preserves the current behavior of intersect. You can specify the flag as the final argument with any previous syntax that accepts A, B, or 'rows'.
[...] = intersect(A,B,setOrder) and [...] = intersect (\(\mathrm{A}, \mathrm{B}\), 'rows', setOrder) returns the observations of \(C\) in a specific order. setOrder='sorted ' returns the values or rows of \(C\) in sorted order. setOrder='stable' returns the values or rows of \(C\) in the same order as \(A\). If A and B are row vectors, then \(C\) is also a row vector. Otherwise, \(C\) is a column vector. IA and IB are column vectors. If there are repeated common values in \(A\) or \(B\), then the index of the first occurrence of each repeated value is returned.

See Also
ismember | setdiff | setxor | union | unique

\section*{Purpose \\ Syntax \\ Description}

Set intersection for dataset array observations
\(C=\) intersect \((A, B)\)
\(C=\) intersect(A,B,vars)
C = intersect(A,B,vars,setOrder)
[C,iA,iB] = intersect(__)

\section*{Input Arguments}
\(C=\) intersect \((A, B)\) for dataset arrays \(A\) and \(B\) returns the common set of observations from the two arrays, with repetitions removed. The observations in the dataset array C are in sorted order.
\(C=\) intersect \((A, B\), vars \()\) returns the set of common observations from the two arrays, considering only the variables specified in vars, with repetitions removed. The observations in the dataset array \(C\) are sorted by those variables.

The values for variables not specified in vars for each observation in \(C\) are taken from the corresponding observations in \(A\). If there are multiple observations in A that correspond to an observation in C , then those values are taken from the first occurrence.
\(C=\) intersect (A, B, vars, setOrder) returns the observations in \(C\) in the order specified by setOrder.
\([\mathrm{C}, \mathrm{iA}, \mathrm{iB}]=\) intersect (__) also returns index vectors iA and \(i B\) such that \(C=A(i A,:)\) and \(C=B(i B,:)\). If there are repeated observations in \(A\) or \(B\), then intersect returns the index of the first occurrence. You can use any of the previous input arguments.

\section*{A,B}

Input dataset arrays.

\section*{vars}

Cell array of strings containing variable names or a vector of integers containing variable column numbers, indicating the variables in \(A\) and \(B\) that intersect considers.

Specify vars as [] to use its default value of all variables.

\section*{dataset.intersect}

\section*{setOrder}

Flag indicating the sorting order for the observations in C . The possible values of setOrder are:
\begin{tabular}{ll}
'sorted' & \begin{tabular}{l}
Observations in \(C\) are in sorted order \\
(default).
\end{tabular} \\
'stable' & \begin{tabular}{l}
Observations in \(C\) are in the same order that \\
they appear in \(A\).
\end{tabular}
\end{tabular}

\section*{Output Arguments}

\section*{Examples}

\section*{Intersection of Two Dataset Arrays}

Load sample data.
```

A = dataset('XLSFile','hospitalSmall.xlsx');
B = dataset('XLSFile','hospitalSmall.xlsx','Sheet',2);

```

Return the intersection and index vectors.
\[
[C, i A, i B]=\text { intersect }(A, B) ;
\]
\(C=\)
\begin{tabular}{llllll}
id & name & sex & age & wgt & smoke \\
'TRW-072' & 'WHITE' & 'm' & 39 & 202 & 1
\end{tabular}

There is one observation in common between A and B.
Find the observation in the original dataset arrays.
A(iA,:)
ans =
\begin{tabular}{llllll}
id & name & sex & age & wgt & smoke \\
'TRW-072' & 'WHITE' & 'm' & 39 & 202 & 1
\end{tabular}

B(iB,:)
ans \(=\)
id name sex age wgt smoke
'TRW-072'
dataset \| ismember \| setdiff \| setxor \| sortrows | union \| unique |
See Also
- "Merge Dataset Arrays" on page 2-101

Related
Examples
Concepts • "Dataset Arrays" on page 2-135

\section*{prob.InverseGaussianDistribution}

Superclasses ToolboxFittableParametricDistribution
Purpose Inverse Gaussian probability distribution object
Description prob.InverseGaussianDistribution is an object consisting of parameters, a model description, and sample data for an inverse Gaussian probability distribution.
Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

\section*{Construction}
pd = makedist('InverseGaussian') creates an inverse Gaussian probability distribution object using the default parameter values.
pd = makedist('InverseGaussian','mu',mu,'lambda',lambda) creates an inverse Gaussian probability distribution object using the specified parameter values.

\section*{Input Arguments}

\section*{mu - Scale parameter}

1 (default) | positive scalar value
Scale parameter for the inverse Gaussian distribution, specified as a positive scalar value.

\section*{Data Types \\ single | double}

\section*{lambda - Shape parameter}

1 (default) | positive scalar value
Shape parameter for the inverse Gaussian distribution, specified as a positive scalar value.

\author{
Data Types \\ single | double
}

\section*{Properties}
mu
Scale parameter for the inverse Gaussian distribution, stored as a positive scalar value.

\section*{Data Types}
single | double

\section*{lambda}

Shape parameter for the inverse Gaussian distribution, stored as a positive scalar value.

\section*{Data Types}
single | double

\section*{DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{Data Types}
char

\section*{InputData}

Data used for distribution fitting, stored as a structure containing the following:
- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.

\section*{Data Types}
single | double

\section*{IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated.

\section*{prob.InverseGaussianDistribution}

If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

\section*{Data Types}
logical

\section*{NumParameters}

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

\section*{Data Types \\ single | double}

\section*{ParameterCovariance}

Covariance matrix of the parameter estimates, stored as a \(p\)-by- \(p\) matrix, where \(p\) is the number of parameters in the distribution. The (\(\mathrm{i}, \mathrm{j}\)) element is the covariance between the estimates of the \(i\) th parameter and the \(j\) th parameter. The (\(i, i\)) element is the estimated variance of the ith parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterDescription}

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

\section*{Data Types \\ char}

\section*{Parameterlsfixed}

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

\section*{Data Types}
logical

\section*{ParameterNames}

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

\section*{Data Types}
char

\section*{ParameterValues}

Values of distribution parameters, stored as a vector. This property is read-only.

\section*{Data Types}
single | double

\section*{Truncation}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

\section*{Data Types}
single | double

\section*{Methods Inherited Methods}
\begin{tabular}{ll}
cdf & \begin{tabular}{l}
Cumulative distribution function \\
of probability distribution object
\end{tabular} \\
icdf & \begin{tabular}{l}
Inverse cumulative distribution \\
function of probability \\
distribution object
\end{tabular} \\
iqr & \begin{tabular}{l}
Interquartile range of probability \\
distribution object
\end{tabular} \\
median & \begin{tabular}{l}
Median of probability distribution \\
object
\end{tabular}
\end{tabular}

\section*{prob.InverseGaussianDistribution}
\(\left.\left.\begin{array}{ll}\text { pdf } & \begin{array}{l}\text { Probability density function of } \\ \text { probability distribution object }\end{array} \\ \text { random } & \begin{array}{l}\text { Generate random numbers from } \\ \text { probability distribution object }\end{array} \\ \text { truncate } & \begin{array}{l}\text { Truncate probability distribution } \\ \text { object }\end{array} \\ \text { mean } & \begin{array}{l}\text { Mean of probability distribution } \\ \text { object }\end{array} \\ \text { negloglik } & \begin{array}{l}\text { Negative loglikelihood of } \\ \text { probability distribution object } \\ \text { Confidence intervals for } \\ \text { probability distribution }\end{array} \\ \text { parameters }\end{array} \quad \begin{array}{l}\text { profile likelihood function for } \\ \text { proflik }\end{array} \quad \begin{array}{l}\text { probability distribution object }\end{array}\right\} \begin{array}{l}\text { Standard deviation of probability } \\ \text { distribution object }\end{array}\right\}\)

\section*{Definitions Inverse Gaussian Distribution}

Also known as the Wald distribution, the inverse Gaussian is used to model nonnegative positively skewed data. Inverse Gaussian distributions have many similarities to standard Gaussian (normal) distributions, which lead to applications in inferential statistics.

The inverse Gaussian distribution uses the following parameters.
\begin{tabular}{l|l|l}
\hline Parameter & Description & Support \\
\hline mu & Scale parameter & \(\mu>0\) \\
\hline lambda & Shape parameter & \(\lambda>0\) \\
\hline
\end{tabular}

The probability density function (pdf) is
\[
f(x \mid \mu, \lambda)=\sqrt{\frac{\lambda}{2 \pi x^{3}}} \exp \left\{-\frac{\lambda}{2 \mu^{2} x}(x-\mu)^{2}\right\} \quad ; \quad x>0 .
\]

\section*{Examples Create an Inverse Gaussian Distribution Object Using Default Parameters}

Create an inverse Gaussian distribution object using the default parameter values.
```

pd = makedist('InverseGaussian')
pd =

```

InverseGaussianDistribution

Inverse Gaussian distribution
\(m u=1\)
lambda \(=1\)

\section*{Create an Inverse Gaussian Distribution Object Using Specified Parameters}

Create an inverse Gaussian distribution object by specifying parameter values.
```

pd = makedist('InverseGaussian','mu',2,'lambda',4)
pd =

```

\section*{prob.InverseGaussianDistribution}

InverseGaussianDistribution
```

Inverse Gaussian distribution
mu = 2
lambda = 4

```

Compute the standard deviation of the distribution.
\(\mathrm{s}=\mathrm{std}(\mathrm{pd})\)
s =
1.4142

\section*{See Also makedist | fitdist | dfittool}

Concepts
- "Inverse Gaussian Distribution" on page B-58
- Class Attributes
- Property Attributes

\section*{Purpose Inverse prediction}

Syntax
XO = invpred(X,Y,YO)
[XO,DXLO,DXUP] = invpred(X,Y,YO)
[XO,DXLO, DXUP] = invpred(X,Y,YO,name1,val1,name2,val2,...)

\section*{Description}
\(X 0=\) invpred \((X, Y, Y O)\) accepts vectors \(X\) and \(Y\) of the same length, fits a simple regression, and returns the estimated value \(X 0\) for which the height of the line is equal to YO . The output, XO , has the same size as Y 0 , and \(Y 0\) can be an array of any size.
[XO,DXLO,DXUP] = invpred (X,Y,YO) also computes \(95 \%\) inverse prediction intervals. DXLO and DXUP define intervals with lower bound XO DXLO and upper bound XO+DXUP. Both DXLO and DXUP have the same size as YO.

The intervals are not simultaneous and are not necessarily finite. Some intervals may extend from a finite value to - Inf or +Inf, and some may extend over the entire real line.
[XO,DXLO,DXUP] = invpred(X,Y,YO,name1,val1,name2,val2,...) specifies optional argument name/value pairs chosen from the following list. Argument names are case insensitive and partial matches are allowed.
\begin{tabular}{l|l}
\hline Name & Value \\
\hline 'alpha' & \begin{tabular}{l}
A value between 0 and 1 specifying a \\
confidence level of 100*(1-alpha)\%. Default \\
is alpha=0.05 for 95\% confidence.
\end{tabular} \\
\hline 'predopt' & \begin{tabular}{l}
Either 'observation ', the default value to \\
compute the intervals for X0 at which a new \\
observation could equal Y0, or 'curve' to \\
compute intervals for the XO value at which \\
the curve is equal to YO.
\end{tabular} \\
\hline
\end{tabular}
```

Examples $\quad x=4 *$ rand $(25,1)$;
$y=10+5 * x+r a n d n(s i z e(x)) ;$
scatter( $\mathrm{x}, \mathrm{y}$ )
$x 0=\operatorname{invpred}(x, y, 20)$

```

See Also
polyfit | polyval | polyconf | polytool

\title{
Purpose Inverse permute dimensions of categorical array
}
\[
\text { Syntax } \quad A=\text { ipermute }(B, \text { order })
\]

Description
\(A=\) ipermute \((B\), order \()\) is the inverse of permute. ipermute rearranges the dimensions of the categorical array B so that permute (A, order) will produce B. The array produced has the same values of A but the order of the subscripts needed to access any particular element are rearranged as specified by order. The elements of order must be a rearrangement of the numbers from 1 to n .

\author{
See Also permute
}
Purpose Interquartile range
Syntax \(\mathrm{y}=\mathrm{iqr}(\mathrm{X})\)
iqr(X, dim)
Description \(y=i q r(X)\) returns the interquartile range of the values in \(X\). For vectorinput, y is the difference between the 75 th and the 25 th percentilesof the sample in \(X\). For matrix input, \(y\) is a row vector containing theinterquartile range of each column of \(X\). For \(N\)-dimensional arrays, iqroperates along the first nonsingleton dimension of \(X\).
iqr(\(\mathrm{X}, \mathrm{dim}\)) calculates the interquartile range along the dimension dim of \(X\).
Tips
Examples This Monte Carlo simulation shows the relative efficiency of the IQR to the sample standard deviation for normal data.
```

x = normrnd(0,1,100,100);
s = std(x);
s_IQR = 0.7413*iqr(x);
efficiency = (norm(s-1)./norm(s_IQR-1)).^2
efficiency =
0.3297

```
See Also std \| mad \| range

\section*{ProbDistUnivKernel.iqr}

\section*{Purpose}

Return interquartile range (IQR) for ProbDistUnivKernel object

\section*{Syntax}

Description
\(Y=\operatorname{iqr}(P D)\) returns \(Y\), the interquartile range for the ProbDistUnivKernel object PD. The interquartile range is the distance between the 75 th and 25 th percentiles.

\section*{Input \\ Arguments \\ Output \(Y\) Arguments}

See Also iqr | ProbDistUnivKernel.icdf

\section*{ProbDistUnivParam.iqr}

Purpose Return interquartile range (IQR) for ProbDistUnivParam object
Syntax
\(Y=i q r(P D)\)

Description
\(Y=\) iqr (\(P D\)) returns \(Y\), the interquartile range for the ProbDistUnivParam object \(P D\). The interquartile range is the distance between the 75 th and 25 th percentiles.

\section*{Input \\ \(P D\) \\ Arguments \\ Output \(Y\) \\ Arguments}

See Also iqr | ProbDistUnivParam.icdf

\section*{Purpose Interquartile range of probability distribution object}
Syntax
\(r=i q r(p d)\)

Description

Input
Arguments
\(r=i q r(p d)\) returns the interquartile range \(r\) of the probability distribution pd.

\author{
pd - Probability distribution
}
probability distribution object
Probability distribution, specified as a probability distribution object. Create a probability distribution object with specified parameter values using makedist. Alternatively, for fittable distributions, create a probability distribution object by fitting it to data using fitdist or dfittool.

\section*{Output r-Interquartile range \\ Arguments}

\section*{Examples}

\section*{Interquartile Range of a Fitted Distribution}

Load the sample data. Create a vector containing the first column of students' exam grade data.
load examgrades;
\(x=\operatorname{grades}(:, 1) ;\)
x = grades(:,1);
Crete a normal distribution object by fitting it to the data.
```

pd = fitdist(x,'Normal')
pd =

```

NormalDistribution

\section*{prob.TruncatableDistribution.iqr}
```

Normal distribution
mu = 75.0083 [73.4321, 76.5846]
sigma = 8.7202 [7.7391, 9.98843]

```

Compute the interquartile range of the fitted distribution.
```

r = iqr(pd)

```
\(r=\)
11.7634

The returned result indicates that the difference between the 75 th and 25 th percentile of the students' grades is 11.7634 .

Use icdf to determine the 75 th and 25 th percentiles of the students' grades.
```

y = icdf(pd,[0.25,0.75])
y =
69.1266 80.8900

```

Calculate the difference between the 75 th and 25 th percentiles. This yields the same result as iqr.
```

y(2)-y(1)
ans =
11.7634

```

Use boxplot to visualize the interquartile range.
```

boxplot(x)

```


The top line of the box shows the 75th percentile, and the bottom line shows the 25th percentile. The center line shows the median, which is the 50th percentile.

\section*{classregtree.isbranch}

Purpose Test node for branch
Syntax \(\quad \begin{aligned} \text { ib } & =\text { isbranch }(t) \\ \text { ib } & =\text { isbranch }(t, \text { nodes })\end{aligned}\)
Description
ib \(=\) isbranch(t\()\) returns an \(n\)-element logical vector ib that is true for each branch node and false for each leaf node.
ib = isbranch(t, nodes) takes a vector nodes of node numbers and returns a vector of logical values for the specified nodes.

\section*{Examples Create a classification tree for Fisher's iris data:}
```

load fisheriris;
t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
class = setosa
if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
class = virginica
if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
class = virginica
class = versicolor
class = virginica
view(t)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & - \\
\hline Click to display: & Identity & \(\checkmark\) & Magnification: & 100\% & \(\checkmark\) & Pruning level: & 0 of 4 & \\
\hline
\end{tabular}

```

ib = isbranch(t)
ib =
1
0
1
1
0
1
0
0

```

\section*{classregtree.isbranch}

0

\section*{References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.}

\author{
See Also \\ classregtree | cutvar | numnodes
}
Purpose True for empty categorical array
Syntax

TF = isempty (A)

Description \(\quad \begin{aligned} & \text { TF }=\text { isempty }(A) \text { returns true (1) if } A \text { is an empty categorical array } \\ & \text { and false (0) otherwise. An empty array has no elements, that is } \\ & \text { numel }(A)==0 .\end{aligned}\)
See Also numel | size

\section*{dataset.isempty}

Purpose True for empty dataset array

\section*{Syntax \(\quad\) tf \(=\) isempty \((A)\)}

Description \(\quad t f=\) isempty \((A)\) returns true (1) if \(A\) is an empty dataset and false (0) otherwise. An empty array has no elements, that is \(\operatorname{prod}(\operatorname{size}(A))==0\).

See Also size

\section*{Purpose True if categorical arrays are equal}

\section*{Syntax}

TF = isequal(A,B)
TF = isequal \((A, B, C, \ldots)\)
Description \(\quad\) TF \(=\) isequal \((A, B)\) is true (1) if the categorical arrays \(A\) and \(B\) are the same class, have the same size and the same sets of levels, and contain the same values, and false (0) otherwise.

TF = isequal (\(\mathrm{A}, \mathrm{B}, \mathrm{C}, \ldots\)) is true (1) if all the input arguments are equal.

Elements with undefined levels are not considered equal to each other.

\section*{See Also \\ getlabels}

\section*{Purpose Test for levels}

\section*{Syntax \\ I = islevel(levels,A)}

Description
I = islevel(levels, A) returns a logical array I the same size as the string, cell array of strings, or 2-D character matrix levels. I is true (1) where the corresponding element of levels is the label of a level in the categorical array A, even if the level contains no elements. I is false (0) otherwise.

Examples
Display age levels in the data in hospitl.mat, before and after dropping occupied levels:
load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','\%d'),\{'s'\});
disp(labels')
'Os' '10s' '20s' '30s' '40s' '50s' '60s' '70s' '80s' '90s'
AgeGroup = ordinal(hospital.Age,labels,[],edges);
I = islevel(labels,AgeGroup);
disp(I')
\(\begin{array}{llllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\)
AgeGroup = droplevels(AgeGroup);
I = islevel(labels, AgeGroup);
disp(I')
\(\begin{array}{llllllllll}0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\)

\author{
See Also ismember \| isundefined
}
\begin{tabular}{ll}
Purpose & Test for membership \\
Syntax & \(I=\) ismember (A, levels) \\
& {\([I, I D X]=\) ismember (A, levels) }
\end{tabular}

Description I = ismember (A, levels) returns a logical array I the same size as the categorical array A. I is true (1) where the corresponding element of A is one of the levels specified by the labels in the categorical array, cell array of strings, or 2-D character array levels. I is false (0) otherwise.
[I,IDX] = ismember(A,levels) also returns an array of indices IDX containing the highest absolute index in levels for each element in A whose level is a member of levels, and 0 if there is no such index.

\section*{Examples Example 1}

For nominal data:
```

load hospital
sex = hospital.Sex; % Nominal
smokers = hospital.Smoker; % Logical
I = ismember(sex(smokers),'Female');
I(1:5)
ans =
0
1
0
0
O

```

The use of ismember above is equivalent to:
I = (sex(smokers) == 'Female');

\section*{Example 2}

For ordinal data:
load hospital
edges = 0:10:100;

\section*{ordinal.ismember}
```

labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);
I = ismember(AgeGroup(1:5),{'20s','30s'})
I =
1
0
1
0
0

```

See Also islevel | isundefined

\section*{Purpose \\ True for elements of categorical array in set}

Note In a future release, the behavior of categorical.ismember will change to be consistent with the MATLAB function ismember. This behavior change is optional in R2012a. For a demonstration of using the 'R2012a' flag to preview the future behavior, or the 'legacy' flag to preserve the current behavior in your existing code, see the documentation for ismember.

Syntax \(\quad\) TF \(=\) ismember \((A, B)\)
[TF,LOCB] = ismember(A,B)
[...] = ismember(A,B,'rows')
[...] = intersect(...,'R2012a')
[...] = intersect(...,'legacy')
Description
TF = ismember \((A, B)\) for categorical arrays \(A\) and \(B\), returns a logical array the same size as A, containing true (1) where the elements of A are in B, and false (0) otherwise. B can also be a cell array of strings or two-dimensional character array containing level labels.
[TF,LOCB] = ismember(A,B) also returns an index array LOCB containing the highest absolute index in \(B\) for each element in \(A\) which is a member of B , and 0 if there is no such index.
[...] = ismember (A, B, 'rows'), for categorical matrices \(A\) and \(B\) with the same number of columns, returns a logical vector containing true (1) where the rows of A are also rows of \(B\), and false (0) otherwise. The optional output LOCB is an index vector containing the highest absolute index in \(B\) for each row in \(A\) which is a member of \(B\) and 0 if there is no such index.
[...] = intersect(...,'R2012a') adopts the future behavior of ismember. You can specify the flag as the final argument with any previous syntax that accepts A, B, or 'rows'.

\section*{categorical.ismember}
[...] = intersect(...,'legacy') preserves the current behavior of ismember. You can specify the flag as the final argument with any previous syntax that accepts A, B, or 'rows'.

See Also intersect | islevel | setdiff | setxor | union | unique

\section*{Purpose}

Dataset array elements that are members of set
Syntax
LiA = ismember(A,B)
LiA = ismember(A,B,vars)
[LiA,LocB] = ismember(\(\qquad\)
\(\operatorname{LiA}=\) ismember \((A, B)\) for dataset arrays \(A\) and \(B\) returns a vector of logical values the same length as \(A\). The output vector, LiA, has value 1 (true) in the elements that correspond to observations in \(A\) that are also present in \(B\), and 0 (false) otherwise.

LiA = ismember (\(A, B\), vars) returns a vector of logical values the same length as A. The output vector, LiA, has value 1 (true) in the elements that correspond to observations in \(A\) that are also present in \(B\) for the variables specified in vars only, and 0 (false) otherwise.
[LiA, LocB] = ismember (__) also returns a vector the same length as \(A\) containing the index to the first observation in \(B\) that corresponds to each observation in \(A\), or 0 if there is no such observation. You can use any of the previous input arguments.

\section*{Input Arguments}

A
Query dataset array, containing the observations to be found in B.

\section*{B}

Set dataset array. When an observation in A is found in B, for all variables or only those variables specified in vars, the corresponding element of LiA is 1 .

\section*{vars}

Cell array of strings containing variable names or a vector of integers containing variable column numbers, indicating which variables to match observations on in A and B.

\section*{dataset.ismember}

\section*{Output \\ LiA}

Arguments
Vector of logical values the same length as A. LiA has value 1 (true) when the corresponding observation in \(A\) is present in \(B\). Otherwise, LiA has value 0 (false).

If you specify vars, LiA has value 1 when the corresponding observation in \(A\) is present in \(B\) for the variables in vars only.

LocB
Vector the same length as A containing the index to the first observation in \(B\) that corresponds to each observation in \(A\), for all variables or only those variables specified in vars.

\section*{Examples Find Observations That Are Members of a Dataset Array}

Load sample data.
load('hospital')
B = hospital(1:50,1:5);
This set dataset array, B, has 50 observations on 5 variables.
Specify a query dataset array.
```

rng('default')
rIx = randsample(100,10);
A = hospital(rIx,1:5)
A =

```
\begin{tabular}{llllll}
& LastName & Sex & Age & Weight & Smoker \\
YLN-495 & 'COLEMAN' & Male & 39 & 188 & false \\
LQW-768 & 'TAYLOR' & Female & 31 & 132 & false \\
DGC-290 & 'BUTLER' & Male & 38 & 184 & true \\
DAU-529 & 'REED' & Male & 50 & 186 & true \\
REV-997 & 'ALEXANDER' & Male & 25 & 171 & true \\
QEQ-082 & 'COX' & Female & 28 & 111 & false \\
AGR-528 & 'SIMMONS' & Male & 45 & 181 & false
\end{tabular}
\begin{tabular}{ll}
PUE-347 & 'YOUNG ' \\
HVR-372 & 'RUSSELL' \\
XUE-826 & 'JACKSON '
\end{tabular}
Female
Male
Male

25
44
25
114
188
174
false
true
false

Check which observations in A are present in B.
LiA \(=\) ismember \((A, B)\)
LiA =
```

0
1
0
0
0
0
0
1
0
1

```

Display the observations in A that are present in B.
A(LiA,:)
ans =
\begin{tabular}{llllll}
& LastName & Sex & Age & Weight & Smoker \\
LQW-768 & 'TAYLOR' & Female & 31 & 132 & false \\
PUE-347 & 'YOUNG' & Female & 25 & 114 & false \\
XUE-826 & 'JACKSON' & Male & 25 & 174 & false
\end{tabular}

Find the location of the observations in B.
\([\sim, \operatorname{LocB}]=\) ismember \((A, B)\)
LocB \(=\)

\section*{dataset.ismember}
Display the observations in B that match observations in A.
\(B(\operatorname{LocB}(L o c B>0),:)\)
ans =
\begin{tabular}{llllll}
& LastName & Sex & Age & Weight & Smoker \\
LQW-768 & 'TAYLOR' & Female & 31 & 132 & false \\
PUE-347 & 'YOUNG' & Female & 25 & 114 & false \\
XUE-826 & 'JACKSON' & Male & 25 & 174 & false
\end{tabular}

\footnotetext{
See Also dataset | intersect | setdiff | setxor | sortrows | union | unique |

Concepts
- "Dataset Arrays" on page 2-135
}

\section*{Purpose \\ Find dataset array elements with missing values}

Syntax
I = ismissing(ds)
I = ismissing(ds,Name,Value)

Description

\section*{Input Arguments}

I = ismissing(ds) returns a logical array that indicates which elements in the dataset array, ds, contain a missing value. By default, ismissing recognizes NaN as a missing value in numeric variables, as a missing value in string variables, and <undefined> as a missing value in categorical arrays.
- ds2 = ds(~any(I,2),:) creates a new dataset array containing only the complete observations in ds.
- ds2 = ds(:, ~any (I,1)) creates a new dataset array containing only the variables from ds with no missing values.

I = ismissing(ds,Name, Value) returns missing value indices with additional options specified by one or more Name, Value pair arguments.

\section*{ds}
dataset array

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'NumericTreatAsMissing'}

\section*{dataset.ismissing}
r of numeric values to treat as missing value indicators in floating point ds variables. ismissing always treats a NaN value as a missing value.

\section*{'StringTreatAsMissing'}

String or cell array of strings to treat as missing value indicators in string ds variables. ismissing always treats the empty string ' ' as a missing value.

\section*{Output Arguments \\ I}

Logical array indicating which elements in ds contain a missing value. I is the same size as ds, with value 1 for elements that contain a missing value.

\section*{See Also \\ dataset | isempty | isnanisundefined | replaceWithMissing |}
Related
Examples
- "Clean Messy and Missing Data" on page 2-117

Concepts
- "Dataset Arrays" on page 2-135
Purpose True if categorical array is scalar
Syntax TF = isscalar(A)
Description TF = isscalar(A) returns true (1) if the categorical array A is a 1-by-1 matrix, and false (0) otherwise.
See Also isempty | isvector | size

Purpose Test for undefined elements
Syntax I = isundefined (A)
Description I = isundefined (A) returns a logical array I the same size as the categorical array A. I is true (1) where the corresponding element of A is not assigned to any level. I is false (0) where the corresponding element of A is assigned to a level.

Examples Create and display undefined levels in an ordinal array:
```

A = ordinal([[1 2 3 2 1],{'lo','med','hi'})
A =
lo med hi med lo
A = droplevels(A,{'med','hi'})
Warning: OLDLEVELS contains categorical levels that
were present in A, caused some array elements to
have undefined levels.
A =
lo <undefined> <undefined> <undefined> lo
I = isundefined(A)
I =
0

```

See Also islevel | ismember

\section*{Purpose Test handle validity}

\section*{Syntax tf = isvalid(h)}

Description \(\quad \mathrm{tf}=\) isvalid(h) performs an element-wise check for validity on the handle elements of \(h\). The result is a logical array of the same dimensions as h , where each element is the element-wise validity result.

A handle is invalid if it has been deleted or if it is an element of a handle array and has not yet been initialized.

See Also delete | qrandstream
Purpose True if categorical array is vector

\section*{Syntax \\ TF = isvector(A)}

Description TF = isvector (A) returns true (1) if the categorical array \(A\) is a 1-by- \(n\) or \(n\)-by- 1 vector, where \(n>=0\), and false (0) otherwise.

See Also isempty | isscalar | size

Purpose Number of iterations
Description The number of iterations of the algorithm.

Note This property applies only to gmdistribution objects constructed with fit.

\section*{iwishrnd}

Purpose Inverse Wishart random numbers
\begin{tabular}{ll}
Syntax & W \(=\) iwishrnd \((T a u, d f)\) \\
& W \(=\) iwishrnd (Tau, df, DI) \\
{\([W, D I]=\) iwishrnd(Tau,df) }
\end{tabular}

Description

See Also
wishrnd
How To . "Inverse Wishart Distribution" on page B-59
\begin{tabular}{|c|c|}
\hline Purpose & Jackknife sampling \\
\hline Syntax & ```
jackstat = jackknife(jackfun,X)
jackstat = jackknife(jackfun,X,Y,...)
jackstat = jackknife(jackfun,...,'Options',option)
``` \\
\hline Description & jackstat = jackknife(jackfun, X) draws jackknife data samples from the \(n\)-by-p data array \(X\), computes statistics on each sample using the function jackfun, and returns the results in the matrix jackstat. jackknife regards each row of \(X\) as one data sample, so there are \(n\) data samples. Each of the \(n\) rows of \(j\) ackstat contains the results of applying jackfun to one jackknife sample. jackfun is a function handle specified with @. Row i of jackstat contains the results for the sample consisting of \(X\) with the ith row omitted:
```

s = x;
s(i,:) = [];
jackstat(i,:) = jackfun(s);

``` \\
\hline & \begin{tabular}{l}
If jackfun returns a matrix or array, then this output is converted to a row vector for storage in jackstat. If X is a row vector, it is converted to a column vector. \\
jackstat \(=\) jackknife(jackfun, X,Y,...) accepts additional arguments to be supplied as inputs to jackfun. They may be scalars, column vectors, or matrices. jackknife creates each jackknife sample by sampling with replacement from the rows of the non-scalar data arguments (these must have the same number of rows). Scalar data are passed to jackfun unchanged. Non-scalar arguments must have the same number of rows, and each jackknife sample omits the same row from these arguments. \\
jackstat = jackknife(jackfun,...,'Options',option) provides an option to perform jackknife iterations in parallel, if the Parallel Computing Toolbox is available. Set 'Options ' as a structure you create with statset. jackknife uses the following field in the structure:
\end{tabular} \\
\hline
\end{tabular}

\title{
'UseParallel' If true and if a matlabpool of the Parallel Computing Toolbox is open, use multiple processors to compute jackknife iterations. If the Parallel Computing Toolbox is not installed, or a matlabpool is not open, computation occurs in serial mode. Default is false, or serial computation.
}

\section*{Examples}

Estimate the bias of the MLE variance estimator of random samples taken from the vector y using jackknife. The bias has a known formula in this problem, so you can compare the jackknife value to this formula.
```

sigma = 5;

```
y = normrnd(0,sigma,100,1);
m = jackknife(@var, y, 1);
n = length(y);
bias = -sigma^2 / n \% known bias formula
jbias \(=(n-1) *(m e a n(m)-\operatorname{var}(y, 1)) \%\) jackknife bias estimate
bias =
    -0.2500
jbias =
    -0.3378
See Also

bootstrp | random | randsample | hist | ksdensity
Tutorials - "Jackknife" on page 3-19

Purpose
Jarque-Bera test
Syntax
h = jbtest(x)
h = jbtest(x,alpha)
[h,p] = jbtest(...)
[h,p,jbstat] = jbtest(...)
[h, p,jbstat,critval] = jbtest(...)
[h,p,...] = jbtest(x,alpha,mctol)

\section*{Description}
\(\mathrm{h}=\mathrm{jbtest}(\mathrm{x})\) performs a Jarque-Bera test of the null hypothesis that the sample in vector \(x\) comes from a normal distribution with unknown mean and variance, against the alternative that it does not come from a normal distribution. The test is specifically designed for alternatives in "Generating Data Using the Pearson System" on page \(6-26\) of distributions. The test returns the value \(h=1\) if it rejects the null hypothesis at the \(5 \%\) significance level, and \(h=0\) if it cannot. The test treats NaN values in x as missing values, and ignores them.

The Jarque-Bera test is a two-sided goodness-of-fit test suitable when a fully-specified null distribution is unknown and its parameters must be estimated. The test statistic is
\[
J B=\frac{n}{6}\left(s^{2}+\frac{(k-3)^{2}}{4}\right)
\]
where \(n\) is the sample size, \(s\) is the sample skewness, and \(k\) is the sample kurtosis. For large sample sizes, the test statistic has a chi-square distribution with two degrees of freedom.

Jarque-Bera tests often use the chi-square distribution to estimate critical values for large samples, deferring to the Lilliefors test (see lillietest) for small samples. jbtest, by contrast, uses a table of critical values computed using Monte-Carlo simulation for sample sizes less than 2000 and significance levels between 0.001 and 0.50 . Critical values for a test are computed by interpolating into the table, using the analytic chi-square approximation only when extrapolating for larger sample sizes.
\(\mathrm{h}=\mathrm{jbtest}(\mathrm{x}, \mathrm{alpha})\) performs the test at significance level alpha. alpha is a scalar in the range [0.001, 0.50]. To perform the test at a significance level outside of this range, use the motol input argument.
\([\mathrm{h}, \mathrm{p}]=\mathrm{jbtest}(\ldots)\) returns the \(p\) value p , computed using inverse interpolation into the table of critical values. Small values of \(p\) cast doubt on the validity of the null hypothesis. jbtest warns when \(p\) is not found within the tabulated range of [0.001, 0.50], and returns either the smallest or largest tabulated value. In this case, you can use the mctol input argument to compute a more accurate \(p\) value.
[h, p,jbstat] \(=\) jbtest(...) returns the test statistic jbstat.
[h,p,jbstat,critval] = jbtest(...) returns the critical value critval for the test. When jbstat > critval, the null hypothesis is rejected at significance level alpha.
[h,p,...] = jbtest(x,alpha,mctol) computes a Monte-Carlo approximation for \(p\) directly, rather than interpolating into the table of pre-computed values. This is useful when alpha or \(p\) lie outside the range of the table. jbtest chooses the number of Monte Carlo replications, mcreps, large enough to make the Monte Carlo standard error for \(p\), \(\operatorname{sqrt}\left(p^{*}(1-p) / m c r e p s\right)\), less than mctol.

\section*{Examples Use jbtest to determine if car mileage, in miles per gallon (MPG),} follows a normal distribution across different makes of cars:
```

load carbig
[h,p] = jbtest(MPG)
h =
1
p =
0.0022

```

The \(p\) value is below the default significance level of \(5 \%\), and the test rejects the null hypothesis that the distribution is normal.

With a log transformation, the distribution becomes closer to normal, but the \(p\) value is still well below \(5 \%\) :
```

[h, p] = jbtest(log(MPG))
h =
1
p =
0.0078

```

Decreasing the significance level makes it harder to reject the null hypothesis:
```

[h, p] = jbtest(log(MPG),0.0075)
$\mathrm{h}=$
0
$\mathrm{p}=$
0.0078

```

\section*{References}
[1] Jarque, C. M., and A. K. Bera. "A test for normality of observations and regression residuals." International Statistical Review. Vol. 55, No. 2, 1987, pp. 163-172.
[2] Deb, P., and M. Sefton. "The Distribution of a Lagrange Multiplier Test of Normality." Economics Letters. Vol. 51, 1996, pp. 123-130. This paper proposed a Monte Carlo simulation for determining the distribution of the test statistic. The results of this function are based on an independent Monte Carlo simulation, not the results in this paper.

Purpose Johnson system random numbers
Syntax \(\quad \begin{aligned} & r=\text { johnsrnd(quantiles, } m, n) \\ & r=\text { johnsrnd(quantiles) } \\ & \\ & {[r, \text { type }]=j \text { johnsrnd }(\ldots)} \\ & \\ & {[r, \text { type }, \text { coefs }]=\text { johnsrnd }(\ldots)}\end{aligned}\)

\section*{Description}
\(r=j o h n s r n d(q u a n t i l e s, m, n)\) returns an \(m\)-by-n matrix of random numbers drawn from the distribution in the Johnson system that satisfies the quantile specification given by quantiles. quantiles is a four-element vector of quantiles for the desired distribution that correspond to the standard normal quantiles [ \(-1.5-0.50 .51 .5]\). In other words, you specify a distribution from which to draw random values by designating quantiles that correspond to the cumulative probabilities [0.067 0.309 0.691 0.933]. quantiles may also be a 2-by-4 matrix whose first row contains four standard normal quantiles, and whose second row contains the corresponding quantiles of the desired distribution. The standard normal quantiles must be spaced evenly.

Note Because \(r\) is a random sample, its sample quantiles typically differ somewhat from the specified distribution quantiles.
\(r=\) johnsrnd(quantiles) returns a scalar value.
\(r=\) johnsrnd(quantiles, \(m, n, \ldots\) ) or \(r=\)
johnsrnd(quantiles, \(m, n, \ldots]\) ) returns an \(m\)-by-n-by-... array.
[ \(r\), type] \(=\) johnsrnd (...) returns the type of the specified distribution within the Johnson system. type is 'SN', 'SL', 'SB', or 'SU'. Set \(m\) and \(n\) to zero to identify the distribution type without generating any random values.

The four distribution types in the Johnson system correspond to the following transformations of a normal random variate:
- 'SN ' - Identity transformation (normal distribution)
- 'SL' - Exponential transformation (lognormal distribution)
- 'SB' - Logistic transformation (bounded)
- 'SU' - Hyperbolic sine transformation (unbounded)
[r,type,coefs] = johnsrnd(...) returns coefficients coefs of the transformation that defines the distribution. coefs is [gamma, eta, epsilon, lambda]. If \(z\) is a standard normal random variable and \(h\) is one of the transformations defined above, \(r=\) lambda*h( \(z\)-gamma)/eta) +epsilon is a random variate from the distribution type corresponding to \(h\).

\section*{Examples}

Generate random values with longer tails than a standard normal:
```

r = johnsrnd([-1.7 -.5 .5 1.7],1000,1);
qqplot(r);

```


Generate random values skewed to the right:
\(r=j o h n s r n d([-1.3-.5\). 5 1.7],1000,1); qqplot(r);


Generate random values that match some sample data well in the right-hand tail:
```

load carbig;
qnorm = [.5 1 1.5 2];
q = quantile(Acceleration, normcdf(qnorm));
r = johnsrnd([qnorm;q],1000,1);
[q;quantile(r,normcdf(qnorm))]
ans =
16.7000 18.2086 19.5376 21.7263
16.8190 18.2474 19.4492 22.4156

```

Determine the distribution type and the coefficients:
```

[r,type,coefs] = johnsrnd([qnorm;q],0)
r =
[]
type =
SU
coefs =
1.0920 0.5829 18.4382 1.4494

```
See Also random | pearsrnd
How To . "Johnson System" on page B-61

Purpose
Syntax
Description

Merge observations
```

$C=j 0 i n(A, B)$
$C=j o i n(A, B, k e y s)$
C = join(A,B,param1,val1,param2,val2,...)
[C,IB] = join(...)
C = join(A, B, 'Type', TYPE,...)
C = join(A, B,'Type',TYPE,'MergeKeys',true,...)
[C,IA, IB] = join(A, B, 'Type',TYPE,...)

```
\(C=j o i n(A, B)\) creates a dataset array C by merging observations from the two dataset arrays \(A\) and \(B\). join performs the merge by first finding key variables, that is, pairs of dataset variables, one in A and one in B, that share the same name. Each observation in B must contain a unique combination of values in the key variables, and must contain all combinations of values that are present in the keys from A. join then uses these key variables to define a many-to-one correspondence between observations in A and those in B. join uses this correspondence to replicate the observations in B and combine them with the observations in \(A\) to create \(C\).
\(C=j o i n(A, B, k e y s)\) performs the merge using the variables specified by keys as the key variables in both \(A\) and \(B\). keys is a positive integer, a vector of positive integers, a variable name, a cell array of variable names, or a logical vector.

C contains one observation for each observation in A. Variables in C include all of the variables from \(A\), as well as one variable corresponding to each variable in B (except for the keys from B). If A and B contain variables with identical names, join adds the suffix '_left' and '_right' to the corresponding variables in C.
\(C=j o i n(A, B, p a r a m 1, v a l 1, p a r a m 2, v a l 2, \ldots)\) specifies optional parameter name/value pairs to control how the dataset variables in A and \(B\) are used in the merge. Parameters are:
- 'Keys' - Specifies the variables to use as keys in both A and B.
- 'LeftKeys' - Specifies the variables to use as keys in A.
- 'RightKeys ' - Specifies the variables to use as keys in B.

You may provide either the 'Keys ' parameter, or both the 'LeftKeys' and 'RightKeys' parameters. The value for these parameters is a positive integer, a vector of positive integers, a variable name, a cell array containing variable names, or a logical vector. 'LeftKeys' or 'RightKeys ' must both specify the same number of key variables, and join pairs the left and right keys in the order specified.
- 'LeftVars' - Specifies which variables from A to include in C. By default, join includes all variables from A.
- 'RightVars' - Specifies which variables from B to include in C. By default, join includes all variables from B except the key variables.

You can use 'LeftVars' or 'RightVars' to include or exclude key variables as well as data variables. The value for these parameters is a positive integer, a vector of positive integers, a variable name, a cell array containing one or more variable names, or a logical vector.
[C,IB] = join(...) returns an index vector IB, where join constructs \(C\) by horizontally concatenating A(: LeftVars) and B(IB,RightVars). join can also perform more complicated inner and outer join operations that allow a many-to-many correspondence between A and B , and allow unmatched observations in either A or B.
\(C=\) join(A, B,'Type',TYPE,...) performs the join operation specified by TYPE. TYPE is one of 'inner', 'leftouter', 'rightouter', 'fullouter', or 'outer' (which is a synonym for 'fullouter'). For an inner join, \(C\) only contains observations corresponding to a combination of key values that occurred in both A and B. For a left (or right) outer join, \(C\) also contains observations corresponding to keys in \(A(\) or \(B)\) that did not match any in B (or A). Variables in C taken from A (or B) contain null values in those observations. A full outer join is equivalent to a left and right outer join. C contains variables corresponding to the key variables from both A and B, and join sorts the observations in C by the key values.

For inner and outer joins, C contains variables corresponding to the key variables from both A and B by default, as well as all the remaining variables. join sorts the observations in the result C by the key values.

C = join(A, B,'Type', TYPE,'MergeKeys',true,...) includes a single variable in \(C\) for each key variable pair from \(A\) and \(B\), rather than including two separate variables. For outer joins, join creates the single variable by merging the key values from A and B, taking values from \(A\) where a corresponding observation exists in \(A\), and from \(B\) otherwise. Setting the 'MergeKeys' parameter to true overrides inclusion or exclusion of any key variables specified via the 'LeftVars' or 'RightVars' parameter. Setting the 'MergeKeys' parameter to false is equivalent to not passing in the 'MergeKeys' parameter.
[C,IA,IB] = join(A, B,'Type',TYPE,...) returns index vectors IA and IB indicating the correspondence between observations in \(C\) and those in A and B. For an inner join, join constructs \(C\) by horizontally concatenating A(IA,LeftVars) and B(IB,RightVars). For an outer join, IA or IB may also contain zeros, indicating the observations in C that do not correspond to observations in A or B, respectively.

\section*{Examples}

Create a dataset array from Fisher's iris data:
```

load fisheriris
NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));
iris = dataset({nominal(species),'species'},...
{meas,'SL','SW','PL','PW'},...
'ObsNames',NameObs);

```

Create a separate dataset array with the diploid chromosome counts for each species of iris:
```

snames = nominal({'setosa';'versicolor';'virginica'});
CC = dataset({snames,'species'},{[38;108;70],'cc'})
CC =
species cc

```
```

setosa
38
versicolor 108
virginica 70

```

Broadcast the data in CC to the rows of iris using the key variable species in each dataset:
```

iris2 = join(iris,CC);
iris2([1 2 51 52 101 102],:)
ans =

	species	SL	SW	PL	PW	CC
Obs1	setosa	5.1	3.5	1.4	0.2	38
Obs2	setosa	4.9	3	1.4	0.2	38
Obs51	versicolor	7	3.2	4.7	1.4	108
Obs52	versicolor	6.4	3.2	4.5	1.5	108
Obs101	virginica	6.3	3.3	6	2.5	70
Obs102	virginica	5.8	2.7	5.1	1.9	70

```

Create two datasets and join them using the 'MergeKeys' flag:
\% Create two data sets that both contain the key variable \% 'Key1'. The two arrays contain observations with common \% values of Key1, but each array also contains observations \% with values of Key1 not present in the other. a = dataset(\{'a' 'b' 'c' 'e' 'h'\}',[10 2311 17]',...
'VarNames',\{'Key1' 'Var1'\}) b = dataset(\{'a' 'b' 'd' 'e'\}',[4 5 6 7]',...
'VarNames',\{'Key1' 'Var2'\})
\% Combine a and b with an outer join, which matches up \% observations with common key values, but also retains \% observations whose key values don't have a match. \% Keep the key values as separate variables in the result. couter = join(a,b,'key','Key1','Type','outer')
```

% Join a and b, merging the key values as a single variable
% in the result.
coutermerge = join(a,b,'key','Key1','Type','outer',...
'MergeKeys',true)
% Join a and b, retaining only observations whose key
% values match.
cinner = join(a,b,'key','Key1','Type','inner',...
'MergeKeys',true)
a =

Key1	Var1
'a'	1
'b'	2
'c'	3
'e'	11
'h'	17

b =

Key1	Var2
'a'	4
'b'	5
'd'	6
'e'	7

couter =

Key1_left	Var1	Key1_right	Var2
'a'	1	'a'	4
'b'	2	'b'	5
'c'	3	$' '$	NaN
''	NaN	'd'	6
'e'	11	'e'	7

```
\begin{tabular}{cccc} 
'h' & NaN \\
coutermerge \(=\) & & \\
Key1 & Var1 & Var2 \\
'a' & 1 & 4 \\
'b' & 2 & 5 \\
'c' & 3 & NaN \\
'd' & NaN & 6 \\
'e' & 11 & 7 \\
'h' & 17 & NaN \\
& & \\
cinner \(=\) & & \\
Key1 & Var1 & Var2 \\
'a' & 1 & 4
\end{tabular}

See Also sortrows

\section*{KDTreeSearcher}
Superclasses NeighborSearcher
Purpose Nearest neighbors search using \(k d\)-tree
Description A KDTreeSearcher object represents \(k \mathrm{NN}\) ( \(k\)-nearest neighbor) searchusing a \(k\) d-tree. Search objects store information about the data used,the distance metric and parameters, and the maximal number of datapoints in each leaf node. You cannot create this object for sparseinput data. The search performance for this object, compared with theExhaustiveSearcher object, tends to be better for smaller dimensions(10 or fewer) and worse for larger dimensions. For more information onsearch objects, see "What Are Search Objects?" on page 15-17.
ConstructionNS = KDTreeSearcher(X,'Name', Value) constructs a \(k\) d-tree based on\(X\) and saves the information in a KDTreeSearcher object where rows ofX correspond to observations and columns correspond to variables. Youcan use this tree to find neighbors in \(X\) nearest to the query points. Seethe following section for optional name/value pairs.
NS = createns(X,'NSMethod','kdtree','Name', Value) creates a
\(k d\)-tree based on \(X\) using createns and saves the information in a
KDTreeSearcher object where rows of \(X\) correspond to observations and
columns correspond to variables. You can use this tree to find neighbors
in \(X\) nearest to the query points. See the following section for optional
name/value pairs.

\section*{Name-Value Pair Arguments}
KDTreeSearcher and createns accept one or more of the following optional name/value pairs as input:

\section*{'Distance'}
A string specifying the default distance metric used when you call the knnsearch method.
- 'euclidean' - Euclidean distance (default).
- 'cityblock' - City block distance.

\section*{KDTreeSearcher}
- 'chebychev' - Chebychev distance (maximum coordinate difference).
- 'minkowski' - Minkowski distance.

For more information on these distance metrics, see "Distance Metrics" on page 15-9.

\section*{'P'}

A positive scalar indicating the exponent of the Minkowski distance. This parameter is only valid when Distance is 'minkowski'. Default is 2.

\section*{'BucketSize'}

A positive integer, indicating the maximum number of data points in each leaf node of the \(k\) d-tree. Default is 50 .

\section*{Properties \\ X}

A matrix used to create the object

\section*{Distance}

A string specifying a built-in distance metric that you provide when you create the object. This property is the default distance metric used when you call the knnsearch method to find nearest neighbors for future query points.

\section*{DistParameter}

Specifies the additional parameter for the chosen distance metric. The value is:
- If 'Distance' is 'minkowski': A positive scalar indicating the exponent of the Minkowski distance.
- Otherwise: Empty.
```

Methods
knnsearch
rangesearch
Find k-nearest neighbors using KDTreeSearcher object
Find all neighbors within specified distance using object
Examples Create a KDTreeSearcher object using the constructor:

```
```

load fisheriris

```
load fisheriris
x = meas(:,3:4);
x = meas(:,3:4);
kdtreeobj = KDTreeSearcher(x,'distance','minkowski')
kdtreeobj =
kdtreeobj =
    KDTreeSearcher
    KDTreeSearcher
    Properties:
    Properties:
        BucketSize: 50
        BucketSize: 50
            X: [150x2 double]
            X: [150x2 double]
            Distance: 'minkowski'
            Distance: 'minkowski'
        DistParameter: 2
```

 DistParameter: 2
    ```

Create a KDTreeSearcher object using createns:
```

load fisheriris
x = meas(:,3:4);
kdtreeobj = createns(x,'NsMethod','kdtree',...
'distance','minkowski')
kdtreeobj =
KDTreeSearcher
Properties:
BucketSize: 50

```

\section*{KDTreeSearcher}
```

 X: [150x2 double]
 Distance: 'minkowski'
 DistParameter: 2

```

For more in-depth examples using the knnsearch method, see the method reference page or see "Example: Classifying Query Data Using knnsearch" on page 15-18.

\author{
References \\ [1] Friedman, J. H., Bentely, J., and Finkel, R. A. (1977). An Algorithm for Finding Best Matches in Logarithmic Expected Time, ACM Transactions on Mathematical Software 3, 209.
}

\section*{See Also \\ createns | ExhaustiveSearcher | NeighborSearcher}

How To . " \(k\)-Nearest Neighbor Search and Radius Search" on page 15-12

\section*{ProbDistKernel.Kernel property}
\begin{tabular}{ll} 
Purpose & \begin{tabular}{l} 
Read-only string specifying name of kernel smoothing function for \\
ProbDistKernel object
\end{tabular} \\
Description & \begin{tabular}{l} 
Kernel is a read-only property of the ProbDistKernel class. Kernel is \\
a string specifying the name of the kernel smoothing function used \\
to create a ProbDistKernel object.
\end{tabular} \\
Values & \begin{tabular}{l} 
' normal' \\
'box' \\
'triangle' \\
'epanechnikov'
\end{tabular} \\
See Also & \begin{tabular}{l} 
Use this information to view and compare the kernel smoothing \\
function used to create distributions.
\end{tabular} \\
ksdensity
\end{tabular}

\section*{prob.KernelDistribution}

Superclasses TruncatableDistribution

\section*{Purpose Kernel probability distribution object}

Description prob.KernelDistribution is an object consisting of parameters, a model description, and sample data for a nonparametric kernel-smoothing distribution. Create a prob.KernelDistribution object using fitdist or dfittool.

Construction
pd = fitdist(x, 'Kernel') creates a probability distribution object by fitting a kernel-smoothing distribution to the data in \(x\).
pd = fitdist( x, 'Kernel', Name, Value) creates a probability distribution object with additional options specified by one or more name-value pair arguments. For example, you can change the kernel function or specify the kernel bandwidth.

\section*{Input Arguments}

\section*{x - Input data}
column vector
Input data to fit with a kernel-smoothing distribution, specified as a column vector of scalar values. fitdist ignores \(N a N\) values in \(x\).
```

Data Types
single | double

```

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{Kernel - Kernel smoother type}
'normal' (default) | 'box' | 'triangle' | 'epanechnikov'

Kernel smoother type, specified as the comma-separated pair consisting of 'Kernel' and one of the following kernel smoothing function types:
- 'normal'
- 'box'
- 'triangle'
- 'epanechnikov'

\section*{Support - Kernel density support}
'unbounded' (default) | 'positive' | two-element vector
Kernel density support, specified as the comma-separated pair consisting of 'Support' and a string or two-element vector. The string must be one of the following.
\begin{tabular}{ll} 
'unbounded' & \begin{tabular}{l} 
Density can extend over the whole \\
real line.
\end{tabular} \\
'positive' & \begin{tabular}{l} 
Density is restricted to positive \\
values.
\end{tabular}
\end{tabular}

Alternatively, you can specify a two-element vector giving finite lower and upper limits for the support of the density.

\section*{Data Types}
single | double

\section*{Width - Bandwidth of kernel smoothing window}
scalar value
Bandwidth of the kernel smoothing window, specified as the comma-separated pair consisting of 'Width' and a scalar value. The default value used by fitdist is optimal for estimating normal densities, but you might want to choose a smaller value to reveal features such as multiple modes.

\section*{prob.KernelDistribution}

\author{
Data Types \\ single | double
}

\section*{Properties \\ Kernel}

Kernel function type, stored as a valid kernel function type name.

\section*{BandWidth}

Bandwidth of the kernel smoothing window, stored as a positive scalar value.

\section*{Data Types}
single | double

\section*{DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{Data Types \\ char}

\section*{InputData}

Data used for distribution fitting, stored as a structure containing the following:
- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.
```

Data Types
single | double

```

\section*{IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated.

If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

\section*{Data Types}
logical

\section*{Truncation}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.
```

Data Types
single | double

```

\section*{Methods}
\begin{tabular}{ll} 
mean & \begin{tabular}{l} 
Mean of probability distribution \\
object
\end{tabular} \\
negloglik & Negative loglikelihood \\
std & \begin{tabular}{l} 
Standard deviation of probability \\
distribution object
\end{tabular} \\
var & \begin{tabular}{l} 
Variance of probability \\
distribution object
\end{tabular}
\end{tabular}

\section*{Inherited Methods}
\begin{tabular}{ll} 
cdf & \begin{tabular}{l} 
Cumulative distribution function \\
of probability distribution object
\end{tabular} \\
icdf & \begin{tabular}{l} 
Inverse cumulative distribution \\
function of probability \\
distribution object
\end{tabular} \\
iqr & \begin{tabular}{l} 
Interquartile range of probability \\
distribution object
\end{tabular} \\
median & \begin{tabular}{l} 
Median of probability distribution \\
object
\end{tabular}
\end{tabular}

\section*{prob.KernelDistribution}
\begin{tabular}{ll} 
pdf & \begin{tabular}{l} 
Probability density function of \\
probability distribution object
\end{tabular} \\
random & \begin{tabular}{l} 
Generate random numbers from \\
probability distribution object
\end{tabular} \\
truncate & \begin{tabular}{l} 
Truncate probability distribution \\
object
\end{tabular}
\end{tabular}

\section*{Definitions \\ Kernel Distribution}

The kernel distribution is a nonparametric estimation of the probability density function (pdf) of a random variable.

The kernel distribution uses the following options.
\begin{tabular}{l|l|l}
\hline Option & Description & Possible Values \\
\hline Kernel & Kernel function type & \begin{tabular}{l} 
normal, box, triangle, \\
epanechnikov
\end{tabular} \\
\hline BandWidth & \begin{tabular}{l} 
Kernel smoothing \\
parameter
\end{tabular} & BandWidth >0 \\
\hline
\end{tabular}

The kernel density estimator is
\[
\hat{f}_{h}(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right) \quad ; \quad-\infty<x<\infty,
\]
where \(K(\square)\) is the kernel function and \(h\) is the bandwidth.

\section*{Examples}

\section*{Fit a Kernel Distribution Object to Data}

Load the sample data. Visualize the patient weight data using a histogram.
```

load hospital;
hist(hospital.Weight)

```


The histogram shows that the data has two modes, one for female patients and one for male patients.

Create a probability distribution object by fitting a kernel distribution to the patient weight data.
```

pd = fitdist(hospital.Weight,'Kernel')
pd =

```

\section*{prob.KernelDistribution}

KernelDistribution
Kernel = normal
Bandwidth = 14.3792
Support = unbounded
For comparison, create another probability distribution object by fitting a normal distribution to the patient weight data.
pd_normal = fitdist(hospital.Weight,'Normal')
pd_normal =
NormalDistribution

Normal distribution
\(\mathrm{mu}=154 \quad[148.728,159.272]\)
sigma \(=26.5714 \quad[23.3299,30.8674]\)

Define the x values and compute the pdf of each distribution.
```

x = 50:1:250;
pdf_kernel = pdf(pd_kernel,x);
pdf_normal = pdf(pd_normal,x);

```

Plot the pdf of each distribution.
```

plot(x,pdf_kernel,'Color','r','LineStyle',':','LineWidth',2);
hold on;
plot(x,pdf_normal,'Color','b','LineWidth',2);
legend('Kernel Distribution','Normal Distribution','Location','SouthEast'
hold off;

```


Fitting a kernel distribution instead of a unimodal distribution such as the normal reveals the separate modes for the female and male patients.

\section*{See Also}
fitdist | dfittool
Concepts • "Nonparametric Distributions" on page B-95
- Class Attributes
- Property Attributes

\section*{ClassificationPartitionedEnsemble.kfoldEdge}
\begin{tabular}{|c|c|}
\hline Purpose & Classification edge for observations not used for training \\
\hline Syntax & ```
E = kfoldEdge(obj)
E = kfoldEdge(obj,Name,Value)
``` \\
\hline Description & \begin{tabular}{l}
\(E=k f o l d E d g e(o b j)\) returns classification edge (average classification margin) obtained by cross-validated classification ensemble obj. For every fold, this method computes classification edge for in-fold observations using an ensemble trained on out-of-fold observations. \\
E = kfoldEdge(obj, Name, Value) calculates edge with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, , NameN, ValueN.
\end{tabular} \\
\hline \begin{tabular}{l}
Input \\
Arguments
\end{tabular} & \begin{tabular}{l}
ens \\
Object of class ClassificationPartitionedEnsemble. Create ens with fitensemble along with one of the cross-validation options: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. Alternatively, create ens from a classification ensemble with crossval.
\end{tabular} \\
\hline & Name-Value Pair Arguments \\
\hline & \begin{tabular}{l}
Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN. \\
'folds'
\end{tabular} \\
\hline & Indices of folds ranging from 1 to ens. KFold. Use only these folds for predictions. \\
\hline & Default: 1:ens.KFold \\
\hline & 'mode' \\
\hline
\end{tabular}

\section*{'mode'}

\section*{ClassificationPartitionedEnsemble.kfoldEdge}

String representing the meaning of the output edge:
- 'average ' - edge is a scalar value, the average over all folds.
- 'individual' - edge is a vector of length ens.KFold with one element per fold.
- 'cumulative' - edge is a vector of length min(ens.NTrainedPerFold) in which element \(J\) is obtained by averaging values across all folds for weak learners \(1: J\) in each fold.

Default: 'average'

\section*{Output E \\ Arguments}

\section*{Definitions}

\section*{Edge}

The edge is the weighted mean value of the classification margin. The weights are the class probabilities in obj. Prior.

\section*{Margin}

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix obj. x .

\section*{Score (ensemble)}

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

\section*{ClassificationPartitionedEnsemble.kfoldEdge}
- AdaBoostM1 scores range from \(-\infty\) to \(\infty\).
- Bag scores range from 0 to 1.
```

Examples Compute the k -fold edge for an ensemble trained on the Fisher iris data:
load fisheriris
ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree'); cvens = crossval(ens);
E = kfoldEdge(cvens)
E =
3.2078

```

See Also kfoldPredict | kfoldLoss | kfoldMargin | kfoldfun | crossval

\section*{ClassificationPartitionedModel.kfoldEdge}
\begin{tabular}{|c|c|}
\hline Purpose & Classification edge for observations not used for training \\
\hline Syntax & ```
E = kfoldEdge(obj)
E = kfoldEdge(obj,Name,Value)
``` \\
\hline Description & \begin{tabular}{l}
E = kfoldEdge(obj) returns classification edge (average classification margin) obtained by cross-validated classification model obj. For every fold, this method computes classification edge for in-fold observations using an ensemble trained on out-of-fold observations. \\
E = kfoldEdge(obj,Name, Value) calculates edge with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, , NameN, ValueN.
\end{tabular} \\
\hline Input Arguments & obi Object of class ClassificationPartitionedModel. \\
\hline & Name-Value Pair Arguments \\
\hline & Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN. \\
\hline & 'folds' \\
\hline
\end{tabular}

Indices of folds ranging from 1 to obj. KFold. Use only these folds for predictions.

Default: 1:obj.KFold

\section*{'mode'}

String representing the meaning of the output edge:
- 'average ' - edge is a scalar value, the average over all folds.

\section*{ClassificationPartitionedModel.kfoldEdge}
- 'individual' - edge is a vector of length obj. KFold with one element per fold.

Default: 'average'

\section*{Output \\ Arguments \\ E}

\section*{Definitions}

The average classification margin. E is a scalar or vector, depending on the setting of the mode name-value pair.

\section*{Edge}

The edge is the weighted mean value of the classification margin. The weights are the class probabilities in obj. Prior. If you supply weights in the weights name-value pair, those weights are normalized to sum to the prior probabilities in the respective classes, and are then used to compute the weighted average.

\section*{Margin}

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix obj. X . A high value of margin indicates a more reliable prediction than a low value.

\section*{Score (discriminant analysis)}

For discriminant analysis, the score of a classification is the posterior probability of the classification. For the definition of posterior probability in discriminant analysis, see "Posterior Probability" on page 14-7.

\section*{Score (tree)}

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.

\section*{ClassificationPartitionedModel.kfoldEdge}

For example, consider classifying a predictor X as true when \(\mathrm{X}<0.15\) or \(X>0.95\), and \(X\) is false otherwise.

1
Generate 100 random points and classify them:
rng(0,'twister') \% for reproducibility
\(X=\operatorname{rand}(100,1)\);
\(\mathrm{Y}=(\mathrm{abs}(\mathrm{X}-.55) \mathrm{>} .4)\);
tree = ClassificationTree.fit(X,Y);
view(tree,'mode','graph')


2
Prune the tree:
```

tree1 = prune(tree,'level',1);
view(tree1,'mode','graph')

```

\section*{ClassificationPartitionedModel.kfoldEdge}


The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than . 94 as false. Therefore, the score for observations that are greater than . 15 should be about \(.05 / .85=.06\) for true, and about \(.8 / .85=.94\) for false.

3
Compute the prediction scores for the first 10 rows of X :
[~,score] = predict(tree1, X(1:10));
[score X(1:10,:)]
```

ans =

0.9059	0.0941	0.8147
0.9059	0.0941	0.9058
0	1.0000	0.1270
0.9059	0.0941	0.9134
0.9059	0.0941	0.6324
0	1.0000	0.0975

```

\section*{ClassificationPartitionedModel.kfoldEdge}
\begin{tabular}{lll}
0.9059 & 0.0941 & 0.5469 \\
0.9059 & 0.0941 & 0.9575 \\
0.9059 & 0.0941 & 0.9649
\end{tabular}

Indeed, every value of \(X\) (the rightmost column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1 , while the other values of \(X\) have associated scores of 0.91 and 0.09 . The difference (score 0.09 instead of the expected .06) is due to a statistical fluctuation: there are 8 observations in \(X\) in the range (.95,1) instead of the expected 5 observations.

\section*{Examples Compute the k -fold edge for a model trained on the Fisher iris data:}
```

load fisheriris
tree = ClassificationTree.fit(meas,species);
cvtree = crossval(tree);
E = kfoldEdge(cvtree)
E =
0.8711

```
See Also \begin{tabular}{l} 
kfoldPredict | kfoldMargin | kfoldLoss | kfoldfun \\
| crossval | ClassificationPartitionedEnsemble | \\
ClassificationPartitionedModel
\end{tabular}

\section*{ClassificationPartitionedModel.kfoldfun}

Purpose Cross validate function
Syntax \(\quad\) vals \(=\) kfoldfun (obj, fun \()\)

Description

Input Arguments
vals \(=\) kfoldfun(obj,fun) cross validates the function fun by applying fun to the data stored in the cross-validated model obj. You must pass fun as a function handle.
obi
Object of class ClassificationPartitionedModel or ClassificationPartitionedEnsemble.

\section*{fun}

A function handle for a cross-validation function. fun has the syntax
testvals = fun(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)
- CMP is a compact model stored in one element of the obj.Trained property.
- Xtrain is the training matrix of predictor values.
- Ytrain is the training array of response values.
- Wtrain are the training weights for observations.
- Xtest and Ytest are the test data, with associated weights Wtest.
- The returned value testvals must have the same size across all folds.

\section*{Output vals}

Arguments

The arrays of testvals output, concatenated vertically over all folds. For example, if testvals from every fold is a numeric vector of length N , kfoldfun returns a KFold-by-N numeric matrix with one row per fold.
```

Examples Cross validate a classification tree, and obtain the classification error
(see kfoldLoss):
load fisheriris
t = ClassificationTree.fit(meas,species);
rng(0,'twister') % for reproducibility
cv = crossval(t);
L = kfoldLoss(cv)
L =
0.0467

```

Examine the result when the error of misclassifying a flower as 'versicolor' is 10 , and any other error is 1 :

1 Write a function file that gives a cost of 1 for misclassification, but 10 for misclassifying a flower as versicolor.
```

function averageCost = noversicolor(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)
Ypredict = predict(CMP,Xtest);
misclassified = not(strcmp(Ypredict,Ytest)); % different result
classifiedAsVersicolor = strcmp(Ypredict,'versicolor'); % index of bad decisions
cost = sum(misclassified) + ...
9*sum(misclassified \& classifiedAsVersicolor); % total differences
averageCost = cost/numel(Ytest); % average error

```

2 Save the file as noversicolor.m on your MATLAB path.
3 Compute the mean misclassification error with the noversicolor cost:
mean(kfoldfun(cv,@noversicolor))
ans =
0.1667

\section*{ClassificationPartitionedModel.kfoldfun}

See Also \(\begin{aligned} & \text { ClassificationPartitionedModel | kfoldPredict | kfoldEdge | } \\ & \text { kfoldMargin | kfoldLoss | crossval }\end{aligned}\)

\section*{RegressionPartitionedModel.kfoldfun}
Purpose Cross validate function
Syntax vals = kfoldfun(obj,fun)
Description vals \(=k f o l d f u n(o b j, f u n)\) cross validates the function fun byapplying fun to the data stored in the cross-validated model obj. Youmust pass fun as a function handle.
Input objArguments
Object of class RegressionPartitionedModel or RegressionPartitionedEnsemble. Create obj with RegressionTree.fit or fitensemble along with one of the cross-validation options: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. Alternatively, create obj from a regression tree or regression ensemble with crossval.

\section*{fun}
A function handle for a cross-validation function. fun has the syntax
```

testvals = fun(CMP,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)

```
- CMP is a compact model stored in one element of the obj.Trained property.
- Xtrain is the training matrix of predictor values.
- Ytrain is the training array of response values.
- Wtrain are the training weights for observations.
- Xtest and Ytest are the test data, with associated weights Wtest.
- The returned value testvals must have the same size across all folds.

\section*{RegressionPartitionedModel.kfoldfun}
\begin{tabular}{|c|c|}
\hline Output Arguments & \begin{tabular}{l}
vals \\
The arrays of testvals output, concatenated vertically over all folds. For example, if testvals from every fold is a numeric vector of length \(N\), kfoldfun returns a KFold-by-N numeric matrix with one row per fold.
\end{tabular} \\
\hline \multirow[t]{6}{*}{Examples} & Cross validate a regression tree, and obtain the mean squared error (see kfoldLoss): \\
\hline & ```
load imports-85
t = RegressionTree.fit(X(:,[4 5]),X(:,16),...
    'predictornames',{'length' 'width'},...
    'responsename','price');
cv = crossval(t);
L = kfoldLoss(cv)
``` \\
\hline & \[
\begin{aligned}
& \mathrm{L}= \\
& 1.5489 \mathrm{e}+007
\end{aligned}
\] \\
\hline & Examine the result of simple averaging of responses instead of using predictions: \\
\hline & ```
f = @(cmp,Xtrain,Ytrain,Wtrain,Xtest,Ytest,Wtest)...
 mean((Ytest-mean(Ytrain)).^2)
mean(kfoldfun(cv,f))
``` \\
\hline & \[
\begin{aligned}
& \text { ans }= \\
& 6.3497 \mathrm{e}+007
\end{aligned}
\] \\
\hline See Also & RegressionPartitionedEnsemble | kfoldPredict | kfoldLoss | RegressionPartitionedModel | crossval \\
\hline
\end{tabular}

\section*{ClassificationPartitionedEnsemble.kfoldLoss}

\section*{Purpose}

Classification loss for observations not used for training
Syntax

L = kfoldLoss(ens)
L = kfoldLoss(ens,Name, Value)

Description

Input
Arguments
\(\mathrm{L}=\) kfoldLoss(ens) returns loss obtained by cross-validated classification model ens. For every fold, this method computes classification loss for in-fold observations using a model trained on out-of-fold observations.

L = kfoldLoss(ens,Name, Value) calculates loss with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, , NameN, ValueN.

\section*{ens}

Object of class ClassificationPartitionedEnsemble. Create ens with fitensemble along with one of the cross-validation options: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. Alternatively, create ens from a classification ensemble with crossval.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'folds'}

Indices of folds ranging from 1 to ens. KFold. Use only these folds for predictions.

Default: 1:ens.KFold

\section*{'lossfun'}

\section*{ClassificationPartitionedEnsemble.kfoldLoss}

Function handle or string representing a loss function. Built-in loss functions:
- 'binodeviance' - See "Loss Functions" on page 20-1190
- 'classiferror' - Fraction of misclassified data
- 'exponential' - See "Loss Functions" on page 20-1190

You can write your own loss function in the syntax described in "Loss Functions" on page 20-1190.

Default: 'classiferror'

\section*{'mode'}

A string for determining the output of kfoldLoss:
- 'average ' - L is a scalar, the loss averaged over all folds.
- 'individual' - L is a vector of length ens.KFold, where each entry is the loss for a fold.
- 'cumulative' - \(L\) is a vector in which element \(J\) is obtained by using learners \(1: J\) from the input list of learners.

Default: 'average'

\section*{Output Arguments}

\section*{Definitions}

L
Loss, by default the fraction of misclassified data. L can be a vector, and can mean different things, depending on the name-value pair settings.

\section*{Loss Functions}

The built-in loss functions are:

\section*{ClassificationPartitionedEnsemble.kfoldLoss}
- 'binodeviance' - For binary classification, assume the classes \(y_{n}\) are -1 and 1 . With weight vector \(w\) normalized to have sum 1 , and predictions of row \(n\) of data \(X\) as \(f\left(X_{n}\right)\), the binomial deviance is
\[
\sum w_{n} \log \left(1+\exp \left(-2 y_{n} f\left(X_{n}\right)\right)\right)
\]
- 'classiferror' - Fraction of misclassified data, weighted by \(w\).
- 'exponential' - With the same definitions as for 'binodeviance', the exponential loss is
\[
\sum w_{n} \exp \left(-y_{n} f\left(X_{n}\right)\right)
\]

To write your own loss function, create a function file of the form
```

function loss = lossfun(C,S,W,COST)

```
- \(N\) is the number of rows of ens. \(X\).
- \(K\) is the number of classes in ens, represented in ens.ClassNames.
- \(C\) is an N-by-K logical matrix, with one true per row for the true class. The index for each class is its position in tree.ClassNames.
- \(S\) is an \(N\)-by-K numeric matrix. \(S\) is a matrix of posterior probabilities for classes with one row per observation, similar to the score output from predict.
- W is a numeric vector with \(N\) elements, the observation weights.
- COST is a K-by-K numeric matrix of misclassification costs. The default 'classiferror' gives a cost of 0 for correct classification, and 1 for misclassification.
- The output loss should be a scalar.

Pass the function handle @lossfun as the value of the lossfun name-value pair.

\section*{ClassificationPartitionedEnsemble.kfoldLoss}
```

Examples Find the average cross-validated classification error for an ensemble model of the ionosphere data:
load ionosphere
ens = fitensemble(X,Y,'AdaBoostM1',100,'Tree');
cvens = crossval(ens);
L = kfoldLoss(cvens)
L =
0.0826

```

\author{
See Also \\ kfoldPredict | kfoldEdge | kfoldMargin | kfoldfun | crossval
}

\section*{ClassificationPartitionedModel.kfoldLoss}
\begin{tabular}{|c|c|}
\hline Purpose & Classification loss for observations not used for training \\
\hline \multirow[t]{2}{*}{Syntax} & L = kfoldLoss (obj) \\
\hline &  \\
\hline \multirow[t]{2}{*}{Description} & L = kfoldLoss(obj) returns loss obtained by cross-validated classification model obj. For every fold, this method computes classification loss for in-fold observations using a model trained on out-of-fold observations. \\
\hline & L = kfoldLoss(obj, Name, Value) calculates loss with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, , NameN, ValueN. \\
\hline \multirow[t]{9}{*}{Input Arguments} & obi \\
\hline & Object of class ClassificationPartitionedModel. \\
\hline & Name-Value Pair Arguments \\
\hline & Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN. \\
\hline & 'folds' \\
\hline & Indices of folds ranging from 1 to obj . KFold. Use only these folds for predictions. \\
\hline & Default: 1:obj.KFold \\
\hline & 'lossfun' \\
\hline & Function handle or string representing a loss function. Built-in loss functions: \\
\hline
\end{tabular}

\section*{ClassificationPartitionedModel.kfoldLoss}
- 'binodeviance ' - See "Loss Functions" on page 20-1195.
- 'classiferror' - Fraction of misclassified observations. See "Loss Functions" on page 20-1195.
- 'exponential' - See "Loss Functions" on page 20-1195.
- 'mincost' - Smallest misclassification cost as given by the obj . Cost matrix. See "Loss Functions" on page 20-1195.

You can write your own loss function in the syntax described in "Loss Functions" on page 20-1195.

Default: 'mincost'

\section*{'mode'}

A string for determining the output of kfoldLoss:
- 'average' - L is a scalar, the loss averaged over all folds.
- 'individual' - L is a vector of length obj. KFold, where each entry is the loss for a fold.

Default: 'average'

\section*{Output L}

\section*{Definitions}

Loss, by default the fraction of misclassified data. L can be a vector, and can mean different things, depending on the name-value pair settings.

\section*{Classification Error}

The default classification error is the fraction of the data \(X\) that obj misclassifies, where \(Y\) are the true classifications.

Weighted classification error is the sum of weight \(i\) times the Boolean value that is 1 when obj misclassifies the \(i\) th row of \(X\), divided by the sum of the weights.

\section*{ClassificationPartitionedModel.kfoldLoss}

\section*{Loss Functions}

The built-in loss functions are:
- 'binodeviance' - For binary classification, assume the classes \(y_{n}\) are -1 and 1 . With weight vector \(w\) normalized to have sum 1, and predictions of row \(n\) of data \(X\) as \(f\left(X_{n}\right)\), the binomial deviance is
\[
\sum w_{n} \log \left(1+\exp \left(-2 y_{n} f\left(X_{n}\right)\right)\right)
\]
- 'exponential' - With the same definitions as for 'binodeviance', the exponential loss is
\[
\sum w_{n} \exp \left(-y_{n} f\left(X_{n}\right)\right)
\]
- 'classiferror' - Predict the label with the largest posterior probability. The loss is then the fraction of misclassified observations.
- 'mincost' - Predict the label with the smallest expected misclassification cost, with expectation taken over the posterior probability, and cost as given by the Cost property of the classifier (a matrix). The loss is then the true misclassification cost averaged over the observations.

To write your own loss function, create a function file in this form:
```

function loss = lossfun(C,S,W,COST)

```
- \(N\) is the number of rows of \(X\).
- \(K\) is the number of classes in the classifier, represented in the ClassNames property.
- C is an N-by-K logical matrix, with one true per row for the true class. The index for each class is its position in the ClassNames property.
- \(S\) is an N -by-K numeric matrix. S is a matrix of posterior probabilities for classes with one row per observation, similar to the posterior output from predict.

\section*{ClassificationPartitionedModel.kfoldLoss}
- \(W\) is a numeric vector with \(N\) elements, the observation weights. If you pass W, the elements are normalized to sum to the prior probabilities in the respective classes.
- COST is a K-by-K numeric matrix of misclassification costs. For example, you can use COST \(=\) ones \((K)\) - eye (K), which means a cost of 0 for correct classification, and 1 for misclassification.
- The output loss should be a scalar.

Pass the function handle @lossfun as the value of the lossfun name-value pair.
```

Examples Find the average cross-validated classification error for a model of the
ionosphere data:
load ionosphere
tree = ClassificationTree.fit(X,Y);
cvtree = crossval(tree);
L = kfoldLoss(cvtree)
L =
0.1197

See Also | ClassificationPartitionedModel \| kfoldPredict | kfoldEdge | |
| :--- |
| kfoldMargin \| kfoldfun | crossval |

How To

- "Examine the Quality of a KNN Classifier" on page 15-26

```

\section*{RegressionPartitionedEnsemble.kfoldLoss}

\section*{Purpose}

Cross-validation loss of partitioned regression ensemble
Syntax

L = kfoldLoss(cvens)
L = kfoldLoss(cvens,Name, Value)

Description

\section*{Input Arguments}
\(\mathrm{L}=\mathrm{kfold}\) Loss(cvens) returns the cross-validation loss of cvens.
L = kfoldLoss(cvens, Name, Value) returns cross-validation loss with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, ,NameN, ValueN.

\section*{cvens}

Object of class RegressionPartitionedEnsemble. Create
obj with fitensemble along with one of the cross-validation options: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. Alternatively, create obj from a regression ensemble with crossval.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'folds'}

Indices of folds ranging from 1 to cvens.KFold. Use only these folds for predictions.

Default: 1:cvens.KFold

\section*{'lossfun'}

\section*{RegressionPartitionedEnsemble.kfoldLoss}

Function handle for loss function, or the string 'mse', meaning mean squared error. If you pass a function handle fun, loss calls it as
fun(Y,Yfit,w)
where \(\mathrm{Y}, \mathrm{Yfit}\), and W are numeric vectors of the same length.
- Y is the observed response.
- Yfit is the predicted response.
- \(W\) is the observation weights.

The returned value fun(Y,Yfit, W) should be a scalar.
Default: 'mse'

\section*{'mode'}

String representing the meaning of the output L:
- 'ensemble' - L is a scalar value, the loss for the entire ensemble.
- 'individual' - L is a vector with one element per trained learner.
- 'cumulative' - \(L\) is a vector in which element \(J\) is obtained by using learners \(1: J\) from the input list of learners.

Default: 'ensemble'

\section*{Output L}

Arguments
The loss (mean squared error) between the observations in a fold when compared against predictions made with an ensemble trained on the out-of-fold data. L can be a vector, and can mean different things, depending on the name-value pair settings.

\section*{RegressionPartitionedEnsemble.kfoldLoss}
```

Examples Find the cross-validation loss for a regression ensemble of the carsmall
data:
load carsmall
X = [Displacement Horsepower Weight];
rens = fitensemble(X,MPG,'LSboost',100,'Tree');
cvrens = crossval(rens);
L = kfoldLoss(cvrens)
L =
25.6935

```

See Also RegressionPartitionedEnsemble | loss | kfoldPredict

\section*{RegressionPartitionedModel.kfoldLoss}
Purpose Cross-validation loss of partitioned regression model
Syntax

L = kfoldLoss(cvmodel)

L = kfoldLoss(cvmodel,Name, Value)Description

\section*{Input} Arguments
\(\mathrm{L}=\mathrm{kfoldLoss}(\) cvmodel) returns the cross-validation loss of cvmodel.
L = kfoldLoss(cvmodel, Name, Value) returns cross-validation loss with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, ,NameN, ValueN.

\section*{cvmodel}

Object of class RegressionPartitionedModel. Create obj with RegressionTree.fit along with one of the cross-validation options: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. Alternatively, create obj from a regression tree with crossval.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\footnotetext{
'folds' for predictions.

Default: 1:obj.KFold

\section*{'lossfun'}
}

Indices of folds ranging from 1 to obj. KFold. Use only these folds

\section*{RegressionPartitionedModel.kfoldLoss}

Function handle for loss function, or the string 'mse', meaning mean squared error. If you pass a function handle fun, kfoldLoss calls it as
fun(Y,Yfit,w)
where \(Y\), \(Y\) fit, and \(W\) are numeric vectors of the same length.
- Y is the observed response.
- Yfit is the predicted response.
- W is the observation weights.

The returned value fun(Y,Yfit,W) should be a scalar.
Default: 'mse'

\section*{'mode'}

One of the following strings:
- 'average ' - L is the average loss over all folds.
- 'individual' - L is a vector of the individual losses of in-fold observations trained on out-of-fold data.

Default: 'average'

\section*{Output L}

Arguments

\section*{Examples}

The loss (mean squared error) between the observations in a fold when compared against predictions made with a tree trained on the out-of-fold data. If mode is 'individual', \(L\) is a vector of the losses. If mode is 'average ', \(L\) is the average loss.

Construct a partitioned regression model, and examine the cross-validation losses for the folds:
load carsmall

\section*{RegressionPartitionedModel.kfoldLoss}
```

XX = [Cylinders Displacement Horsepower Weight];
YY = MPG;
cvmodel = RegressionTree.fit(XX,YY,'crossval','on');
L = kfoldLoss(cvmodel,'mode','individual')
L =
44.9635
11.8525
18.2046
9.2965
29.4329
54.8659
24.6446
8.2085
19.7593
16.7394

```

\title{
Alternatives You can avoid constructing a cross-validated tree model by calling cvLoss instead of kfoldLoss. The cross-validated tree can save time if you are going to examine it more than once.
}

\section*{See Also \\ loss | kfoldPredict}

\section*{ClassificationPartitionedModel.kfoldMargin}

\section*{Purpose}

Classification margins for observations not used for training

\section*{Syntax}

Description

\section*{Input Arguments}

\section*{Output \\ M}

Arguments

\section*{Definitions}

M = kfoldMargin(obj)
M = kfoldMargin(obj) returns classification margins obtained by cross-validated classification model obj. For every fold, this method computes classification margins for in-fold observations using a model trained on out-of-fold observations.

\section*{obj}

A partitioned classification model of type ClassificationPartitionedModel or ClassificationPartitionedEnsemble.

The classification margin.

\section*{Margin}

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix obj. x . A high value of margin indicates a more reliable prediction than a low value.

\section*{Score (discriminant analysis)}

For discriminant analysis, the score of a classification is the posterior probability of the classification. For the definition of posterior probability in discriminant analysis, see "Posterior Probability" on page 14-7.

\section*{Score (ensemble)}

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

\section*{ClassificationPartitionedModel.kfoldMargin}

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:
- AdaBoostM1 scores range from \(-\infty\) to \(\infty\).
- Bag scores range from 0 to 1 .

\section*{Score (tree)}

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.

For example, consider classifying a predictor \(X\) as true when \(X<0.15\) or \(X>0.95\), and \(X\) is false otherwise.

1
Generate 100 random points and classify them:
```

rng(0,'twister') % for reproducibility
X = rand(100,1);
Y = (abs(X - .55) > .4);
tree = ClassificationTree.fit(X,Y);
view(tree,'mode','graph')

```

\section*{ClassificationPartitionedModel.kfoldMargin}


2
Prune the tree:
tree1 = prune(tree, 'level', 1 );
view(tree1,'mode','graph')

\section*{ClassificationPartitionedModel.kfoldMargin}


The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than . 94 as false. Therefore, the score for observations that are greater than .15 should be about \(.05 / .85=.06\) for true, and about \(.8 / .85=.94\) for false.

3
Compute the prediction scores for the first 10 rows of X :
[~,score] = predict(tree1, X(1:10));
[score X(1:10,:)]
```

ans =

0.9059	0.0941	0.8147
0.9059	0.0941	0.9058
0	1.0000	0.1270
0.9059	0.0941	0.9134
0.9059	0.0941	0.6324
0	1.0000	0.0975

```

\section*{ClassificationPartitionedModel.kfoldMargin}
\begin{tabular}{lll}
0.9059 & 0.0941 & 0.5469 \\
0.9059 & 0.0941 & 0.9575 \\
0.9059 & 0.0941 & 0.9649
\end{tabular}

Indeed, every value of \(X\) (the rightmost column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1, while the other values of \(X\) have associated scores of 0.91 and 0.09 . The difference (score 0.09 instead of the expected .06) is due to a statistical fluctuation: there are 8 observations in \(X\) in the range (. 95,1 ) instead of the expected 5 observations.

\section*{Examples}

Find the k-fold margins for an ensemble that classifies the ionosphere data:
```

load ionosphere
ens = fitensemble(X,Y,'AdaBoostM1',100,'Tree');
cvens = crossval(ens);
M = kfoldMargin(cvens);
[min(M) mean(M) max(M)]
ans =
-7.6394 7.3469 22.4833

```

See Also ClassificationPartitionedModel \| kfoldPredict | kfoldEdge | kfoldLoss | kfoldfun | crossval

\section*{ClassificationPartitionedModel.kfoldPredict}

Description

Input
Arguments

\section*{Output \\ Arguments}
```

Purpose Predict response for observations not used for training
Syntax label = kfoldPredict(obj)
[label,score] = kfoldPredict(obj)
[label,score,cost] = kfoldPredict(obj)
Predict response for observations not used for training
label = kfoldPredict(obj) [label,score] = kfoldPredict(obj)
[label,score, cost] = kfoldPredict(obj)

```
label \(=\) kfoldPredict(obj) returns class labels predicted by obj, a cross-validated classification. For every fold, kfoldPredict predicts class labels for in-fold observations using a model trained on out-of-fold observations.
[label,score] = kfoldPredict(obj) returns the predicted classification scores for in-fold observations using a model trained on out-of-fold observations.
[label, score, cost] = kfoldPredict(obj) returns misclassification costs.
obj
Object of class ClassificationPartitionedModel or ClassificationPartitionedEnsemble.

\section*{label}

Vector of class labels of the same type as the response data used in training obj. Each entry of label corresponds to a predicted class label for the corresponding row of X .

\section*{score}

Numeric matrix of size N -by-K, where N is the number of observations (rows) in obj. X , and K is the number of classes (in obj.ClassNames). score( \(i, j\) ) represents the confidence that row i of obj. X is of class j . For details, see "Definitions" on page 20-1209.

\section*{cost}

\section*{ClassificationPartitionedModel.kfoldPredict}

\section*{Definitions}

\section*{Cost (discriminant analysis)}

The average misclassification cost is the mean misclassification cost for predictions made by the cross-validated classifiers trained on out-of-fold observations. The matrix of expected costs per observation is defined in "Cost" on page 14-8.

\section*{Score (discriminant analysis)}

For discriminant analysis, the score of a classification is the posterior probability of the classification. For the definition of posterior probability in discriminant analysis, see "Posterior Probability" on page 14-7.

\section*{Score (ensemble)}

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:
- AdaBoostM1 scores range from \(-\infty\) to \(\infty\).
- Bag scores range from 0 to 1.

\section*{Score (tree)}

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.
For example, consider classifying a predictor \(X\) as true when \(X<0.15\) or \(X>0.95\), and \(X\) is false otherwise.

\section*{ClassificationPartitionedModel.kfoldPredict}

1
Generate 100 random points and classify them:
rng(0,'twister') \% for reproducibility
\(X=\operatorname{rand}(100,1)\);
\(Y=(a b s(X-.55)>.4) ;\)
tree = ClassificationTree.fit(X,Y);
view(tree,'mode','graph')
\begin{tabular}{|l|l|l|l|l|}
\hline Click to display: Identity & Magnification: \(100 \%\) & \(\vee\) & Pruning level: 0 of 2 \\
\hline
\end{tabular}


2
Prune the tree:
tree1 = prune(tree,'level',1);
view(tree1,'mode','graph')

\section*{ClassificationPartitionedModel.kfoldPredict}


The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than . 94 as false. Therefore, the score for observations that are greater than . 15 should be about \(.05 / .85=.06\) for true, and about \(.8 / .85=.94\) for false.

\section*{3}

Compute the prediction scores for the first 10 rows of X :
```

[~,score] = predict(tree1,X(1:10));
[score X(1:10,:)]
ans =

0.9059	0.0941	0.8147
0.9059	0.0941	0.9058
0	1.0000	0.1270
0.9059	0.0941	0.9134
0.9059	0.0941	0.6324
0	1.0000	0.0975
0.9059	0.0941	0.2785

```

\section*{ClassificationPartitionedModel.kfoldPredict}
\begin{tabular}{lll}
0.9059 & 0.0941 & 0.5469 \\
0.9059 & 0.0941 & 0.9575 \\
0.9059 & 0.0941 & 0.9649
\end{tabular}

Indeed, every value of \(X\) (the rightmost column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1 , while the other values of \(X\) have associated scores of 0.91 and 0.09 . The difference (score 0.09 instead of the expected .06) is due to a statistical fluctuation: there are 8 observations in \(X\) in the range (.95,1) instead of the expected 5 observations.
```

Examples Find the cross-validation predictions for a model based on the Fisher
iris data:
load fisheriris
ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');
cvens = crossval(ens);
[elabel escore] = kfoldPredict(cvens);
max(escore)
ans =
$9.3634 \quad 8.5624 \quad 9.3981$
min(escore)
ans $=$
$0.0017 \quad 3.7518 \quad 0.8911$
See Also ClassificationPartitionedModel | kfoldEdge | kfoldMargin |
kfoldLoss | kfoldfun | crossval

```

\section*{RegressionPartitionedModel.kfoldPredict}

Purpose
Predict response for observations not used for training.

Syntax
Description

\section*{Input \\ Arguments}

Output yfit
Arguments

\section*{Examples}

\section*{obi}
yfit = kfoldPredict(obj)
yfit \(=k f o l d P r e d i c t(o b j)\) returns the predicted values for the responses of the training data based on obj, an object trained on out-of-fold observations.

Object of class RegressionPartitionedModel. Create obj with RegressionTree.fit or fitensemble along with one of the cross-validation options: 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. Alternatively, create obj from a regression tree or regression ensemble with crossval.

A vector of predicted values for the response data based on a model trained on out-of-fold observations.

Construct a partitioned regression model, and examine the cross-validation loss. The cross-validation loss is the mean squared error between yfit and the true response data:
```

load carsmall
XX = [Cylinders Displacement Horsepower Weight];
YY = MPG;
tree = RegressionTree.fit(XX,YY);
cvmodel = crossval(tree);
L = kfoldLoss(cvmodel)
L =
26.5271
yfit = kfoldPredict(cvmodel);
mean((yfit - tree.Y).^2)

```

\section*{RegressionPartitionedModel.kfoldPredict}
\[
\begin{aligned}
& \text { ans }= \\
& 26.5271
\end{aligned}
\]

\author{
See Also \\ kfoldLoss
}
```

Purpose K
Syntax IDX = kmeans(X,k)
[IDX,C] = kmeans(X,k)
[IDX,C,sumd] = kmeans(X,k)
[IDX,C,sumd,D] = kmeans(X,k)
[...] = kmeans(...,param1,val1,param2,val2,...)

```

Description
IDX \(=\) kmeans \((X, k)\) partitions the points in the \(n\)-by- \(p\) data matrix \(X\) into k clusters. This iterative partitioning minimizes the sum, over all clusters, of the within-cluster sums of point-to-cluster-centroid distances. Rows of \(X\) correspond to points, columns correspond to variables. kmeans returns an \(n\)-by- 1 vector IDX containing the cluster indices of each point. By default, kmeans uses squared Euclidean distances. When X is a vector, kmeans treats it as an \(n\)-by- 1 data matrix, regardless of its orientation.
[IDX,C] = kmeans(X,k) returns the \(k\) cluster centroid locations in the k -by-p matrix C .
[IDX,C,sumd] = kmeans(X,k) returns the within-cluster sums of point-to-centroid distances in the 1 -by-k vector sumd.
[IDX, C, sumd, D] = kmeans ( \(\mathrm{X}, \mathrm{k}\) ) returns distances from each point to every centroid in the \(n\)-by- \(k\) matrix \(D\).
[...] = kmeans(...,param1,val1,param2,val2,...) enables you to specify optional parameter/value pairs to control the iterative algorithm used by kmeans. Valid parameter strings are listed in the following table.
\begin{tabular}{l|l|l}
\hline Parameter & Value \\
\hline 'distance' & \begin{tabular}{l} 
Distance measure, in p-dimensional space. kmeans \\
minimizes with respect to this parameter. kmeans \\
computes centroid clusters differently for the \\
different supported distance measures.
\end{tabular} \\
\hline & 'sqEuclidean' & \begin{tabular}{l} 
Squared Euclidean distance \\
(default). Each centroid is the \\
mean of the points in that cluster.
\end{tabular} \\
\hline & 'cityblock' & \begin{tabular}{l} 
Sum of absolute differences, i.e., \\
the L1 distance. Each centroid \\
is the component-wise median of \\
the points in that cluster.
\end{tabular} \\
\hline & 'cosine' & \begin{tabular}{l} 
One minus the cosine of the \\
included angle between points \\
(treated as vectors). Each \\
centroid is the mean of the points \\
in that cluster, after normalizing \\
those points to unit Euclidean \\
length.
\end{tabular} \\
\hline & 'correlation' & \begin{tabular}{l} 
One minus the sample correlation \\
between points (treated as \\
sequences of values). Each \\
centroid is the component-wise \\
mean of the points in that cluster, \\
after centering and normalizing \\
those points to zero mean and \\
unit standard deviation.
\end{tabular} \\
\hline & 'Hamming' & \begin{tabular}{l} 
Percentage of bits that differ (only \\
suitable for binary data). Each \\
centroid is the component-wise \\
median of points in that cluster.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l|l}
\hline Parameter & \multicolumn{1}{|l}{ Value } \\
\hline \multirow{5}{*}{ 'emptyaction' } & \multicolumn{1}{|l}{\begin{tabular}{l} 
Action to take if a cluster loses all its member \\
observations.
\end{tabular}} \\
\cline { 2 - 4 } & 'error' & \begin{tabular}{l} 
Treat an empty cluster as an \\
error (default).
\end{tabular} \\
\cline { 2 - 4 } & 'drop' & \begin{tabular}{l} 
Remove any clusters that \\
become empty. kmeans sets the \\
corresponding return values in C \\
and D to NaN.
\end{tabular} \\
\hline \multirow{5}{*}{ 'onlinephase ' } & \begin{tabular}{l} 
Flag indicating whether kmeans should perform an \\
online update phase in addition to a batch update \\
phase. The online phase can be time consuming \\
for large data sets, but guarantees a solution that \\
is a local minimum of the distance criterion, that \\
is, a partition of the data where moving any single \\
point to a different cluster increases the total sum \\
of distances.
\end{tabular} \\
\cline { 2 - 3 } & \begin{tabular}{l} 
Create a new cluster consisting \\
of the one point furthest from its \\
centroid.
\end{tabular} \\
\hline & 'on' & Perform online update (default). \\
\hline & 'off' & Do not perform online update. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Parameter & \multicolumn{2}{|l|}{Value} \\
\hline \multirow[t]{6}{*}{'options'} & \multicolumn{2}{|l|}{Structure specifying options for the iterative algorithm used to minimize the fitting criteria. Create the options structure with statset. Applicable statset parameters are:} \\
\hline & Display & Level of display output. Choices are `off'(default), `iter', and 'final'. \\
\hline & MaxIter & Maximum number of iterations allowed. The default is 100 . \\
\hline & UseParallel & If true and if a matlabpool of the Parallel Computing Toolbox is open, compute in parallel. If the Parallel Computing Toolbox is not installed, or a matlabpool is not open, computation occurs in serial mode. Default is default, meaning serial computation. \\
\hline & UseSubstreams & Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a' \\
\hline & Streams & \begin{tabular}{l}
A RandStream object or cell array of such objects. If you do not specify Streams, kmeans uses the default stream or streams. If you choose to specify Streams, use a single object except in the case: \\
- You have an open MATLAB pool
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Parameter & \multicolumn{2}{|l|}{Value} \\
\hline & & \begin{tabular}{l}
- UseParallel is true \\
- UseSubstreams is false \\
In that case, use a cell array the same size as the MATLAB pool. If a MATLAB pool is not open, then Streams must supply a single random number stream.
\end{tabular} \\
\hline 'replicates' & \multicolumn{2}{|l|}{Number of times to repeat the clustering, each with a new set of initial cluster centroid positions. kmeans returns the solution with the lowest value for sumd. You can supply 'replicates' implicitly by supplying a 3D array as the value for the 'start' parameter.} \\
\hline \multirow[t]{5}{*}{'start'} & \multicolumn{2}{|l|}{Method used to choose the initial cluster centroid positions, sometimes known as seeds.} \\
\hline & 'sample' & Select k observations from \(X\) at random (default). \\
\hline & 'uniform' & Select k points uniformly at random from the range of \(X\). Not valid with Hamming distance. \\
\hline & 'cluster' & Perform a preliminary clustering phase on a random \(10 \%\) subsample of \(x\). This preliminary phase is itself initialized using 'sample'. \\
\hline & Matrix & k-by-p matrix of centroid starting locations. In this case, you can pass in [] for \(k\), and kmeans infers \(k\) from the first dimension of the matrix. You can also supply a 3-D array, implying a value for the \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Parameter & Value \\
& \\
\hline
\end{tabular}

\section*{Algorithms}

\section*{References}
kmeans uses a two-phase iterative algorithm to minimize the sum of point-to-centroid distances, summed over all \(k\) clusters:

1 The first phase uses batch updates, where each iteration consists of reassigning points to their nearest cluster centroid, all at once, followed by recalculation of cluster centroids. This phase occasionally does not converge to solution that is a local minimum, that is, a partition of the data where moving any single point to a different cluster increases the total sum of distances. This is more likely for small data sets. The batch phase is fast, but potentially only approximates a solution as a starting point for the second phase.

2 The second phase uses online updates, where points are individually reassigned if doing so will reduce the sum of distances, and cluster centroids are recomputed after each reassignment. Each iteration during the second phase consists of one pass though all the points. The second phase will converge to a local minimum, although there may be other local minima with lower total sum of distances. The problem of finding the global minimum can only be solved in general by an exhaustive (or clever, or lucky) choice of starting points, but using several replicates with random starting points typically results in a solution that is a global minimum.
[1] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley \& Sons, Inc., 1984.
[2] Spath, H. Cluster Dissection and Analysis: Theory, FORTRAN Programs, Examples. Translated by J. Goldschmidt. New York: Halsted Press, 1985.

Examples
The following creates two clusters from separated random data:
```

X = [randn(100,2)+ones(100,2);...
randn(100,2)-ones(100,2)];
opts = statset('Display','final');
[idx,ctrs] = kmeans(X,2,...
'Distance','city',...
'Replicates',5,...
'Options',opts);
5 iterations, total sum of distances = 284.671
4 iterations, total sum of distances = 284.671
4 iterations, total sum of distances = 284.671
3 iterations, total sum of distances = 284.671
3 iterations, total sum of distances = 284.671
plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12)
hold on
plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12)
plot(ctrs(:,1),ctrs(:,2),'kx',...
'MarkerSize',12,'LineWidth',2)
plot(ctrs(:,1),ctrs(:,2),'ko',...
'MarkerSize',12,'LineWidth',2)
legend('Cluster 1','Cluster 2','Centroids',...
'Location','NW')

```


\author{
See Also linkage | clusterdata | silhouette
}

\section*{ExhaustiveSearcher.knnsearch}

\section*{Purpose}

Find \(k\)-nearest neighbors using ExhaustiveSearcher object

\section*{Syntax}

IDX = knnsearch(NS, Y)
[IDX, D] = knnsearch(NS,Y)
[IDX,D] = knnsearch(NS,Y,'Name', Value)

Name-Value Pair Arguments Arguments

A positive integer, \(k\), specifying the number of nearest neighbors in NS.X for each point in Y. Default is 1. IDX and D are \(n y\)-by- \(k\) matrices. D sorts the distances in each row in ascending order. Each row in IDX contains the indices of the \(k\) closest neighbors in NS. X corresponding to the \(k\) smallest distances in D.

\section*{'IncludeTies'}

A logical value indicating whether knnsearch includes all the neighbors whose distance values are equal to the Kth smallest distance. If IncludeTies is true, knnsearch includes all these neighbors. In this case, IDX and D are ny-by- 1 cell arrays. Each

\section*{ExhaustiveSearcher.knnsearch}
row in IDX and \(D\) contains a vector with at least \(K\) numeric numbers. \(D\) sorts the distances in each vector in ascending order. Each row in IDX contains the indices of the closest neighbors corresponding to these smallest distances in \(D\).

Default: false

\section*{'Distance'}
- 'euclidean' - Euclidean distance (default).
- 'seuclidean' - Standardized Euclidean distance. Each coordinate difference between \(X\) and each query point is scaled by dividing by a scale value S . The default value of S is NS.DistParameter if NS.Distance is 'seuclidean', otherwise the default is the standard deviation computed from X, S=nanstd (X). To specify another value for S, use the 'Scale' argument.
- 'cityblock' - City block distance.
- 'chebychev' - Chebychev distance (maximum coordinate difference).
- 'minkowski' - Minkowski distance.
- 'mahalanobis' - Mahalanobis distance, which is computed using a positive definite covariance matrix C . The default value of \(C\) is nancov \((X)\). To change the value of \(C\), use the Cov parameter.
- 'cosine ' - One minus the cosine of the included angle between observations (treated as vectors).
- 'correlation' - One minus the sample linear correlation between observations (treated as sequences of values).
- 'spearman' - One minus the sample Spearman's rank correlation between observations (treated as sequences of values).
- 'hamming ' - Hamming distance, which is the percentage of coordinates that differ.
- 'jaccard' - One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.
- custom distance function - A distance function specified using @ (for example, @distfun). A distance function must be of the form function D2 = distfun(ZI, ZJ), taking as arguments a 1-by- \(n\) vector ZI containing a single row of from X or from the query points Y , an \(m 2\)-by- \(n\) matrix ZJ containing multiple rows of \(X\) or \(Y\), and returning an \(m 2\)-by- 1 vector of distances D2, whose \(j\) th element is the distance between the observations \(Z I\) and \(Z J(j,:)\).

Default is NS.Distance. For more information on these distance metrics, see "Distance Metrics" on page 15-9.
' \(\mathbf{P}\) '
A positive scalar, \(p\), indicating the exponent of the Minkowski distance. This parameter is only valid if knnsearch uses the 'minkowski' distance metric. Default is NS. DistParameter if NS.Distance is 'minkowski' and 2 otherwise.

\section*{'Cov'}

A positive definite matrix indicating the covariance matrix when computing the Mahalanobis distance. This parameter is only valid when knnsearch uses the 'mahalanobis' distance metric. Default is NS.DistParameter if NS.Distance is 'mahalanobis', or nancov (X) otherwise.

\section*{'Scale'}

A vector \(S\) with the length equal to the number of columns in X. Each coordinate of \(X\) and each query point is scaled by the corresponding element of \(S\) when computing the standardized Euclidean distance. This parameter is only valid when Distance is 'seuclidean'. Default is nanstd ( X ).

\section*{ExhaustiveSearcher.knnsearch}

Examples
Create an ExhaustiveSearcher object specifying 'cosine' as the distance metric. Perform a \(k\)-nearest neighbors search on the object using the mahalanobis metric and compare the results:
```

load fisheriris
x = meas(:,3:4);
exhaustiveobj = ExhaustiveSearcher(x,'Distance','cosine')
exhaustiveobj =
ExhaustiveSearcher
Properties:
X: [150x2 double]
Distance: 'cosine'
DistParameter: []
% Perform a knnsearch between x and a query point, using
% first cosine then mahalanobis distance metrics:
newpoint = [5 1.45];
[n,d]=knnsearch(exhaustiveobj, newpoint, 'k',10);
[nmah,dmah] = knnsearch(exhaustiveobj,newpoint,'k',10,···
'distance','mahalanobis');
% Visualize the results of the two different nearest
% neighbors searches:
% First plot the training data:
gscatter(x(:,1),x(:,2),species)
% Plot an X for the query point:
line(newpoint(1),newpoint(2),'marker','x','color','k', ...
'markersize',10,'linewidth',2,'linestyle','none')
% Use circles to denote the cosine nearest neighbors:
line(x(n,1),x(n,2),'color',[.5 .5 .5],'marker','o',...
'linestyle','none','markersize',10)
% Use pentagrams to denote the mahalanobis nearest neighbors:
line(x(nmah,1),x(nmah,2),'color',[.5 .5 .5],'marker','p',...

```
```

 'linestyle','none','markersize',10)
 legend('setosa','versicolor','virginica','query point',...
'cosine','mahalanobis')
set(legend,'location','best')

```


\section*{Algorithms}

See Also

How To

For information on a specific search algorithm, see "Distance Metrics" on page 15-9.
createns | ExhaustiveSearcher | KDTreeSearcher.knnsearch | knnsearch | rangesearch
- " \(k\)-Nearest Neighbor Search and Radius Search" on page 15-12

\section*{ExhaustiveSearcher.knnsearch}
- "Distance Metrics" on page 15-9

\section*{Purpose}

Find \(k\)-nearest neighbors using KDTreeSearcher object

IDX = knnsearch(NS, Y)
[IDX, D] = knnsearch(NS,Y)
[IDX,D] = knnsearch(NS,Y,'Name', Value)

Description

\section*{Input Arguments}

IDX \(=\) knnsearch ( \(N S, Y\) ) finds the nearest neighbor (closest point) in NS. X for each point in Y. Rows of \(Y\) correspond to observations and columns correspond to features. Y must have the same number of columns as NS.X. IDX is a column vector with ny rows, where \(n y\) is the number of rows in Y. Each row in IDX contains the index of observation in NS. X which has the smallest distance to the corresponding observation in \(Y\).
[IDX, D] = knnsearch(NS,Y) returns a column vector D containing the distances between each observation in \(Y\) and the corresponding closest observation in NS.X. That is, \(D(i)\) is the distance between NS. X(IDX(i),:) and Y(i,:).
[IDX, D] = knnsearch(NS, Y, 'Name', Value) accepts one or more comma-separated name/value pairs. Specify Name inside single quotes.

\section*{Name-Value Pair Arguments}

\section*{' \(\mathbf{K}^{\prime}\)}

A positive integer, \(k\), specifying the number of nearest neighbors in NS.X for each point in Y. Default is 1. IDX and D are \(n y\)-by- \(k\) matrices. D sorts the distances in each row in ascending order. Each row in IDX contains the indices of the \(k\) closest neighbors in NS. X corresponding to the \(k\) smallest distances in D.

\section*{'Distance'}

Select one of the following distance algorithms.
- 'euclidean' - Euclidean distance (default).
- 'cityblock' - City block distance.

\section*{KDTreeSearcher.knnsearch}
- 'chebychev' - Chebychev distance (maximum coordinate difference).
- 'minkowski' - Minkowski distance.

Default is NS.Distance. For more information on these distance metrics, see "Distance Metrics" on page 15-9.

\section*{'IncludeTies'}

A logical value indicating whether knnsearch includes all the neighbors whose distance values are equal to the Kth smallest distance. If IncludeTies is true, knnsearch includes all these neighbors. In this case, IDX and D are \(n y\)-by- 1 cell arrays. Each row in IDX and \(D\) contains a vector with at least \(K\) numeric numbers. \(D\) sorts the distances in each vector in ascending order. Each row in IDX contains the indices of the closest neighbors corresponding to these smallest distances in \(D\).

Default: false

\section*{'P'}

A positive scalar, \(p\), indicating the exponent of the Minkowski distance. This parameter is only valid whenthe Distance is 'minkowski'. Default is NS.DistParameter if NS. Distance is 'minkowski' and 2 otherwise.

\section*{Examples}

Create a KDTreeSearcher object specifying 'minkowski' as the distance metric with an exponent of 5 . Perform a \(k\)-nearest neighbors search on the object using the chebychev metric and compare the results:
```

load fisheriris
x = meas(:,3:4);
kdtreeNS = KDTreeSearcher(x,'Distance','minkowski','P',5)
kdtreeNS =
KDTreeSearcher

```
```

Properties:
BucketSize: 50
X: [150x2 double]
Distance: 'minkowski'
DistParameter: 5
% Perform a knnsearch between X and a query point, using
% first Minkowski then Chebychev distance metrics:
newpoint = [5 1.45];
[n,d]=knnsearch(kdtreeNS,newpoint,'k',10);
[ncb,dcb] = knnsearch(kdtreeNS,newpoint,'k',10,...
'distance','chebychev');
% Visualize the results of the two different nearest
% neighbors searches:
% First plot the training data:
gscatter(x(:,1),x(:,2),species)
% Zoom in on the points of interest:
set(gca,'xlim',[4.5 5.5],'ylim',[1 2]); axis square
% Plot an X for the query point:
line(newpoint(1),newpoint(2),'marker','x','color','k',...
'markersize',10,'linewidth',2,'linestyle','none')
% Use circles to denote the Minkowski nearest neighbors:
line(x(n,1),x(n,2),'color',[.5 .5 .5],'marker','o',...
'linestyle','none','markersize',10)
% Use pentagrams to denote the Chebychev nearest neighbors:
line(x(ncb,1),x(ncb,2),'color',[.5 .5 .5],'marker','p',...
'linestyle','none','markersize',10)
legend('setosa','versicolor','virginica','query point',...
'minkowski','chebychev')
set(legend,'location','best')

```

\section*{KDTreeSearcher.knnsearch}


\section*{Algorithms}

How To

References [1] Friedman, J. H., Bentely, J., and Finkel, R. A. (1977). An Algorithm for Finding Best Matches in Logarithmic Expected Time, ACM Transactions on Mathematical Software 3, 209.
See Also

createns | ExhaustiveSearcher | ExhaustiveSearcher.knnsearch |
 knnsearch | rangesearch

For information on a specific search algorithm, see "Distance Metrics" on page 15-9.
- " \(k\)-Nearest Neighbor Search and Radius Search" on page 15-12
- "Distance Metrics" on page 15-9

Purpose
Find \(k\)-nearest neighbors using data

\section*{Syntax}

IDX = knnsearch (X,Y)
[IDX,D] = knnsearch(X,Y)
[IDX, D] = knnsearch(X,Y,'Name', Value)

\section*{Input Arguments}

IDX \(=\operatorname{knnsearch}(X, Y)\) finds the nearest neighbor in \(X\) for each point nearest neighbor in \(X\) for the corresponding row in \(Y\). observation in \(X\). That is, \(D(i)\) is the distance between \(X(\operatorname{IDX}(i),:)\) and \(Y(i,:)\).
[IDX, D] = knnsearch(X,Y, 'Name', Value) accepts one or more quotes.
knnsearch does not save a search object. To create a search object, use createns. of each point in \(Y\).

\section*{Name-Value Pair Arguments}
in \(Y\). \(X\) is an \(m x\)-by- \(n\) matrix and \(Y\) is an \(m y\)-by- \(n\) matrix. Rows of \(X\) and Y correspond to observations and columns correspond to variables. IDX is a column vector with \(m y\) rows. Each row in IDX contains the index of
[IDX, D] = knnsearch ( \(\mathrm{X}, \mathrm{Y}\) ) returns an \(m y\)-by-1 vector D containing the distances between each observation in \(Y\) and the corresponding closest optional comma-separated name/value pairs. Specify Name inside single
- For a fixed positive integer K, knnsearch finds the \(K\) points in \(X\) that are nearest each point in \(Y\). In contrast, for a fixed positive real value \(r\), rangesearch finds all the points in \(X\) that are within a distance \(r\)

\section*{'K'}

Positive integer specifying the number of nearest neighbors in \(X\) for each point in Y. Default is 1. IDX and D are \(m y\)-by-K matrices. D sorts the distances in each row in ascending order. Each row in IDX contains the indices of the \(K\) closest neighbors in \(X\) corresponding to the \(K\) smallest distances in \(D\).

\section*{'IncludeTies'}

A logical value indicating whether knnsearch includes all the neighbors whose distance values are equal to the Kth smallest distance. If IncludeTies is true, knnsearch includes all these neighbors. In this case, IDX and D are \(m y\)-by- 1 cell arrays. Each row in IDX and D contains a vector with at least \(K\) numeric numbers. \(D\) sorts the distances in each vector in ascending order. Each row in IDX contains the indices of the closest neighbors corresponding to these smallest distances in D.

Default: false

\section*{'NSMethod'}

Nearest neighbors search method. Value is either:
- 'kdtree' - Creates and uses a Kd-tree to find nearest neighbors. This is the default value when the number of columns of X is less than \(10, \mathrm{X}\) is not sparse, and the distance measure is one of the following measures. 'kdtree' is only valid when the distance measure is one of the following:
- 'euclidean'
- 'cityblock'
- 'minkowski'
- 'chebychev'
- 'exhaustive' - Uses the exhaustive search algorithm by computing the distance values from all the points in \(X\) to each point in \(Y\) to find nearest neighbors.

\section*{'Distance'}

A string or a function handle specifying the distance metric. The value can be one of the following:
- 'euclidean' - Euclidean distance (default).
- 'seuclidean' - Standardized Euclidean distance. Each coordinate difference between rows in \(X\) and the query matrix is scaled by dividing by the corresponding element of the standard deviation computed from X, S=nanstd (X). To specify another value for S, use the Scale argument.
- 'cityblock' - City block distance.
- 'chebychev' - Chebychev distance (maximum coordinate difference).
- 'minkowski' - Minkowski distance. The default exponent is 2 . To specify a different exponent, use the ' \(P\) ' argument.
- 'mahalanobis' - Mahalanobis distance, computed using a positive definite covariance matrix \(C\). The default value of \(C\) is nancov ( \(X\) ). To change the value of C , use the Cov parameter.
- 'cosine' - 1 minus the cosine of the included angle between observations (treated as vectors).
- 'correlation' - One minus the sample linear correlation between observations (treated as sequences of values).
- 'spearman ' - One minus the sample Spearman's rank correlation between observations (treated as sequences of values).
- 'hamming' - Hamming distance, which is the percentage of coordinates that differ.
- 'jaccard' - One minus the Jaccard coefficient, which is the percentage of nonzero coordinates that differ.
- custom distance function - A distance function specified using @ (for example, @distfun). A distance function must be of the form function D2 \(=\) distfun(ZI, ZJ), taking as arguments a 1-by-n vector \(Z I\) containing a single row of \(X\) or \(Y\), an \(m 2\)-by- \(n\) matrix \(Z J\) containing multiple rows of \(X\) or Y , and returning an \(m 2\)-by- 1 vector of distances D2, whose \(j\) th element is the distance between the observations ZI and ZJ(j,:).
For more information on these distance metrics, see "Distance Metrics" on page 15-9.

\section*{'P'}

A positive scalar, \(p\), indicating the exponent of the Minkowski distance. This parameter is only valid if the Distance is 'minkowski'. Default is 2 .

\section*{'Cov'}

A positive definite matrix indicating the covariance matrix when computing the Mahalanobis distance. This parameter is only valid when Distance is 'mahalanobis'. Default is nancov ( X ).

\section*{'Scale'}

A vector \(S\) containing nonnegative values, with length equal to the number of columns in \(X\). Each coordinate of \(X\) and each query point is scaled by the corresponding element of \(S\) when computing the standardized Euclidean distance. This argument is only valid when Distance is 'seuclidean'. Default is nanstd ( X ).

\section*{'BucketSize'}

The maximum number of data points in the leaf node of the \(k \mathrm{~d}\)-tree. This argument is only meaningful when using the \(k\) d-tree search method. Default is 50 .

\section*{Examples}

Find the 10 nearest neighbors in \(x\) to each point in \(y\) using first the 'minkowski' distance metric with a p value of 5 , and then using the 'chebychev' distance metric. Visually compare the results:
```

load fisheriris
x = meas(:,3:4);
y = [5 1.45;6 2;2.75 .75];
% Perform a knnsearch between x and the query points in y,
% using first Minkowski then Chebychev distance metrics.
[n,d]=knnsearch(x,y,'k',10,'distance','minkowski','p',5);
[ncb,dcb] = knnsearch(x,y,'k',10,...
'distance','chebychev');

```
```

% Visualize the results of the two different nearest
% neighbors searches.
% First plot the training data.
gscatter(x(:,1),x(:,2),species)
% Plot an X for the query points.
line(y(:,1),y(:,2),'marker','x','color','k',...
'markersize',10,'linewidth',2,'linestyle','none')
% Use circles to denote the Minkowski nearest neighbors.
line(x(n,1),x(n,2),'color',[.5 .5 .5],'marker','o',...
'linestyle','none','markersize',10)
% Use pentagrams to denote the Chebychev nearest neighbors.
line(x(ncb,1),x(ncb,2),'color',[.5 .5 .5],'marker','p',...
'linestyle','none','markersize',10)
legend('setosa','versicolor','virginica','query point',...
'minkowski','chebychev')
set(legend,'location','best')

```


\section*{Algorithms}

\section*{References}

See Also

How To

For information on a specific search algorithm, see "Distance Metrics" on page 15-9.
[1] Friedman, J. H., Bentely, J., and Finkel, R. A. (1977) An Algorithm for Finding Best Matches in Logarithmic Expected Time, ACM Transactions on Mathematical Software 3, 209.
createns | KDTreeSearcher.knnsearch | ExhaustiveSearcher.knnsearch | rangesearch
- " \(k\)-Nearest Neighbor Search and Radius Search" on page 15-12

\section*{kruskalwallis}
Purpose Kruskal-Wallis test
\begin{tabular}{|c|c|}
\hline Syntax & \(\mathrm{p}=\) kruskalwallis(X) \\
\hline & \(\mathrm{p}=\) kruskalwallis(X, group) \\
\hline & \(\mathrm{p}=\) kruskalwallis(X,group,displayopt) \\
\hline & [ p ,table] = kruskalwallis(...) \\
\hline & [p,table,stats] = kruskalwallis( \\
\hline
\end{tabular}

\section*{Description}
p = kruskalwallis(X) performs a Kruskal-Wallis test to compare samples from two or more groups. Each column of the \(m\)-by- \(n\) matrix X represents an independent sample containing \(m\) mutually independent observations. The function compares the medians of the samples in X , and returns the \(p\)-value for the null hypothesis that all samples are drawn from the same population (or equivalently, from different populations with the same distribution). Note that the Kruskal-Wallis test is a nonparametric version of the classical one-way ANOVA, and an extension of the Wilcoxon rank sum test to more than two groups.

If the \(p\)-value is near zero, this casts doubt on the null hypothesis and suggests that at least one sample median is significantly different from the others. The choice of a critical \(p\)-value to determine whether the result is judged statistically significant is left to the researcher. It is common to declare a result significant if the \(p\)-value is less than 0.05 or 0.01.

The kruskalwallis function displays two figures. The first figure is a standard ANOVA table, calculated using the ranks of the data rather than their numeric values. Ranks are found by ordering the data from smallest to largest across all groups, and taking the numeric index of this ordering. The rank for a tied observation is equal to the average rank of all observations tied with it. For example, the following table shows the ranks for a small sample.
\begin{tabular}{l|l|l|l|l|l|l|l}
\hline X value & 1.4 & 2.7 & 1.6 & 1.6 & 3.3 & 0.9 & 1.1 \\
\hline Rank & 3 & 6 & 4.5 & 4.5 & 7 & 1 & 2 \\
\hline
\end{tabular}

The entries in the ANOVA table are the usual sums of squares, degrees of freedom, and other quantities calculated on the ranks. The usual \(F\) statistic is replaced by a chi-square statistic. The \(p\)-value measures the significance of the chi-square statistic.
The second figure displays box plots of each column of \(X\) (not the ranks of \(X\) ).
\(\mathrm{p}=\) kruskalwallis( X , group) uses the values in group (a character array or cell array) as labels for the box plot of the samples in \(X\), when \(X\) is a matrix. Each row of group contains the label for the data in the corresponding column of \(X\), so group must have length equal to the number of columns in \(X\).

When \(X\) is a vector, kruskalwallis performs a Kruskal-Wallis test on the samples contained in \(X\), as indexed by input group (a categorical variable, vector, character array, or cell array). Each element in group identifies the group (i.e., sample) to which the corresponding element in vector \(X\) belongs, so group must have the same length as \(X\). The labels contained in group are also used to annotate the box plot.

It is not necessary to label samples sequentially (1, 2, 3, ...). For example, if \(X\) contains measurements taken at three different temperatures, \(-27^{\circ}, 65^{\circ}\), and \(110^{\circ}\), you could use these numbers as the sample labels in group. If a row of group contains an empty cell or empty string, that row and the corresponding observation in \(X\) are disregarded. NaNs in either input are similarly ignored.
\(\mathrm{p}=\) kruskalwallis(X,group,displayopt) enables the table and box plot displays when displayopt is 'on' (default) and suppresses the displays when displayopt is 'off'.
[ \(p\),table] = kruskalwallis(...) returns the ANOVA table (including column and row labels) in cell array table.
[p,table,stats] = kruskalwallis(...) returns a stats structure that you can use to perform a follow-up multiple comparison test. The kruskalwallis test evaluates the hypothesis that all samples come from populations that have the same median, against the alternative that the medians are not all the same. Sometimes it is preferable to

\section*{kruskalwallis}
perform a test to determine which pairs are significantly different, and which are not. You can use the multcompare function to perform such tests by supplying the stats structure as input.

\section*{Assumptions}

The Kruskal-Wallis test makes the following assumptions about the data in \(X\) :
- All samples come from populations having the same continuous distribution, apart from possibly different locations due to group effects.
- All observations are mutually independent.

The classical one-way ANOVA test replaces the first assumption with the stronger assumption that the populations have normal distributions.

\section*{Examples}

This example compares the material strength study used with the anova1 function, to see if the nonparametric Kruskal-Wallis procedure leads to the same conclusion. The example studies the strength of beams made from three alloys:
```

strength = [82 86 79 83 84 85 86 87 74 82 ...
78 75 76 77 79 79 77 78 82 79];
alloy = {'st','st','st','st','st','st','st','st',...
'al1','al1','al1','al1','al1','al1',...
'al2','al2','al2','al2','al2','al2'};

```

This example uses both classical and Kruskal-Wallis ANOVA, omitting displays:
```

anova1(strength,alloy,'off')
ans =
1.5264e-004
kruskalwallis(strength,alloy,'off')
ans =
0.0018

```

Both tests find that the three alloys are significantly different, though the result is less significant according to the Kruskal-Wallis test. It is typical that when a data set has a reasonable fit to the normal distribution, the classical ANOVA test is more sensitive to differences between groups.

To understand when a nonparametric test may be more appropriate, let's see how the tests behave when the distribution is not normal. You can simulate this by replacing one of the values by an extreme value (an outlier).
```

strength(20)=120;
anova1(strength,alloy,'off')
ans =
0.2501

```
kruskalwallis(strength, alloy, 'off')
ans =
    0.0060

Now the classical ANOVA test does not find a significant difference, but the nonparametric procedure does. This illustrates one of the properties of nonparametric procedures - they are often not severely affected by changes in a small portion of the data.
\begin{tabular}{ll} 
References & [1] Gibbons, J. D. Nonparametric Statistical Inference. New York: \\
& Marcel Dekker, 1985. \\
& \begin{tabular}{l} 
[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods. \\
\\
Hoboken, NJ: John Wiley \& Sons, Inc., 1999.
\end{tabular} \\
See Also & anova1 | boxplot | friedman | multcompare | ranksum \\
How To & - "Grouping Variables" on page 2-51
\end{tabular}

Purpose Kernel smoothing function estimate
```

Syntax $\quad[f, x i]=$ ksdensity (x)
[f,xi] = ksdensity(x,pts)
[f,xi] = ksdensity(x,pts,Name,Value)
[f,xi,bw] = ksdensity(__)
ksdensity (__)
ksdensity (ax, __)

```

\section*{Description}
[f,xi] = ksdensity(x) returns a probability density estimate, \(f\), for the sample in the vector \(x\). The estimate is based on a normal kernel function, and is evaluated at 100 equally spaced points, \(x i\), that cover the range of the data in \(x\).
ksdensity works best with continuously distributed samples.
[ \(f, x i]=k s d e n s i t y(x, p t s)\) returns a probability density estimate, f , for the sample in the vector x , evaluated at the specified values in vector pts. Here, the xi and pts vectors contain identical values.
[f,xi] = ksdensity(x,pts,Name, Value) returns a probability density estimate, \(f\), for the sample in the vector \(x\), with additional options specified by one or more Name, Value pair arguments.
For example, you can define the function type ksdensity evaluates, such as probability density, cumulative probability, survivor function, and so on. Or you can specify the bandwidth of the smoothing window.
[f,xi,bw] = ksdensity( __ ) also returns the bandwidth of the kernel smoothing window, bw. The default bandwidth is the optimal for normal densities.
ksdensity (__ ) plots the kernel smoothing function estimate.
ksdensity (ax, __ ) plots the results using axes with the handle, ax, instead of the current axes returned by gca.

\section*{Input \\ Arguments}

\section*{x-Sample data}
column vector
Sample data, for which ksdensity returns \(f\) values, specified as a column vector.

Example: [f,xi] = ksdensity (x)

\section*{Data Types}
single | double

\section*{pts - Points to evaluate \(f\)}
vector
Points to evaluate f at, specified as a vector. pts can be a row or column vector. f has the same dimensions as pts .
Example: pts = (0:1:25); ksdensity(x,pts);

\section*{Data Types}
single | double

\section*{ax - Axes handle}

\section*{handle}

Axes handle for the figure ksdensity plots to, specified as a handle.
For example, if h is a handle for a figure, then ksdensity can plot to that figure as follows.

\section*{Example: ksdensity (h,x)}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
```

Example:
'censoring',cens,'kernel','triangle','npoints', 20,'function','cdf'
specifies that ksdensity estimates the cdf by evaluating at
20 equally spaced points that covers the range of data, using
the triangle kernel smoothing function and accounting for the
censored data information in vector cens.

```

\section*{'censoring' - Logical vector}
vector of 0 s (default) | vector of 0 s and 1 s
Logical vector indicating which entries are censored, specified as a vector of binary values. A value of 0 indicates there is no censoring, 1 indicates that observation is censored. Default is there is no censoring.
Example: 'censoring', censdata

\section*{Data Types}
logical
```

'kernel' - Type of kernel smoother
'normal' (default) | 'box' | 'triangle' | 'epanechnikov' |
function handle | string

```

Type of kernel smoother, specified as the comma-separated pair consisting of 'kernel' and one of the following.
- 'normal' (default)
- 'box'
- 'triangle'
- 'epanechnikov'
- You can also specify a custom kernel function, as a function handle or as a string, e.g., @normpdf or 'normpdf'. This calls the function with one argument that is an array of distances between data values and locations where the density is evaluated. The function must return an array of the same size containing corresponding values of the kernel function.

When 'function' is 'pdf', this kernel function returns density values. Otherwise, it returns cumulative probability values.

Specifying a custom kernel when 'function' is 'icdf' returns an error.

If 'support' is 'positive', then ksdensity transforms x using a log function, estimates the density of the transformed values, and transforms back to the original scale. If 'support' is a vector [L U], then ksdensity uses the transformation \(\log ((X-L) /(U-X))\). The width parameter and bw outputs are on the scale of the transformed values.

Example: 'kernel', 'box'

\section*{Data Types}
char | function_handle

\section*{'npoints' - Number of equally spaced points}

100 (default) | scalar value
Number of equally spaced points in xi, specified as the comma-separated pair consisting of 'npoints' and a scalar value.
For instance, for a kernel smooth estimate of a specified function at 80 equally spaced points within the range of sample data, input:
Example: 'npoints', 80

\section*{Data Types}
single | double

\section*{'support' - Support for the density}
'unbounded' (default) | 'positive' | two-element vector, [L U]
Support for the density, specified as the comma-separated pair consisting of 'support' and one of the following.

\section*{ksdensity}
\begin{tabular}{l|l}
\hline 'unbounded' & \begin{tabular}{l} 
Default. Allow the density to extend over the \\
whole real line.
\end{tabular} \\
\hline 'positive' & Restrict the density to positive values. \\
\hline \begin{tabular}{l} 
Two-element \\
vector, [L U]
\end{tabular} & \begin{tabular}{l} 
Give the finite lower and upper bounds for the \\
support of the density.
\end{tabular} \\
\hline
\end{tabular}

Example: 'support','positive'
Example: 'support', [0 10]

\section*{Data Types \\ single | double | char}

\section*{'weights' - Weights for each x value}
vector
Weights for each \(x\) value, specified as the comma-separated pair consisting of 'weights' and a vector of the same length as \(x\).

For instance, if the weights for the data values are in vector xw , then you can specify the weights as follows.

Example: 'weights',xw
```

Data Types
single | double

```

\section*{'bandwidth' - Bandwidth of the kernel smoothing window}
optimal value for normal densities (default) | scalar value
The bandwidth of the kernel-smoothing window, which is a function of the number of points in \(x\), specified as the comma-separated pair consisting of 'width' and a scalar. The default is optimal for estimating normal densities, but you might want to choose a larger or smaller value to smooth more or less.

Example: 'bandwidth', 0.8

\section*{Data Types}
single | double

\section*{'function' - Function to estimate}
'pdf' (default) | 'cdf' | 'icdf' | 'survivor' | 'cumhazard'
Function to estimate, specified as the comma-separated pair consisting of 'function' and one of the following.
\begin{tabular}{|c|c|}
\hline 'pdf' & Default. Probability density function. \\
\hline 'cdf' & Cumulative distribution function. \\
\hline 'icdf' & Inverse cumulative distribution function. For 'icdf', \\
\hline 'survivor' & Survivor function. \\
\hline 'cumhazard' & Cumulative hazard function. \\
\hline
\end{tabular}

Example: 'function','icdf'
Data Types
char

\section*{Output \\ Arguments}

\section*{Examples}

\section*{f-Estimated function values}
vector
Estimated function values, returned as a vector of the same dimension as xi or pts.
xi-Evaluation points
100 equally spaced points (default) | vector
Evaluation points at which ksdensity calculates f, returned as a vector. Default is 100 equally spaced points that cover the range of data in \(x\).

\section*{bw - Bandwidth of smoothing window}
scalar value
Bandwidth of smoothing window, returned as a scalar value.

\section*{Estimate Density}

Generate a sample data set from a mixture of two normal distributions.

\section*{ksdensity}
```

rng('default') % for reproducibility
x = [randn (30,1); 5+randn(30,1)];

```

Plot the estimated density.
[f,xi] = ksdensity(x);
figure()
plot(xi,f);


The density estimate shows the bimodality of the sample.

\section*{Estimate Cumulative Distribution Function at Specified Values}

Load the sample data.
load hospital
Compute and plot the estimated cdf evaluated at a specified set of values.
```

pts = (min(hospital.Weight):2:max(hospital.Weight));
figure()
ecdf(hospital.Weight)
hold on
ksdensity(hospital.Weight,pts,'support','positive','function','cdf');
xlabel('Patient weights')
ylabel('Estimated cdf')

```

ksdensity seems to smooth the cumulative distribution function estimate too much. An estimate with a smaller bandwidth might produce a closer estimate to the empirical cumulative distribution function.

Return the bandwidth of the smoothing window.
[f,xi,bw] = ksdensity(hospital.Weight,xi,'support','positive','function', bw
bw =
\[
0.1070
\]

Plot the cumulative distribution function estimate using a smaller bandwidth.
[f,xi] = ksdensity(hospital.Weight,pts,'support','positive','function plot(xi,f,'--r','LineWidth',2) hold off


\section*{ksdensity}

The ksdensity estimate with a smaller bandwidth matches the empirical cumulative distribution function better.

\section*{Plot Estimated Cumulative Density Function for Given Number of Points}

Load the sample data.
load hospital
Plot the estimated cdf evaluated at 50 equally spaced points.
```

figure()
ksdensity(hospital.Weight,'support','positive','function','cdf',...
'npoints',50)
xlabel('Patient weights')
ylabel('Estimated cdf')

```


\section*{Estimate Survivor and Cumulative Hazard for Censored Failure Data}

Generate sample data from an exponential distribution with mean 3.
rng('default') \% for reproducibility
\(x=\) random('exp',3,100,1);
Create a logical vector that indicates censoring. Here, observations with lifetimes longer than 10 are censored.

\section*{ksdensity}
```

T = 10;
cens = (x>10);

```

Compute and plot the estimated density function.
figure()
ksdensity(x,'support','positive','censoring', cens);


Compute and plot the survivor and cumulative hazard functions.
```

figure()
ksdensity(x,'support','positive','censoring',cens,...
'function','survivor');

```

figure()
ksdensity(x,'support','positive','censoring',cens,...
'function','cumhazard');


\section*{Estimate Inverse Cumulative Distribution Function for Specified Probability Values}

Generate a mixture of two normal distributions, and plot the estimated inverse cumulative distribution function at a specified set of probability values.
```

rng('default') % for reproducibility
x = [randn(30,1); 5+randn(30,1)];
pi = linspace(.01,.99,99);

```
figure()
ksdensity(x,pi,'function','icdf');


\section*{Return Bandwidth of Smoothing Window}

Generate a mixture of two normal distributions.
```

rng('default') \% for reproducibility

```
\(x=[r a n d n(30,1) ; 5+r a n d n(30,1)] ;\)

\section*{ksdensity}

Return the bandwidth of the smoothing window for the probability density estimate.
[f,xi,bw] = ksdensity(x);
bw
bw =
1.5141

The default bandwidth is optimal for normal densities.
Plot the estimated density.
figure()
plot(xi,f);


Plot the density using an increased bandwidth value.
figure()
ksdensity(x,'width',1.8);

\section*{ksdensity}


A higher bandwidth further smooths the density estimate, which might mask some characteristics of the distribution.

Now, plot the density using a decreased bandwidth value.
```

figure()
ksdensity(x,'width',0.8);

```


A smaller bandwidth smooths the density estimate less, which exaggerate some characteristics of the sample.

\section*{References}
[1] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for Data Analysis. New York: Oxford University Press Inc., 1997.

\section*{ksdensity}

See Also hist

\section*{Purpose \\ One-sample Kolmogorov-Smirnov test}

Syntax
h = kstest \((x)\)
h = kstest(x,Name, Value)
[h, p] = kstest(__ )
[h, p,ksstat, cv] = kstest( ___ )

Description

\section*{Input Arguments}
\(h=\) kstest \((x)\) returns a test decision for the null hypothesis that the data in vector \(x\) comes from a standard normal distribution, against the alternative that it does not come from such a distribution, using the one-sample Kolmogorov-Smirnov test. The result h is 1 if the test rejects the null hypothesis at the \(5 \%\) significance level, or 0 otherwise.
\(\mathrm{h}=\) kstest (x,Name, Value) returns a test decision for the one-sample Kolmogorov-Smirnov test with additional options specified by one or more name-value pair arguments. For example, you can test for a distribution other than standard normal, change the significance level, or conduct a one-sided test.
[h, p] = kstest (__ ) also returns the \(p\)-value p of the hypothesis test, using any of the input arguments from the previous syntaxes.
[h, p, ksstat, cv] = kstest (__ ) also returns the value of the test statistic ksstat and the approximate critical value cv of the test.

\section*{x-Sample data}
vector
Sample data, specified as a vector.

\section*{Data Types}
single | double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Tail', 'right', 'Alpha', 0.01 specifies a right-tailed hypothesis test at the \(1 \%\) significance level.

\section*{'Alpha' - Significance level}
0.05 (default) | scalar value in the range \((0,1)\)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range \((0,1)\).

Example: 'Alpha', 0.01

\author{
Data Types \\ single | double
}

\section*{'CDF' - cdf of hypothesized continuous distribution}
matrix | probability distribution object
cdf of hypothesized continuous distribution, specified the comma-separated pair consisting of 'CDF' and either a two-column matrix or a continuous probability distribution object. When CDF is a matrix, column 1 contains a set of possible \(x\) values, and column 2 contains the corresponding hypothesized cumulative distribution function values \(G(x)\). The calculation is most efficient if CDF is specified such that column 1 contains the values in the data vector \(x\). If there are values in x not found in column 1 of CDF, kstest approximates \(G(x)\) by interpolation. All values in x must lie in the interval between the smallest and largest values in the first column of CDF. By default, kstest tests for a standard normal distribution.

The one-sample Kolmogorov-Smirnov test is only valid for continuous cumulative distribution functions, and requires CDF to be predetermined. The result is not accurate if CDF is estimated from the data. To test x against the normal, lognormal, extreme value, Weibull, or exponential distribution without specifying distribution parameters, use lillietest instead.

\section*{Data Types \\ single | double \\ 'Tail' - Type of alternative hypothesis \\ 'both' (default) | 'right' | 'left'}

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of 'Tail' and one of the following.
\begin{tabular}{ll} 
'both' & \begin{tabular}{l} 
Test the alternative hypothesis that the population \\
mean is not m.
\end{tabular} \\
'right' & \begin{tabular}{l} 
Test the alternative hypothesis that the population \\
mean is greater than m.
\end{tabular} \\
'left' & \begin{tabular}{l} 
Test the alternative hypothesis that the population \\
mean is less than \(m\).
\end{tabular}
\end{tabular}

If the values in the data vector \(x\) tend to be larger than expected from the hypothesized distribution, the empirical distribution function of \(x\) tends to be smaller, and vice versa.
```

Example: 'Tail','right'

```

\section*{Output Arguments}
```

h - Hypothesis test result
1 | 0

```

Hypothesis test result, returned as a logical value.
- If \(\mathrm{h}=1\), this indicates the rejection of the null hypothesis at the Alpha significance level.
- If \(h=0\), this indicates a failure to reject the null hypothesis at the Alpha significance level.

\section*{p - p -value}
scalar value in the range \((0,1)\)
\(p\)-value of the test, returned as a scalar value in the range \((0,1) . \mathrm{p}\) is the probability of observing a test statistic as extreme as, or more extreme
than, the observed value under the null hypothesis. Small values of \(p\) cast doubt on the validity of the null hypothesis.

\section*{ksstat - Test statistic}
nonnegative scalar value
Test statistic of the hypothesis test, returned as a nonnegative scalar value.

\section*{cv-Critical value}
nonnegative scalar value
Critical value, returned as a nonnegative scalar value.

\section*{Examples Test for a Standard Normal Distribution}

Load the sample data. Create a vector containing the first column of the students' exam grades data.
```

load examgrades;
test1 = grades(:,1);

```

Test the null hypothesis that the data comes from a normal distribution with a mean of 75 and a standard deviation of 10 . Use these parameters to center and scale each element of the data vector since, by default, kstest tests for a standard normal distribution.
```

x = (test1-75)/10;
h = kstest(x)
h =
0

```

The returned value of \(\mathrm{h}=0\) indicates that kstest fails to reject the null hypothesis at the default \(5 \%\) significance level.

Plot the empirical cumulative distribution function (cdf) and the standard normal cdf for a visual comparison.
```

[f,x_values] = ecdf(x);
F = plot(x_values,f);
set(F,'LineWidth',2);
hold on;
G = plot(x_values,normcdf(x_values,0,1),'r-');
set(G,'LineWidth',2);
legend([F G],...
'Empirical CDF','Standard Normal CDF',...
'Location','SE');

```


The plot shows the similarity between the empirical cdf of the centered and scaled data vector and the cdf of the standard normal distribution.

\section*{Specify the Hypothesized Distribution Using a Two-Column Matrix}

Load the sample data. Create a vector containing the first column of the students' exam grades data.
```

load examgrades;
x = grades(:,1);

```

Specify the hypothesized distribution as a two-column matrix. Column 1 contains the data vector \(x\). Column 2 contains cdf values evaluated at each value in x for a hypothesized Student's \(t\) distribution with a location parameter of 75 , a scale parameter of 10 , and one degree of freedom.
```

test_cdf = [x,cdf('tlocationscale',x,75,10,1)];

```

Test if the data are from the hypothesized distribution.
```

h = kstest(x,'CDF',test_cdf)
h =
1

```

The returned value of \(h=1\) indicates that kstest rejects the null hypothesis at the default \(5 \%\) significance level.

\section*{Specify the Hypothesized Distribution Using a Probability Distribution Object}

Load the sample data. Create a vector containing the first column of the students' exam grades data.
```

load examgrades;
x = grades(:,1);

```

Create a probability distribution object to test if the data comes from a Student's \(t\) distribution with a location parameter of 75 , a scale parameter of 10 , and one degree of freedom.
```

test_cdf = makedist('tlocationscale','mu',75,'sigma',10,'nu',1);

```

Test the null hypothesis that the data comes from the hypothesized distribution.
```

h = kstest(x,'CDF',test_cdf)
h =
1

```

The returned value of \(h=1\) indicates that kstest rejects the null hypothesis at the default \(5 \%\) significance level.

\section*{Test the Hypothesis at Different Significance Levels}

Load the sample data. Create a vector containing the first column of the students' exam grades.
```

load examgrades;
test1 = grades(:,1);

```

Create a probability distribution object to test if the data comes from a Student's \(t\) distribution with a location parameter of 75 , a scale parameter of 10 , and one degree of freedom.
```

test_cdf = makedist('tlocationscale','mu',75,'sigma',10,'nu',1);

```

Test the null hypothesis that data comes from the hypothesized distribution at the \(1 \%\) significance level.
```

[h,p] = kstest(x,'CDF',test_cdf,'Alpha',0.01)
h =
1

```

\section*{kstest}
```

p =
0.0021

```

The returned value of \(\mathrm{h}=1\) indicates that kstest rejects the null hypothesis at the \(1 \%\) significance level.

\section*{Conduct a One-Sided Hypothesis Test}

Load the sample data. Create a vector containing the third column of the stock return data matrix.
load stockreturns;
x = stocks(: 3);
Test the null hypothesis that the data comes from a standard normal distribution, against the alternative hypothesis that the empirical cdf of the data is larger than the standard normal cdf.
```

[h,p,k,c] = kstest(x,'Tail','larger')
h =
1
p =
5.0854e-05
k =
0.2197
C =
0.1207

```

The returned value of \(h=1\) indicates that kstest rejects the null hypothesis in favor of the alternative hypothesis at the default \(5 \%\) significance level.

Plot the empirical cdf and the standard normal cdf for a visual comparison.
```

[f,x_values] = ecdf(x);
J = plot(x_values,f);
hold on;

```
```

K = plot(x_values,normcdf(x_values),'r--');
set(J,'LineWidth',2);
set(K,'LineWidth',2);
legend([J K],'Empirical CDF','Standard Normal CDF','Location','SE');

```


The plot shows the difference between the empirical cdf of the data vector x and the cdf of the standard normal distribution.

\section*{Definitions}

\section*{One-Sample Kolmogorov-Smirnov Test}

The one-sample Kolmogorov-Smirnov test is a nonparametric hypothesis test that evaluates the difference between the empirical cdf of the data and the cdf of the hypothesized distribution over the range of \(x\) in the data set.

The two-sided test uses the maximum absolute difference between the empirical cdf and the hypothesized cdf. The test statistic is
\[
D^{*}=\max _{x}(|F(x)-G(x)|),
\]
where \(\hat{F}(x)\) is the empirical cdf and \(G(x)\) is the cdf of the hypothesized distribution.

The one-sided test uses the actual value of the difference between the empirical cdf and the hypothesized cdf rather than the absolute value. The test statistic is
\[
D^{*}=\max _{x}(F(x)-G(x)) .
\]
kstest computes the critical value cv using an approximate formula or by interpolation in a table. The formula and table cover the range 0.01 \(\leq\) alpha \(\leq 0.2\) for two-sided tests and \(0.005 \leq\) alpha \(\leq 0.1\) for one-sided tests. CV is returned as NaN if alpha is outside this range.

\section*{Algorithms}
kstest decides to reject the null hypothesis by comparing the \(p\)-value p with the significance level Alpha, not by comparing the test statistic ksstat with the critical value cv. Since cv is approximate, comparing ksstat with CV occasionally leads to a different conclusion than comparing p with Alpha.

\section*{References}
[1] Massey, F. J. "The Kolmogorov-Smirnov Test for Goodness of Fit." Journal of the American Statistical Association. Vol. 46, No. 253, 1951, pp. 68-78.
[2] Miller, L. H. "Table of Percentage Points of Kolmogorov Statistics." Journal of the American Statistical Association. Vol. 51, No. 273, 1956, pp. 111-121.
[3] Marsaglia, G., W. Tsang, and J. Wang. "Evaluating Kolmogorov's Distribution." Journal of Statistical Software. Vol. 8, Issue 18, 2003.

\author{
See Also \\ kstest2 | lillietest | adtest
}

Purpose Two-sample Kolmogorov-Smirnov test

Syntax
Description

Input Arguments
```

h = kstest2(x1,x2)
h = kstest2(x1,x2,Name,Value)
[h,p] = kstest2(___)
[h,p,ks2stat] = kstest2(___)

```
\(h=\) kstest2 \((x 1, x 2)\) returns a test decision for the null hypothesis that the data in vectors \(x 1\) and \(x 2\) are from the same continuous distribution, using the two-sample Kolmogorov-Smirnov test. The alternative hypothesis is that \(\times 1\) and \(\times 2\) are from different continuous distributions. The result \(h\) is 1 if the test rejects the null hypothesis at the \(5 \%\) significance level, and 0 otherwise.
h = kstest2 ( \(\mathrm{x} 1, \mathrm{x} 2\), Name, Value) returns a test decision for a two-sample Kolmogorov-Smirnov test with additional options specified by one or more name-value pair arguments. For example, you can change the significance level or conduct a one-sided test.
[h,p] = kstest2( __ ) also returns the asymptotic \(p\)-value p , using any of the input arguments from the previous syntaxes.
[h, p,ks2stat] = kstest2( __ ) also returns the test statistic ks2stat.

\section*{x 1 - Sample data}
vector
Sample data from the first sample, specified as a vector. Data vectors x 1 and x 2 do not need to be the same size.

Data Types
single | double

\section*{x2-Sample data}
vector

Sample data from the second sample, specified as a vector. Data vectors \(x 1\) and \(x 2\) do not need to be the same size.

Data Types
single | double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
Example:

\section*{'Alpha' - Significance level}
0.05 (default) | scalar value in the range \((0,1)\)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range \((0,1)\).

Example: 'Alpha', 0.01

\section*{Data Types}
single | double

\section*{'Tail' - Type of alternative hypothesis \\ 'both' (default) | 'right' | 'left'}

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of 'Tail' and one of the following.

\footnotetext{
'unequal' Test the alternative hypothesis that the empirical cdf of \(x 1\) is unequal to the empirical cdf of \(\times 2\).
'larger' Test the alternative hypothesis that the empirical cdf of x 1 is larger than the empirical cdf of x 2 .
'smaller' Test the alternative hypothesis that the empirical cdf of x 1 is smaller than the empirical cdf of x 2 .
}

If the data values in \(x 1\) tend to be larger than those in \(x 2\), the empirical distribution function of \(x 1\) tends to be smaller than that of \(x 2\), and vice versa.

Example: 'Tail', 'right'

\section*{Output Arguments}

\section*{h - Hypothesis test result}

1 | 0
Hypothesis test result, returned as a logical value.
- If \(\mathrm{h}=1\), this indicates the rejection of the null hypothesis at the Alpha significance level.
- If \(\mathrm{h}=0\), this indicates a failure to reject the null hypothesis at the Alpha significance level.

\section*{p-Asymptotic \(\boldsymbol{p}\)-value}
scalar value in the range \((0,1)\)
Asymptotic \(p\)-value of the test, returned as a scalar value in the range \((0,1)\). p is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. The asymptotic \(p\)-value becomes very accurate for large sample sizes, and is believed to be reasonably accurate for sample sizes n 1 and n 2 , such that \((\mathrm{n} 1 * \mathrm{n} 2) /(\mathrm{n} 1+\mathrm{n} 2) \geq 4\).

\section*{ks2stat - Test statistic}
nonnegative scalar value
Test statistic, returned as a nonnegative scalar value.

\section*{Examples Test Two Samples for the Same Distribution}

Generate sample data from two different Weibull distributions.
```

rng(1); % For reproducibility
x1 = wblrnd(1,1,1,50);
x2 = wblrnd(1.2,2,1,50);

```

Test the null hypothesis that data in vectors x 1 and x 2 comes from populations with the same distribution.
```

h = kstest2(x1,x2)
h =
1

```

The returned value of \(h=1\) indicates that kstest rejects the null hypothesis at the default \(5 \%\) significance level.

\section*{Test the Hypothesis at Different Significance Levels}

Generate sample data from two different Weibull distributions.
```

rng(1); % For reproducibility
x1 = wblrnd(1,1,1,50);
x2 = wblrnd(1.2,2,1,50);

```

Test the null hypothesis that data vectors x 1 and x 2 are from populations with the same distribution at the \(1 \%\) significance level.
```

[h,p] = kstest2(x1,x2,'Alpha',0.01)

```
\(\mathrm{h}=\)
    0
\(p=\)
    0.0317

The returned value of \(h=0\) indicates that kstest does not reject the null hypothesis at the \(1 \%\) significance level.

\section*{One-Sided Hypothesis Test}

Generate sample data from two different Weibull distributions.
```

rng(1); % For reproducibility
x1 = wblrnd(1,1,1,50);
x2 = wblrnd(1.2,2,1,50);

```

Test the null hypothesis that data in vectors x 1 and x 2 comes from populations with the same distribution, against the alternative hypothesis that the cdf of the distribution of \(x 1\) is larger than the \(c d f\) of the distribution of \(\times 2\).
```

[h,p,k] = kstest2(x1,x2,'Tail','larger')
h =
1
p =
0.0158
k =
0.2800

```

The returned value of \(h=1\) indicates that kstest rejects the null hypothesis, in favor of the alternative hypothesis that the cdf of the distribution of \(\times 1\) is larger than the cdf of the distribution of \(\times 2\), at the default \(5 \%\) significance level. The returned value of \(k\) is the test statistic for the two-sample Kolmogorov-Smirnov test.

\section*{Definitions}

\section*{Two-Sample Kolmogorov-Smirnov Test}

The two-sample Kolmogorov-Smirnov test is a nonparametric hypothesis test that evaluates the difference between the cdfs of the distributions of the two sample data vectors over the range of \(x\) in each data set.

The two-sided test uses the maximum absolute difference between the cdfs of the distributions of the two data vectors. The test statistic is
\[
D^{*}=\max _{x}\left(\left|F_{1}(x)-F_{2}(x)\right|\right)
\]
where \(\hat{F}_{1}(x)\) is the proportion of x 1 values less than or equal to \(x\) and \(\hat{F}_{2}(x)\) is the proportion of x 2 values less than or equal to \(x\).

The one-sided test uses the actual value of the difference between the cdfs of the distributions of the two data vectors rather than the absolute value. The test statistic is
\[
D^{*}=\max _{x}\left(F_{1}(x)-F_{2}(x)\right) .
\]

\section*{Algorithms}

In kstest2, the decision to reject the null hypothesis is based on comparing the \(p\)-value p with the significance level Alpha, not by comparing the test statistic ks2stat with a critical value.

\section*{References}
[1] Massey, F. J. "The Kolmogorov-Smirnov Test for Goodness of Fit." Journal of the American Statistical Association. Vol. 46, No. 253, 1951, pp. 68-78.
[2] Miller, L. H. "Table of Percentage Points of Kolmogorov Statistics." Journal of the American Statistical Association. Vol. 51, No. 273, 1956, pp. 111-121.
[3] Marsaglia, G., W. Tsang, and J. Wang. "Evaluating Kolmogorov's Distribution." Journal of Statistical Software. Vol. 8, Issue 18, 2003.

\section*{See Also}
kstest | lillietest | adtest

Purpose Kurtosis
Syntax \(\quad k=\) kurtosis \((X)\)
k = kurtosis(X,flag)
k = kurtosis(X,flag,dim)

Description

Algorithms
\(k=\) kurtosis \((X)\) returns the sample kurtosis of \(X\). For vectors, kurtosis ( \(x\) ) is the kurtosis of the elements in the vector \(x\). For matrices kurtosis ( X ) returns the sample kurtosis for each column of \(X\). For N -dimensional arrays, kurtosis operates along the first nonsingleton dimension of \(X\).
\(\mathrm{k}=\) kurtosis \((\mathrm{X}, \mathrm{flag})\) specifies whether to correct for bias (flag is 0 ) or not ( flag is 1 , the default). When \(X\) represents a sample from a population, the kurtosis of X is biased, that is, it will tend to differ from the population kurtosis by a systematic amount that depends on the size of the sample. You can set flag to 0 to correct for this systematic bias.
\(\mathrm{k}=\) kurtosis( \(\mathrm{X}, \mathrm{flag}, \mathrm{dim})\) takes the kurtosis along dimension dim of \(X\).
kurtosis treats NaNs as missing values and removes them.
Kurtosis is a measure of how outlier-prone a distribution is. The kurtosis of the normal distribution is 3 . Distributions that are more outlier-prone than the normal distribution have kurtosis greater than 3 ; distributions that are less outlier-prone have kurtosis less than 3.

The kurtosis of a distribution is defined as
\[
k=\frac{E(x-\mu)^{4}}{\sigma^{4}}
\]
where \(\mu\) is the mean of \(x, \sigma\) is the standard deviation of \(x\), and \(E(t)\) represents the expected value of the quantity \(t\). kurtosis computes a sample version of this population value.

Note Some definitions of kurtosis subtract 3 from the computed value, so that the normal distribution has kurtosis of 0 . The kurtosis function does not use this convention.

When you set flag to 1 , the following equation applies:
\[
k_{1}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{4}}{\left(\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)^{2}}
\]

When you set flag to 0 , the following equation applies:
\[
k_{0}=\frac{n-1}{(n-2)(n-3)}\left((n+1) k_{1}-3(n-1)\right)+3
\]

This bias-corrected formula requires that X contain at least four elements.
```

Examples }\quadX=\operatorname{randn}([$$
\begin{array}{ll}{5}&{4}\end{array}
$$]
X =
1.1650 1.6961 -1.4462 -0.3600
0.6268 0.0591 -0.7012 -0.1356
0.0751 1.7971 1.2460 -1.3493
0.3516 0.2641 -0.6390 -1.2704
-0.6965 0.8717 0.5774 0.9846
k = kurtosis(X)
k =
2.1658}1.2967 1.6378 1.9589

```

\section*{See Also}
mean | moment | skewness | std | var

\section*{categorical.labels property}
Purpose Text labels for levels

Description Text labels for levels. Access labels with getlabels.

\section*{Purpose Regularized least-squares regression using lasso or elastic net algorithms}
```

Syntax
B = lasso(X,Y)
[B,FitInfo] = lasso(X,Y)
[B,FitInfo] = lasso(X,Y,Name,Value)

```

Description

\section*{Input \\ Arguments}

B = lasso( \(\mathrm{X}, \mathrm{Y}\) ) returns fitted least-squares regression coefficients for a set of regularization coefficients Lambda.
[B,FitInfo] = lasso(X,Y) returns a structure containing information about the fits.
[B,FitInfo] = lasso(X,Y,Name, Value) fits regularized regressions with additional options specified by one or more Name, Value pair arguments.

\section*{x}

Numeric matrix with n rows and p columns. Each row represents one observation, and each column represents one predictor (variable).

\section*{Y}

Numeric vector of length \(n\), where \(n\) is the number of rows of \(X . Y(i)\) is the response to row \(i\) of \(X\).

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

\section*{'Alpha'}

Scalar value from 0 to 1 (excluding 0) representing the weight of lasso \(\left(L^{1}\right)\) versus ridge \(\left(L^{2}\right)\) optimization. Alpha \(=1\) represents lasso regression, Alpha close to 0 approaches ridge regression, and other
values represent elastic net optimization. See "Definitions" on page 20-1289.

\section*{Default: 1}

\section*{'CV'}

Method lasso uses to estimate mean squared error:
- K, a positive integer - lasso uses K-fold cross validation.
- cvp, a cvpartition object - lasso uses the cross-validation method expressed in cvp. You cannot use a 'leaveout' partition with lasso.
- 'resubstitution' - lasso uses \(X\) and \(Y\) to fit the model and to estimate the mean squared error, without cross validation.

Default: 'resubstitution'

\section*{'DFmax'}

Maximum number of nonzero coefficients in the model. lasso returns results only for Lambda values that satisfy this criterion.

Default: Inf

\section*{'Lambda'}

Vector of nonnegative Lambda values. See "Definitions" on page 20-1289.
- If you do not supply Lambda, lasso calculates the largest value of Lambda that gives a nonnull model. In this case, LambdaRatio gives the ratio of the smallest to the largest value of the sequence, and NumLambda gives the length of the vector.
- If you supply Lambda, lasso ignores LambdaRatio and NumLambda.

Default: Geometric sequence of NumLambda values, the largest just sufficient to produce \(B=0\)

\section*{'LambdaRatio'}

Positive scalar, the ratio of the smallest to the largest Lambda value when you do not set Lambda.

If you set LambdaRatio \(=0\), lasso generates a default sequence of Lambda values, and replaces the smallest one with 0 .

Default: 1e-4

\section*{'MCReps'}

Positive integer, the number of Monte Carlo repetitions for cross validation.
- If CV is 'resubstitution' or a cvpartition of type 'resubstitution', MCReps must be 1.
- If CV is a cvpartition of type 'holdout', MCReps must be greater than 1.

\section*{Default: 1}

\section*{'NumLambda'}

Positive integer, the number of Lambda values lasso uses when you do not set Lambda. lasso can return fewer than NumLambda fits if the if the residual error of the fits drops below a threshold fraction of the variance of \(Y\).

Default: 100

\section*{'Options'}

Structure that specifies whether to cross validate in parallel, and specifies the random stream or streams. Create the Options structure with statset. Option fields:
- UseParallel - Set to true to compute in parallel. Default is false.
- UseSubstreams - Set to true to compute in parallel in a reproducible fashion. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'. Default is false.
- Streams - A RandStream object or cell array consisting of one such object. If you do not specify Streams, lasso uses the default stream.

\section*{'PredictorNames'}

Cell array of strings representing names of the predictor variables, in the order in which they appear in X .

Default: \{\}

\section*{'RelTol'}

Convergence threshold for the coordinate descent algorithm (see Friedman, Tibshirani, and Hastie [3]). The algorithm terminates when successive estimates of the coefficient vector differ in the \(L^{2}\) norm by a relative amount less than RelTol.

Default: 1e-4

\section*{'Standardize'}

Boolean value specifying whether lasso scales \(X\) before fitting the models.

Default: true

\section*{'Weights'}

Observation weights, a nonnegative vector of length n , where n is the number of rows of X . lasso scales Weights to sum to 1.

Default: \(1 / n\) * ones ( \(\mathrm{n}, 1\) )

\section*{Output \\ B}

Arguments
Fitted coefficients, a \(p\)-by-L matrix, where \(p\) is the number of predictors (columns) in \(X\), and \(L\) is the number of Lambda values.

\section*{FitInfo}

Structure containing information about the model fits.
\begin{tabular}{l|l}
\hline Field in Fitlnfo & Description \\
\hline Intercept & \begin{tabular}{l} 
Intercept term \(\beta_{0}\) for each linear model, a 1-by-L \\
vector
\end{tabular} \\
\hline Lambda & \begin{tabular}{l} 
Lambda parameters in ascending order, a 1-by-L \\
vector
\end{tabular} \\
\hline Alpha & Value of Alpha parameter, a scalar \\
\hline DF & \begin{tabular}{l} 
Number of nonzero coefficients in B for each \\
value of Lambda, a 1-by-L vector
\end{tabular} \\
\hline MSE & Mean squared error (MSE), a 1-by-L vector \\
\hline
\end{tabular}

If you set the CV name-value pair to cross validate, the FitInfo structure contains additional fields.
\begin{tabular}{l|l}
\hline Field in FitInfo & Description \\
\hline SE & \begin{tabular}{l} 
The standard error of MSE for each Lambda, \\
as calculated during cross validation, a 1-by-L \\
vector
\end{tabular} \\
\hline LambdaMinMSE & The Lambda value with minimum MSE, a scalar \\
\hline Lambda1SE & \begin{tabular}{l} 
The largest Lambda such that MSE is within one \\
standard error of the minimum, a scalar
\end{tabular} \\
\hline IndexMinMSE & \begin{tabular}{l} 
The index of Lambda with value LambdaMinMSE, \\
a scalar
\end{tabular} \\
\hline Index1SE & \begin{tabular}{l} 
The index of Lambda with value Lambda1SE, a \\
scalar
\end{tabular} \\
\hline
\end{tabular}

\section*{Definitions}

\section*{Lasso}

For a given value of \(\lambda\), a nonnegative parameter, lasso solves the problem
\[
\min _{\beta_{0}, \beta}\left(\frac{1}{2 N} \sum_{i=1}^{N}\left(y_{i}-\beta_{0}-x_{i}^{T} \beta\right)^{2}+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|\right)
\]
where
- \(N\) is the number of observations.
- \(y_{i}\) is the response at observation \(i\).
- \(x_{i}\) is data, a vector of \(p\) values at observation \(i\).
- \(\lambda\) is a nonnegative regularization parameter corresponding to one value of Lambda.
- The parameters \(\beta_{0}\) and \(\beta\) are scalar and \(p\)-vector respectively.

As \(\lambda\) increases, the number of nonzero components of \(\beta\) decreases.
The lasso problem involves the \(L^{1}\) norm of \(\beta\), as contrasted with the elastic net algorithm.

\section*{Elastic Net}

For an \(a\) strictly between 0 and 1 , and a nonnegative \(\lambda\), elastic net solves the problem
\[
\min _{\beta_{0}, \beta}\left(\frac{1}{2 N} \sum_{i=1}^{N}\left(y_{i}-\beta_{0}-x_{i}^{T} \beta\right)^{2}+\lambda P_{\alpha}(\beta)\right),
\]
where
\[
P_{\alpha}(\beta)=\frac{(1-\alpha)}{2}\|\beta\|_{2}^{2}+\alpha\|\beta\|_{1}=\sum_{j=1}^{p}\left(\frac{(1-\alpha)}{2} \beta_{j}^{2}+\alpha\left|\beta_{j}\right|\right) .
\]

Elastic net is the same as lasso when \(a=1\). As \(a\) shrinks toward 0 , elastic net approaches ridge regression. For other values of \(a\), the penalty term \(P_{a}(\beta)\) interpolates between the \(L^{1}\) norm of \(\beta\) and the squared \(L^{2}\) norm of \(\beta\).

\section*{Examples Remove Redundant Predictors}

Construct a data set with redundant predictors, and identify those predictors using cross-validated lasso.

Create a matrix \(X\) of 100 five-dimensional normal variables and a response vector \(Y\) from just two components of \(X\), with small added noise.
\(X=r a n d n(100,5)\);
\(r=[0 ; 2 ; 0 ;-3 ; 0] ;\) o only two nonzero coefficients
\(Y=X * r+r a n d n(100,1)^{*} .1\); \% small added noise
Construct the default lasso fit.
B = lasso(X,Y);
Find the coefficient vector for the 25 th value in B.
B(: ,25)
ans \(=\)

0
1.6093

0
\(-2.5865\)
0
lasso identifies and removes the redundant predictors.

\section*{Plot a Regularized Fit with Cross Validation}

Visually examine the cross-validated error of various levels of regularization.

Load the acetylene data and prepare the data with interactions for fitting.
```

load acetylene
Xs = [x1 x2 x3];

```
```

X = x2fx(Xs,'interaction');
X(:,1) = []; % No constant term

```

Construct the lasso fit using ten-fold cross validation. Include the FitInfo output so you can plot the result.
[B FitInfo] = lasso(X,y,'CV',10);
Plot the cross-validated fits.
lassoPlot(B,FitInfo,'PlotType','CV');

Cross-validated MSE of Lasso fit

References
See Also lassoPlot | ridge

lassoPlot | ridgeHow To 267-288, 1996. No. 2, pp. 301-320, 2005.
[1] Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B, Vol 58, No. 1, pp.
[2] Zou, H. and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B, Vol. 67,
[3] Friedman, J., R. Tibshirani, and T. Hastie. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, Vol 33, No. 1, 2010. http://www.jstatsoft.org/v33/i01
[4] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, 2nd edition. Springer, New York, 2008.
- "Lasso and Elastic Net" on page 9-123

Purpose

Syntax
\(B=\operatorname{lassoglm}(X, Y)\)
[B,FitInfo] = lassoglm(X,Y)
[B,FitInfo] = lassoglm(X,Y,distr)
[B,FitInfo] = lassoglm(X,Y,distr, Name, Value)

\section*{Description}

\section*{Input \\ Arguments}

Lasso or elastic net regularization for generalized linear model regression
\(B=\operatorname{lassoglm}(X, Y)\) returns penalized maximum-likelihood fitted coefficients for a generalized linear model of the response \(Y\) to the data matrix \(X\). \(Y\) are assumed to have a Gaussian probability distribution.
[B,FitInfo] = lassoglm( \(\mathrm{X}, \mathrm{Y}\) ) returns a structure containing information about the fits.
[ B, FitInfo] = lassoglm( \(\mathrm{X}, \mathrm{Y}, \mathrm{distr}\) ) fits the model using the probability distribution type for \(Y\) as specified in distr.
[B,FitInfo] = lassoglm(X,Y,distr,Name, Value) fits regularized generalized linear regressions with additional options specified by one or more Name, Value pair arguments.

\section*{X}

Numeric matrix with \(n\) rows and \(p\) columns. Each row represents one observation, and each column represents one predictor (variable).

\section*{Y}

When distr is not 'binomial', Y is a numeric vector of length n , where \(n\) is the number of rows of \(X\). \(Y(i)\) is the response to row \(i\) of \(X\).

When distr is 'binomial', \(Y\) is either a:
- Numeric vector of length n , where each entry represents success (1) or failure (0)
- Logical vector of length n , where each entry represents success or failure
- Two column numeric matrix, where the first column contains the number of successes for each observation, and the second column contains the total number of trials

\section*{distr}

Distributional family for the nonsystematic variation in the responses, a string. Choices:
- 'normal'
- 'binomial'
- 'poisson'
- 'gamma'
- 'inverse gaussian'

By default, lassoglm uses the canonical link function corresponding to distr. Specify another link function using the 'link' name-value pair.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

\section*{'Alpha'}

Scalar value from 0 to 1 (excluding 0) representing the weight of lasso \(\left(L^{1}\right)\) versus ridge ( \(L^{2}\) ) optimization. Alpha \(=1\) represents lasso regression, and other values represent elastic net optimization. Alpha close to 0 approaches ridge regression. See "Definitions" on page 20-1289.

Default: 1

\section*{'CV'}

Method lassoglm uses to estimate deviance:
- K, a positive integer - lassoglm uses K-fold cross validation.
- cvp, a cvpartition object - lassoglm uses the cross-validation method expressed in cvp. You cannot use a 'leaveout' partition with lassoglm.
- 'resubstitution' - lassoglm uses X and Y to fit the model and to estimate the deviance, without cross validation.

Default: 'resubstitution'

\section*{'DFmax'}

Maximum number of nonzero coefficients in the model. lassoglm returns results for Lambda values that satisfy this criterion.

Default: Inf

\section*{'Lambda'}

Vector of nonnegative Lambda values. See "Lasso" on page 20-1302.
- If you do not supply Lambda, lassoglm estimates the largest value of Lambda that gives a nonnull model. In this case, LambdaRatio gives the ratio of the smallest to the largest value of the sequence, and NumLambda gives the length of the vector.
- If you supply Lambda, lassoglm ignores LambdaRatio and NumLambda.

Default: Geometric sequence of NumLambda values, the largest just sufficient to produce \(B=0\)

\section*{'LambdaRatio'}

Positive scalar, the ratio of the smallest to the largest Lambda value when you do not explicitly set Lambda.

If you set LambdaRatio \(=0\), lassoglm generates a default sequence of Lambda values, and replaces the smallest one with 0 .

Default: 1e-4

\section*{'Link'}

Specify the mapping between the mean \(\mu\) of the response and the linear predictor \(X b\).
\begin{tabular}{l|l}
\hline Value & Description \\
\hline 'comploglog ' & \(\log (-\log ((1-\mu)))=X b\) \\
\hline \begin{tabular}{l} 
'identity ', default for the \\
distribution 'normal'
\end{tabular} & \(\mu=X b\) \\
\hline \begin{tabular}{l} 
'log', default for the \\
distribution 'poisson'
\end{tabular} & \(\log (\mu)=X b\) \\
\hline \begin{tabular}{l} 
'logit', default for the \\
distribution 'binomial'
\end{tabular} & \(\log (\mu /(1-\mu))=X b\) \\
\hline 'loglog' & \(\log (-\log (\mu))=X b\) \\
\hline 'probit' & \begin{tabular}{l}
\(\Phi^{-1}(\mu)=X b\), where \(\Phi\) is the normal \\
\((G a u s s i a n) \mathrm{CDF}\) function
\end{tabular} \\
\hline \begin{tabular}{l} 
'reciprocal ', default for \\
the distribution 'gamma'
\end{tabular} & \(\mu^{-1}=X b\) \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Value & Description \\
\hline \begin{tabular}{l} 
p (a number), default for \\
the distribution 'inverse \\
gaussian' (with \(p=-2\) )
\end{tabular} & \(\mu^{p}=X b\) \\
\hline \begin{tabular}{l} 
Cell array of the form \\
\{FL FD FI \}, containing \\
three function handles, \\
created using @, that \\
define the link (FL), the \\
derivative of the link \\
(FD), and the inverse
\end{tabular} & \begin{tabular}{l} 
"Custom Link Function" on page 9-147) \\
link (FI). Equivalently, \\
can be a structure of \\
function handles with field \\
Link containing FL, field \\
Derivative containing FD, \\
and field Inverse containing
\end{tabular} \\
\hline FI. & \\
\hline
\end{tabular}

\section*{'MCReps'}

Positive integer, the number of Monte Carlo repetitions for cross validation.
- If CV is 'resubstitution' or a cvpartition of type 'resubstitution', MCReps must be 1.
- If CV is a cvpartition of type 'holdout', MCReps must be greater than 1.

Default: 1

\section*{'NumLambda'}

Positive integer, the number of Lambda values lassoglm uses when you do not set Lambda. lassoglm can return fewer than NumLambda fits if the
deviance of the fits drops below a threshold fraction of the null deviance (deviance of the fit without any predictors \(X\) ).

Default: 100

\section*{'Offset'}

Numeric vector with the same number of rows as X. lassoglm uses Offset as an additional predictor variable, but keeps its coefficient value fixed at 1.0.

\section*{'Options'}

Structure that specifies whether to cross validate in parallel, and specifies the random stream or streams. Create the Options structure with statset. Option fields:
- UseParallel - Set to true to compute in parallel. Default is false.
- UseSubstreams - Set to true to compute in parallel in a reproducible fashion. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'. Default is false.
- Streams - RandStream object or cell array consisting of one such object. If you do not specify Streams, lassoglm uses the default stream.

\section*{'PredictorNames'}

Cell array of strings representing names of the predictor variables, in the order in which they appear in X .

Default: \{\}

\section*{'RelTol'}

Convergence threshold for the coordinate descent algorithm (see Friedman, Tibshirani, and Hastie [3]). The algorithm terminates when successive estimates of the coefficient vector differ in the \(L^{2}\) norm by a relative amount less than RelTol.

\section*{Default: 1e-4}

\section*{'Standardize'}

Boolean value specifying whether lassoglm scales \(X\) before fitting the models.

\section*{Default: true}

\section*{'Weights'}

Observation weights, a nonnegative vector of length \(n\), where \(n\) is the number of rows of \(X\). At least two values must be positive.

Default: \(1 / \mathrm{n}\) * ones ( \(\mathrm{n}, 1\) )

\section*{Output \\ Arguments}

\section*{B}

Fitted coefficients, a \(p\)-by-L matrix, where \(p\) is the number of predictors (columns) in \(X\), and \(L\) is the number of Lambda values.

\section*{FitInfo}

Structure containing information about the model fits.
\begin{tabular}{l|l}
\hline Field in Fitlnfo & Description \\
\hline Alpha & Value of Alpha parameter, a scalar. \\
\hline Deviance & \begin{tabular}{l} 
Deviance of the fitted model for each value of \\
Lambda, a 1-by-L vector. \\
If cross validation was performed, the values \\
for Deviance represent the estimated expected \\
deviance of the model applied to new data, \\
as calculated by cross validation. Otherwise, \\
Deviance is the deviance of the fitted model \\
applied to the data used to perform the fit.
\end{tabular} \\
\hline DF & \begin{tabular}{l} 
Number of nonzero coefficients in B for each \\
Lambda value, a 1-by-L vector.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Field in Fitlnfo & Description \\
\hline Intercept & \begin{tabular}{l} 
Intercept term \(\beta_{0}\) for each linear model, a \\
1 -by-L vector.
\end{tabular} \\
\hline Lambda & \begin{tabular}{l} 
Lambda parameters in ascending order, a 1-by-L \\
vector.
\end{tabular} \\
\hline
\end{tabular}

If you set the CV name-value pair to cross validate, the FitInfo structure contains additional fields.
\begin{tabular}{l|l}
\hline Field in FitInfo & Description \\
\hline IndexMinDeviance & \begin{tabular}{l} 
Index of Lambda with value \\
LambdaMinDeviance, a scalar.
\end{tabular} \\
\hline Index1SE & Index of Lambda with value Lambda1SE, a scalar. \\
\hline LambdaMinDeviance & \begin{tabular}{l} 
Lambda value with minimum expected deviance, \\
as calculated by cross validation, a scalar.
\end{tabular} \\
\hline Lambda1SE & \begin{tabular}{l} 
Largest Lambda such that Deviance is within \\
one standard error of the minimum, a scalar.
\end{tabular} \\
\hline SE & \begin{tabular}{l} 
Standard error of Deviance for each Lambda, \\
as calculated during cross validation, a 1-by-L \\
vector.
\end{tabular} \\
\hline
\end{tabular}

\section*{Definitions}

\section*{Link Function}

A link function \(f(\mu)\) maps a distribution with mean \(\mu\) to a linear model with data \(X\) and coefficient vector \(b\) using the formula
\[
f(\mu)=X b .
\]

Find the formulas for the link functions in the Link name-value pair description. Here, "typical" means a link function that is typically used for the listed distribution.
\begin{tabular}{l|l}
\hline Distributional Family & Link Function (typical, \{default\}) \\
\hline 'normal' & \(\{\) 'identity' \(\}\) \\
\hline 'binomial' & \begin{tabular}{l} 
'comploglog', 'loglog', 'probit', \\
\{'logit'\}
\end{tabular} \\
\hline 'poisson' & \(\{\) 'log'\} \\
\hline 'gamma' & \(\{\) 'reciprocal' \(\}\) \\
\hline 'inverse gaussian' & \(\{-2\}\) \\
\hline
\end{tabular}

\section*{Lasso}

For a nonnegative value of \(\lambda\), lasso solves the problem
\[
\min _{\beta_{0}, \beta}\left(\frac{1}{N} \operatorname{Deviance}\left(\beta_{0}, \beta\right)+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|\right),
\]
where
- Deviance is the deviance of the model fit to the responses using intercept \(\beta_{0}\) and predictor coefficients \(\beta\). The formula for Deviance depends on the distr parameter you supply to lassoglm. Minimizing the \(\lambda\)-penalized deviance is equivalent to maximizing the \(\lambda\)-penalized log likelihood.
- \(N\) is the number of observations.
- \(\lambda\) is a nonnegative regularization parameter corresponding to one value of Lambda.
- Parameters \(\beta_{0}\) and \(\beta\) are scalar and \(p\)-vector respectively.

As \(\lambda\) increases, the number of nonzero components of \(\beta\) decreases.
The lasso problem involves the \(L^{1}\) norm of \(\beta\), as contrasted with the elastic net algorithm.

\section*{Elastic Net}

For an \(\alpha\) strictly between 0 and 1 , and a nonnegative \(\lambda\), elastic net solves the problem
\[
\min _{\beta_{0}, \beta}\left(\frac{1}{N} \operatorname{Deviance}\left(\beta_{0}, \beta\right)+\lambda P_{\alpha}(\beta)\right),
\]
where
\[
P_{\alpha}(\beta)=\frac{(1-\alpha)}{2}\|\beta\|_{2}^{2}+\alpha\|\beta\|_{1}=\sum_{j=1}^{p}\left(\frac{(1-\alpha)}{2} \beta_{j}^{2}+\alpha\left|\beta_{j}\right|\right) .
\]

Elastic net is the same as lasso when \(\alpha=1\). For other values of \(\alpha\), the penalty term \(P_{a}(\beta)\) interpolates between the \(L^{1}\) norm of \(\beta\) and the squared \(L^{2}\) norm of \(\beta\). As \(\alpha\) shrinks toward 0 , elastic net approaches ridge regression.

\section*{Examples}

\section*{Lasso Regularization of a Generalized Linear Model}

Construct data from a Poisson model, and identify the important predictors using lassoglm.

Create data with 20 predictors, and Poisson responses using just three of the predictors, plus a constant.
```

rng('default') % for reproducibility
X = randn(100,20);
mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);
y = poissrnd(mu);

```

Construct a cross-validated lasso regularization of a Poisson regression model of the data.
```

[B FitInfo] = lassoglm(X,y,'poisson','CV',10);

```

Examine the cross-validation plot to see the effect of the Lambda regularization parameter.

\section*{lassoglm}
```

lassoPlot(B,FitInfo,'plottype','CV');

```


The green circle and dashed line locate the Lambda with minimal cross-validation error. The blue circle and dashed line locate the point with minimal cross-validation error plus one standard deviation.

Find the nonzero model coefficients corresponding to the two identified points.
minpts = find(B(:,FitInfo.IndexMinDeviance))
```

minpts =
3
5
6
10
11
1 5
1 6
min1pts = find(B(:,FitInfo.Index1SE))
min1pts =
5
10
1 5

```

The coefficients from the minimal plus one standard error point are exactly those coefficients used to create the data.

\section*{References}
[1] Tibshirani, R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society, Series B, Vol. 58, No. 1, pp. 267-288, 1996.
[2] Zou, H. and T. Hastie. Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society, Series B, Vol. 67, No. 2, pp. 301-320, 2005.
[3] Friedman, J., R. Tibshirani, and T. Hastie. Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, Vol. 33, No. 1, 2010. http://www.jstatsoft.org/v33/i01
[4] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, 2nd edition. Springer, New York, 2008.

\section*{lassoglm}
[5] Dobson, A. J. An Introduction to Generalized Linear Models, 2nd edition. Chapman \& Hall/CRC Press, New York, 2002.
[6] McCullagh, P., and J. A. Nelder. Generalized Linear Models, 2nd edition. Chapman \& Hall/CRC Press, New York, 1989.
[7] Collett, D. Modelling Binary Data, 2nd edition. Chapman \& Hall/CRC Press, New York, 2003.

\section*{See Also}
glmfit | lasso | lassoPlot | ridge
Related - "Regularize Poisson Regression" on page 9-178
Examples
- "Regularize Logistic Regression" on page 9-182
- "Regularize Wide Data in Parallel" on page 9-189

Concepts
- "Lasso Regularization of Generalized Linear Models" on page 9-178

\section*{Purpose Trace plot of lasso fit}

Syntax \(\quad a x=\) lassoPlot \((B)\)
ax = lassoPlot(B,FitInfo)
ax = lassoPlot(B,FitInfo,Name,Value)
[ax,figh] = lassoPlot(B,...)

Description

\section*{Input Arguments}
ax = lassoPlot (B) creates a trace plot of the values in B against the \(L^{1}\) norm of B . ax is a handle to the plot axis.
ax = lassoPlot (B,FitInfo) creates a plot with type depending on the data type of FitInfo and the value, if any, of the plotType name-value pair.
ax = lassoPlot(B,FitInfo, Name, Value) creates a plot with additional options specified by one or more Name, Value pair arguments.
[ax,figh] = lassoPlot ( \(B, \ldots\) ) returns a handle to the figure window.

\section*{B}

Coefficients of a sequence of regression fits, as returned from the lasso or lassoglm functions. B is a p-by-NLambda matrix, where \(p\) is the number of predictors, and each column of \(B\) is a set of coefficients lasso calculates using one Lambda penalty value.

\section*{FitInfo}

Information controlling the plot:
- FitInfo is a structure, especially as returned from lasso or lassoglm - lassoPlot creates a plot based on the PlotType name-value pair.
- FitInfo is a vector - lassoPlot forms the \(x\)-axis of the plot from the values in FitInfo. The length of FitInfo must equal the number of columns of B.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'Parent'}

Axis in which to draw the plot.
Default: New plot

\section*{'PlotType'}

Choose the plot type when you give a FitInfo vector or structure:
\begin{tabular}{l|l|l}
\hline FitInfo Type & PlotType & Plot \\
\hline \begin{tabular}{l} 
Vector or \\
Structure
\end{tabular} & 'L1' & \begin{tabular}{l} 
plotLasso creates the \(x\)-axis from the \(L^{1}\) norm of the \\
coefficients in B. The \(x\)-axis at the top of the plot contains \\
the degrees of freedom (df), meaning the number of nonzero \\
coefficients of B.
\end{tabular} \\
\hline Structure & 'Lambda' & \begin{tabular}{l} 
plotLasso creates the x-axis from the Lambda field of \\
FitInfo. The x-axis at the top of the plot contains the \\
degrees of freedom (df), meaning the number of nonzero \\
coefficients of B.
\end{tabular} \\
\hline \begin{tabular}{l} 
Cross-Validated \\
Structure
\end{tabular} & 'CV' & \begin{tabular}{l} 
- For each Lambda, plots an estimate of the mean squared \\
prediction error on new data for the model fitted by lasso \\
with that value of Lambda.
\end{tabular} \\
- Plots error bars for the estimates. \\
- Plots the value of Lambda with minimum cross-validated \\
MSE.
\end{tabular}
\begin{tabular}{l} 
FitInfo Type \\
\hline \multicolumn{1}{|l|}{ PlotType } \\
\multicolumn{1}{|l|}{\begin{tabular}{l} 
Plot \\
\\
\end{tabular} \begin{tabular}{l} 
- \begin{tabular}{l} 
Plots the greatest Lambda that is within one standard \\
error of minimum MSE (so makes the sparsest model \\
within that region).
\end{tabular} \\
\hline
\end{tabular}}
\end{tabular}

\section*{Default: 'L1'}

\section*{'PredictorNames'}

Cell array of strings to label each coefficient of \(B\). If the length of PredictorNames is less than the number of rows of B, the remaining labels are padded with default values.
lassoPlot uses the predictor names in FitInfo only if:
- You created FitInfo with a call to lasso that included a PredictorNames name-value pair.
- You call lassoPlot without a PredictorNames name-value pair.
- You include FitInfo in your lassoPlot call.

Default: \{'B1','B2',...\}

\section*{'XScale'}
- 'linear' for linear x-axis
- ' \(\log\) ' for logarithmic scaled x -axis

Default: 'linear', except 'log' for the 'CV' plot type

\section*{Output}

Arguments

\section*{ax}

Handle to the axis of the plot (see "Setting Axis Parameters").

\section*{figh}

Handle to the figure window (see "Graphics Windows — the Figure").

\section*{lassoPlot}

Examples
Fit a regularized model of the acetylene data with lasso, and plot the fits with the default plot type:
```

load acetylene
x = [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = []; % No constant term
B = lasso(D,y);
lassoPlot(B);

```

Trace Plot of coefficients fit by Lasso.


Fit a regularized model of the acetylene data with lasso, and plot the fits with the Lambda plot type and logarithmic scaling:
```

load acetylene
X = [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = []; % No constant term
[B FitInfo] = lasso(D,y);
lassoPlot(B,FitInfo,'PlotType','Lambda','XScale','log');

```

Trace Plot of coefficients fit by Lasso
df


Fit a regularized model of the acetylene data with lasso and cross validation, and plot the cross-validated fits:
load acetylene

\section*{lassoPlot}
```

X = [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = []; % No constant term
[B FitInfo] = lasso(D,y,'CV',10);
lassoPlot(B,FitInfo,'PlotType','CV');

```

Cross-validated MSE of Lasso fit

- "Lasso and Elastic Net" on page 9-123
\begin{tabular}{ll} 
Purpose & Less than or equal relation for handles \\
Syntax & h1 <= h2 \\
Description & \begin{tabular}{l} 
Handles are equal if they are handles for the same object. All \\
comparisons use a number associated with each handle object. Nothing \\
can be assumed about the result of a handle comparison except that the \\
repeated comparison of two handles in the same MATLAB session will \\
yield the same result. The order of handle values is purely arbitrary \\
and has no connection to the state of the handle objects being compared.
\end{tabular} \\
h1 <= h2 performs element-wise comparisons between handle arrays \\
h1 and h2. h1 and h2 must be of the same dimensions unless one is a \\
scalar. The result is a logical array of the same dimensions, where each \\
element is an element-wise <= result.
\end{tabular}

\section*{qrandset.Leap property}

\section*{Purpose Interval between points}

Description

Examples
Experiment with different leap values:
\% No leaping produces the standard Halton sequence. P = haltonset(5); P(1:5,:)
\% Set a leap of 1. The point set now includes every other \% point from the sequence.
P.Leap = 1;

P(1:5,:)
See Also net | qrandset | Skip | subsref | haltonset
Purpose Length of dataset array
Syntax \(\mathrm{n}=\) length \((\mathrm{A})\)
Description \(\mathrm{n}=\) length \((\mathrm{A})\) returns the number of observations in the dataset A . length is equivalent to size ( \(\mathrm{A}, 1\) ).
See Also ..... size

\section*{qrandset.length}
Purpose Length of point set
Syntax length(p)
Description length \((p)\) returns the number of points in the point set \(p\). It is equivalent to size ( \(p, 1\) ).
See Also qrandset | size

\section*{Purpose Length of categorical array}

\section*{Syntax \(\quad n=\) length \((A)\)}

Description \(\quad n=\) length \((A)\) returns the size of the longest dimension of the categorical array \(A\) when \(A\) is not empty. If \(A\) is a vector, this is the same as its length. length is equivalent to \(\max (\operatorname{size}(x))\) for nonempty arrays, and 0 for empty arrays.

See Also isempty | isscalar | size

Purpose Element counts by level
```

Syntax C = levelcounts(A)
C = levelcounts(A,dim)

```
\(C=\) levelcounts(A) for a categorical vector \(A\) counts the number of elements in \(A\) equal to each of the possible levels in \(A\). The output is a vector \(C\) containing those counts, and has as many elements as A has levels. For matrix A, C is a matrix of column counts. For N -dimensional arrays, levelcounts operates along the first nonsingleton dimension. \(C=\) levelcounts(A,dim) operates along the dimension dim.

\section*{Examples}

Count the number of patients in each age group in the data in hospital.mat:
```

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
disp(labels')
'Os' '10s' '20s' '30s' '40s' '50s' '60s' '70s' '80s' '90s'
AgeGroup = ordinal(hospital.Age,labels,[],edges);
I = islevel(labels,AgeGroup);
disp(I')
0
c = levelcounts(AgeGroup);
disp(c')
0
AgeGroup = droplevels(AgeGroup);
I = islevel(labels,AgeGroup);
disp(I')
0
c = levelcounts(AgeGroup);
disp(c')
154142 2

```

\author{
See Also islevel | ismember | summary
}

\section*{Purpose Leverage}
\begin{tabular}{ll} 
Syntax & \(h=\) leverage (data) \\
& \(h=\) leverage (data, model \()\)
\end{tabular}

Description

\section*{Algorithms}

\section*{Examples}

\section*{References}
\(h=\) leverage(data) finds the leverage of each row (point) in the matrix data for a linear additive regression model.
\(\mathrm{h}=\) leverage(data, model) finds the leverage on a regression, using a specified model type, where model can be one of these strings:
- 'linear' - includes constant and linear terms
- 'interaction ' - includes constant, linear, and cross product terms
- 'quadratic' - includes interactions and squared terms
- 'purequadratic' - includes constant, linear, and squared terms

Leverage is a measure of the influence of a given observation on a regression due to its location in the space of the inputs.
```

[Q,R] = qr(x2fx(data,'model'));
leverage = (sum(Q'.*Q'))'

```

One rule of thumb is to compare the leverage to \(2 p / n\) where \(n\) is the number of observations and \(p\) is the number of parameters in the model. For the Hald data set this value is 0.7692 .
```

load hald
h = max(leverage(ingredients,'linear'))
h =
0.7004

```

Since \(0.7004<0.7692\), there are no high leverage points using this rule.
[1] Goodall, C. R. "Computation Using the QR Decomposition."
Handbook in Statistics. Vol. 9, Amsterdam: Elsevier/North-Holland, 1993.

How To • regstats

Purpose Latin hypercube sample
```

Syntax }\quadx=lhsdesign(n,p
X = lhsdesign(...,'smooth','off')
X = lhsdesign(...,'criterion',criterion)
X = lhsdesign(...,'iterations',k)

```

\section*{Description}

See Also
\(\mathrm{X}=\operatorname{lhsdesign}(\mathrm{n}, \mathrm{p})\) returns an \(n\)-by- \(p\) matrix, X , containing a latin hypercube sample of \(n\) values on each of \(p\) variables. For each column of \(X\), the n values are randomly distributed with one from each interval \((0,1 / n),(1 / n, 2 / n), \ldots,(1-1 / n, 1)\), and they are randomly permuted. \(\mathrm{X}=\operatorname{lnsdesign}\left(\ldots,{ }^{\prime}\right.\) smooth', 'off') produces points at the midpoints of the above intervals: \(0.5 / \mathrm{n}, 1.5 / \mathrm{n}, \ldots, 1-0.5 / \mathrm{n}\). The default is 'on'.

X = lhsdesign(...,'criterion',criterion) iteratively generates latin hypercube samples to find the best one according to the criterion criterion, which can be one of the following strings.
\begin{tabular}{l|l}
\hline Criterion & Description \\
\hline 'none' & No iteration. \\
\hline 'maximin' & \begin{tabular}{l} 
Maximize minimum distance between points. \\
This is the default.
\end{tabular} \\
\hline 'correlation' & Reduce correlation. \\
\hline
\end{tabular}
\(X=\) lhsdesign(...,'iterations', \(k\) ) iterates up to \(k\) times in an attempt to improve the design according to the specified criterion. The default is \(\mathrm{k}=5\).
haltonset | sobolset | lhsnorm | unifrnd


\section*{Purpose Lilliefors test}

Syntax
Description

Input
Arguments
```

h = lillietest(x)
h = lillietest(x,Name,Value)
[h, p] = lillietest(__)
[h, p,kstat, critval] = lillietest(__)

```
\(\mathrm{h}=\) lillietest( x ) returns a test decision for the null hypothesis that the data in vector \(x\) comes from a distribution in the normal family, against the alternative that it does not come from such a distribution, using a Lilliefors test. The result h is 1 if the test rejects the null hypothesis at the \(5 \%\) significance level, and 0 otherwise.
\(\mathrm{h}=\) lillietest( x, Name, Value) returns a test decision with additional options specified by one or more name-value pair arguments. For example, you can test the data against a different distribution family, change the significance level, or calculate the \(p\)-value using a Monte Carlo approximation.
[h, p] = lillietest (__ ) also returns the \(p\)-value p , using any of the input arguments from the previous syntaxes.
[h, p,kstat,critval] = lillietest(__ ) also returns the test statistic kstat and the critical value critval for the test.
x-Sample data
vector
Sample data, specified as a vector.
Data Types
single | double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'Distr','exp','Alpha', 0.01 tests the null hypothesis that the population distribution belongs to the exponential distribution family at the \(1 \%\) significance level.

\section*{'Alpha' - Significance level}
0.05 (default) | scalar value in the range \((0,1)\)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range \((0,1)\).
- If MCTol is not used, Alpha must be in the range [0.001,0.50].
- If MCTol is used, Alpha must be in the range \((0,1)\).

Example: 'Alpha', 0.01
Data Types
single | double

\section*{'Distr' - Distribution family}
'norm' (default) | 'exp' | 'ev'
Distribution family for the hypothesis test, specified as the comma-separated pair consisting of 'Distr' and one of the following.
\begin{tabular}{ll} 
'norm' & Normal distribution \\
'exp' & Exponential distribution \\
'ev' & Extreme value distribution
\end{tabular}

Example: 'Distr','exp'

\section*{'MCTol' - Maximum Monte Carlo standard error}
scalar value in the range \((0,1)\)

\section*{lillietest}

\section*{Output Arguments}

Maximum Monte Carlo standard error for p , the \(p\)-value of the test, specified as the comma-separated pair consisting of 'MCTOL' and a scalar value in the range \((0,1)\).

Example: 'MCTol', 0.001
```

Data Types
single | double

```

\section*{h-Hypothesis test result}

1 | 0
Hypothesis test result, returned as a logical value.
- If \(\mathrm{h}=1\), this indicates the rejection of the null hypothesis at the Alpha significance level.
- If \(h=0\), this indicates a failure to reject the null hypothesis at the Alpha significance level.

\section*{\(p-p\)-value}

\section*{scalar value in the range \((0,1)\)}
\(p\)-value of the test, returned as a scalar value in the range \((0,1) . \mathrm{p}\) is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of \(p\) cast doubt on the validity of the null hypothesis.
- If MCTol is not used, p is computed using inverse interpolation into the table of critical values, and is returned as a scalar value in the range [0.001,0.50]. lillietest warns when \(p\) is not found within the tabulated range and returns either the smallest or largest tabulated value.
- If MCTol is used, lillietest conducts a Monte Carlo simulation to compute a more accurate \(p\)-value, and p is returned as a scalar value in the range \((0,1)\).

\section*{kstat - Test statistic}
nonnegative scalar value

Test statistic, returned as a nonnegative scalar value.

\section*{critval - Critical value}
nonnegative scalar value
Critical value for the hypothesis test, returned as a nonnegative scalar value.

\section*{Examples Test for a Normal Distribution}

Load the sample data. Test the null hypothesis that car mileage, in miles per gallon (MPG), follows a normal distribution across different makes of cars.
```

load carbig.mat;
[h,p,k,c] = lillietest(MPG)
Warning: P is less than the smallest tabulated value, returning 0.001
h =
1
p =
1.0000e-003
k =
0.0789
c =
0.0451

```

The test statistic \(k\) is greater than the critical value c, so lillietest returns a result of \(h=1\) to indicate rejection of the null hypothesis at the default \(5 \%\) significance level. The warning indicates that the returned \(p\)-value is the smallest value in the table of precomputed values. To find a more accurate \(p\)-value, use MCTol to run a Monte Carlo approximation.

\section*{Test the Hypothesis at Different Significance Levels}

Load the sample data. Create a vector containing the first column of the students' exam grades data.
```

load examgrades;
x = grades(:,1);

```

Test the null hypothesis that the sample data comes from a normal distribution at the \(1 \%\) significance level.
```

[h,p] = lillietest(x,'Alpha',0.01)
h =
0
p =
0.0348

```

The returned value of \(\mathrm{h}=0\) indicates that lillietest does not reject the null hypothesis at the \(1 \%\) significance level.

\section*{Test for an Exponential Distribution}

Load the sample data. Test the null hypothesis that car mileage, in miles per gallon (MPG), follows an exponential distribution across different makes of cars.
```

load carbig.mat;
h = lillietest(MPG,'Distr','exp')
h =
1

```

The returned value of \(h=1\) indicates that lillietest rejects the null hypothesis at the default \(5 \%\) significance level.

\section*{Determine the p-value Using Monte Carlo Approximation}

Load the sample data. Test the null hypothesis that car mileage, in miles per gallon (MPG), follows a normal distribution across different makes of cars. Determine the \(p\)-value using a Monte Carlo approximation with a maximum Monte Carlo standard error of 1e-4.
```

load carbig.mat;
[h,p] = lillietest(MPG,'MCTol',1e-4)

```
```

h =
1
p =
0

```

The returned value of \(h=1\) indicates that lillietest rejects the null hypothesis that the data comes from a normal distribution at the \(5 \%\) significance level.

\section*{Definitions Lilliefors Test}

The Lilliefors test is a two-sided goodness-of-fit test suitable when the parameters of the null distribution are unknown and must be estimated. This is in contrast to the one-sample Kolmogorov-Smirnov test, which requires the null distribution to be completely specified.

The Lilliefors test statistic is:
\[
D^{*}=\max _{x}|F(x)-G(x)|,
\]
where \(\hat{F}(x)\) is the empirical cdf of the sample data and \(G(x)\) is the cdf of the hypothesized distribution with estimated parameters equal to the sample parameters.
lillietest can be used to test whether the data vector x has a lognormal or Weibull distribution by applying a transformation to the data vector and running the appropriate Lilliefors test:
- To test x for a lognormal distribution, test if \(\exp (x)\) has a normal distribution.
- To test x for a Weibull distribution, test if \(\log (\mathrm{x})\) has an extreme value distribution.

The Lilliefors test cannot be used when the null hypothesis is not a location-scale family of distributions.

\section*{Monte Carlo Standard Error}

The Monte Carlo standard error is calculated as:
\[
S E=\sqrt{\frac{(\hat{\mathrm{p}})(1-\hat{\mathrm{p}})}{\text { mcreps }}}
\]
where \(\hat{\mathrm{p}}\) is the estimated \(p\)-value of the hypothesis test, and moreps is the number of Monte Carlo replications performed.
The number of Monte Carlo replications, moreps, is determined such that the Monte Carlo standard error for \(\hat{p}\) less than the value specified for MCTOL.

\section*{Algorithms}

To compute the critical value for the hypothesis test, lillietest interpolates into a table of critical values pre-computed using Monte Carlo simulation for sample sizes less than 1000 and significance levels between 0.001 and 0.50 . The table used by lillietest is larger and more accurate than the table originally introduced by Lilliefors. If a more accurate \(p\)-value is desired, or if the desired significance level is less than 0.001 or greater than 0.50 , the MCTol input argument can be used to run a Monte Carlo simulation to calculate the \(p\)-value more exactly.

When the computed value of the test statistic is greater than the critical value, lillietest rejects the null hypothesis at significance level Alpha.
lillietest treats \(N a N\) values in x as missing values and ignores them.

\section*{References}
[1] Conover, W. J. Practical Nonparametric Statistics. Hoboken, NJ: John Wiley \& Sons, Inc., 1980.
[2] Lilliefors, H. W. "On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown." Journal of the American Statistical Association. Vol. 64, 1969, pp. 387-389.
[3] Lilliefors, H. W. "On the Kolmogorov-Smirnov test for normality with mean and variance unknown." Journal of the American Statistical Association. Vol. 62, 1967, pp. 399-402.

See Also
jbtest | kstest | kstest2 | cdfplot | adtest

\section*{LinearModel}
Purpose Linear regression model class
DescriptionAn object comprising training data, model description, diagnosticinformation, and fitted coefficients for a linear regression. Predictmodel responses with the predict or feval methods.
Constructionmdl = LinearModel.fit(ds) or mdl = LinearModel.fit(X,y) createa linear model of a dataset array ds, or of the responses \(y\) to a datamatrix X. For details, see LinearModel.fit.
mdl = LinearModel.stepwise(ds) or mdl =
LinearModel.stepwise ( \(X, y\) ) create a linear model of a dataset array
ds, or of the responses \(y\) to a data matrix \(X\), with unimportant predictors
excluded. For details, see LinearModel.stepwise.

\section*{Input Arguments}

\section*{ds}
Dataset array, where by default the last column is the response variable, and all other columns are the predictors. Predictors can be numeric, or can be any grouping variable type, such as logical or categorical (see "Grouping Variables" on page 2-51). The response must be numeric or logical.
To set a different column as the response variable, use the ResponseVar name-value pair. To use a subset of the columns as predictors, use the PredictorVars name-value pair.

\section*{X}
Matrix of predictor values. Each column of X represents one variable, and each row represents one observation.
\(y\)
Vector of response values with the same number of rows as X . Each entry in \(y\) is the response to the data in the corresponding row of \(X\).

\section*{Properties}

\section*{CoefficientCovariance}

Covariance matrix of coefficient estimates.

\section*{CoefficientNames}

Cell array of strings containing a label for each coefficient.

\section*{Coefficients}

Table of coefficient values in a dataset array. Coefficients has one row for each coefficient and these columns:
- Estimate - Estimated coefficient value
- SE - Standard error of the estimate
- tStat - \(t\) statistic for a test that the coefficient is zero
- pValue - \(p\)-value for the \(t\) statistic

To obtain any of these columns as a vector, index into the property using dot notation. For example, in mdl the estimated coefficient vector is
beta = mdl.Coefficients.Estimate

Use coeftest to perform other tests on the coefficients.

\section*{DFE}

Degrees of freedom for error (residuals), equal to the number of observations minus the number of estimated coefficients.

\section*{Diagnostics}

Dataset array with the same number of rows as the input data (ds or X). Diagnostics contains diagnostics helpful in finding outliers and influential observations. Many diagnostics describe the effect on the fit of deleting single observations. Diagnostics contains the following fields.

\section*{LinearModel}
\begin{tabular}{l|l|l}
\hline Field & Meaning & Utility \\
\hline Leverage & \begin{tabular}{l} 
Diagonal elements of \\
HatMatrix
\end{tabular} & \begin{tabular}{l} 
Leverage indicates to what extent the predicted \\
value for an observation is determined by \\
the observed value for that observation. A \\
value close to 1 indicates that the prediction is \\
largely determined by that observation, with \\
little contribution from the other observations. \\
A value close to 0 indicates the fit is largely \\
determined by the other observations. For a \\
model with P coefficients and N observations, \\
the average value of Leverage is P/N. An \\
observation with Leverage larger than 2*P/N \\
can be regarded as having high leverage.
\end{tabular} \\
\hline CooksDistance & \begin{tabular}{l} 
Cook's measure of \\
scaled change in \\
fitted values
\end{tabular} & \begin{tabular}{l} 
CooksDistance is a measure of scaled \\
change in fitted values. An observation with \\
CooksDistance larger than three times the \\
mean Cook's distance can be an outlier.
\end{tabular} \\
\hline Dffits & \begin{tabular}{l} 
Delete-1 scaled \\
differences in \\
fitted values vs. \\
observation number
\end{tabular} & \begin{tabular}{l} 
Dffits is the scaled change in the fitted values \\
for each observation that would result from \\
excluding that observation from the fit. Values \\
with an absolute value larger than 2*sqrt (P/N) \\
may be considered influential.
\end{tabular} \\
\hline S2_i & \begin{tabular}{l} 
Delete-1 variance vs. \\
observation number
\end{tabular} & \begin{tabular}{l} 
S2_i is a set of residual variance estimates \\
obtained by deleting each observation in turn. \\
These can be compared with the value of the \\
mSE property.
\end{tabular} \\
\hline CovRatio & \begin{tabular}{l} 
Delete-1 ratio of \\
determinant of \\
covariance vs. \\
observation number
\end{tabular} & \begin{tabular}{l} 
CovRatio is the ratio of the determinant of \\
the coefficient covariance matrix with each \\
observation deleted in turn to the determinant of \\
the covariance matrix for the full model. Values \\
larger than 1+3*P/N or smaller than 1-3*P/N \\
indicate influential points.
\end{tabular} \\
\hline
\end{tabular}

\section*{LinearModel}
\begin{tabular}{l|l|l}
\hline Field & Meaning & Utility \\
\hline Dfbetas & \begin{tabular}{l} 
Delete-1 scaled \\
differences in \\
covariance estimates \\
vs. observation \\
number
\end{tabular} & \begin{tabular}{l} 
Dfbetas is an N-by-P matrix of the scaled change \\
in the coefficient estimates that would result \\
from excluding each observation in turn. Values \\
larger than 3/sqrt (N) in absolute value indicate \\
that the observation has a large influence on the \\
corresponding coefficient.
\end{tabular} \\
\hline HatMatrix & \begin{tabular}{l} 
Projection matrix to \\
compute fitted from \\
observed responses
\end{tabular} & \begin{tabular}{l} 
HatMatrix is an N-by-N matrix such that \\
Fitted = HatMatrix*Y, where Y is the response \\
vector and Fitted is the vector of fitted response \\
values.
\end{tabular} \\
\hline
\end{tabular}

Rows not used in the fit because of missing values (in ObservationInfo.Missing) contain NaN values.

Rows not used in the fit because of excluded values (in ObservationInfo.Excluded) contain NaN values, with the following exception: Delete-1 diagnostics refer to the statistic with and without that observation (row) included in the fit. These diagnostics help identify important observations.

\section*{Fitted}

Predicted response to the input data by using the model. Use predict to compute predictions for other predictor values, or to compute confidence bounds on Fitted.

\section*{Formula}

Object containing information about the model.

\section*{LogLikelihood}

Log likelihood of the model distribution at the response values, with mean fitted from the model, and other parameters estimated as part of the model fit.

\section*{ModelCriterion}

\section*{LinearModel}

AIC and other information criteria for comparing models. A structure with fields:
- AIC - Akaike information criterion
- AICc - Akaike information criterion corrected for sample size
- BIC - Bayesian information criterion
- CAIC - Consistent Akaike information criterion

To obtain any of these values as a scalar, index into the property using dot notation. For example, in a model mdl, the AIC value aic is:
aic = mdl.ModelCriterion.AIC

\section*{MSE}

Mean squared error (residuals), SSE/DFE.

\section*{NumCoefficients}

Number of coefficients in the model, a positive integer. NumCoefficients includes coefficients that are set to zero when the model terms are rank deficient.

\section*{NumEstimatedCoefficients}

Number of estimated coefficients in the model, a positive integer. NumEstimatedCoefficients does not include coefficients that are set to zero when the model terms are rank deficient. NumEstimatedCoefficients is the degrees of freedom for regression.

\section*{NumObservations}

Number of observations the fitting function used in fitting. This is the number of observations supplied in the original dataset or matrix, minus any excluded rows (set with the Excluded name-value pair) or rows with missing values.

\section*{NumPredictors}

\section*{LinearModel}

Number of variables LinearModel.fit used as predictors for fitting.

\section*{NumVariables}

Number of variables in the data. NumVariables is the number of variables in the original dataset when the fit is based on a dataset, or the total number of columns in the predictor matrix and response vector when the fit is based on those arrays. It includes variables, if any, that are not used as predictors or as the response.

\section*{ObservationInfo}

Dataset with the same number of rows as the input data (ds or X).
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Weights & Observation weights. Default is all 1. \\
\hline Excluded & \begin{tabular}{l} 
Logical value, 1 indicates an observation that \\
you excluded from the fit with the Exclude \\
name-value pair.
\end{tabular} \\
\hline Missing & \begin{tabular}{l} 
Logical value, 1 indicates a missing value in \\
the input. Missing values are not used in the \\
fit.
\end{tabular} \\
\hline Subset & \begin{tabular}{l} 
Logical value, 1 indicates the observation is \\
not excluded or missing, so is used in the fit.
\end{tabular} \\
\hline
\end{tabular}

\section*{ObservationNames}

Cell array of strings containing the names of the observations used in the fit.
- If the fit is based on a dataset containing observation names, ObservationNames uses those names.
- Otherwise, ObservationNames is an empty cell array

\section*{PredictorNames}

\section*{LinearModel}

Cell array of strings, the names of the predictors used in fitting the model.

\section*{Residuals}

Dataset array containing a table of residuals, with one row for each observation and these variables.
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Raw & Observed minus fitted values. \\
\hline Pearson & Raw residuals divided by RMSE. \\
\hline Standardized & \begin{tabular}{l} 
Raw residuals divided by their estimated \\
standard deviation.
\end{tabular} \\
\hline Studentized & \begin{tabular}{l} 
Residual divided by an independent estimate \\
of the residual standard deviation. The \\
residual for observation \(i\) is divided by an \\
estimate of the error standard deviation based \\
on all observations except for observation \(i\).
\end{tabular} \\
\hline
\end{tabular}

To obtain any of these columns as a vector, index into the property using dot notation. For example, in a model mdl, the ordinary raw residual vector \(r\) is:
\(r\) = mdl.Residuals.Raw
Rows not used in the fit because of missing values (in ObservationInfo.Missing) contain NaN values.

Rows not used in the fit because of excluded values (in ObservationInfo.Excluded) contain NaN values, with the following exceptions:
- raw contains the difference between the observed and predicted values.
- standardized is the residual, standardized in the usual way.
- studentized matches the standardized values because this residual is not used in the estimate of the residual standard deviation.

\section*{ResponseName}

String giving naming the response variable.

\section*{RMSE}

Root mean squared error (residuals), sqrt(MSE).

\section*{Robust}

Structure that is empty unless LinearModel.fit constructed the model using robust regression.
\begin{tabular}{l|l}
\hline Field & Description \\
\hline WgtFun & \begin{tabular}{l} 
Robust weighting function, such as \\
'bisquare ' (see robustfit)
\end{tabular} \\
\hline Tune & \begin{tabular}{l} 
Value specified for tuning parameter (can be \\
{\([\) ] \()\)}
\end{tabular} \\
\hline Weights & \begin{tabular}{l} 
Vector of weights used in final iteration of \\
robust fit
\end{tabular} \\
\hline
\end{tabular}

\section*{Rsquared}

Proportion of total sum of squares explained by the model. The ordinary R-squared value relates to the SSR and SST properties:
```

Rsquared = SSR/SST = 1 - SSE/SST.

```

Rsquared is a structure with two fields:
- Ordinary - Ordinary (unadjusted) R-squared
- Adjusted - R-squared adjusted for the number of coefficients

\section*{LinearModel}

To obtain any of these values as a scalar, index into the property using dot notation. For example, the adjusted R-squared value in mdl is
r2 = mdl.Rsquared.Adjusted

\section*{SSE}

Sum of squared errors (residuals).
The Pythagorean theorem implies
```

SST = SSE + SSR.

```

\section*{SSR}

Regression sum of squares, the sum of squared deviations of the fitted values from their mean.

The Pythagorean theorem implies
SST = SSE + SSR.

\section*{SST}

Total sum of squares, the sum of squared deviations of \(y\) from mean(y).

The Pythagorean theorem implies
SST = SSE + SSR.

\section*{Steps}

Structure that is empty unless LinearModel.stepwise constructed the model.
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Start & Formula representing the starting model \\
\hline Lower & \begin{tabular}{l} 
Formula representing the lower bound model, \\
these terms that must remain in the model
\end{tabular} \\
\hline Upper & \begin{tabular}{l} 
Formula representing the upper bound model, \\
model cannot contain more terms than Upper
\end{tabular} \\
\hline Criterion & \begin{tabular}{l} 
Criterion used for the stepwise algorithm, \\
such as 'sse '
\end{tabular} \\
\hline PEnter & Value of the parameter, such as 0.05 \\
\hline PRemove & Value of the parameter, such as 0.10 \\
\hline History & Dataset representing the steps taken in the fit \\
\hline
\end{tabular}

The History dataset has one row for each step including the initial fit, and the following variables (columns).
\begin{tabular}{|c|c|}
\hline Field & Description \\
\hline Action & \begin{tabular}{l}
Action taken during this step, one of: \\
- 'Start' - First step \\
- 'Add ' - A term is added \\
- 'Remove' - A term is removed
\end{tabular} \\
\hline TermName & \begin{tabular}{l}
- 'Start' step: The starting model specification \\
- 'Add' or 'Remove' steps: The term moved in that step
\end{tabular} \\
\hline Terms & \begin{tabular}{l}
Terms matrix (see modelspec in \\
"Input Arguments" on page 20-799 of LinearModel.fit)
\end{tabular} \\
\hline DF & Regression degrees of freedom after this step \\
\hline
\end{tabular}

\section*{LinearModel}
\begin{tabular}{l|l}
\hline Field & Description \\
\hline delDF & \begin{tabular}{l} 
Change in regression degrees of freedom from \\
previous step (negative for steps that remove \\
a term)
\end{tabular} \\
\hline Deviance & \begin{tabular}{l} 
Deviance (residual sum of squares) at that \\
step
\end{tabular} \\
\hline FStat & \(F\) statistic that led to this step \\
\hline PValue & \(p\)-value of the \(F\) statistic \\
\hline
\end{tabular}

\section*{Variablelnfo}

Dataset array containing metadata about Variables. There is one row for each term in the model, and the following columns.
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Class & String giving variable class, such as 'double ' \\
\hline Range & \begin{tabular}{l} 
Cell array giving variable range: \\
• Continuous variable - Two-element vector \\
[min, max ], the minimum and maximum \\
values \\
- Categorical variable - Cell array of \\
distinct variable values
\end{tabular} \\
\hline InModel & \begin{tabular}{l} 
Logical vector, where true indicates the \\
variable is in the model
\end{tabular} \\
\hline IsCategorical & \begin{tabular}{l} 
Logical vector, where true indicates a \\
categorical variable
\end{tabular} \\
\hline
\end{tabular}

\section*{VariableNames}

Cell array of strings containing names of the variables in the fit.
- If the fit is based on a dataset, this property provides the names of the variables in that dataset.
- If the fit is based on a predictor matrix and response vector, VariableNames is the values in the VarNames name-value pair of the fitting method.
- Otherwise the variables have the default fitting names.

\section*{Variables}

Dataset array containing the data, both observations and responses, that the fitting function used to construct the fit. If the fit is based on a dataset array, Variables is a copy of that dataset. Otherwise, Variables is a dataset created from the input data matrix \(X\) and response vector \(y\).

\section*{Methods}
\begin{tabular}{ll} 
addTerms & \begin{tabular}{l} 
Add terms to linear regression \\
model
\end{tabular} \\
anova & \begin{tabular}{l} 
Analysis of variance for linear \\
model
\end{tabular} \\
coefCI & \begin{tabular}{l} 
Confidence intervals of coefficient \\
estimates of linear model
\end{tabular} \\
coefTest & \begin{tabular}{l} 
Linear hypothesis test on linear \\
regression model coefficients
\end{tabular} \\
disp & \begin{tabular}{l} 
Display linear regression model
\end{tabular} \\
dwtest & \begin{tabular}{l} 
Durbin-Watson test of linear \\
model
\end{tabular} \\
feval & \begin{tabular}{l} 
Evaluate linear regression model \\
prediction
\end{tabular} \\
fit & \begin{tabular}{l} 
Create linear regression model
\end{tabular} \\
plot & \begin{tabular}{l} 
Scatter plot or added variable \\
plot of linear model
\end{tabular} \\
plotAdded & \begin{tabular}{l} 
Added variable plot or leverage \\
plot for linear model
\end{tabular}
\end{tabular}

\section*{LinearModel}
\begin{tabular}{ll} 
plotAdjustedResponse & \begin{tabular}{l} 
Adjusted response plot for linear \\
regression model
\end{tabular} \\
plotDiagnostics & \begin{tabular}{l} 
Plot diagnostics of linear \\
regression model
\end{tabular} \\
plotEffects & \begin{tabular}{l} 
Plot main effects of each predictor \\
in linear regression model
\end{tabular} \\
plotInteraction & \begin{tabular}{l} 
Plot interaction effects of two \\
predictors in linear regression \\
model
\end{tabular} \\
plotResiduals & \begin{tabular}{l} 
Plot residuals of linear regression \\
model
\end{tabular} \\
plotSlice & \begin{tabular}{l} 
Plot of slices through fitted linear \\
regression surface
\end{tabular} \\
predict & \begin{tabular}{l} 
Predict response of linear \\
regression model
\end{tabular} \\
random & \begin{tabular}{l} 
Simulate responses for linear \\
regression model
\end{tabular} \\
removeTerms & \begin{tabular}{l} 
Remove terms from linear model
\end{tabular} \\
step & \begin{tabular}{l} 
Improve linear regression model \\
by adding or removing terms
\end{tabular} \\
stepwise & \begin{tabular}{l} 
Create linear regression model by \\
stepwise regression
\end{tabular} \\
\hline
\end{tabular}

Copy
Semantics

\section*{Definitions}

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

\section*{Hat Matrix}

The hat matrix \(H\) is defined in terms of the data matrix \(X\) :
\[
H=X\left(X^{T} X\right)^{-1} X^{T} .
\]

The diagonal elements \(H_{i i}\) satisfy
\[
\begin{aligned}
& 0 \leq h_{i i} \leq 1 \\
& \sum_{i=1}^{n} h_{i i}=p,
\end{aligned}
\]
where \(n\) is the number of observations (rows of \(X\) ), and \(p\) is the number of coefficients in the regression model.

\section*{Leverage}

The leverage of observation \(i\) is the value of the \(i\) th diagonal term of the hat matrix \(H_{i i}\). Because the sum of the leverage values is \(p\) (the number of coefficients in the regression model), an observation \(i\) can be considered to be an outlier if its leverage substantially exceeds \(p / n\), where \(n\) is the number of observations.

\section*{Cook's Distance}

Cook's distance is the scaled change in fitted values. Each element in CooksDistance is the normalized change in the vector of coefficients due to the deletion of an observation. The Cook's distance, \(D_{i}\), of observation \(i\) is
\[
D_{i}=\frac{\sum_{j=1}^{n}\left(\hat{y}_{j}-\hat{y}_{j(i)}\right)^{2}}{p M S E},
\]
where
- \(\hat{y}_{j}\) is the \(j\) th fitted response value.
- \(\hat{y}_{j(i)}\) is the \(j\) th fitted response value, where the fit does not include observation \(i\).
- \(M S E\) is the mean squared error.
- \(p\) is the number of coefficients in the regression model.

\section*{LinearModel}

Cook's distance is algebraically equivalent to the following expression:
\[
D_{i}=\frac{r_{i}^{2}}{p M S E}\left(\frac{h_{i i}}{\left(1-h_{i i}\right)^{2}}\right)
\]
where \(r_{i}\) is the \(i\) th residual, and \(h_{i i}\) is the \(i\) th leverage value.
CooksDistance is an \(n\)-by- 1 column vector in the Diagnostics dataset array of the LinearModel object.

\section*{Examples Linear Regression Model of Matrix Data}

Fit a linear model of the Hald data.
Load the data.
load hald
X = ingredients; \% predictor variables
y = heat; \% response
Fit a default linear model to the data.
```

mdl = LinearModel.fit(X,y)
mdl =
Linear regression model:
y ~ 1 + x1 + x2 + x3 + x4

```

Estimated Coefficients:
\begin{tabular}{lrcrr} 
& Estimate & SE & tStat & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 62.405 & 70.071 & 0.8906 & 0.39913 \\
x1 & 1.5511 & 0.74477 & 2.0827 & 0.070822 \\
x2 & 0.51017 & 0.72379 & 0.70486 & 0.5009 \\
x3 & 0.10191 & 0.75471 & 0.13503 & 0.89592 \\
x4 & -0.14406 & 0.70905 & -0.20317 & 0.84407
\end{tabular}

Number of observations: 13, Error degrees of freedom: 8
```

Root Mean Squared Error: 2.45
R-squared: 0.982, Adjusted R-Squared 0.974
F-statistic vs. constant model: 111, p-value = 4.76e-07

```

\section*{Linear Regression with Categorical Predictor and Nonlinear Model}

Fit a model of a dataset array that contains a categorical predictor. Use a nonlinear response formula.

Load the carsmall data.
```

load carsmall

```

Construct a dataset containing continuous predictor variable Weight, nominal predictor variable Year, and response variable MPG.
```

ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);

```

Create a fitted model of MPG as a function of Year, Weight, and Weight \({ }^{2}\). (You don't have to include Weight explicitly in your formula because it is a lower-order term of Weight \({ }^{2}\). For details, see "Definitions" on page 20-805.)
```

mdl = LinearModel.fit(ds,'MPG ~ Year + Weight^2')
mdl =
Linear regression model:
MPG ~ 1 + Weight + Year + Weight^2

```
Estimated Coefficients:
\begin{tabular}{lrrrr} 
& Estimate & \multicolumn{1}{l}{ SE } & \multicolumn{1}{l}{ tStat } & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 54.206 & 4.7117 & 11.505 & \(2.6648 \mathrm{e}-19\) \\
Weight & -0.016404 & 0.0031249 & -5.2493 & \(1.0283 \mathrm{e}-06\) \\
Year_76 & 2.0887 & 0.71491 & 2.9215 & 0.0044137 \\
Year_82 & 8.1864 & 0.81531 & 10.041 & \(2.6364 \mathrm{e}-16\) \\
Weight^2 & \(1.5573 \mathrm{e}-06\) & \(4.9454 \mathrm{e}-07\) & 3.149 & 0.0022303
\end{tabular}
```

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 2.78
R-squared: 0.885, Adjusted R-Squared 0.88
F-statistic vs. constant model: 172, p-value = 5.52e-41

```

\section*{Robust Linear Regression Model}

Fit a linear regression model of the Hald data using robust fitting.
Load the data.
load hald
\(\mathrm{X}=\) ingredients; \% predictor variables
y = heat; \% response
Fit a robust linear model to the data.
```

mdl = LinearModel.fit(X,y,'linear','RobustOpts','on')
mdl =
Linear regression model (robust fit):
y ~ 1 + x1 + x2 + x3 + x4

```
Estimated Coefficients:
\begin{tabular}{lrrrr} 
& Estimate & \multicolumn{1}{l}{ SE } & tStat & pValue \\
( Intercept) & 60.09 & 75.818 & 0.79256 & 0.4509 \\
x1 & 1.5753 & 0.80585 & 1.9548 & 0.086346 \\
x2 & 0.5322 & 0.78315 & 0.67957 & 0.51596 \\
x3 & 0.13346 & 0.8166 & 0.16343 & 0.87424 \\
x4 & -0.12052 & 0.7672 & -0.15709 & 0.87906
\end{tabular}

Number of observations: 13, Error degrees of freedom: 8
Root Mean Squared Error: 2.65
R-squared: 0.979, Adjusted R-Squared 0.969
F-statistic vs. constant model: 94.6, p-value = 9.03e-07
Algorithms The main fitting algorithm is QR decomposition. For robust fitting, the algorithm is robustfit.
Alternatives To remove redundant predictors in linear regression using lasso or elastic net, use the lasso function.
To regularize a regression with correlated terms using ridge regression, use the ridge or lasso functions.
To regularize a regression with correlated terms using partial least squares, use the plsregress function.
See Also LinearModel.fit | LinearModel.stepwise
Tutorials - "Linear Regression Workflow" on page 9-43
- "Robust Regression versus Standard Least-Squares Fit" on page 9-116
How To - "Linear Regression" on page 9-11

\section*{linhyptest}

Purpose Linear hypothesis test
```

Syntax p = linhyptest(beta,covb, c,H,dfe)
[p,t,r] = linhyptest(...)

```

Description \(\quad \mathrm{p}=\) linhyptest (beta, COVB, \(\mathrm{c}, \mathrm{H}, \mathrm{dfe}\) ) returns the \(p\) value p of a hypothesis test on a vector of parameters. beta is a vector of \(k\) parameter estimates. COVB is the \(k\)-by- \(k\) estimated covariance matrix of the parameter estimates. c and H specify the null hypothesis in the form \(H^{*} \mathrm{~b}=\mathrm{c}\), where b is the vector of unknown parameters estimated by beta. dfe is the degrees of freedom for the COVB estimate, or Inf if COVB is known rather than estimated.
beta is required. The remaining arguments have default values:
- COVB \(=\) eye(k)
- \(c=z e r o s(k, 1)\)
- H = eye(K)
- \(d f e=\) Inf

If H is omitted, c must have \(k\) elements and it specifies the null hypothesis values for the entire parameter vector.

Note The following functions return outputs suitable for use as the COVB input argument to linhyptest: nlinfit, coxphfit, glmfit, mnrfit, regstats, robustfit. nlinfit returns COVB directly; the other functions return COVB in stats.covb.
[ \(p, t, r\) ] = linhyptest(...) also returns the test statistic \(t\) and the rank \(r\) of the hypothesis matrix \(H\). If dfe is Inf or is not given, \(t * r\) is a chi-square statistic with \(r\) degrees of freedom. If dfe is specified as a finite value, t is an \(F\) statistic with r and dfe degrees of freedom.
linhyptest performs a test based on an asymptotic normal distribution for the parameter estimates. It can be used after any estimation

\section*{linhyptest}
procedure for which the parameter covariances are available, such as regstats or glmfit. For linear regression, the \(p\)-values are exact. For other procedures, the \(p\)-values are approximate, and may be less accurate than other procedures such as those based on a likelihood ratio.

\section*{Examples}

Fit a multiple linear model to the data in hald.mat:
```

load hald
stats = regstats(heat,ingredients,'linear');
beta = stats.beta
beta =
62.4054
1.5511
0.5102
0.1019
-0.1441

```

Perform an \(F\)-test that the last two coefficients are both 0 :
```

SIGMA = stats.covb;
dfe = stats.fstat.dfe;
H = [0 0 0 1 0;0 0 0 0 1];
c = [0;0];
[p,F] = linhyptest(beta,SIGMA,c,H,dfe)
p =
0.4668
F =
0.8391

```

\section*{See Also}
regstats | glmfit | robustfit | mnrfit | nlinfit | coxphfit

Purpose Agglomerative hierarchical cluster tree
Syntax
Z = linkage( X )
Z = linkage(X,method)
Z = linkage(X,method,metric)
Z = linkage(X, method,pdist_inputs)
Z = linkage(X,method,metric,'savememory', value)
Z = linkage( Y )
Z = linkage( Y , method)

\section*{Description}

Tips
\(Z=\) linkage \((X)\) returns a matrix \(Z\) that encodes a tree of hierarchical clusters of the rows of the real matrix \(X\).
\(Z=\) linkage (X, method) creates the tree using the specified method, where method describes how to measure the distance between clusters.

Z = linkage(X,method,metric) performs clustering using the distance measure metric to compute distances between the rows of \(X\).
Z = linkage( X , method, pdist_inputs) passes parameters to the pdist function, which is the function that computes the distance between rows of \(X\).

Z = linkage(X,method,metric,'savememory', value) uses a memory-saving algorithm when value is 'true', and uses the standard algorithm when value is 'false'.
\(Z=\) linkage \((Y)\) uses a vector representation \(Y\) of a distance matrix. \(Y\) can be a distance matrix as computed by pdist, or a more general dissimilarity matrix conforming to the output format of pdist.
\(Z=\) linkage \((Y\), method) creates the tree using the specified method, where method describes how to measure the distance between clusters.
- Computing linkage ( Y ) can be slow when Y is a vector representation of the distance matrix. For the 'centroid', 'median', and 'ward' methods, linkage checks whether Y is a Euclidean distance. Avoid this time-consuming check by passing in X instead of Y .
- The centroid and median methods can produce a cluster tree that is not monotonic. This occurs when the distance from the union of two clusters, \(r\) and \(s\), to a third cluster is less than the distance between \(r\) and \(s\). In this case, in a dendrogram drawn with the default orientation, the path from a leaf to the root node takes some downward steps. To avoid this, use another method. The following image shows a nonmonotonic cluster tree.


In this case, cluster 1 and cluster 3 are joined into a new cluster, while the distance between this new cluster and cluster 2 is less than the distance between cluster 1 and cluster 3 . This leads to a nonmonotonic tree.
- You can provide the output \(Z\) to other functions including dendrogram to display the tree, cluster to assign points to clusters, inconsistent to compute inconsistent measures, and cophenet to compute the cophenetic correlation coefficient.

\section*{Input Arguments}

\section*{X}

Matrix with two or more rows. The rows represent observations, the columns represent categories or dimensions.

\section*{method}

\section*{linkage}

Algorithm for computing distance between clusters.
\begin{tabular}{l|l}
\hline Method & Description \\
\hline 'average' & Unweighted average distance (UPGMA) \\
\hline 'centroid' & \begin{tabular}{l} 
Centroid distance (UPGMC), appropriate for \\
Euclidean distances only
\end{tabular} \\
\hline 'complete' & Furthest distance \\
\hline 'median' & \begin{tabular}{l} 
Weighted center of mass distance (WPGMC), \\
appropriate for Euclidean distances only
\end{tabular} \\
\hline 'single' & Shortest distance \\
\hline 'ward' & \begin{tabular}{l} 
Inner squared distance (minimum variance \\
algorithm), appropriate for Euclidean distances only
\end{tabular} \\
\hline 'weighted ' & Weighted average distance (WPGMA) \\
\hline
\end{tabular}

Default: 'single'

\section*{metric}

Any distance metric that the pdist function accepts.
\begin{tabular}{l|l}
\hline Metric & Description \\
\hline 'euclidean' & Euclidean distance (default). \\
\hline 'seuclidean' & \begin{tabular}{l} 
Standardized Euclidean distance. Each \\
coordinate difference between rows in X is \\
scaled by dividing by the corresponding \\
element of the standard deviation \\
S=nanstd (X). To specify another value for \\
S, use D=pdist (X, 'seuclidean ' , S).
\end{tabular} \\
\hline 'cityblock' & City block metric. \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Metric & Description \\
\hline 'minkowski' & \begin{tabular}{l} 
Minkowski distance. The default exponent is \\
2. To specify a different exponent, use D \(=\) \\
pdist (X, 'minkowski' , P), where P is a scalar
\end{tabular} \\
\hline 'chebychev' & \begin{tabular}{l} 
Chebychev distance (maximum coordinate \\
difference).
\end{tabular} \\
\hline 'mahalanobis' & \begin{tabular}{l} 
Mahalanobis distance, using the sample \\
covariance of X as computed by nancov. To \\
compute the distance with a different covariance, \\
use D = pdist (X, 'mahalanobis ' , C), where \\
the matrix C is symmetric and positive definite.
\end{tabular} \\
\hline 'cosine' & \begin{tabular}{l} 
One minus the cosine of the included angle \\
between points (treated as vectors).
\end{tabular} \\
\hline 'correlation' & \begin{tabular}{l} 
One minus the sample correlation between \\
points (treated as sequences of values).
\end{tabular} \\
\hline 'spearman' & \begin{tabular}{l} 
One minus the sample Spearman's rank \\
correlation between observations (treated as \\
sequences of values).
\end{tabular} \\
\hline 'hamming' & \begin{tabular}{l} 
Hamming distance, which is the percentage of \\
coordinates that differ.
\end{tabular} \\
\hline 'jaccard' & \begin{tabular}{l} 
One minus the Jaccard coefficient, which is the \\
percentage of nonzero coordinates that differ.
\end{tabular} \\
\hline \begin{tabular}{l} 
custom distance \\
function
\end{tabular} & \begin{tabular}{l} 
A distance function specified using @: \\
D = pdist (X, adistfun) \\
A distance function must be of form
\end{tabular} \\
d2 = distfun (XI , XJ)
\end{tabular}

\section*{linkage}
\begin{tabular}{l|l}
\hline Metric & Description \\
\hline & \begin{tabular}{l} 
with an arbitrary number of rows. distfun \\
must return an \(m 2\)-by-1 vector of distances d2, \\
whose \(k\) th element is the distance between XI \\
and XJ \((\mathrm{k},:)\).
\end{tabular} \\
\hline
\end{tabular}

Default: 'euclidean'

\section*{pdist_inputs}

A cell array of parameters accepted by the pdist function. For example, to set the metric to minkowski and use an exponent of 5 , set pdist_inputs to \{'minkowski', 5 \}.

\section*{savememory}

A string, either 'on' or 'off'. When applicable, the 'on' setting causes linkage to construct clusters without computing the distance matrix. savememory is applicable when:
- linkage is 'centroid', 'median', or 'ward'
- distance is 'euclidean' (default)

When savememory is 'on', linkage run time is proportional to the number of dimensions (number of columns of \(X\) ). When savememory is 'off', linkage memory requirement is proportional to \(\mathrm{N}^{2}\), where \(N\) is the number of observations. So choosing the best (least-time) setting for savememory depends on the problem dimensions, number of observations, and available memory. The default savememory setting is a rough approximation of an optimal setting.

Default: 'on' when X has 20 columns or fewer, or the computer does not have enough memory to store the distance matrix; otherwise 'off'

\section*{Y}

A vector of distances with the same format as the output of the pdist function:
- A row vector of length \(m(m-1) / 2\), corresponding to pairs of observations in a matrix \(X\) with \(m\) rows
- Distances arranged in the order \((2,1),(3,1), \ldots,(m, 1),(3,2), \ldots,(m, 2)\), ..., ( \(m, m-1\) ))
\(Y\) can be a more general dissimilarity matrix conforming to the output format of pdist.

\section*{Output \\ Arguments}

\section*{Definitions}

\section*{Linkages}

The following notation is used to describe the linkages used by the various methods:
- Cluster r is formed from clusters p and q .
- \(\mathrm{n}_{r}\) is the number of objects in cluster \(r\).
- \(\mathrm{x}_{r i}\) is the ith object in cluster r .

\section*{linkage}
- Single linkage, also called nearest neighbor, uses the smallest distance between objects in the two clusters:
\[
d(r, s)=\min \left(\operatorname{dist}\left(x_{r i}, x_{s j}\right)\right), i \in\left(i, \ldots, n_{r}\right), j \in\left(1, \ldots, n_{s}\right)
\]
- Complete linkage, also called furthest neighbor, uses the largest distance between objects in the two clusters:
\[
d(r, s)=\max \left(\operatorname{dist}\left(x_{r i}, x_{s j}\right)\right), i \in\left(1, \ldots, n_{r}\right), j \in\left(1, \ldots, n_{s}\right)
\]
- Average linkage uses the average distance between all pairs of objects in any two clusters:
\[
d(r, s)=\frac{1}{n_{r} n_{s}} \sum_{i=1}^{n_{r}} \sum_{j=1}^{n_{s}} \operatorname{dist}\left(x_{r i}, x_{s j}\right)
\]
- Centroid linkage uses the Euclidean distance between the centroids of the two clusters:
\[
d(r, s)=\left\|\bar{x}_{r}-\bar{x}_{s}\right\|_{2}
\]
where
\[
\bar{x}_{r}=\frac{1}{n_{r}} \sum_{i=1}^{n_{r}} x_{r i}
\]
- Median linkage uses the Euclidean distance between weighted centroids of the two clusters,
\[
d(r, s)=\left\|\tilde{x}_{r}-\tilde{x}_{s}\right\|_{2}
\]
where \(\tilde{x}_{r}\) and \(\tilde{x}_{s}\) are weighted centroids for the clusters \(r\) and \(s\). If cluster \(r\) was created by combining clusters \(p\) and \(q, \tilde{x}_{r}\) is defined recursively as
\[
\tilde{x}_{r}=\frac{1}{2}\left(\tilde{x}_{p}+\tilde{x}_{q}\right)
\]
- Ward's linkage uses the incremental sum of squares; that is, the increase in the total within-cluster sum of squares as a result of joining two clusters. The within-cluster sum of squares is defined as the sum of the squares of the distances between all objects in the cluster and the centroid of the cluster. The sum of squares measure is equivalent to the following distance measure \(d(r, s)\), which is the formula linkage uses:
\[
d(r, s)=\sqrt{\frac{2 n_{r} n_{s}}{\left(n_{r}+n_{s}\right)}}\left\|\bar{x}_{r}-\bar{x}_{s}\right\|_{2},
\]
where
- \| \(\|_{2}\) is Euclidean distance
- \(\bar{x}_{r}\) and \(\bar{x}_{s}\) are the centroids of clusters \(r\) and \(s\)
- \(n_{r}\) and \(n_{s}\) are the number of elements in clusters \(r\) and \(s\)

In some references the Ward linkage does not use the factor of 2 multiplying \(n_{r} n_{s}\). The linkage function uses this factor so the distance between two singleton clusters is the same as the Euclidean distance.
- Weighted average linkage uses a recursive definition for the distance between two clusters. If cluster \(r\) was created by combining clusters \(p\) and \(q\), the distance between \(r\) and another cluster \(s\) is defined as the average of the distance between \(p\) and \(s\) and the distance between \(q\) and \(s\) :
\[
d(r, s)=\frac{(d(p, s)+d(q, s))}{2}
\]

\section*{linkage}

Examples Compute four clusters of the Fisher iris data using Ward linkage and ignoring species information, and see how the cluster assignments correspond to the three species.
```

load fisheriris
Z = linkage(meas,'ward','euclidean');
c = cluster(Z,'maxclust',4);
crosstab(c,species)
firstfive = Z(1:5,:) % first 5 rows of Z
dendrogram(Z)
ans =
0 25 1
0 24 14
0 1 35
50 0 0
firstfive =
102.0000 143.0000 0
8.0000 40.0000 0.1000
1.0000 18.0000 0.1000
10.0000 35.0000 0.1000
129.0000 133.0000 0.1000

```


Create a hierarchical cluster tree for a data with 20000 observations using Ward's linkage. If you set savememory to 'off', you can get an out-of-memory error if your machine doesn't have enough memory to hold the distance matrix. Cluster the data into four groups and plot the result.
\(X=\) rand \((20000,3)\);
Z = linkage(X,'ward','euclidean','savememory','on');
c = cluster(Z,'maxclust',4);
scatter3(X(:,1),X(:,2),X(:,3),10, c)

\section*{linkage}


\footnotetext{
See Also
cluster | clusterdata | cophenet | dendrogram | inconsistent | kmeans | pdist | silhouette | squareform
}

\section*{Superclasses ToolboxFittableParametricDistribution}

\section*{Purpose Logistic probability distribution object}

Description prob.LogisticDistribution is an object consisting of parameters, a model description, and sample data for a logistic probability distribution.

Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

\section*{Construction}
pd = makedist('Logistic') creates a logistic probability distribution object using the default parameter values.
pd = makedist('Logistic','mu', mu,'sigma', sigma) creates a logistic probability distribution object using the specified parameter values.

\section*{Input Arguments}

\section*{mu - Mean}

0 (default) | scalar value
Mean of the logistic distribution, specified as a scalar value.

\section*{Data Types}
single | double
sigma-Scale parameter
1 (default) | nonnegative scalar value
Scale parameter of the logistic distribution, specified as a nonnegative scalar value.

\section*{Data Types}
single | double

\section*{Properties}

\section*{mu}

Mean of the logistic distribution, stored as a scalar value.

\section*{prob.LogisticDistribution}

\author{
Data Types \\ single | double \\ sigma
}

Scale parameter of the logistic distribution, stored as a nonnegative scalar value.

\section*{Data Types}
single | double

\section*{DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{Data Types}
char

\section*{InputData}

Data used for distribution fitting, stored as a structure containing the following:
- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.

\section*{Data Types}
single | double

\section*{IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated. If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

\section*{Data Types \\ logical}

\section*{NumParameters}

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterCovariance}

Covariance matrix of the parameter estimates, stored as a \(p\)-by- \(p\) matrix, where \(p\) is the number of parameters in the distribution. The ( \(i, j\) ) element is the covariance between the estimates of the ith parameter and the \(j\) th parameter. The ( \(i, i\) ) element is the estimated variance of the \(i\) th parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

\section*{Data Types}
```

single | double

```

\section*{ParameterDescription}

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

\section*{Data Types}
char

\section*{ParameterlsFixed}

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

\section*{Data Types}
logical

\section*{ParameterNames}

\section*{prob.LogisticDistribution}

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

\section*{Data Types \\ char}

\section*{ParameterValues}

Values of distribution parameters, stored as a vector. This property is read-only.

\section*{Data Types \\ single | double \\ Truncation}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.
```

Data Types
single | double

```

\section*{Methods Inherited Methods}
\begin{tabular}{ll} 
cdf & \begin{tabular}{l} 
Cumulative distribution function \\
of probability distribution object
\end{tabular} \\
icdf & \begin{tabular}{l} 
Inverse cumulative distribution \\
function of probability \\
distribution object
\end{tabular} \\
iqr & \begin{tabular}{l} 
Interquartile range of probability \\
distribution object
\end{tabular} \\
median & \begin{tabular}{l} 
Median of probability distribution \\
object
\end{tabular} \\
pdf & \begin{tabular}{l} 
Probability density function of \\
probability distribution object
\end{tabular}
\end{tabular}

\section*{prob.LogisticDistribution}
\begin{tabular}{ll} 
random & \begin{tabular}{l} 
Generate random numbers from \\
probability distribution object
\end{tabular} \\
truncate & \begin{tabular}{l} 
Truncate probability distribution \\
object
\end{tabular} \\
mean & \begin{tabular}{l} 
Mean of probability distribution \\
object
\end{tabular} \\
negloglik & \begin{tabular}{l} 
Negative loglikelihood of \\
probability distribution object
\end{tabular} \\
paramci & \begin{tabular}{l} 
Confidence intervals for \\
probability distribution \\
parameters
\end{tabular} \\
proflik & \begin{tabular}{l} 
Profile likelihood function for \\
probability distribution object
\end{tabular} \\
std & \begin{tabular}{l} 
Standard deviation of probability \\
distribution object
\end{tabular} \\
var & \begin{tabular}{l} 
Variance of probability \\
distribution object
\end{tabular} \\
\hline
\end{tabular}

\section*{Definitions Logistic Distribution}

The logistic distribution is used for growth models and in logistic regression. It has longer tails and a higher kurtosis than the normal distribution.

The logistic distribution uses the following parameters.
\begin{tabular}{l|l|l}
\hline Parameter & Description & Support \\
\hline mu & Mean & \(-\infty<\mu<\infty\) \\
\hline sigma & Scale parameter & \(\sigma \geq 0\) \\
\hline
\end{tabular}

The probability density function (pdf) is

\section*{prob.LogisticDistribution}
\[
f(x \mid \mu, \sigma)=\frac{\exp \left\{\frac{x-\mu}{\sigma}\right\}}{\sigma\left(1+\exp \left\{\frac{x-\mu}{\sigma}\right\}\right)^{2}} \quad ;-\infty<x<\infty .
\]

\section*{Examples Create a Logistic Distribution Object Using Default Parameters}

Create a logistic distribution object using the default parameter values.
```

pd = makedist('Logistic')
pd =
LogisticDistribution

```
```

Logistic distribution

```
Logistic distribution
        mu = 0
        mu = 0
        sigma = 1
```

 sigma = 1
    ```

\section*{Create a Logistic Distribution Object Using Specified Parameters}

Create a logistic distribution object by specifying parameter values.
```

pd = makedist('Logistic', 'mu',2,'sigma',4)
pd =

```

LogisticDistribution
```

Logistic distribution
mu = 2
sigma = 4

```

Compute the standard deviation of the distribution.
\(s=s t d(p d)\)

S =
7.2552

See Also makedist | fitdist | dfittool

Concepts • "Logistic Distribution" on page B-62
- Class Attributes
- Property Attributes

\section*{prob.LoglogisticDistribution}

Superclasses ToolboxFittableParametricDistribution
Purpose Loglogistic probability distribution object
Description prob.LoglogisticDistribution is an object consisting of parameters, a model description, and sample data for a loglogistic probability distribution.

Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

\section*{Construction}
pd = makedist('Loglogistic') creates a loglogistic probability distribution object using the default parameter values.
pd = makedist('Loglogistic','mu',mu,'sigma',sigma) creates a loglogistic probability distribution object using the specified parameter values .

\section*{Input Arguments}

\section*{mu - Log mean}

\section*{0 (default) | positive scalar value}

Log mean for the loglogistic distribution, specified as a positive scalar value.

\section*{Data Types \\ single | double}

\section*{sigma-Log scale parameter}

1 (default) | positive scalar value
Log scale parameter for the loglogistic distribution, specified as a positive scalar value.

\author{
Data Types \\ single | double
}

\section*{Properties}
mu
Log mean for the loglogistic distribution, stored as a positive scalar value.

\section*{Data Types \\ single | double \\ sigma}

Log scale parameter for the loglogistic distribution, stored as a positive scalar value.

Data Types
single | double

\section*{DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{Data Types}
char

\section*{InputData}

Data used for distribution fitting, stored as a structure containing the following:
- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.
Data Types
single | double

\section*{IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated.

\section*{prob.LoglogisticDistribution}

If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

\section*{Data Types}
logical

\section*{NumParameters}

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

\section*{Data Types \\ single | double}

\section*{ParameterCovariance}

Covariance matrix of the parameter estimates, stored as a \(p\)-by- \(p\) matrix, where \(p\) is the number of parameters in the distribution. The ( \(\mathrm{i}, \mathrm{j}\) ) element is the covariance between the estimates of the \(i\) th parameter and the \(j\) th parameter. The ( \(i, i\) ) element is the estimated variance of the ith parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterDescription}

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

\section*{Data Types \\ char}

\section*{Parameterlsfixed}

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

\section*{Data Types}
logical

\section*{ParameterNames}

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

\section*{Data Types}
char

\section*{ParameterValues}

Values of distribution parameters, stored as a vector. This property is read-only.

\section*{Data Types}
single | double

\section*{Truncation}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

\section*{Data Types}
single | double

\section*{Methods Inherited Methods}
\begin{tabular}{ll} 
cdf & \begin{tabular}{l} 
Cumulative distribution function \\
of probability distribution object
\end{tabular} \\
icdf & \begin{tabular}{l} 
Inverse cumulative distribution \\
function of probability \\
distribution object
\end{tabular} \\
iqr & \begin{tabular}{l} 
Interquartile range of probability \\
distribution object
\end{tabular} \\
median & \begin{tabular}{l} 
Median of probability distribution \\
object
\end{tabular}
\end{tabular}

\section*{prob.LoglogisticDistribution}
\begin{tabular}{ll} 
pdf & \begin{tabular}{l} 
Probability density function of \\
probability distribution object
\end{tabular} \\
random & \begin{tabular}{l} 
Generate random numbers from \\
probability distribution object
\end{tabular} \\
truncate & \begin{tabular}{l} 
Truncate probability distribution \\
object
\end{tabular} \\
mean & \begin{tabular}{l} 
Mean of probability distribution \\
object
\end{tabular} \\
negloglik & \begin{tabular}{l} 
Negative loglikelihood of \\
probability distribution object \\
Confidence intervals for
\end{tabular} \\
paramci & \begin{tabular}{l} 
probability distribution \\
parameters
\end{tabular} \\
proflik & \begin{tabular}{l} 
Profile likelihood function for \\
probability distribution object
\end{tabular} \\
std & \begin{tabular}{l} 
Standard deviation of probability \\
distribution object
\end{tabular} \\
var & \begin{tabular}{l} 
Variance of probability \\
distribution object
\end{tabular} \\
\hline
\end{tabular}

\section*{Definitions Loglogistic Distribution}

The loglogistic distribution is closely related to the logistic distribution. If \(x\) is distributed \(\operatorname{loglogistically}\) with parameters \(\mu\) and \(\sigma\), then \(\log (x)\) is distributed logistically with mean and standard deviation. This distribution is often used in survival analysis to model events that experience an initial rate increase, followed by a rate decrease.

The loglogistic distribution uses the following parameters.
\begin{tabular}{l|l|l}
\hline Parameter & Description & Support \\
\hline mu & Log mean & \(\mu>0\) \\
\hline sigma & Log scale parameter & \(\sigma>0\) \\
\hline
\end{tabular}

The probability density function (pdf) is
\[
f(x \mid \mu, \sigma)=\frac{1}{\sigma} \frac{1}{x} \frac{e^{z}}{\left(1+e^{z}\right)^{2}} \quad ; \quad x \geq 0
\]
where \(z=\frac{\log (x)-\mu}{\sigma}\).

\section*{Examples Create a Loglogistic Distribution Object Using Default Parameters}

Create a loglogistic distribution object using the default parameter values.
```

pd = makedist('Loglogistic')
pd =

```

LoglogisticDistribution
```

 Log-Logistic distribution
 mu = 0
 sigma = 1
    ```

\section*{Create a Loglogistic Distribution Object Using Specified Parameters}

Create a loglogistic distribution object by specifying the parameter values.

\section*{prob.LoglogisticDistribution}
```

pd = makedist('Loglogistic','mu',5,'sigma',2)
pd =
LoglogisticDistribution
Log-Logistic distribution
mu = 5
sigma = 2

```

Generate random numbers from the loglogistic distribution and compute their log values.
rng(19) \% for reproducibility
x = random(pd,10000,1);
\(\log x=\log (x)\);

Compute the mean of the log values.
\(m=\operatorname{mean}(\log x)\)
m =
4.9828

The mean of the \(\log\) of \(x\) is equal to the mu parameter of \(x\), since \(x\) has a loglogistic distribution.

Plot logx.
hist(logx,50)


The plot shows that the log values of \(x\) have a logistic distribution.

\author{
See Also
}
makedist | fitdist | dfittool
Concepts • "Loglogistic Distribution" on page B-63
- Class Attributes
- Property Attributes

\section*{Purpose Lognormal cumulative distribution function}
```

Syntax $\quad P=\operatorname{logncdf}(X$, mu, sigma $)$
[P,PLO,PUP] = logncdf(X,mu,sigma,pcov,alpha)

```

\section*{Description}
\(P=\operatorname{logncdf}(X, m u\), sigma \()\) returns values at \(X\) of the lognormal cdf with distribution parameters mu and sigma. mu and sigma are the mean and standard deviation, respectively, of the associated normal distribution. X, mu, and sigma can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input for X , mu, or sigma is expanded to a constant array with the same dimensions as the other inputs.
[P, PLO, PUP] = logncdf(X,mu,sigma, pcov,alpha) returns confidence bounds for \(P\) when the input parameters mu and sigma are estimates. pcov is the covariance matrix of the estimated parameters. alpha specifies \(100(1-\) alpha \() \%\) confidence bounds. The default value of alpha is 0.05 . PLO and PUP are arrays of the same size as P containing the lower and upper confidence bounds.
logncdf computes confidence bounds for P using a normal approximation to the distribution of the estimate
\[
\frac{X-\hat{\mu}}{\hat{\sigma}}
\]
and then transforming those bounds to the scale of the output P. The computed bounds give approximately the desired confidence level when you estimate mu, sigma, and pcov from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The lognormal cdf is
\[
p=F(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{0}^{x} \frac{e^{\frac{-(\ln (t)-\mu)^{2}}{2 \sigma^{2}}}}{t} d t
\]

\section*{Examples}
```

x = (0:0.2:10);
y = logncdf(x,0,1);
plot(x,y); grid;
xlabel('x'); ylabel('p');

```

References
See Also
How To

\section*{Purpose Lognormal parameter estimates}
```

Syntax parmhat = lognfit(data)
[parmhat,parmci] = lognfit(data)
[parmhat,parmci] = lognfit(data,alpha)
[...] = lognfit(data,alpha,censoring)
[...] = lognfit(data,alpha,censoring,freq)
[...] = lognfit(data,alpha,censoring,freq,options)

```

\section*{Description}
parmhat = lognfit(data) returns a vector of maximum likelihood estimates parmhat(1) = mu and parmhat(2) = sigma of parameters for a lognormal distribution fitting data. mu and sigma are the mean and standard deviation, respectively, of the associated normal distribution.
[parmhat, parmci] = lognfit(data) returns \(95 \%\) confidence intervals for the parameter estimates mu and sigma in the 2 -by- 2 matrix parmci. The first column of the matrix contains the lower and upper confidence bounds for parameter mu, and the second column contains the confidence bounds for parameter sigma.
[parmhat,parmci] = lognfit(data,alpha) returns 100(1-alpha) \% confidence intervals for the parameter estimates, where alpha is a value in the range ( 01 ) specifying the width of the confidence intervals. By default, alpha is 0.05 , which corresponds to \(95 \%\) confidence intervals.
[...] = lognfit(data, alpha, censoring) accepts a Boolean vector censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = lognfit(data, alpha,censoring,freq) accepts a frequency vector, freq, of the same size as data. Typically, freq contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for alpha, censoring, or freq to use their default values.
[...] = lognfit(data,alpha, censoring,freq,options) accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood estimates when there is censoring. The lognormal fit function accepts an options
structure which can be created using the function statset. Enter statset('lognfit') to see the names and default values of the parameters that lognfit accepts in the options structure. See the reference page for statset for more information about these options.

Note With no censoring, lognfit computes sigma using the square root of the unbiased estimator of the variance. With censoring, sigma is the maximum likelihood estimate.
```

Examples This example generates 100 independent samples of lognormally
distributed data with }\mu=0\mathrm{ and }\sigma=3\mathrm{ . parmhat estimates }\mu\mathrm{ and }\sigma\mathrm{ and
parmci gives 99% confidence intervals around parmhat. Notice that
parmci contains the true values of }\mu\mathrm{ and }\sigma\mathrm{ .
data = lognrnd(0,3,100,1);
[parmhat,parmci] = lognfit(data,0.01)
parmhat =
-0.2480 2.8902
parmci =
-1.0071 2.4393
0.5111 3.5262

```
See Also mle | lognlike | lognpdf | logncdf | logninv | lognstat | lognrnd
How To . "Lognormal Distribution" on page B-64

\section*{Purpose Lognormal inverse cumulative distribution function}
```

Syntax $\quad X=\operatorname{logninv}(P$, mu, sigma $)$
[X,XLO,XUP] = logninv(P,mu,sigma,pcov,alpha)

```
\(X=\) logninv( \(P\), mu, sigma) returns values at \(P\) of the inverse lognormal cdf with distribution parameters mu and sigma. mu and sigma are the mean and standard deviation, respectively, of the associated normal distribution. mu and sigma can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of X . A scalar input for P , mu, or sigma is expanded to a constant array with the same dimensions as the other inputs.
[X,XLO, XUP] = logninv(P,mu,sigma, pcov,alpha) returns confidence bounds for \(X\) when the input parameters mu and sigma are estimates. pcov is the covariance matrix of the estimated parameters. alpha specifies \(100(1-a l p h a) \%\) confidence bounds. The default value of alpha is 0.05 . XLO and XUP are arrays of the same size as \(X\) containing the lower and upper confidence bounds.
logninv computes confidence bounds for P using a normal approximation to the distribution of the estimate
\[
\hat{\mu}+\hat{\sigma} q
\]
where \(q\) is the Pth quantile from a normal distribution with mean 0 and standard deviation 1 . The computed bounds give approximately the desired confidence level when you estimate mu, sigma, and pcov from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The lognormal inverse function is defined in terms of the lognormal cdf as
\[
x=F^{-1}(p \mid \mu, \sigma)=\{x: F(x \mid \mu, \sigma)=p\}
\]
where
\[
p=F(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{0}^{x} \frac{e^{\frac{-(\ln (t)-\mu)^{2}}{2 \sigma^{2}}}}{t} d t
\]

\section*{Examples}
```

p = (0.005:0.01:0.995);
crit = logninv(p,1,0.5);
plot(p,crit)
xlabel('Probability'); ylabel('Critical Value'); grid

```


References

See Also
How To
[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. Hoboken, NJ: Wiley-Interscience, 2000. pp. 102-105.
icdf | logncdf | lognpdf | lognstat | lognfit | lognlike | lognrnd
- "Lognormal Distribution" on page B-64
\begin{tabular}{ll} 
Purpose & Lognormal negative log-likelihood \\
Syntax & \(n \log L=\) lognlike (params, data) \\
& {\([n \log L\), avar \(]=\) lognlike (params, data) } \\
& {\([\cdots]=\) lognlike (params, data, censoring) } \\
& {\([\ldots]=\) lognlike (params, data, censoring, freq) }
\end{tabular}

\section*{Description}

See Also
How To
nlogL = lognlike(params, data) returns the negative log-likelihood of data for the lognormal distribution with parameters params. params (1) is the mean of the associated normal distribution, mu, and params (2) is the standard deviation of the associated normal distribution, sigma. The values of mu and sigma are scalars, and the output nlogL is a scalar.
[nlogL, avar] = lognlike(params, data) returns the inverse of Fisher's information matrix. If the input parameter value in params is the maximum likelihood estimate, avar is its asymptotic variance. avar is based on the observed Fisher's information, not the expected information.
[...] = lognlike(params, data, censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = lognlike(params, data, censoring,freq) accepts a frequency vector, freq, of the same size as data. The vector freq typically contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for censoring to use its default value.
lognfit | lognpdf | logncdf | logninv | lognstat | lognrnd
- "Lognormal Distribution" on page B-64

Superclasses ToolboxFittableParametricDistribution
Purpose Lognormal probability distribution object
Description prob.LognormalDistribution is an object consisting of parameters, a model description, and sample data for a lognormal probability distribution.

Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

\section*{Construction}
pd = makedist('Lognormal') creates a lognormal probability distribution object using the default parameter values.
pd = makedist('Lognormal','mu', mu,'sigma',sigma) creates a lognormal probability distribution object using the specified parameter values.

\section*{Input Arguments}

\section*{mu - Log mean}

0 (default) | scalar value
Log mean for the lognormal distribution, specified as a scalar value. mu is the mean of the \(\log\) of \(x\), when \(x\) has a lognormal distribution.

\section*{Data Types}
single | double
sigma-Log standard deviation
1 (default) | nonnegative scalar value
Log standard deviation for the lognormal distribution, specified as a nonnegative scalar value. sigma is the standard deviation of the \(\log\) of \(x\), when \(x\) has a lognormal distribution.

\author{
Data Types \\ single | double
}

\section*{prob.LognormalDistribution}

\section*{Properties}
mu
Log mean for the lognormal distribution, stored as a scalar value.

\section*{Data Types \\ single | double \\ sigma}

Log standard deviation for the lognormal distribution, stored as a nonnegative scalar value.

\section*{Data Types}
single | double

\section*{DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{Data Types}
char

\section*{InputData}

Data used for distribution fitting, stored as a structure containing the following:
- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.

\section*{Data Types \\ single | double \\ IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated.

If IsTruncated equals 1, the distribution is truncated. This property is read-only.

\section*{Data Types}
logical

\section*{NumParameters}

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterCovariance}

Covariance matrix of the parameter estimates, stored as a \(p\)-by- \(p\) matrix, where \(p\) is the number of parameters in the distribution. The ( \(\mathrm{i}, \mathrm{j}\) ) element is the covariance between the estimates of the \(i\) th parameter and the \(j\) th parameter. The ( \(i, i\) ) element is the estimated variance of the ith parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterDescription}

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

\section*{Data Types}
char

\section*{ParameterlsFixed}

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

\section*{prob.LognormalDistribution}

\section*{Data Types \\ logical \\ ParameterNames}

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

\section*{Data Types}
char

\section*{ParameterValues}

Values of distribution parameters, stored as a vector. This property is read-only.

\section*{Data Types \\ single | double \\ Truncation}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.
```

Data Types
single | double

```

\section*{Methods Inherited Methods}
\begin{tabular}{ll} 
cdf & \begin{tabular}{l} 
Cumulative distribution function \\
of probability distribution object
\end{tabular} \\
icdf & \begin{tabular}{l} 
Inverse cumulative distribution \\
function of probability \\
distribution object
\end{tabular} \\
iqr & \begin{tabular}{l} 
Interquartile range of probability \\
distribution object
\end{tabular} \\
median & \begin{tabular}{l} 
Median of probability distribution \\
object
\end{tabular}
\end{tabular}

\section*{prob.LognormalDistribution}
\begin{tabular}{ll} 
pdf & \begin{tabular}{l} 
Probability density function of \\
probability distribution object
\end{tabular} \\
random & \begin{tabular}{l} 
Generate random numbers from \\
probability distribution object
\end{tabular} \\
truncate & \begin{tabular}{l} 
Truncate probability distribution \\
object
\end{tabular} \\
mean & \begin{tabular}{l} 
Mean of probability distribution \\
object
\end{tabular} \\
negloglik & \begin{tabular}{l} 
Negative loglikelihood of \\
probability distribution object \\
Confidence intervals for
\end{tabular} \\
paramci & \begin{tabular}{l} 
probability distribution \\
parameters
\end{tabular} \\
proflik & \begin{tabular}{l} 
Profile likelihood function for \\
probability distribution object
\end{tabular} \\
std & \begin{tabular}{l} 
Standard deviation of probability \\
distribution object
\end{tabular} \\
var & \begin{tabular}{l} 
Variance of probability \\
distribution object
\end{tabular} \\
\hline
\end{tabular}

\section*{Definitions Lognormal Distribution}

The lognormal distribution is closely related to the normal distribution. If \(x\) is distributed lognormally with parameters \(\mu\) and \(\sigma\), then \(\log (x)\) is distributed normally with mean \(\mu\) and standard deviation \(\sigma\). The lognormal distribution is applicable when the quantity of interest must be positive, since \(\log (x)\) exists only when \(x\) is positive.

The lognormal distribution uses the following parameters.

\section*{prob.LognormalDistribution}
\begin{tabular}{l|l|l}
\hline Parameter & Description & Support \\
\hline mu & Log mean & \(-\infty<\mu<\infty\) \\
\hline sigma & \begin{tabular}{l} 
Log standard \\
deviation
\end{tabular} & \(\sigma \geq 0\) \\
\hline
\end{tabular}

The probability density function (pdf) of the lognormal distribution is
\[
f(x \mid \mu, \sigma)=\frac{1}{x \sigma \sqrt{2 \pi}} \exp \left\{\frac{-(\ln x-\mu)^{2}}{2 \sigma^{2}}\right\} \quad ; \quad x>0 .
\]

\section*{Examples Create a Lognormal Distribution Object Using Default Parameters}

Create a lognormal distribution object using the default parameter values.
```

pd = makedist('Lognormal')
pd =

```

LognormalDistribution
```

Lognormal distribution
mu = 0
sigma = 1

```

\section*{Create a Lognormal Distribution Object Using Specified Parameters}

Create a lognormal distribution object by specifying the parameter values.
```

pd = makedist('Lognormal','mu',5,'sigma',2)
pd =

```

\section*{LognormalDistribution}
```

Lognormal distribution
mu = 5
sigma = 2

```

Compute the mean of the lognormal distribution.
```

mean(pd)

```
ans =
\(1.0966 \mathrm{e}+03\)

The mean of the lognormal distribution is not equal to the mu parameter.
Generate random numbers from the lognormal distribution and compute their log values.
```

rng(47); % for reproducibility
x = random(pd,10000,1);
logx = log(x);

```

Compute the mean of the log values.
\(\mathrm{m}=\mathrm{mean}(\log \mathrm{x})\)
m =
4.9999

The mean of the \(\log\) of \(x\) is equal to the mu parameter of \(x\), since \(x\) has a lognormal distribution.

Plot logx.
hist(logx,50)


The plot shows that the log values of \(x\) are normally distributed with a mean equal to 5 and a standard deviation equal to 2 .

\section*{See Also}

Concepts
makedist | fitdist | dfittool
- "Lognormal Distribution" on page B-64
- Class Attributes
- Property Attributes

\section*{Purpose}

Lognormal probability density function

\section*{Syntax}

Description
\(Y=\) lognpdf( \(X, m u\), sigma \()\)
\(Y=\) lognpdf( \(X, \mathrm{mu}\), sigma \()\) returns values at \(X\) of the lognormal pdf with distribution parameters mu and sigma. mu and sigma are the mean and standard deviation, respectively, of the associated normal distribution. X , mu, and sigma can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of Y . A scalar input for X , mu, or sigma is expanded to a constant array with the same dimensions as the other inputs.

The lognormal pdf is
\[
y=f(x \mid \mu, \sigma)=\frac{1}{x \sigma \sqrt{2 \pi}} e^{\frac{-(\ln x-\mu)^{2}}{2 \sigma^{2}}}
\]

The normal and lognormal distributions are closely related. If \(X\) is distributed lognormally with parameters \(\mu\) and \(\sigma\), then \(\log (X)\) is distributed normally with mean \(\mu\) and standard deviation \(\sigma\).

The mean \(m\) and variance \(v\) of a lognormal random variable are functions of \(\mu\) and \(\sigma\) that can be calculated with the lognstat function. They are:
\[
\begin{aligned}
& m=\exp \left(\mu+\sigma^{2} / 2\right) \\
& v=\exp \left(2 \mu+\sigma^{2}\right)\left(\exp \left(\sigma^{2}\right)-1\right)
\end{aligned}
\]

A lognormal distribution with mean \(m\) and variance \(v\) has parameters
\[
\begin{aligned}
& \mu=\log \left(m^{2} / \sqrt{v+m^{2}}\right) \\
& \sigma=\sqrt{\log \left(v / m^{2}+1\right)}
\end{aligned}
\]

\section*{lognpdf} must be positive, since \(\log (X)\) exists only when \(X\) is positive.

\section*{Examples}
```

x = (0:0.02:10);
y = lognpdf(x,0,1);
plot(x,y); grid;
xlabel('x'); ylabel('p')

```


\section*{References \\ [1] Mood, A. M., F. A. Graybill, and D. C. Boes. Introduction to the Theory of Statistics. 3rd ed., New York: McGraw-Hill, 1974. pp. 540-541.}

\footnotetext{
See Also
How To
pdf | logncdf | logninv | lognstat | lognfit | lognlike | lognrnd
- "Lognormal Distribution" on page B-64
}

\section*{Purpose}

Lognormal random numbers
Syntax
R = lognrnd(mu,sigma)
R = lognrnd(mu,sigma,m,n,...)
\(R\) = lognrnd(mu,sigma, \([m, n, \ldots])\)

\section*{Description}
\(R=\) lognrnd(mu, sigma) returns an array of random numbers generated from the lognormal distribution with parameters mu and sigma. mu and sigma are the mean and standard deviation, respectively, of the associated normal distribution. mu and sigma can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of R. A scalar input for mu or sigma is expanded to a constant array with the same dimensions as the other input.
\(R=\operatorname{lognrnd}(m u\), sigma, \(m, n, \ldots) \quad\) or \(R=\)
lognrnd(mu, sigma, \([m, n, \ldots]\) ) generates an \(m\)-by-n-by-... array. The mu, sigma parameters can each be scalars or arrays of the same size as R.

The normal and lognormal distributions are closely related. If \(X\) is distributed lognormally with parameters \(\mu\) and \(\sigma\), then \(\log (X)\) is distributed normally with mean \(\mu\) and standard deviation \(\sigma\).

The mean \(m\) and variance \(v\) of a lognormal random variable are functions of \(\mu\) and \(\sigma\) that can be calculated with the lognstat function. They are:
\[
\begin{aligned}
& m=\exp \left(\mu+\sigma^{2} / 2\right) \\
& v=\exp \left(2 \mu+\sigma^{2}\right)\left(\exp \left(\sigma^{2}\right)-1\right)
\end{aligned}
\]

A lognormal distribution with mean \(m\) and variance \(v\) has parameters
\[
\begin{aligned}
& \mu=\log \left(m^{2} / \sqrt{v+m^{2}}\right) \\
& \sigma=\sqrt{\log \left(v / m^{2}+1\right)}
\end{aligned}
\]

Examples Generate one million lognormally distributed random numbers with mean 1 and variance 2 :
```

m = 1;
v = 2;
mu = log((m^2)/sqrt(v+m^2));
sigma = sqrt(log(v/(m^2)+1));
[M,V]= lognstat(mu,sigma)
M =
1
V =
2.0000
X = lognrnd(mu,sigma,1,1e6);
MX = mean(X)
MX =
0.9974
VX = var(X)
VX =
1.9776

```

References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. Hoboken, NJ: Wiley-Interscience, 2000. pp. 102-105.

\section*{See Also random | lognpdf | logncdf | logninv | lognstat | lognfit | lognlike | normrnd}

How To . "Lognormal Distribution" on page B-64

\section*{Purpose}

Lognormal mean and variance

\section*{Syntax}
[M,V] = lognstat(mu,sigma)
\([M, V]=\) lognstat(mu, sigma) returns the mean of and variance of the lognormal distribution with parameters mu and sigma. mu and sigma are the mean and standard deviation, respectively, of the associated normal distribution. mu and sigma can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \(M\) and \(V\). A scalar input for mu or sigma is expanded to a constant array with the same dimensions as the other input.

The normal and lognormal distributions are closely related. If \(X\) is distributed \(\operatorname{lognormally}\) with parameters \(\mu\) and \(\sigma\), then \(\log (X)\) is distributed normally with mean \(\mu\) and standard deviation \(\sigma\).

The mean \(m\) and variance \(v\) of a lognormal random variable are functions of \(\mu\) and \(\sigma\) that can be calculated with the lognstat function. They are:
\[
\begin{aligned}
& m=\exp \left(\mu+\sigma^{2} / 2\right) \\
& v=\exp \left(2 \mu+\sigma^{2}\right)\left(\exp \left(\sigma^{2}\right)-1\right)
\end{aligned}
\]

A lognormal distribution with mean \(m\) and variance \(v\) has parameters
\[
\begin{aligned}
& \mu=\log \left(m^{2} / \sqrt{v+m^{2}}\right) \\
& \sigma=\sqrt{\log \left(v / m^{2}+1\right)}
\end{aligned}
\]

\section*{Examples}

Generate one million lognormally distributed random numbers with mean 1 and variance 2:
```

m = 1;
v = 2;

```

\section*{lognstat}
```

mu = log((m^2)/sqrt(v+m^2));
sigma = sqrt(log(v/(m^2)+1));
[M,V]= lognstat(mu,sigma)
M =
1
V =
2.0000
X = lognrnd(mu,sigma,1,1e6);
MX = mean(X)
MX =
0.9974
VX = var(X)
VX =
1.9776

```

References [1] Mood, A. M., F. A. Graybill, and D. C. Boes. Introduction to the Theory of Statistics. 3rd ed., New York: McGraw-Hill, 1974. pp. 540-541.

\section*{See Also lognpdf | logncdf | logninv | lognfit | lognlike | lognrnd}

How To . "Lognormal Distribution" on page B-64

\section*{CompactClassificationDiscriminant.logP}

Purpose
Syntax
lp = logP(obj,Xnew)

Input
Arguments

\section*{Output}

Arguments

Log of the unconditional probability density
\(l p=\log P(o b j, X n e w)\) returns the log of the unconditional probability density of each row of Xnew, computed using the discriminant analysis model obj.
obi
Discriminant analysis classifier, produced using ClassificationDiscriminant.fit.

\section*{Xnew}

Matrix where each row represents an observation, and each column represents a predictor. The number of columns in Xnew must equal the number of predictors in obj.

\section*{Ip}

Column vector with the same number of rows as Xnew. Each entry is the logarithm of the unconditional probability density of the corresponding row of Xnew.

\section*{Definitions}

\section*{Unconditional Probability Density}

The unconditional probability density of a point \(x\) of a discriminant analysis model is
\[
P(x)=\sum_{k=1}^{K} P(x, k),
\]
where \(P(x, k)\) is the conditional density of the model at \(x\) for class \(k\), when the total number of classes is \(K\).

The conditional density \(P(x, k)\) is

\section*{CompactClassificationDiscriminant.logP}
\[
P(x, k)=P(k) P(x \mid k),
\]
where \(P(k)\) is the prior probability of class \(k\), and \(P(x \mid k)\) is the conditional density of \(x\) given class \(k\). The conditional density function of the multivariate normal with mean \(\mu_{k}\) and covariance \(\Sigma_{k}\) at a point \(x\) is
\[
P(x \mid k)=\frac{1}{\left(2 \pi\left|\Sigma_{k}\right|\right)^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x-\mu_{k}\right)\right),
\]
where \(\left|\Sigma_{k}\right|\) is the determinant of \(\Sigma_{k}\), and \(\Sigma_{k}^{-1}\) is the inverse matrix.

\section*{Examples}

\section*{\(\log \mathbf{P}\) Calculation}

Construct a discriminant analysis classifier for the Fisher iris data, and examine its prediction for an average measurement.

Load the Fisher iris data and construct a default discriminant analysis classifier.
```

load fisheriris
mdl = ClassificationDiscriminant.fit(meas,species);

```

Find the \(\log\) probability of the discriminant model applied to an average iris.
```

logpaverage = logP(mdl,mean(meas))
logpaverage =

```
    \(-1.7254\)

See Also CompactClassificationDiscriminant \| mahal \|
Concepts - "Discriminant Analysis" on page 14-3

\section*{Purpose}

Loss of \(k\)-nearest neighbor classifier
Syntax
L = loss(mdl, X,Y)
L = loss(mdl, X,Y,Name,Value)

\section*{Input Arguments}
\(\mathrm{L}=\) loss \((\mathrm{mdl}, \mathrm{X}, \mathrm{Y})\) returns a scalar representing how well mdl classifies the data in \(X\), when \(Y\) contains the true classifications.

When computing the loss, loss normalizes the class probabilities in \(Y\) to the class probabilities used for training, stored in the Prior property of mdl.

L = loss(mdl, X, Y, Name, Value) returns the loss with additional options specified by one or more Name, Value pair arguments.

\section*{mdl}
\(k\)-nearest neighbor classifier, created by ClassificationKNN.fit.

\section*{X}

Matrix of predictor values. Each column of \(X\) represents one variable, and each row represents one observation.

\section*{Y}

Grouping variables of response values with the same number of elements (rows) as \(X\). Each entry in \(Y\) is the response to the data in the corresponding row of \(X\).

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'lossfun '}

\section*{ClassificationKNN.loss}

Function handle or string representing a loss function. The built-in loss functions are:
- 'binodeviance ' - See "Loss Functions" on page 20-1403.
- 'exponential' - See "Loss Functions" on page 20-1403.
- 'classiferror' - Fraction of misclassified observations. See "Loss Functions" on page 20-1403.
- 'mincost' - Smallest misclassification cost as given by the mdl. Cost matrix. See "Loss Functions" on page 20-1403.

You can write your own loss function using the syntax described in "Loss Functions" on page 20-1403.

Default: 'mincost'

\section*{'weights'}

Numeric vector of length \(N\), where \(N\) is the number of rows of \(X\). weights are nonnegative. loss normalizes the weights so that observation weights in each class sum to the prior probability of that class. When you supply weights, loss computes weighted classification loss.

Default: ones (N, 1)

\section*{Output Arguments}

\section*{Definitions}

L
Classification error, a scalar. The meaning of the error depends on the values in weights and lossfun. See "Classification Error" on page 20-1408.

\section*{Classification Error}

The default classification error is the fraction of data \(X\) that mdl misclassifies, where \(Y\) represents the true classifications.

The weighted classification error is the sum of weight \(i\) times the Boolean value that is 1 when mdl misclassifies the \(i\) th row of X , divided by the sum of the weights.

\section*{Loss Functions}

The built-in loss functions are:
- 'binodeviance' - For binary classification, assume the classes \(y_{n}\) are -1 and 1 . With weight vector \(w\) normalized to have sum 1, and predictions of row \(n\) of data \(X\) as \(f\left(X_{n}\right)\), the binomial deviance is
\[
\sum w_{n} \log \left(1+\exp \left(-2 y_{n} f\left(X_{n}\right)\right)\right)
\]
- 'exponential' - With the same definitions as for 'binodeviance', the exponential loss is
\[
\sum w_{n} \exp \left(-y_{n} f\left(X_{n}\right)\right)
\]
- 'classiferror' - Predict the label with the largest posterior probability. The loss is then the fraction of misclassified observations.
- 'mincost' - Predict the label with the smallest expected misclassification cost, with expectation taken over the posterior probability, and cost as given by the Cost property of the classifier (a matrix). The loss is then the true misclassification cost averaged over the observations.

To write your own loss function, create a function file in this form:
```

function loss = lossfun(C,S,W,COST)

```
- \(N\) is the number of rows of \(X\).
- \(K\) is the number of classes in the classifier, represented in the ClassNames property.
- C is an N-by-K logical matrix, with one true per row for the true class. The index for each class is its position in the ClassNames property.

\section*{ClassificationKNN.loss}
- \(S\) is an \(N\)-by-K numeric matrix. \(S\) is a matrix of posterior probabilities for classes with one row per observation, similar to the posterior output from predict.
- \(W\) is a numeric vector with \(N\) elements, the observation weights. If you pass W, the elements are normalized to sum to the prior probabilities in the respective classes.
- COST is a K-by-K numeric matrix of misclassification costs. For example, you can use COST = ones (K) - eye (K), which means a cost of 0 for correct classification, and 1 for misclassification.
- The output loss should be a scalar.

Pass the function handle @lossfun as the value of the lossfun name-value pair.

\section*{True Misclassification Cost}

There are two costs associated with KNN classification: the true misclassification cost per class, and the expected misclassification cost per observation.
You can set the true misclassification cost per class in the Cost name-value pair when you run ClassificationKNN.fit. Cost( \(i, j\) ) is the cost of classifying an observation into class \(j\) if its true class is i. By default, \(\operatorname{Cost}(i, j)=1\) if \(i \sim=j\), and \(\operatorname{Cost}(i, j)=0\) if \(i=j\). In other words, the cost is 0 for correct classification, and 1 for incorrect classification.

\section*{Expected Cost}

There are two costs associated with KNN classification: the true misclassification cost per class, and the expected misclassification cost per observation. The third output of predict is the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier mdl. Suppose you have K classes. You place the observations into a matrix Xnew with one observation per row. The command
[label,score,cost] = predict(mdl,Xnew)

\section*{ClassificationKNN.loss}
returns, among other outputs, a cost matrix of size Nobs-by-K. Each row of the cost matrix contains the expected (average) cost of classifying the observation into each of the \(K\) classes. cost \((n, k)\) is
\[
\sum_{i=1}^{K} \hat{P}(i \mid X n e w(n)) C(k \mid i)
\]
where
- \(K\) is the number of classes.
- \(\hat{P}(i \mid \operatorname{Xnew}(n))\) is the posterior probability of class \(i\) for observation Xnew(n).
- \(C(k \mid i)\) is the true misclassification cost of classifying an observation as \(k\) when its true class is \(i\).

\section*{Examples}

\section*{Loss Calculation}

Construct a \(k\)-nearest neighbor classifier for the Fisher iris data, where \(k=5\).

Load the data.
load fisheriris
Construct a classifier for 5-nearest neighbors.
```

mdl = ClassificationKNN.fit(meas,species,'NumNeighbors',5);

```

Examine the loss of the classifier for a mean observation classified 'versicolor'.
\(X=\) mean(meas);
Y = \{'versicolor'\};
L = loss(mdl, X,Y)
L =

\section*{ClassificationKNN.loss}
0The classifier has no doubt that 'versicolor' is the correctclassification (all five nearest neighbors classify as 'versicolor').
See Also ClassificationKNN | edge | margin |
Related Examples
- "Examine the Quality of a KNN Classifier" on page 15-26
- "Predict Classification Based on a KNN Classifier" on page 15-27- "Modify a KNN Classifier" on page 15-27
Concepts - "Classification Using Nearest Neighbors" on page 15-9

\section*{CompactClassificationDiscriminant.loss}
\begin{tabular}{|c|c|}
\hline Purpose & Classification error \\
\hline Syntax & \[
\begin{aligned}
& \mathrm{L}=\operatorname{loss}(\mathrm{obj}, \mathrm{X}, \mathrm{Y}) \\
& \mathrm{L}=\operatorname{loss}(\mathrm{obj}, \mathrm{X}, \mathrm{Y}, \text { Name, Value })
\end{aligned}
\] \\
\hline Description & \begin{tabular}{l}
\(\mathrm{L}=\) loss (obj, \(\mathrm{X}, \mathrm{Y})\) returns a scalar representing how well obj classifies the data in \(X\), when \(Y\) contains the true classifications. \\
When computing the loss, loss normalizes the class probabilities in \(Y\) to the class probabilities used for training, stored in the Prior property of obj. \\
L = loss(obj, X, Y, Name, Value) returns the loss with additional options specified by one or more Name, Value pair arguments.
\end{tabular} \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Input \\
Arguments
\end{tabular}} & \begin{tabular}{l}
obi \\
Discriminant analysis classifier of class ClassificationDiscriminant or CompactClassificationDiscriminant, typically constructed with ClassificationDiscriminant.fit.
\end{tabular} \\
\hline & Matrix where each row represents an observation, and each column represents a predictor. The number of columns in X must equal the number of predictors in obj. \\
\hline & Class labels, with the same data type as exists in obj. The number of elements of \(Y\) must equal the number of rows of \(X\). \\
\hline & \begin{tabular}{l}
Name-Value Pair Arguments \\
Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
\end{tabular} \\
\hline
\end{tabular}

\section*{CompactClassificationDiscriminant.loss}

\section*{'lossfun '}

Function handle or string representing a loss function. Built-in loss functions:
- 'binodeviance' - See "Loss Functions" on page 20-1409.
- 'classiferror' - Fraction of misclassified observations. See "Loss Functions" on page 20-1409.
- 'exponential' - See "Loss Functions" on page 20-1409.
- 'mincost' - Smallest misclassification cost as given by the obj . Cost matrix. See "Loss Functions" on page 20-1409.

You can write your own loss function using the syntax described in "Loss Functions" on page 20-1409.

Default: 'mincost'

\section*{'weights'}

Numeric vector of length \(N\), where \(N\) is the number of rows of \(X\). weights are nonnegative. loss normalizes the weights so that observation weights in each class sum to the prior probability of that class. When you supply weights, loss computes weighted classification loss.

Default: ones ( \(\mathrm{N}, 1\) )

\section*{Output} Arguments

\section*{Definitions}

L
Classification error, a scalar. The meaning of the error depends on the values in weights and lossfun. See "Classification Error" on page 20-1408.

\section*{Classification Error}

The default classification error is the fraction of data \(X\) that obj misclassifies, where Y represents the true classifications.

\section*{CompactClassificationDiscriminant.loss}

Weighted classification error is the sum of weight \(i\) times the Boolean value that is 1 when obj misclassifies the \(i\) th row of X , divided by the sum of the weights.

\section*{Loss Functions}

The built-in loss functions are:
- 'binodeviance' - For binary classification, assume the classes \(y_{n}\) are -1 and 1 . With weight vector \(w\) normalized to have sum 1, and predictions of row \(n\) of data \(X\) as \(f\left(X_{n}\right)\), the binomial deviance is
\[
\sum w_{n} \log \left(1+\exp \left(-2 y_{n} f\left(X_{n}\right)\right)\right)
\]
- 'exponential' - With the same definitions as for 'binodeviance', the exponential loss is
\[
\sum w_{n} \exp \left(-y_{n} f\left(X_{n}\right)\right) .
\]
- 'classiferror' - Predict the label with the largest posterior probability. The loss is then the fraction of misclassified observations.
- 'mincost' - Predict the label with the smallest expected misclassification cost, with expectation taken over the posterior probability, and cost as given by the cost property of the classifier (a matrix). The loss is then the true misclassification cost averaged over the observations.

To write your own loss function, create a function file in this form:
```

function loss = lossfun(C,S,W,COST)

```
- \(N\) is the number of rows of \(X\).
- \(K\) is the number of classes in the classifier, represented in the ClassNames property.
- \(C\) is an \(N\)-by-K logical matrix, with one true per row for the true class. The index for each class is its position in the ClassNames property.

\section*{CompactClassificationDiscriminant.loss}
- \(S\) is an \(N\)-by-K numeric matrix. \(S\) is a matrix of posterior probabilities for classes with one row per observation, similar to the posterior output from predict.
- \(W\) is a numeric vector with \(N\) elements, the observation weights. If you pass W, the elements are normalized to sum to the prior probabilities in the respective classes.
- COST is a K-by-K numeric matrix of misclassification costs. For example, you can use COST = ones (K) - eye (K), which means a cost of 0 for correct classification, and 1 for misclassification.
- The output loss should be a scalar.

Pass the function handle @lossfun as the value of the lossfun name-value pair.

\section*{Posterior Probability}

The posterior probability that a point \(z\) belongs to class \(j\) is the product of the prior probability and the multivariate normal density. The density function of the multivariate normal with mean \(\mu_{j}\) and covariance \(\Sigma_{j}\) at a point \(z\) is
\[
P(x \mid k)=\frac{1}{\left(2 \pi\left|\Sigma_{k}\right|\right)^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x-\mu_{k}\right)\right),
\]
where \(\left|\Sigma_{k}\right|\) is the determinant of \(\Sigma_{k}\), and \(\Sigma_{k}^{-1}\) is the inverse matrix.
Let \(P(k)\) represent the prior probability of class \(k\). Then the posterior probability that an observation \(x\) is of class \(k\) is
\[
\hat{P}(k \mid x)=\frac{P(x \mid k) P(k)}{P(x)},
\]
where \(P(x)\) is a normalization constant, the sum over \(k\) of \(P(x \mid k) P(k)\).

\section*{Prior Probability}

The prior probability is one of three choices:

\section*{CompactClassificationDiscriminant.loss}
- 'uniform' - The prior probability of class k is one over the total number of classes.
- 'empirical' - The prior probability of class \(k\) is the number of training samples of class k divided by the total number of training samples.
- Custom - The prior probability of class k is the kth element of the prior vector. See ClassificationDiscriminant.fit.

After creating a classifier obj, you can set the prior by dot addressing:
```

obj.Prior = v;

```
where \(v\) is a vector of positive elements representing the frequency with which each element occurs. You do not need to retrain the classifier when you set a new prior.

\section*{Cost}

The matrix of expected costs per observation is defined in "Cost" on page 14-8.

\section*{Examples Compute the resubstituted classification error for the Fisher iris data:}
```

load fisheriris
obj = ClassificationDiscriminant.fit(meas,species);
L = loss(obj,meas,species)
L =
0.0200

```

See Also
ClassificationDiscriminant | edge | margin | predict
How To . "Discriminant Analysis" on page 14-3

\section*{CompactClassificationEnsemble.loss}
\begin{tabular}{|c|c|}
\hline Purpose & Classification error \\
\hline Syntax & \[
\begin{aligned}
& \mathrm{L}=\text { loss(ens }, \mathrm{X}, \mathrm{Y}) \\
& \mathrm{L}=\text { loss (ens, } \mathrm{X}, \mathrm{Y}, \text { Name, Value) }
\end{aligned}
\] \\
\hline \multirow[t]{2}{*}{Description} & \(\mathrm{L}=\) loss(ens, \(\mathrm{X}, \mathrm{Y})\) returns the classification error for ensemble ens computed using matrix of predictors X and true class labels Y . \\
\hline & \begin{tabular}{l}
When computing the loss, loss normalizes the class probabilities in \(Y\) to the class probabilities used for training, stored in the Prior property of ens. \\
L = loss(ens, \(\mathrm{X}, \mathrm{Y}\), Name, Value) computes classification error with additional options specified by one or more Name, Value pair arguments.
\end{tabular} \\
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
Input \\
Arguments
\end{tabular}} & ens \\
\hline & Classification ensemble created with fitensemble, or a compact classification ensemble created with compact. \\
\hline & X \\
\hline & Matrix of data to classify. Each row of \(X\) represents one observation, and each column represents one predictor. \(X\) must have the same number of columns as the data used to train ens. \(X\) should have the same number of rows as the number of elements in \(Y\). \\
\hline & Y \\
\hline & Classification of \(X\). \(Y\) should be of the same type as the classification used to train ens, and its number of elements should equal the number of rows of \(X\). \\
\hline & Name-Value Pair Arguments \\
\hline & Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can \\
\hline
\end{tabular}

\section*{CompactClassificationEnsemble.loss}
specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'learners'}

Indices of weak learners in the ensemble ranging from 1 to ens.NTrained. loss uses only these learners for calculating loss.

Default: 1:NTrained

\section*{'lossfun'}

Function handle or string representing a loss function. Built-in loss functions:
- 'binodeviance ' - See "Loss Functions" on page 20-1414
- 'classiferror' - Fraction of misclassified data
- 'exponential' - See "Loss Functions" on page 20-1414

You can write your own loss function in the syntax described in "Loss Functions" on page 20-1414.

Default: 'classiferror'

\section*{'mode'}

String representing the meaning of the output L:
- 'ensemble' - L is a scalar value, the loss for the entire ensemble.
- 'individual' - L is a vector with one element per trained learner.
- 'cumulative' - \(L\) is a vector in which element \(J\) is obtained by using learners \(1: J\) from the input list of learners.

Default: 'ensemble'

\section*{CompactClassificationEnsemble.loss}

\section*{'UseObsForLearner'}

A logical matrix of size N -by-T, where:
- \(N\) is the number of rows of \(X\).
- T is the number of weak learners in ens.

When UseObsForLearner( \(\mathrm{i}, \mathrm{j})\) is true, learner j is used in predicting the class of row i of \(X\).

Default: \(\operatorname{true}(\mathrm{N}, \mathrm{T})\)

\section*{'weights'}

Vector of observation weights, with nonnegative entries. The length of weights must equal the number of rows in \(X\). When you specify weights, loss normalizes the weights so that observation weights in each class sum to the prior probability of that class.

Default: ones(size(X,1),1)

\section*{Output L}

Arguments

\section*{Definitions}

Loss, by default the fraction of misclassified data. L can be a vector, and can mean different things, depending on the name-value pair settings.

\section*{Classification Error}

The default classification error is the fraction of the data \(X\) that ens misclassifies, where Y are the true classifications.

Weighted classification error is the sum of weight \(i\) times the Boolean value that is 1 when tree misclassifies the \(i\) th row of X , divided by the sum of the weights.

\section*{Loss Functions}

The built-in loss functions are:

\section*{CompactClassificationEnsemble.loss}
- 'binodeviance' - For binary classification, assume the classes \(y_{n}\) are - 1 and 1 . With weight vector \(w\) normalized to have sum 1, and predictions of row \(n\) of data \(X\) as \(f\left(X_{n}\right)\), the binomial deviance is
\[
\sum w_{n} \log \left(1+\exp \left(-2 y_{n} f\left(X_{n}\right)\right)\right)
\]
- 'classiferror' - Fraction of misclassified data, weighted by \(w\).
- 'exponential' - With the same definitions as for 'binodeviance', the exponential loss is
\[
\sum w_{n} \exp \left(-y_{n} f\left(X_{n}\right)\right)
\]

To write your own loss function, create a function file of the form
```

function loss = lossfun(C,S,W,COST)

```
- \(N\) is the number of rows of ens. \(X\).
- K is the number of classes in ens, represented in ens.ClassNames.
- C is an N -by-K logical matrix, with one true per row for the true class. The index for each class is its position in tree.ClassNames.
- \(S\) is an \(N\)-by-K numeric matrix. \(S\) is a matrix of posterior probabilities for classes with one row per observation, similar to the score output from predict.
- \(W\) is a numeric vector with \(N\) elements, the observation weights.
- COST is a K-by-K numeric matrix of misclassification costs. The default 'classiferror' gives a cost of 0 for correct classification, and 1 for misclassification.
- The output loss should be a scalar.

Pass the function handle @lossfun as the value of the lossfun name-value pair.

\section*{CompactClassificationEnsemble.loss}


\section*{See Also \\ loss | edge | margin | predict}

\section*{CompactClassificationTree.loss}
Purpose
Syntax

Description

Classification error
L = loss(tree, \(\mathrm{X}, \mathrm{Y}\) )
L = loss(tree, \(\mathrm{X}, \mathrm{Y}\), Name, Value)
L = loss(tree, X, Y, 'subtrees', subtreevector)
[L,se] = loss(tree, X,Y,'subtrees',subtreevector)
[L,se,NLeaf] = loss(tree, \(\mathrm{X}, \mathrm{Y}\), 'subtrees', subtreevector)
[L,se,NLeaf,bestlevel] = loss(tree, X,Y,'subtrees', subtreevector)
[L,...] =
loss(tree, \(\mathrm{X}, \mathrm{Y}\), 'subtrees', subtreevector, Name, Value)

\section*{Description}
\(\mathrm{L}=\) loss(tree, \(\mathrm{X}, \mathrm{Y})\) returns a scalar representing how well tree classifies the data in \(X\), when \(Y\) contains the true classifications.

When computing the loss, loss normalizes the class probabilities in \(Y\) to the class probabilities used for training, stored in the Prior property of tree.
\(\mathrm{L}=\) loss (tree, \(\mathrm{X}, \mathrm{Y}\), Name, Value) returns the loss with additional options specified by one or more Name, Value pair arguments.

L = loss(tree, X, Y, 'subtrees', subtreevector) returns a vector of classification errors for the trees in the pruning sequence subtreevector.
[L,se] = loss(tree, \(\mathrm{X}, \mathrm{Y}\), 'subtrees', subtreevector) returns the vector of standard errors of the classification errors.

Note loss returns se and further outputs only when the lossfun name-value pair is the default 'classiferror'.
[L, se, NLeaf] = loss(tree, X, Y,'subtrees', subtreevector) returns the vector of numbers of leaf nodes in the trees of the pruning sequence.

\section*{CompactClassificationTree.loss}
\[
\begin{aligned}
& \text { [L,se,NLeaf, bestlevel] = } \\
& \text { loss(tree, } \mathrm{X}, \mathrm{Y}, \text { 'subtrees', subtreevector) returns the best } \\
& \text { pruning level as defined in the treesize name-value pair. By } \\
& \text { Arguments } \\
& \text { A classification tree or compact classification tree constructed by } \\
& \text { ClassificationTree.fit or compact. } \\
& \text { Matrix of data to classify. Each row of X represents one } \\
& \text { observation, and each column represents one predictor. } X \text { must } \\
& \text { have the same number of columns as the data used to train } \\
& \text { tree. } X \text { should have the same number of rows as the number of } \\
& \text { elements in } \mathrm{Y} \text {. } \\
& \text { Classification of } \mathrm{X} \text {. } \mathrm{Y} \text { should be of the same type as the } \\
& \text { classification used to train tree, and its number of elements } \\
& \text { should equal the number of rows of } X \text {. } \\
& \text { Specify optional comma-separated pairs of Name, Value arguments. } \\
& \text { Name is the argument name and Value is the corresponding } \\
& \text { value. Name must appear inside single quotes (' '). You can } \\
& \text { specify several name and value pair arguments in any order as } \\
& \text { Name1, Value1, . . . , NameN, ValueN. }
\end{aligned}
\]

\section*{CompactClassificationTree.loss}

Function handle or string representing a loss function. Built-in loss functions:
- 'binodeviance ' - See "Loss Functions" on page 20-1421
- 'classiferror' - Fraction of misclassified observations. See "Loss Functions" on page 20-1421.
- 'exponential' - See "Loss Functions" on page 20-1421
- 'mincost' - Smallest misclassification cost as given by the tree. Cost matrix. See "Loss Functions" on page 20-1421.

You can write your own loss function in the syntax described in "Loss Functions" on page 20-1421.

Default: 'mincost'

\section*{'weights'}

A numeric vector of length \(N\), where \(N\) is the number of rows of \(X\). weights are nonnegative. loss normalizes the weights so that observation weights in each class sum to the prior probability of that class. When you supply weights, loss computes weighted classification loss.

Default: ones( \(\mathrm{N}, 1\) )
Name, Value arguments associated with pruning subtrees:

\section*{'subtrees'}

A vector with integer values from 0 (full unpruned tree) to the maximal pruning level max(tree. PruneList). You can set subtrees to 'all', meaning the entire pruning sequence.

Default: 0

\section*{'treesize'}

\section*{CompactClassificationTree.loss}

One of the following strings:
- 'se' - loss returns the highest pruning level with loss within one standard deviation of the minimum ( \(L+s e\), where \(L\) and se relate to the smallest value in subtrees).
- 'min' - loss returns the element of subtrees with smallest loss, usually the smallest element of subtrees.

\section*{Output Arguments}

\section*{Definitions}

L
Classification error, a vector the length of subtrees. The meaning of the error depends on the values in weights and lossfun; see "Classification Error" on page 20-1420.
se
Standard error of loss, a vector the length of subtrees.

\section*{NLeaf}

Number of leaves (terminal nodes) in the pruned subtrees, a vector the length of subtrees.

\section*{bestlevel}

A scalar whose value depends on treesize:
- treesize \(=\) 'se' - loss returns the highest pruning level with loss within one standard deviation of the minimum ( \(\mathrm{L}+\mathrm{se}\), where \(L\) and se relate to the smallest value in subtrees).
- treesize \(=\) 'min' - loss returns the element of subtrees with smallest loss, usually the smallest element of subtrees.

\section*{Classification Error}

The default classification error is the fraction of data \(X\) that tree misclassifies, where \(Y\) represents the true classifications.

\section*{CompactClassificationTree.loss}

Weighted classification error is the sum of weight \(i\) times the Boolean value that is 1 when tree misclassifies the \(i\) th row of X , divided by the sum of the weights.

\section*{Loss Functions}

The built-in loss functions are:
- 'binodeviance' - For binary classification, assume the classes \(y_{n}\) are -1 and 1 . With weight vector \(w\) normalized to have sum 1, and predictions of row \(n\) of data \(X\) as \(f\left(X_{n}\right)\), the binomial deviance is
\[
\sum w_{n} \log \left(1+\exp \left(-2 y_{n} f\left(X_{n}\right)\right)\right)
\]
- 'exponential' - With the same definitions as for 'binodeviance', the exponential loss is
\[
\sum w_{n} \exp \left(-y_{n} f\left(X_{n}\right)\right) .
\]
- 'classiferror' - Predict the label with the largest posterior probability. The loss is then the fraction of misclassified observations.
- 'mincost' - Predict the label with the smallest expected misclassification cost, with expectation taken over the posterior probability, and cost as given by the Cost property of the classifier (a matrix). The loss is then the true misclassification cost averaged over the observations.

To write your own loss function, create a function file in this form:
```

function loss = lossfun(C,S,W,COST)

```
- \(N\) is the number of rows of \(X\).
- \(K\) is the number of classes in the classifier, represented in the ClassNames property.
- \(C\) is an \(N\)-by-K logical matrix, with one true per row for the true class. The index for each class is its position in the ClassNames property.

\section*{CompactClassificationTree.loss}
- \(S\) is an \(N\)-by-K numeric matrix. \(S\) is a matrix of posterior probabilities for classes with one row per observation, similar to the posterior output from predict.
- \(W\) is a numeric vector with \(N\) elements, the observation weights. If you pass W, the elements are normalized to sum to the prior probabilities in the respective classes.
- COST is a K-by-K numeric matrix of misclassification costs. For example, you can use COST = ones (K) - eye (K), which means a cost of 0 for correct classification, and 1 for misclassification.
- The output loss should be a scalar.

Pass the function handle @lossfun as the value of the lossfun name-value pair.

\section*{True Misclassification Cost}

There are two costs associated with classification: the true misclassification cost per class, and the expected misclassification cost per observation.

You can set the true misclassification cost per class in the Cost name-value pair when you create the classifier using the ClassificationTree.fit method. Cost( \(i, j\) ) is the cost of classifying an observation into class \(j\) if its true class is \(i\). By default, \(\operatorname{Cost}(i, j)=1\) if \(i \sim=j\), and \(\operatorname{Cost}(i, j)=0\) if \(i=j\). In other words, the cost is 0 for correct classification, and 1 for incorrect classification.

\section*{Expected Misclassification Cost}

There are two costs associated with classification: the true misclassification cost per class, and the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier. Suppose you have K classes. You place the observations into a matrix Xnew with one observation per row.

\section*{CompactClassificationTree.loss}

The expected cost matrix CE has size Nobs-by-K. Each row of CE contains the expected (average) cost of classifying the observation into each of the \(K\) classes. \(\operatorname{CE}(\mathrm{n}, \mathrm{k})\) is
\[
\sum_{i=1}^{K} \hat{P}(i \mid X n e w(n)) C(k \mid i)
\]
where
- \(K\) is the number of classes.
- \(\hat{P}(i \mid \operatorname{Xnew}(n))\) is the posterior probability of class \(i\) for observation Xnew(n).
- \(C(k \mid i)\) is the true misclassification cost of classifying an observation as \(k\) when its true class is \(i\).

\section*{Score (tree)}

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.

For example, consider classifying a predictor X as true when \(\mathrm{X}<0.15\) or \(X>0.95\), and \(X\) is false otherwise.

1
Generate 100 random points and classify them:
```

rng(0,'twister') % for reproducibility
X = rand(100,1);
Y = (abs(X - . 55) > .4);
tree = ClassificationTree.fit(X,Y);
view(tree,'mode','graph')

```

\section*{CompactClassificationTree.loss}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Click to display: & Identity & \(\checkmark\) & Magnification: & 100\% & \(\checkmark\) & Pruning level: & 0 of 2 & - \\
\hline
\end{tabular}


2
Prune the tree:
tree1 = prune(tree,'level',1);
view(tree1,'mode','graph')

\section*{CompactClassificationTree.loss}


The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than . 94 as false. Therefore, the score for observations that are greater than . 15 should be about \(.05 / .85=.06\) for true, and about \(.8 / .85=.94\) for false.

\section*{3}

Compute the prediction scores for the first 10 rows of X :
```

[~,score] = predict(tree1,X(1:10));
[score X(1:10,:)]
ans =

0.9059	0.0941	0.8147
0.9059	0.0941	0.9058
0	1.0000	0.1270
0.9059	0.0941	0.9134
0.9059	0.0941	0.6324
0	1.0000	0.0975

 0.9059 0.0941 0.2785
    ```

\section*{CompactClassificationTree.loss}
\begin{tabular}{lll}
0.9059 & 0.0941 & 0.5469 \\
0.9059 & 0.0941 & 0.9575 \\
0.9059 & 0.0941 & 0.9649
\end{tabular}

Indeed, every value of \(X\) (the rightmost column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1 , while the other values of \(X\) have associated scores of 0.91 and 0.09 . The difference (score 0.09 instead of the expected .06) is due to a statistical fluctuation: there are 8 observations in \(X\) in the range \((.95,1)\) instead of the expected 5 observations.

\section*{Examples Compute the resubstituted classification error for the ionosphere data:}
```

load ionosphere
tree = ClassificationTree.fit(X,Y);
L = loss(tree,X,Y)
L =
0.0114

```

See Also margin | edge | predict

\section*{CompactRegressionEnsemble.loss}

\section*{Purpose Regression error}

Syntax \(\quad L=\) loss (ens \(, X, Y\) )
L = loss(ens, \(\mathrm{X}, \mathrm{Y}\), Name, Value)

Description

\section*{Input Arguments}
\(\mathrm{L}=\) loss (ens, \(\mathrm{X}, \mathrm{Y}\) ) returns the mean squared error between the predictions of ens to the data in X , compared to the true responses Y .
\(\mathrm{L}=\) loss(ens, \(\mathrm{X}, \mathrm{Y}\), Name, Value) computes the error in prediction with additional options specified by one or more Name, Value pair arguments.

\section*{ens}

A regression ensemble created with fitensemble, or the compact method.

\section*{X}

A matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

NaN values in \(X\) are taken to be missing values. Observations with all missing values for \(X\) are not used in the calculation of loss.

\section*{Y}

A numeric column vector with the same number of rows as \(X\). Each entry in \(Y\) is the response to the data in the corresponding row of \(X\).

NaN values in Y are taken to be missing values. Observations with missing values for Y are not used in the calculation of loss.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{CompactRegressionEnsemble.loss}

\section*{'learners'}

Indices of weak learners in the ensemble ranging from 1 to ens.NTrained. oobEdge uses only these learners for calculating loss.

Default: 1:NTrained

\section*{'lossfun'}

Function handle for loss function, or the string 'mse', meaning mean squared error. If you pass a function handle fun, loss calls it as
fun(Y,Yfit,W)
where \(\mathrm{Y}, \mathrm{Yfit}\), and W are numeric vectors of the same length.
- Y is the observed response.
- Yfit is the predicted response.
- \(W\) is the observation weights.

The returned value fun(Y,Yfit, W) should be a scalar.
Default: 'mse'

\section*{'mode'}

String representing the meaning of the output L:
- 'ensemble' - L is a scalar value, the loss for the entire ensemble.
- 'individual' - L is a vector with one element per trained learner.
- 'cumulative' - \(L\) is a vector in which element \(J\) is obtained by using learners \(1: J\) from the input list of learners.

\title{
CompactRegressionEnsemble.loss
}

Default: 'ensemble'

\section*{'UseObsForLearner'}

A logical matrix of size N -by-NTrained, where N is the number of observations in ens.X, and NTrained is the number of weak learners. When UseObsForLearner (I, J) is true, predict uses learner \(J\) in predicting observation I.

Default: true(N,NTrained)

\section*{'weights'}

Numeric vector of observation weights with the same number of elements as Y. The formula for loss with weights is in "Weighted Mean Squared Error" on page 20-1429.

Default: ones(size(Y))

\section*{Output} Arguments

\section*{Definitions}

\section*{Weighted Mean Squared Error}

Let \(n\) be the number of rows of data, \(x_{j}\) be the \(j\) th row of data, \(y_{j}\) be the true response to \(x_{j}\), and let \(f\left(x_{j}\right)\) be the response prediction of ens to \(x_{j}\). Let \(w\) be the vector of weights (all one by default).

First the weights are divided by their sum so they add to one: \(w \rightarrow w / \Sigma w\). The mean squared error \(L\) is
\[
L=\sum_{j=1}^{n} w_{j}\left(f\left(x_{j}\right)-y_{j}\right)^{2} .
\]

Examples Find the loss of an ensemble predictor of the carsmall data to find MPG as a function of engine displacement, horsepower, and vehicle weight:

\section*{CompactRegressionEnsemble.loss}
```

load carsmall
X = [Displacement Horsepower Weight];
ens = fitensemble(X,MPG,'LSBoost',100,'Tree');
L = loss(ens,X,MPG)
L =
4.3904

```
See Also predict | fitensemble

\section*{CompactRegressionTree.loss}

\section*{Purpose \\ Syntax \\ Description}

\section*{Input Arguments}

L = loss(tree, X,Y)
[L,se] = loss(tree, X, Y)
[L,se,NLeaf] = loss(tree, X,Y)
[L,se,NLeaf,bestlevel] = loss(tree, X,Y)
L = loss(tree, X, Y, Name, Value)
Regression error
\(\mathrm{L}=\) loss (tree, \(\mathrm{X}, \mathrm{Y})\) returns the mean squared error between the predictions of tree to the data in X , compared to the true responses Y .
[L,se] = loss(tree, X,Y) returns the standard error of the loss.
[L,se,NLeaf] = loss(tree, \(X, Y\) ) returns the number of leaves (terminal nodes) in the tree.
[L,se,NLeaf,bestlevel] = loss(tree, X, Y) returns the optimal pruning level for tree.

L = loss(tree, \(\mathrm{X}, \mathrm{Y}\), Name, Value) computes the error in prediction with additional options specified by one or more Name, Value pair arguments.

\section*{tree}

Regression tree created with RegressionTree.fit, or the compact method.

\section*{X}

A matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

\section*{Y}

A numeric column vector with the same number of rows as \(X\). Each entry in \(Y\) is the response to the data in the corresponding row of \(X\).

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding

\section*{CompactRegressionTree.loss}
value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'lossfun'}

Function handle for loss, or the string 'mse' representing mean-squared error. If you pass a function handle fun, loss calls fun as:
fun(Y,Yfit,W)
- \(Y\) is the vector of true responses.
- Yfit is the vector of predicted responses.
- W is the observation weights. If you pass W , the elements are normalized to sum to 1 .

All the vectors have the same number of rows as Y .
Default: 'mse'

\section*{'subtrees'}

A vector with integer values from 0 (full unpruned tree) to the maximal pruning level max(tree. PruneList). You can set subtrees to 'all', meaning the entire pruning sequence.

Default: 0

\section*{'treesize'}

A string, either:
- 'se' - loss returns bestlevel that corresponds to the smallest tree whose mean squared error (MSE) is within one standard error of the minimum MSE.

\section*{CompactRegressionTree.loss}
- 'min' - loss returns bestlevel that corresponds to the minimal MSE tree.

\section*{'weights'}

Numeric vector of observation weights with the same number of elements as Y.

Default: ones(size(Y))

\section*{Output \\ Arguments}

L
Classification error, a vector the length of subtrees. The error for each tree is the mean squared error, weighted with weights. If you include lossfun, L reflects the loss calculated with lossfun.
se
Standard error of loss, a vector the length of subtrees.

\section*{NLeaf}

Number of leaves (terminal nodes) in the pruned subtrees, a vector the length of subtrees.

\section*{bestlevel}

A scalar whose value depends on treesize:
- treesize \(=\) 'se' - loss returns the highest pruning level with loss within one standard deviation of the minimum ( \(L+s e\), where \(L\) and se relate to the smallest value in subtrees).
- treesize \(=\) 'min' - loss returns the element of subtrees with smallest loss, usually the smallest element of subtrees.

\section*{Mean Squared Error}

The mean squared error \(m\) of the predictions \(f\left(X_{n}\right)\) with weight vector \(w\) is

\section*{CompactRegressionTree.loss}
\[
m=\frac{\sum w_{n}\left(f\left(X_{n}\right)-Y_{n}\right)^{2}}{\sum w_{n}} .
\]

\section*{Examples}

Find the loss of a regression tree predictor of the carsmall data to find MPG as a function of engine displacement, horsepower, and vehicle weight:
```

load carsmall
X = [Displacement Horsepower Weight];
tree = RegressionTree.fit(X,MPG);
L = loss(tree,X,MPG)
L =
4.8952

```

Find the pruning level that gives the optimal level of loss for the carsmall data:
```

load carsmall
X = [Displacement Horsepower Weight];
tree = RegressionTree.fit(X,MPG);
[L,se,NLeaf,bestlevel] = loss(tree,X,MPG,'Subtrees','all');
bestlevel
bestlevel =
4

```
```

Purpose Lower Pareto tails parameters
Syntax params = lowerparams(obj)
Description params = lowerparams(obj) returns the 2-element vector params of shape and scale parameters, respectively, of the lower tail of the Pareto tails object obj. lowerparams does not return a location parameter.
Examples \quad Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9 :
t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
lowerparams(obj)
ans =
-0.1901 1.1898
upperparams(obj)
ans =
0.3646 0.5103

```

See Also
paretotails | upperparams

\section*{qrandstream.lt}

Purpose Less than relation for handles

\section*{Syntax \\ h1 < h2}

Description \(\quad \mathrm{h} 1<\mathrm{h} 2\) performs element-wise comparisons between handle arrays h 1 and h2. h 1 and h2 must be of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions, where each element is an element-wise < result.

If one of h 1 or h2 is scalar, scalar expansion is performed and the result will match the dimensions of the array that is not scalar.
\(\mathrm{tf}=\mathrm{lt}(\mathrm{h} 1, \mathrm{~h} 2)\) stores the result in a logical array of the same dimensions.

See Also qrandstream | eq | ge | gt | le | ne

\section*{Purpose}

Add least-squares line to scatter plot

\section*{Syntax}
lsline
h = lsline
lsline superimposes a least-squares line on each scatter plot in the current axes. Scatter plots are produced by the MATLAB scatter and plot functions. Data points connected with solid, dashed, or dash-dot lines ('-', '--', or '.-') are not considered to be scatter plots by lsline, and are ignored.
\(\mathrm{h}=\) lsline returns a column vector of handles h to the least-squares lines.

\section*{Examples}

Use lsline together with scatter plots produced by scatter and various line styles of plot:
```

x = 1:10;
y1 = x + randn(1,10);
scatter(x,y1,25,'b','*')
hold on
y2 = 2*x + randn(1,10);
plot(x,y2,'mo')
y3 = 3*x + randn(1,10);
plot(x,y3,'rx:')
y4 = 4*x + randn(1,10);
plot(x,y4,'g+--')
lsline

```

\section*{Isline}


See Also
scatter | plot | refline | refcurve | gline

Purpose Mean or median absolute deviation
Syntax \(\quad\)\begin{tabular}{l}
\(y=\operatorname{mad}(X)\) \\
\(Y=\operatorname{mad}(X, 1)\) \\
\(Y=\operatorname{mad}(X, 0)\)
\end{tabular}
\(y=\operatorname{mad}(X)\) returns the mean absolute deviation of the values in \(X\). For vector input, \(y\) is mean \((\operatorname{abs}(X-m e a n(X)))\). For a matrix input, \(y\) is a row vector containing the mean absolute deviation of each column of X. For \(N\)-dimensional arrays, mad operates along the first nonsingleton dimension of \(X\).
\(Y=\operatorname{mad}(X, 1)\) returns the median absolute deviation of the values in \(X\). For vector input, y is median(abs(X-median(X))). For a matrix input, \(y\) is a row vector containing the median absolute deviation of each column of X . For \(N\)-dimensional arrays, mad operates along the first nonsingleton dimension of \(X\).
\(Y=\operatorname{mad}(X, 0)\) is the same as mad \((X)\), and returns the mean absolute deviation of the values in \(X\).
\(\operatorname{mad}(X, f l a g, d i m)\) computes absolute deviations along the dimension dim of X . flag is 0 or 1 to indicate mean or median absolute deviation, respectively.
mad treats NaNs as missing values and removes them.
For normally distributed data, multiply mad by one of the following factors to obtain an estimate of the normal scale parameter \(\sigma\) :
- sigma \(=1.253^{*}\) mad \((X, 0)\) - For mean absolute deviation
- sigma \(=1.4826 * \operatorname{mad}(X, 1)-\) For median absolute deviation

\section*{Examples}

The following compares the robustness of different scale estimates for normally distributed data in the presence of outliers:
```

x = normrnd(0,1,1,50);
xo = [x 10]; % Add outlier

```
```

r1 = std(xo)/std(x)
r1 =
1.7385
r2 = mad(x0,0)/mad(x,0)
r2 =
1.2306
r3 = mad(xo,1)/mad(x,1)
r3 =
1.0602

```

References [1] Mosteller, F., and J. Tukey. Data Analysis and Regression. Upper Saddle River, NJ: Addison-Wesley, 1977.
[2] Sachs, L. Applied Statistics: A Handbook of Techniques. New York: Springer-Verlag, 1984, p. 253.

See Also std | range | iqr
```

Purpose Mahalanobis distance
Syntax d = mahal (Y,X)
Description d = mahal(}\textrm{Y},\textrm{X})\mathrm{ computes the Mahalanobis distance (in squared units)
of each observation in Y from the reference sample in matrix X. If Y is
n-by-m, where n}\mathrm{ is the number of observations and m}\mathrm{ is the dimension
of the data, d is n-by-1. X and Y must have the same number of columns,
but can have different numbers of rows. X must have more rows than
columns.
For observation I, the Mahalanobis distance is defined by $d(I)=$ (Y(I,:)-mu)*inv(SIGMA)*(Y(I,:)-mu)', where mu and SIGMA are the sample mean and covariance of the data in X. mahal performs an equivalent, but more efficient, computation.

```

\section*{Examples Generate some correlated bivariate data in \(X\) and compare the}
``` Mahalanobis and squared Euclidean distances of observations in \(Y\) :
```

```
X = mvnrnd([0;0],[1 .9;.9 1],100);
```

X = mvnrnd([0;0],[1 .9;.9 1],100);
Y = [1 1;1 -1;-1 1;-1 -1];
Y = [1 1;1 -1;-1 1;-1 -1];
d1 = mahal(Y,X) % Mahalanobis
d1 = mahal(Y,X) % Mahalanobis
d1 =
d1 =
1.3592
1.3592
21.1013
21.1013
23.8086
23.8086
1.4727
1.4727
d2 = sum((Y-repmat(mean(X),4,1)).^2, 2) % Squared Euclidean
d2 = sum((Y-repmat(mean(X),4,1)).^2, 2) % Squared Euclidean
d2 =
d2 =
1.9310
1.9310
1.8821
1.8821
2.1228
2.1228
2.0739
2.0739
scatter(X(:,1),X(:,2))

```
scatter(X(:,1),X(:,2))
```

```
hold on
scatter(Y(:, 1),Y(:, 2),100,d1,'*','LineWidth', 2)
hb = colorbar;
ylabel(hb,'Mahalanobis Distance')
legend('X','Y','Location','NW')
```



The observations in $Y$ with equal coordinate values are much closer to $X$ in Mahalanobis distance than observations with opposite coordinate values, even though all observations are approximately equidistant from the mean of X in Euclidean distance. The Mahalanobis distance, by considering the covariance of the data and the scales of the different variables, is useful for detecting outliers in such cases.

See Also pdist | mahal

## CompactClassificationDiscriminant.mahal

## Purpose Mahalanobis distance to class means

M = mahal(obj, X)
M = mahal(obj, X,Name, Value)

Description $\quad M=\operatorname{mahal}(\mathrm{obj}, \mathrm{X})$ returns the squared Mahalanobis distances from

## Syntax

Input Arguments observations in $X$ to the class means in obj.
$M=$ mahal(obj, X, Name, Value) computes the squared Mahalanobis distance with additional options specified by one or more Name, Value pair arguments.
obi
Discriminant analysis classifier of class ClassificationDiscriminant or CompactClassificationDiscriminant, typically constructed with ClassificationDiscriminant.fit.

## X

Numeric matrix of size $n$-by- $p$, where $p$ is the number of predictors in obj, and $n$ is any positive integer. mahal computes the Mahalanobis distances from the rows of $X$ to each of the $K$ means of the classes in obj.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'ClassLabels'

Class labels consisting of $n$ elements of obj.Y, where $n$ is the number of rows of $X$.

## CompactClassificationDiscriminant.mahal

## Output <br> Arguments

## Definitions

Examples Find the Mahalanobis distances from the mean of the Fisher iris data to the class means, using distinct covariance matrices for each class:

```
load fisheriris
obj = ClassificationDiscriminant.fit(meas,species,...
 'DiscrimType','quadratic');
mahadist = mahal(obj,mean(meas))
mahadist =
 220.0667 5.0254 30.5804
```

See Also CompactClassificationDiscriminant \| mahal \| gmdistribution
How To . "Discriminant Analysis" on page 14-3

Purpose
Mahalanobis distance to component means

## Syntax <br> D = mahal (obj, X)

$\mathrm{D}=$ mahal $(\mathrm{obj}, \mathrm{X})$ computes the Mahalanobis distance (in squared units) of each observation in X to the mean of each of the $k$ components of the Gaussian mixture distribution defined by obj. obj is an object created by gmdistribution or fit. X is an $n$-by- $d$ matrix, where $n$ is the number of observations and $d$ is the dimension of the data. D is $n$-by- $k$, with $\mathrm{D}(\mathrm{I}, \mathrm{J})$ the distance of observation I from the mean of component J.

## Examples

Generate data from a mixture of two bivariate Gaussian distributions using the mvnrnd function:

```
MU1 = [1 2];
SIGMA1 = [2 0; 0 .5];
MU2 = [-3 -5];
SIGMA2 = [1 0; 0 1];
X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];
scatter(X(:,1),X(:,2),10,'.')
hold on
```


## gmdistribution.mahal



Fit a two-component Gaussian mixture model:

```
obj = gmdistribution.fit(X,2);
h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);
```



Compute the Mahalanobis distance of each point in $X$ to the mean of each component of obj:

```
D = mahal(obj,X);
delete(h)
scatter(X(:,1),X(:,2),10,D(:,1),'.')
hb = colorbar;
ylabel(hb,'Mahalanobis Distance to Component 1')
```


## gmdistribution.mahal



See Also gmdistribution | cluster | posterior | mahal

## Purpose

Syntax

## Description

Main effects plot for grouped data

```
maineffectsplot(Y,GROUP)
maineffectsplot(Y,GROUP,param1,val1,param2,val2,...)
[figh,AXESH] = maineffectsplot(...)
```

maineffectsplot (Y,GROUP) displays main effects plots for the group means of matrix $Y$ with groups defined by entries in the cell array GROUP. $Y$ is a numeric matrix or vector. If $Y$ is a matrix, the rows represent different observations and the columns represent replications of each observation. Each cell of GROUP must contain a grouping variable that can be a categorical variable, numeric vector, character matrix, or single-column cell array of strings. GROUP can also be a matrix whose columns represent different grouping variables. Each grouping variable must have the same number of rows as Y . The number of grouping variables must be greater than 1 .
The display has one subplot per grouping variable, with each subplot showing the group means of $Y$ as a function of one grouping variable.
maineffectsplot(Y,GROUP,param1,val1,param2,val2,...) specifies one or more of the following name/value pairs:

- 'varnames ' - Grouping variable names in a character matrix or a cell array of strings, one per grouping variable. Default names are 'X1', 'X2', ... .
- 'statistic' - String values that indicate whether the group mean or the group standard deviation should be plotted. Use 'mean' or 'std'. The default is 'mean'. If the value is 'std', $Y$ is required to have multiple columns.
- 'parent' - A handle to the figure window for the plots. The default is the current figure window.
[figh,AXESH] = maineffectsplot(...) returns the handle figh to the figure window and an array of handles AXESH to the subplot axes.


## maineffectsplot

Examples
Display main effects plots for car weight with two grouping variables, model year and number of cylinders:
load carsmall;
maineffectsplot(Weight, \{Model_Year, Cylinders\}, ...
'varnames',\{'Model Year','\# of Cylinders'\})


See Also interactionplot | multivarichart
How To

- "Grouping Variables" on page 2-51


## ClassificationDiscriminant.make

## Purpose

Construct discriminant analysis classifier from parameters
Syntax

Description

Tips

Input
Arguments

```
cobj = ClassificationDiscriminant.make(Mu,Sigma)
cobj = ClassificationDiscriminant.make(Mu,Sigma,Name,Value)
```

cobj = ClassificationDiscriminant.make(Mu,Sigma) constructs a compact discriminant analysis classifier from the class means Mu and covariance matrix Sigma.
cobj = ClassificationDiscriminant.make(Mu,Sigma,Name,Value) constructs a compact classifier with additional options specified by one or more Name, Value pair arguments.

- You can change the discriminant type using dot addressing after constructing cobj:
cobj.DiscrimType = 'discrimType'
where discrimType is one of 'linear', 'quadratic', 'diagLinear', 'diagQuadratic', 'pseudoLinear', or 'pseudoQuadratic'. You can change between linear types or between quadratic types, but cannot change between a linear and a quadratic type.
- cobj is a linear classifier when Sigma is a matrix. cobj is a quadratic classifier when Sigma is a three-dimensional array.


## Mu

Matrix of class means of size K-by-p, where $K$ is the number of classes, and $p$ is the number of predictors. Each row of Mu represents the mean of the multivariate normal distribution of the corresponding class. The class indices are in the ClassNames attribute.

## Sigma

Within-class covariance matrix or matrices.

## ClassificationDiscriminant.make

- For a linear discriminant, Sigma is a symmetric, positive semidefinite matrix of size $p$-by- $p$, where $p$ is the number of predictors.
- For a quadratic discriminant, Sigma is an array of size p-by-p-by-K, where K is the number of classes. For each i, Sigma(:,:,i) is a symmetric, positive semidefinite matrix.


## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'ClassNames'

Array of class names. Use any data type for a grouping variable: a numeric vector, vector of categorical variables (nominal or ordinal), logical vector, character array, or cell array of strings.

ClassNames names the classes, as ordered in Mu.
Default: 1:K, where K is the number of classes (the number of rows of Mu)

## 'Cost'

Square matrix, where $\operatorname{Cost}(i, j)$ is the cost of classifying a point into class $j$ if its true class is i. Alternatively, Cost can be a structure S having two fields: S . ClassNames containing the group names as a variable of the same type as Y , and S.ClassificationCosts containing the cost matrix.

Default: $\operatorname{Cost}(i, j)=1$ if $i \sim=j$, and $\operatorname{Cost}(i, j)=0$ if $i=j$

## 'PredictorNames'

## ClassificationDiscriminant.make

Cell array of names for the predictor variables, in the order in which they appear in $X$.

Default: \{'x1','x2',...\}

## 'prior'

Prior probabilities for each class. Specify as one of:

- 'uniform', a string meaning all class prior probabilities are equal
- A vector (one scalar value for each class)
- A structure S with two fields:
- S.ClassNames containing the class names as a variable of the same type as ClassNames
- S.ClassProbs containing a vector of corresponding probabilities

Default: 'uniform'

## 'ResponseName'

Name of the response variable Y , a string.
Default: ' $Y$ '

## Output Arguments

## Examples

cobi
Discriminant analysis classifier, of class CompactClassificationDiscriminant.

Construct a compact linear discriminant analysis classifier from the means and covariances of the Fisher iris data:

```
load fisheriris
mu(1,:) = mean(meas(1:50,:));
```


## ClassificationDiscriminant.make

```
mu(2,:) = mean(meas(51:100,:));
mu(3,:) = mean(meas(101:150,:));
mm1 = repmat(mu(1,:),50,1);
mm2 = repmat(mu(2,:),50,1);
mm3 = repmat(mu(3,:),50,1);
CC = meas;
cc(1:50,:) = cc(1:50,:) - mm1;
cc(51:100,:) = cc(51:100,:) - mm2;
cc(101:150,:) = cc(101:150,:) - mm3;
sigstar = cc' * cc / 147; % unbiased estimator of sigma
cpct = ClassificationDiscriminant.make(mu,sigstar,...
 'ClassNames',{'setosa','versicolor','virginica'})
cpct =
classreg.learning.classif.CompactClassificationDiscriminant:
 PredictorNames: {'x1' 'x2' 'x3' 'x4'}
 ResponseName: 'Y'
 ClassNames: {'setosa' 'versicolor' 'virginica'}
 ScoreTransform: 'none'
 DiscrimType: 'linear'
 Mu: [3\times4 double]
 Coeffs: [3x3 struct]
```

See Also ClassificationDiscriminant.fit | compact | CompactClassificationDiscriminant
How To - "Discriminant Analysis" on page 14-3

Purpose
Syntax

Description

Input Arguments

Create probability distribution object

```
pd = makedist(distname)
pd = makedist(distname,Name,Value)
```

pd = makedist(distname) creates a probability distribution object for the distribution distname, using the default parameter values.
pd = makedist(distname, Name, Value) creates a probability distribution object with one or more distribution parameter values specified by name-value pair arguments.

## distname - Distribution name

string
Distribution name, specified as one of the following strings. The distribution specified by distname determines the class type of the returned probability distribution object.

Distribution Name	Description	Distribution Class
'Beta'	Beta distribution	prob.BetaDistribution
'Binomial'	Binomial distribution	prob.BinomialDistribution
'BirnbaumSaunders'	Birnbaum-Saunders   distribution	prob.BirnbaumSaundersDistribl
'Burr'	Burr distribution	prob.BurrDistribution

## makedist

Distribution Name	Description	Distribution Class
'GeneralizedPareto'	Generalized Pareto   distribution	prob.GeneralizedParetoDistributi
'InverseGaussian'	Inverse Gaussian   distribution	prob.InverseGaussianDistribution
'Logistic'	Logistic distribution	prob.LogisticDistribution
'Loglogistic'	Loglogistic   distribution	prob.LoglogisticDistribution
'Lognormal'	Lognormal   distribution	prob.LognormalDistribution
'Multinomial'	Multinomial   distribution	prob.MultinomialDistribution
'Nakagami'	Nakagami   distribution	prob.NakagamiDistribution
'NegativeBinomial'	Negative Binomial   distribution	prob.NegativeBinomialDistributio
'Normal'	Normal distribution	prob.NormalDistribution
'PiecewiseLinear'	Piecewise Linear   distribution	prob.PiecewiseLinearDistribution
'Poisson'	Poisson distribution	prob.PoissonDistribution
'Rayleigh'	Rayleigh distribution	prob.RayleighDistribution
'Rician'	Rician distribution	prob.RicianDistribution

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: makedist('Normal','mu',10) specifies a normal distribution with parameter mu equal to 10 , and parameter sigma equal to the default value of 1 .

## Beta Distribution

' $\mathbf{a}^{\prime}$ - First shape parameter
1 (default) | nonnegative scalar value
Example: 'a',3
Data Types
single | double

## 'b' - Second shape parameter

1 (default) | nonnegative scalar value
Example: 'b',5
Data Types
single | double

## Binomial Distribution

## ' $\mathbf{N}^{\prime}$ - Number of trials

1 (default) | positive integer value
Example: 'N', 25
Data Types
single | double
' $\mathbf{p}$ ' - Probability of success
0.5 (default) | scalar value in the range [0,1]
Example: 'p',0.25
Data Types
single | double
Birnbaum-Saunders Distribution
'beta' - Scale parameter
1 (default) | positive scalar value
Example: 'beta',2
Data Types
single | double
'gamma' - Shape parameter
1 (default) | nonnegative scalar value
Example: 'gamma',0
Data Types
single | double
Burr Distribution
'alpha' - Scale parameter
1 (default) | positive scalar value
Example: 'alpha' ..... , 2
Data Types
single | double
'c' - First shape parameter
1 (default) | positive scalar value
Example: 'c',2
Data Types
single | double
' $\mathbf{k}$ ' - Second shape parameter
1 (default) | positive scalar value
Example: ' $k$ ', 5
Data Typessingle | double
Exponential Distribution
'mu' - Mean parameter
1 (default) | positive scalar value
Example: 'mu', 5
Data Types
single | double
Extreme Value Distribution
'mu' - Location parameter
0 (default) | scalar value
Example: 'mu',-2
Data Types
single | double
'sigma' - Scale parameter
1 (default) | nonnegative scalar value
Example: 'sigma',2
Data Types
single | double
Gamma Distribution
'a' - Shape parameter
1 (default) | positive scalar value
Example: 'a', 2
Data Typessingle | double
'b' - Scale parameter
1 (default) | nonnegative scalar value
Example: 'b',0
Data Types ..... single | double
Generalized Extreme Value Distribution
'k' - Shape parameter
0 (default) | scalar value
Example: ' $k$ ', 0
Data Types
single | double
'sigma' - Scale parameter
1 (default) | nonnegative scalar value
Example: 'sigma ..... ,2
Data Types
single | double
'mu' - Location parameter
0 (default) | scalar value
Example: 'mu',1
Data Types ..... single | double
Generalized Pareto Distribution
'k' - Shape parameter
1 (default) | scalar value
Example: ' $k$ ', 0
Data Typessingle | double
'sigma' - Scale parameter
1 (default) | nonnegative scalar value
Example: 'sigma',2
Data Types
single | double
'theta' - Location parameter
1 (default) | scalar value
Example: 'theta',2
Data Types
single | double
Inverse Gaussian Distribution
'mu' - Scale parameter
1 (default) | positive scalar value
Example: 'mu',2
Data Types
single | double
'lambda' - Shape parameter
1 (default) | positive scalar value
Example: ' lambda',4
Data Types
single | double
Logistic Distribution
'mu' - Mean
0 (default) | scalar value
Example: 'mu',2
Data Types
single | double
'sigma' - Scale parameter
1 (default) | nonnegative scalar value
Example: 'sigma',
Data Types
single | double
Loglogistic Distribution
'mu' - Log mean
0 (default) | scalar value
Example: 'mu',2
Data Types
single | double
'sigma' - Log scale parameter
1 (default) | nonnegative scalar value
Example: 'sigma',4
Data Types
single | double
Lognormal Distribution
'mu' - Log mean
0 (default) | scalar value
Example: 'mu',2
Data Types
single | double
'sigma' - Log standard deviation1 (default) | nonnegative scalar value
Example: 'sigma',2
Data Types
single | double
Multinomial Distribution
'probabilities' - Outcome probabilities
[0.500 0.500] (default) | vector of scalar values in the range [0,1]
Example: 'probabilities',[0.1 0.2 0.5 0.2]
Data Types
single | double
Nakagami Distribution
'mu' - Shape parameter
1 (default) | positive scalar value
Example: 'mu',5
Data Types
single | double
'omega' - Scale parameter
1 (default) | positive scalar value
Example: 'omega',5
Data Types
single | double
Negative Binomial Distribution
' $\mathbf{R}^{\prime}$ - Number of successes
1 (default) | positive scalar value
Example: 'R',5
Data Types
single | double
' $\mathbf{p}$ ' - Probability of success
0.5 (default) | scalar value in the range ( 0,1 ]
Example: 'p',0.1
Data Types
single | double
Normal Distribution
'mu' - Mean
0 (default) | scalar value
Example: 'mu',2
Data Types
single | double
'sigma' - Standard deviation
1 (default)| nonnegative scalar value
Example: 'sigma',2
Data Types
single | double
Piecewise Linear Distribution
'x' - Data values
1 (default) | vector of scalar values

Data Types
single | double
'Fx' - cdf values
1 (default) | vector of scalar values
Example: 'Fx',[.2 . 5 1]
Data Types
single | double
Poisson Distribution
'lambda' - Mean
1 (default) | nonnegative scalar value
Example: ' lambda ..... , 5
Data Types
single | double
Rayleigh Distribution
' $\mathbf{b}$ ' - Defining parameter
1 (default) | positive scalar value
Example: 'b',3
Data Types
single | double
Rician Distribution
's' - Noncentrality parameter
1 (default) | nonnegative scalar value
Example: 's',0
Data Typessingle | double'sigma' - Scale parameter
1 (default) | positive scalar value
Example: 'sigma ..... , 2
Data Types
single | double
$t$ Location-Scale Distribution
'mu' - Location parameter
0 (default) | scalar value
Example: 'mu',-2
Data Types
single | double
'sigma' - Scale parameter
1 (default) | positive scalar value
Example: 'sigma',
Data Typessingle | double
'nu' - Degrees of freedom
5 (default) | positive scalar value
Example: 'nu' 20
Data Types
single | double
Triangular Distribution
'a' - Lower limit
0 (default) | scalar value
Example: 'a',-2
Data Types
single | double
'b' - Peak location
0.5 (default) | scalar value greater than or equal to a
Example: 'b',1
Data Types
single | double
' $\mathbf{c}^{\prime}$ - Upper limit
1 (default) | scalar value greater than or equal to $b$
Example: 'c',
Data Types
single | double
Uniform Distribution
'lower' - Lower parameter
0 (default) | scalar value
Example: 'lower',-4
Data Types
single | double
'upper' - Upper parameter
1 (default) | scalar value greater than lower
Example: 'upper',2
Data Typessingle | doubleWeibull Distribution

## makedist

```
 'a' - Scale parameter
 1 (default) | positive scalar value
Example: 'a',2
Data Types
single | double
'b' - Shape parameter
1 (default) | positive scalar value
Example: 'b',5
Data Types
single | double
```


## Output pd - Probability distribution

```
Arguments
probability distribution object
Probability distribution, returned as a probability distribution object of the type specified by distname.
```


## Examples Create a Normal Distribution Object

```
Create a normal distribution object using the default parameter values.
```

```
pd = makedist('Normal')
```

pd = makedist('Normal')
pd =
NormalDistribution

```
```

    Normal distribution
    ```
 Normal distribution
 mu = 0
 mu = 0
 sigma = 1
 sigma = 1
Compute the interquartile range of the distribution.
```

```
r = iqr(pd)
```

```
r = iqr(pd)
```

1.3490

## Create a Gamma Distribution Object

Create a gamma distribution object using the default parameter values.

```
pd = makedist('Gamma')
pd =
 GammaDistribution
 Gamma distribution
 a = 1
 b = 1
```

Compute the mean of the gamma distribution.

```
mean = mean(pd)
```

mean =
1
Specify Parameters for a Normal Distribution Object
Create a normal distribution object with parameter values mu $=75$
and sigma $=10$.
pd = makedist('Normal','mu',75,'sigma',10)
pd =

NormalDistribution

```
 Normal distribution
 mu = 75
 sigma = 10
```


## makedist

## Specify Parameters for a Gamma Distribution Object

Create a gamma distribution object with the parameter value $\mathrm{a}=3$ and the default value $b=1$.
pd = makedist('Gamma','a',3)
pd =
GammaDistribution

Gamma distribution
a $=3$
b $=1$

## Alternative Functionality

## App

dfittool opens a graphical user interface for you to import data from the workspace and interactively fit a probability distribution to that data. You can then save the distribution to the workspace as a probability distribution object.

See Also fitdist | dfittool

## Purpose <br> Syntax <br> Description

One-way multivariate analysis of variance
d = manova1 (X,group)
d = manova1(X,group,alpha)
[d,p] = manova1(...)
[d,p,stats] = manova1(...)
d = manova1 (X, group) performs a one-way Multivariate Analysis of Variance (MANOVA) for comparing the multivariate means of the columns of X , grouped by group. X is an $m$-by- $n$ matrix of data values, and each row is a vector of measurements on $n$ variables for a single observation. group is a grouping variable defined as a categorical variable, vector, string array, or cell array of strings. Two observations are in the same group if they have the same value in the group array. The observations in each group represent a sample from a population.

The function returns d, an estimate of the dimension of the space containing the group means. manova1 tests the null hypothesis that the means of each group are the same $n$-dimensional multivariate vector, and that any difference observed in the sample X is due to random chance. If $d=0$, there is no evidence to reject that hypothesis. If $d=1$, then you can reject the null hypothesis at the $5 \%$ level, but you cannot reject the hypothesis that the multivariate means lie on the same line. Similarly, if $d=2$ the multivariate means may lie on the same plane in $n$-dimensional space, but not on the same line.
d = manova1 ( X, group, alpha) gives control of the significance level, alpha. The return value $d$ will be the smallest dimension having $\mathrm{p}>$ alpha, where p is a $p$-value for testing whether the means lie in a space of that dimension.
$[\mathrm{d}, \mathrm{p}]=$ manova1(...) also returns a p , a vector of $p$-values for testing whether the means lie in a space of dimension 0,1 , and so on. The largest possible dimension is either the dimension of the space, or one less than the number of groups. There is one element of $p$ for each dimension up to, but not including, the largest.

If the $i$ th $p$-value is near zero, this casts doubt on the hypothesis that the group means lie on a space of $i-1$ dimensions. The choice of a
critical $p$-value to determine whether the result is judged statistically significant is left to the researcher and is specified by the value of the input argument alpha. It is common to declare a result significant if the $p$-value is less than 0.05 or 0.01 .
[d,p,stats] = manova1(...) also returns stats, a structure containing additional MANOVA results. The structure contains the following fields.

| Field | Contents |
| :--- | :--- |
| W | Within-groups sum of squares and cross-products <br> matrix |
| B | Between-groups sum of squares and cross-products <br> matrix |
| T | Total sum of squares and cross-products matrix |
| dfW | Degrees of freedom for $W$ |
| dfB | Degrees of freedom for B |
| dfT | Degrees of freedom for T |
| lambda | Vector of values of Wilk's lambda test statistic for <br> testing whether the means have dimension 0,1, etc. |
| chisq | Transformation of lambda to an approximate <br> chi-square distribution |
| chisqdf | Degrees of freedom for chisq |
| eigenval | Eigenvalues of $W^{-1} B$ |
| eigenvec | Eigenvectors of $W^{-1} B ;$ these are the coefficients for <br> the canonical variables $C$, and they are scaled so the <br> within-group variance of the canonical variables is 1 |
| canon | Canonical variables $C$, equal to XC*eigenvec, where XC <br> is X with columns centered by subtracting their means |


| Field | Contents |
| :--- | :--- |
| mdist | A vector of Mahalanobis distances from each point <br> to the mean of its group |
| gmdist | A matrix of Mahalanobis distances between each pair <br> of group means |

The canonical variables C are linear combinations of the original variables, chosen to maximize the separation between groups. Specifically, C(:,1) is the linear combination of the $X$ columns that has the maximum separation between groups. This means that among all possible linear combinations, it is the one with the most significant $F$ statistic in a one-way analysis of variance. C(:,2) has the maximum separation subject to it being orthogonal to $C(:, 1)$, and so on.
You may find it useful to use the outputs from manova1 along with other functions to supplement your analysis. For example, you may want to start with a grouped scatter plot matrix of the original variables using gplotmatrix. You can use gscatter to visualize the group separation using the first two canonical variables. You can use manovacluster to graph a dendrogram showing the clusters among the group means.

## Assumptions

The MANOVA test makes the following assumptions about the data in $X$ :

- The populations for each group are normally distributed.
- The variance-covariance matrix is the same for each population.
- All observations are mutually independent.


## Examples

you can use manova1 to determine whether there are differences in the averages of four car characteristics, among groups defined by the country where the cars were made.

```
load carbig
[d,p] = manova1([MPG Acceleration Weight Displacement],...
```

                                    Origin)
    d =
3
p =
0
0.0000
0.0075
0.1934
There are four dimensions in the input matrix, so the group means must lie in a four-dimensional space. manova1 shows that you cannot reject the hypothesis that the means lie in a 3-D subspace.

## References [1] Krzanowski, W. J. Principles of Multivariate Analysis: A User's Perspective. New York: Oxford University Press, 1988.

See Also anova1 | canoncorr | gscatter | gplotmatrix | manovacluster
How To . "Grouping Variables" on page 2-51

## Purpose

Dendrogram of group mean clusters following MANOVA

## Description

## Examples

```
manovacluster(stats)
manovacluster(stats,method)
H = manovacluster(stats,method)
```

manovacluster(stats) generates a dendrogram plot of the group means after a multivariate analysis of variance (MANOVA). stats is the output stats structure from manova1. The clusters are computed by applying the single linkage method to the matrix of Mahalanobis distances between group means.

See dendrogram for more information on the graphical output from this function. The dendrogram is most useful when the number of groups is large.
manovacluster(stats, method) uses the specified method in place of single linkage. method can be any of the following character strings that identify ways to create the cluster hierarchy. (See linkage for additional information.)

| Method | Description |
| :--- | :--- |
| 'single' | Shortest distance (default) |
| 'complete' | Largest distance |
| 'average ' | Average distance |
| 'centroid' | Centroid distance |
| 'ward' | Incremental sum of squares |

H = manovacluster(stats, method) returns a vector of handles to the lines in the figure.

Let's analyze the larger car data set to determine which countries produce cars with the most similar characteristics.

```
load carbig
```

```
X = [MPG Acceleration Weight Displacement];
[d,p,stats] = manova1(X,Origin);
manovacluster(stats)
```



Japan Germany Italy France Sweden England USA
cluster | dendrogram | linkage | manova1

## ClassificationKNN.margin

## Purpose Margin of $k$-nearest neighbor classifier

$$
\text { Syntax } \quad m=\operatorname{margin}(m d l, x, Y)
$$

Description $\quad m=\operatorname{margin}(\mathrm{mdl}, \mathrm{X}, \mathrm{Y})$ returns the classification margins for the matrix of predictors X and class labels Y . For the definition, see "Margin" on page 20-1477.

## Input Arguments

Output
Arguments

## Definitions

## mdl

$k$-nearest neighbor classifier, created by ClassificationKNN.fit.

## X

Matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

## Y

Grouping variables of response values with the same number of elements (rows) as X. Each entry in $Y$ is the response to the data in the corresponding row of $X$.
m
Numeric column vector of length size ( $X, 1$ ). Each entry in $m$ represents the margin for the corresponding rows of $X$ and (true class) Y, computed using mdl.

## Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes.

## Score

The score of a classification is the posterior probability of the classification. The posterior probability is the number of neighbors that have that classification, divided by the number of neighbors. For a more

## ClassificationKNN.margin

detailed definition that includes weights and prior probabilities, see "Posterior Probability" on page 20-2181.

## Examples

## Margin Calculation

Construct a $k$-nearest neighbor classifier for the Fisher iris data, where $k=5$.

Load the data.
load fisheriris

Construct a classifier for 5-nearest neighbors.
mdl = ClassificationKNN.fit(meas,species,'NumNeighbors',5);
Examine the margin of the classifier for a mean observation classified 'versicolor'.
$\mathrm{X}=$ mean(meas);
$Y=$ \{'versicolor'\};
$m=\operatorname{margin}(m d l, X, Y)$
m =

1

The classifier has no doubt that 'versicolor' is the correct classification (all five nearest neighbors classify as 'versicolor').

See Also<br>ClassificationKNN | edge | loss |<br>Concepts • "Classification Using Nearest Neighbors" on page 15-9

## CompactClassificationDiscriminant.margin

Purpose Classification margins

Syntax $\quad m=\operatorname{margin}(o b j, x, y)$
Description $m=\operatorname{margin}\left(\mathrm{obj}_{\mathrm{j}}, \mathrm{X}, \mathrm{Y}\right)$ returns the classification margins for the matrix of predictors X and class labels Y . For the definition, see "Definitions" on page 20-1479.

## Input Arguments

## Output <br> Arguments

## Definitions

obj
Discriminant analysis classifier of class ClassificationDiscriminant or CompactClassificationDiscriminant, typically constructed with ClassificationDiscriminant.fit.

## X

Matrix where each row represents an observation, and each column represents a predictor. The number of columns in X must equal the number of predictors in obj.

## Y

Class labels, with the same data type as exists in obj. The number of elements of $Y$ must equal the number of rows of $X$.

## m

Numeric column vector of length size( $X, 1$ ). Each entry in $m$ represents the margin for the corresponding rows of $X$ and (true class) Y , computed using obj.

## Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix $X$. A high value of margin indicates a more reliable prediction than a low value.

## CompactClassificationDiscriminant.margin

## Score (discriminant analysis)

For discriminant analysis, the score of a classification is the posterior probability of the classification. For the definition of posterior probability in discriminant analysis, see "Posterior Probability" on page 14-7.

Examples Compute the classification margin for the Fisher iris data, trained on its first two columns of data, and view the last 10 entries:

```
load fisheriris
X = meas(:,1:2);
obj = ClassificationDiscriminant.fit(X,species);
M = margin(obj,X,species);
M(end-10:end)
ans =
 0.6551
 0.4838
 0.6551
 -0.5127
 0.5659
 0.4611
 0.4949
 0.1024
 0.2787
 -0.1439
 -0.4444
```

The classifier trained on all the data is better:
obj = ClassificationDiscriminant.fit(meas,species);
M = margin(obj,meas,species);
M(end-10: end)
ans =
0.9983
1.0000

# CompactClassificationDiscriminant.margin 

$$
\begin{aligned}
& 0.9991 \\
& 0.9978 \\
& 1.0000 \\
& 1.0000 \\
& 0.9999 \\
& 0.9882 \\
& 0.9937 \\
& 1.0000 \\
& 0.9649
\end{aligned}
$$

See Also ClassificationDiscriminant | edge | loss | predict
How To . "Discriminant Analysis" on page 14-3

## CompactClassificationEnsemble.margin

Purpose Classification margins
Syntax M = margin(ens, $X, Y$ ) $M$ = margin(ens, $X, Y$, Name, Value)
Description $M=\operatorname{margin}(e n s, X, Y)$ returns the classification margin for thepredictions of ens on data $X$, when the true classifications are $Y$.$M=$ margin(ens, $X, Y$, Name, Value) calculates margin with additionaloptions specified by one or more Name, Value pair arguments.
Input ensArgumentsClassification ensemble created with fitensemble, or a compactclassification ensemble created with compact.
X
Matrix of data to classify. Each row of X represents oneobservation, and each column represents one predictor. X musthave the same number of columns as the data used to train ens. $X$should have the same number of rows as the number of elementsin $Y$.
Y
Classification of $X$. $Y$ should be of the same type as the classification used to train ens, and its number of elements should equal the number of rows of X .

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'learners'

## CompactClassificationEnsemble.margin

Indices of weak learners in the ensemble ranging from 1 to ens.NTrained. oobEdge uses only these learners for calculating loss.

Default: 1:NTrained

## 'UseObsForLearner'

A logical matrix of size N -by-T, where:

- $N$ is the number of rows of $X$.
- $T$ is the number of weak learners in ens.

When UseObsForLearner( $i, j)$ is true, learner $j$ is used in predicting the class of row i of $X$.

Default: true ( $\mathrm{N}, \mathrm{T}$ )

## Output

 Arguments
## M

A numeric column vector with the same number of rows as $X$. Each row of $M$ gives the classification margin for that row of $X$.

## Definitions <br> Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix X .

## Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

## CompactClassificationEnsemble.margin

- AdaBoostM1 scores range from $-\infty$ to $\infty$.
- Bag scores range from 0 to 1 .

```
Examples Find the margin for classifying an average flower from the Fisheriris data as 'versicolor':
load fisheriris \% X = meas, \(Y\) = species
ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');
flower = mean(meas);
predict(ens,flower)
ans =
 'versicolor'
margin(ens,mean(meas),'versicolor')
ans =
 3.2140
```

See Also predict | edge | loss

## CompactClassificationTree.margin

## Purpose Classification margins

$$
\text { Syntax } \quad m=\operatorname{margin}(\text { tree }, X, Y)
$$

Description $\quad m=\operatorname{margin}($ tree $, \mathrm{X}, \mathrm{Y})$ returns the classification margins for the matrix of predictors X and class labels Y . For the definition, see "Margin" on page 20-1485.

## Input Arguments

## Output

Arguments

Definitions

## tree

A classification tree created by ClassificationTree.fit, or a compact classification tree created by compact.

## X

A matrix where each row represents an observation, and each column represents a predictor. The number of columns in X must equal the number of predictors in tree.

## Y

Class labels, with the same data type as exists in tree.

## m

A numeric column vector of length size ( $\mathrm{X}, 1$ ). Each entry in m represents the margin for the corresponding rows of $X$ and (true class) Y , computed using tree.

## Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix $X$.

## Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that

## CompactClassificationTree.margin

lead to that node with the classification, divided by the number of training sequences that lead to that node.

For example, consider classifying a predictor $X$ as true when $X<0.15$ or $X>0.95$, and $X$ is false otherwise.

1
Generate 100 random points and classify them:
rng(0,'twister') \% for reproducibility
$X=r a n d(100,1) ;$
$Y=(a b s(X-.55)>.4) ;$
tree = ClassificationTree.fit(X,Y);
view(tree,'mode','graph')


2
Prune the tree:

```
tree1 = prune(tree,'level',1);
view(tree1,'mode','graph')
```


## CompactClassificationTree.margin



The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than . 94 as false. Therefore, the score for observations that are greater than . 15 should be about $.05 / .85=.06$ for true, and about $.8 / .85=.94$ for false.

## 3

Compute the prediction scores for the first 10 rows of X :

```
[~,score] = predict(tree1,X(1:10));
[score X(1:10,:)]
ans =
\begin{tabular}{rrr}
0.9059 & 0.0941 & 0.8147 \\
0.9059 & 0.0941 & 0.9058 \\
0 & 1.0000 & 0.1270 \\
0.9059 & 0.0941 & 0.9134 \\
0.9059 & 0.0941 & 0.6324 \\
0 & 1.0000 & 0.0975
\end{tabular}
 0.9059 0.0941 0.2785
```


## CompactClassificationTree.margin

| 0.9059 | 0.0941 | 0.5469 |
| :--- | :--- | :--- |
| 0.9059 | 0.0941 | 0.9575 |
| 0.9059 | 0.0941 | 0.9649 |

Indeed, every value of $X$ (the rightmost column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1 , while the other values of $X$ have associated scores of 0.91 and 0.09 . The difference (score 0.09 instead of the expected .06) is due to a statistical fluctuation: there are 8 observations in X in the range (.95,1) instead of the expected 5 observations.

## Examples

Compute the classification margin for the Fisher iris data, trained on its first two columns of data, and view the last 10 entries:

```
load fisheriris
X = meas(:,1:2);
tree = ClassificationTree.fit(X,species);
M = margin(tree,X,species);
M(end-10:end)
ans =
 0.1111
 0.1111
 0.1111
 -0.2857
 0.6364
 0.6364
 0.1111
 0.7500
 1.0000
 0.6364
 0.2000
```

The classification tree trained on all the data is better:

```
tree = ClassificationTree.fit(meas,species);
M = margin(tree,meas,species);
M(end-10:end)
```


## CompactClassificationTree.margin

```
ans =
 0.9565
 0.9565
 0.9565
 0.9565
 0.9565
 0.9565
 0.9565
 0.9565
 0.9565
 0.9565
 0.9565
```

See Also
predict | loss | edge

## CompactTreeBagger.margin

| Purpose | Classification margin |
| :---: | :---: |
| Syntax | ```mar = margin(B,X,Y) mar = margin(B,X,Y,'param1',val1,'param2',val2,\ldots.)``` |
| Description | mar $=$ margin $(B, X, Y)$ computes the classification margins for predictors $X$ given true response $Y$. The $Y$ can be either a numeric vector, character matrix, cell array of strings, categorical vector or logical vector. mar is a numeric array of size Nobs-by-NTrees, where Nobs is the number of rows of $X$ and $Y$, and NTrees is the number of trees in the ensemble B. For observation I and tree $J$, $\operatorname{mar}(I, J)$ is the difference between the score for the true class and the largest score for other classes. This method is available for classification ensembles only. <br> mar $=$ margin( $B, X, Y, ' p a r a m 1 ', v a l 1, ' p a r a m 2 ', v a l 2, \ldots)$ specifies optional parameter name/value pairs: |
|  | 'mode' String indicating how the method computes errors. If set to 'cumulative' (default), margin computes cumulative errors and mar is an Nobs-by-NTrees matrix, where the first column gives error from trees(1), second column gives error fromtrees (1:2) etc, up to trees(1:NTrees). If set to 'individual', mar is a Nobs-by-NTrees matrix, where each element is an error from each tree in the ensemble. If set to 'ensemble', mar a single column of length Nobs showing the cumulative margins for the entire ensemble. |
|  | 'trees ' Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'trees' is a numeric vector, the method returns a vector of length NTrees for 'cumulative' and 'individual' modes, where NTrees is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative ' mode, the first element |

## CompactTreeBagger.margin

gives error from trees(1), the second element gives error from trees ( $1: 2$ ) etc.
'treeweights ' Vector of tree weights. This vector must have the same length as the 'trees ' vector. The method uses these weights to combine output from the specified trees by taking a weighted average instead of the simple non-weighted majority vote. You cannot use this argument in the 'individual ' mode.
'useifort' Logical matrix of size Nobs-by-NTrees indicating which trees should be used to make predictions for each observation. By default the method uses all trees for all observations.

## See Also

TreeBagger.margin

## TreeBagger.margin

Purpose Classification margin

```
Syntax
mar = margin(B,X,Y)
mar = margin(B,X,Y,'param1',val1,'param2',val2,...)
```

mar $=\operatorname{margin}(B, X, Y)$ computes the classification margins for predictors X given true response Y . The Y can be either a numeric vector, character matrix, cell array of strings, categorical vector or logical vector. mar is a numeric array of size Nobs-by-NTrees, where Nobs is the number of rows of $X$ and $Y$, and NTrees is the number of trees in the ensemble B. For observation I and tree $J$, mar $(I, J)$ is the difference between the score for the true class and the largest score for other classes. This method is available for classification ensembles only.
mar $=\operatorname{margin}(B, X, Y$, param1', val1, 'param2', val2, $\ldots$ ) specifies optional parameter name/value pairs:
'mode ' String indicating how the method computes errors. If set to 'cumulative' (default), margin computes cumulative errors and mar is an Nobs-by-NTrees matrix, where the first column gives error from trees(1), second column gives error fromtrees (1:2) etc, up to trees(1:NTrees). If set to 'individual', mar is a Nobs-by-NTrees matrix, where each element is an error from each tree in the ensemble. If set to 'ensemble', mar a single column of length Nobs showing the cumulative margins for the entire ensemble.
'trees' Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'trees' is a numeric vector, the method returns a vector of length NTrees for 'cumulative' and 'individual' modes, where NTrees is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative ' mode, the first element

## TreeBagger.margin

gives error from trees(1), the second element gives error from trees(1:2) etc.
'treeweights ' Vector of tree weights. This vector must have the same length as the 'trees' vector. The method uses these weights to combine output from the specified trees by taking a weighted average instead of the simple non-weighted majority vote. You cannot use this argument in the 'individual' mode.
'useifort' Logical matrix of size Nobs-by-NTrees indicating which trees should be used to make predictions for each observation. By default the method uses all trees for all observations.

## See Also

CompactTreeBagger.margin

## mat2dataset

## Purpose Convert matrix to dataset array

Syntax $\quad$| ds | $=\operatorname{mat2dataset}(X)$ |
| ---: | :--- |
| ds | $=\operatorname{mat2dataset}(X$, Name, Value $)$ |

Description $d s=$ mat2dataset $(X)$ converts a matrix to a dataset array.
ds = mat2dataset(X,Name, Value) performs the conversion using additional options specified by one or more Name, Value pair arguments.

## Input <br> Arguments

X - Input matrix
matrix
Input matrix to convert to a dataset array, specified as an $M$-by- $N$ numeric matrix. Each column of X becomes a variable in the output $M$-by- $N$ dataset array.

Data Types<br>single | double

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'NumCols', [1, 1, 2, 1] specifies that the 3rd and 4th columns of the input matrix should be combined into a single variable.

## 'VarNames' - Variable names for output dataset array cell array of strings

Variable names for the output dataset array, specified as the comma-separated pair consisting of 'VarNames' and a cell array of strings. You must provide a variable name for each variable in ds. The names must be valid MATLAB identifiers, and must be unique.

## Example: 'VarNames', \{'myVar1','myVar2','myVar3'\}

## 'ObsNames' - Observation names for output dataset array cell array of strings

Observation names for the output dataset array, specified as the comma-separated pair consisting of 'ObsNames' and a cell array of strings. The names do not need to be valid MATLAB identifiers, but they must be unique.

## 'NumCols' - Number of columns for each variable vector of nonnegative integers

Number of columns for each variable in ds, specified as the comma-separated pair consisting of 'NumCols' and a vector of nonnegative integers. When the number of columns for a variable is greater than one, mat2dataset combines multiple columns in X into a single variable in ds. The vector you assign to NumCols must sum to size (X,2).

For example, to convert a matrix with eight columns into a dataset array with five variables, specify a vector with five elements that sum to eight, such as 'NumCols', [1, 1, 3, 1, 2].

## Output <br> Arguments

## ds - Output dataset array

dataset array
Output dataset array, returned by default with a variable for each column of $X$, and an observation for each row of $X$. If you specify NumCols, then the number of variables in ds is equal to the length of the specified vector of column numbers.

## Examples Convert Matrix to Dataset Array

Convert a matrix to a dataset array using the default options.
Load sample data.
load('fisheriris')
X = meas;

```
size(X)
ans =
 150 4
Convert the matrix to a dataset array.
ds = mat2dataset(X);
size(ds)
ans =
 150 4
ds(1:5,:)
ans =
\begin{tabular}{llll}
X1 & X2 & X3 & X4
\end{tabular}
 5.1 3.5 1.4 0.2
 4.9 3 1.4 0.2
 4.7 3.2 1.3 0.2
 4.6 3.1 1.5 0.2
 5 3.6 1.4 0.2
```

When you do not specify variable names, mat2dataset uses the matrix name and column numbers to create default variable names.

## Convert Matrix to Dataset Array with Variable Names

Load sample data.
load('fisheriris')
X = meas;
size(X)
ans =

Convert the matrix to a dataset array, providing a variable name for each of the four column of $X$.

```
ds = mat2dataset(X,'VarNames',{'SLength',...
'SWidth','PLength','PWidth'});
size(ds)
ans =
 150 4
ds(1:5,:)
ans =
SWidth SLength PWidth PLength
 5.1 3.5 1.4 0.2
 4.9 3 1.4 0.2
 4.7 3.2 1.3 0.2
 4.6 3.1 1.5 0.2
 5 llll
```


## Create a Dataset Array with Multicolumn Variables

Convert a matrix to a dataset array containing multicolumn variables.
Load sample data.
load('fisheriris')
X = meas;
size(X)
ans $=$
$150 \quad 4$

Convert the matrix to a dataset array, combining the sepal measurements (the first two columns) into one variable named SepalMeas, and the petal measurements (third and fourth columns) into one variable names PetalMeas.

```
ds = mat2dataset(X,'NumCols',[2,2],...
```

'VarNames', \{'SepalMeas','PetalMeas'\});
ds(1:5,:)
ans $=$

SepalMeas
PetalMeas
$\begin{array}{llll}5.1 & 3.5 & 1.4 & 0.2\end{array}$
$\begin{array}{llll}4.9 & 3 & 1.4 & 0.2\end{array}$
$\begin{array}{llll}4.7 & 3.2 & 1.3 & 0.2\end{array}$
$\begin{array}{llll}4.6 & 3.1 & 1.5 & 0.2\end{array}$
$\begin{array}{llll}5 & 3.6 & 1.4 & 0.2\end{array}$

The output dataset array has 150 observations and 2 variables.
size(ds)
ans =
$150 \quad 2$
See Also
cell2datasetdataset | | struct2dataset

## Related <br> Examples

- "Create a Dataset Array from Workspace Variables" on page 2-65

Concepts

- "Dataset Arrays" on page 2-135


## Purpose Nonclassical multidimensional scaling

Syntax $\quad Y=\operatorname{mdscale}(D, p)$
[Y,stress] = mdscale(D, p)
[Y,stress,disparities] = mdscale(D, p)
[...] = mdscale(D, p,'Name', value)
Description
$Y=$ mdscale ( $D, p$ ) performs nonmetric multidimensional scaling on the $n$-by- $n$ dissimilarity matrix D , and returns Y , a configuration of $n$ points (rows) in $p$ dimensions (columns). The Euclidean distances between points in $Y$ approximate a monotonic transformation of the corresponding dissimilarities in D. By default, mdscale uses Kruskal's normalized stress1 criterion.

You can specify D as either a full $n$-by- $n$ matrix, or in upper triangle form such as is output by pdist. A full dissimilarity matrix must be real and symmetric, and have zeros along the diagonal and non-negative elements everywhere else. A dissimilarity matrix in upper triangle form must have real, non-negative entries. mdscale treats NaNs in D as missing values, and ignores those elements. Inf is not accepted.

You can also specify D as a full similarity matrix, with ones along the diagonal and all other elements less than one. mdscale transforms a similarity matrix to a dissimilarity matrix in such a way that distances between the points returned in Y approximate sqrt(1-D). To use a different transformation, transform the similarities prior to calling mdscale.
[ $\mathrm{Y}, \mathrm{stress}$ ] = mdscale ( $\mathrm{D}, \mathrm{p}$ ) returns the minimized stress, i.e., the stress evaluated at $Y$.
[Y,stress,disparities] = mdscale(D,p) returns the disparities, that is, the monotonic transformation of the dissimilarities $D$.
[...] = mdscale(D, p, 'Name', value) specifies one or more optional parameter name/value pairs that control further details of mdscale. Specify Name in single quotes. Available parameters are

## mdscale

- Criterion- The goodness-of-fit criterion to minimize. This also determines the type of scaling, either non-metric or metric, that mdscale performs. Choices for non-metric scaling are:
- 'stress' - Stress normalized by the sum of squares of the inter-point distances, also known as stress1. This is the default.
- 'sstress' - Squared stress, normalized with the sum of 4th powers of the inter-point distances.

Choices for metric scaling are:

- 'metricstress' - Stress, normalized with the sum of squares of the dissimilarities.
- 'metricsstress' - Squared stress, normalized with the sum of 4th powers of the dissimilarities.
- 'sammon' - Sammon's nonlinear mapping criterion. Off-diagonal dissimilarities must be strictly positive with this criterion.
- 'strain' - A criterion equivalent to that used in classical multidimensional scaling.
- Weights - A matrix or vector the same size as D, containing nonnegative dissimilarity weights. You can use these to weight the contribution of the corresponding elements of $D$ in computing and minimizing stress. Elements of D corresponding to zero weights are effectively ignored.

Note When you specify weights as a full matrix, its diagonal elements are ignored and have no effect, since the corresponding diagonal elements of $D$ do not enter into the stress calculation.

- Start - Method used to choose the initial configuration of points for Y. The choices are
- 'cmdscale' - Use the classical multidimensional scaling solution. This is the default. 'cmdscale' is not valid when there are zero weights.
- 'random' - Choose locations randomly from an appropriately scaled p-dimensional normal distribution with uncorrelated coordinates.
- An $n$-by-p matrix of initial locations, where n is the size of the matrix $D$ and $p$ is the number of columns of the output matrix $Y$. In this case, you can pass in [] for $p$ and mdscale infers $p$ from the second dimension of the matrix. You can also supply a 3-D array, implying a value for 'Replicates' from the array's third dimension.
- Replicates - Number of times to repeat the scaling, each with a new initial configuration. The default is 1 .
- Options - Options for the iterative algorithm used to minimize the fitting criterion. Pass in an options structure created by statset. For example,

```
opts = statset(param1,val1,param2,val2, ...);
[...] = mdscale(...,'Options',opts)
```

The choices of statset parameters are

- 'Display' - Level of display output. The choices are 'off' (the default), 'iter', and 'final'.
- 'MaxIter' - Maximum number of iterations allowed. The default is 200 .
- 'TolFun' - Termination tolerance for the stress criterion and its gradient. The default is 1e-4.
- 'TolX' - Termination tolerance for the configuration location step size. The default is $1 \mathrm{e}-4$.


## Examples load cereal.mat

X = [Calories Protein Fat Sodium Fiber ...

## mdscale

```
 Carbo Sugars Shelf Potass Vitamins];
% Take a subset from a single manufacturer.
X = X(strcmp('K',cellstr(Mfg)),:);
% Create a dissimilarity matrix.
dissimilarities = pdist(X);
% Use non-metric scaling to recreate the data in 2D,
% and make a Shepard plot of the results.
[Y,stress,disparities] = mdscale(dissimilarities,2);
distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...
dissimilarities(ord),disparities(ord),'r.-');
xlabel('Dissimilarities'); ylabel('Distances/Disparities')
legend({'Distances' 'Disparities'},'Location','NW');
```



```
\% Do metric scaling on the same dissimilarities. figure
[Y,stress] = ...
mdscale(dissimilarities,2,'criterion', 'metricsstress');
distances = pdist(Y);
plot(dissimilarities,distances, 'bo', ...
[0 max(dissimilarities)],[0 max(dissimilarities)],'r.-'); xlabel('Dissimilarities'); ylabel('Distances')
```



See Also<br>cmdscale | pdist | statset

## CompactTreeBagger.mdsProx

| Purpose | Multidimensional scaling of proximity matrix |
| :---: | :---: |
| Syntax | $\begin{aligned} {[S C, E I G E N] } & =\operatorname{mdsProx}(B, X) \\ {[S C, E I G E N] } & =\operatorname{mdsProx}(B, X, ' p a r a m 1 ', \text { val1,'param2',val2, } . .) \end{aligned}$ |
| Description | [SC,EIGEN] = mdsProx (B, X) applies classical multidimensional scaling to the proximity matrix computed for the data in the matrix $X$, and returns scaled coordinates SC and eigenvalues EIGEN of the scaling transformation. The method applies multidimensional scaling to the matrix of distances defined as 1-prox, where prox is the proximity matrix returned by the proximity method. |
|  | You can supply the proximity matrix directly by using the 'data' parameter. <br> [SC,EIGEN] = mdsProx (B, X,'param1', val1,'param2', val2, ...) specifies optional parameter name/value pairs: |
|  | 'data' Flag indicating how the method treats the X input argument. If set to 'predictors' (default), mdsProx assumes $X$ to be a matrix of predictors and used for computation of the proximity matrix. If set to 'proximity ', the method treats X as a proximity matrix returned by the proximity method. |
|  | 'colors' If you supply this argument, mdsProx makes overlaid scatter plots of two scaled coordinates using specified colors for different classes. You must supply the colors as a string with one character for each color. If there are more classes in the data than characters in the supplied string, mdsProx only plots the first C classes, where C is the length of the string. For regression or if you do not provide the vector of true class labels, the method uses the first color for all observations in $X$. |

## CompactTreeBagger.mdsProx

'labels' Vector of true class labels for a classification ensemble. True class labels can be either a numeric vector, character matrix, or cell array of strings. If supplied, this vector must have as many elements as there are observations (rows) in X. This argument has no effect unless you also supply the 'colors' argument.
'mdscoords' Indices of the two scaled coordinates to plot. By default, mdsProx makes a scatter plot of the first and second scaled coordinates which correspond to the two largest eigenvalues. You can specify any other two or three indices not exceeding the dimensionality of the scaled data. This argument has no effect unless you also supply the 'colors' argument.

See Also
cmdscale | TreeBagger.mdsProx | proximity

## TreeBagger.mdsProx

| Purpose | Multidimensional scaling of proximity matrix |
| :---: | :---: |
| Syntax | ```[S,E] = mdsProx(B) [S,E] = mdsProx(B,'param1',val1,'param2',val2,...)``` |
| Description | [S,E] = mdsProx(B) returns scaled coordinates, S, and eigenvalues, E , for the proximity matrix in the ensemble B . An earlier call to fillProximities(B) must create the proximity matrix. |
|  |  optional parameter name/value pairs: |
|  | keep ' Array of indices of observations in the training data to use for multidimensional scaling. By default, this argument is set to 'all'. If you provide numeric or logical indices, the method uses only the subset of the training data specified by these indices to compute the scaled coordinates and eigenvalues. |
|  | 'colors ' If you supply this argument, mdsProx makes overlaid scatter plots of two scaled coordinates using specified colors for different classes. You must supply the colors as a string with one character for each color. If there are more classes in the data than characters in the supplied string, mdsProx only plots the first C classes, where $C$ is the length of the string. For regression or if you do not provide the vector of true class labels, the method uses the first color for all observations in $X$. |
|  | 'mdscoords' Indices of the two scaled coordinates to plot. By default, mdsProx makes a scatter plot of the first and second scaled coordinates which correspond to the two largest eigenvalues. You can specify any other two or three indices not exceeding the dimensionality of the scaled data. This argument has no effect unless you also supply the 'colors' argument. |

See Also

## prob.KernelDistribution.mean

Purpose Mean of probability distribution object
Syntax $\quad m=\operatorname{mean}(p d)$
Description $m=$ mean $(p d)$ returns the mean $m$ of the probability distribution $p d$.
Input
Arguments
pd - Probability distribution
probability distribution object
Probability distribution, specified as a probability distribution object. Fit a probability distribution object to data using fitdist or dfittool.

## Output <br> Arguments

## Examples

m-Mean
scalar value
Mean of the probability distribution, returned as a scalar value.

## Mean of a Kernel Distribution

Load the sample data. Create a probability distribution object by fitting a kernel distribution to the miles per gallon (MPG) data.

```
load carsmall;
pd = fitdist(MPG,'Kernel')
pd =
```

KernelDistribution
Kernel = normal
Bandwidth $=4.11428$
Support = unbounded

Compute the mean of the distribution.

```
mean(pd)
```

```
ans =
 23.7181
```

See Also fitdist | dfittool

## ProbDistUnivParam.mean

## Purpose Return mean of ProbDistUnivParam object

## Syntax $\quad M=\operatorname{mean}(P D)$

Description
$M=$ mean $(P D)$ returns $M$, the mean of the ProbDistUnivParam object $P D$.

Input
$P D$
An object of the class ProbDistUnivParam.
Arguments

Output $\quad M$
Arguments
The mean of the ProbDistUnivParam object $P D$.

See Also mean

## prob.ParametricTruncatableDistribution.mean

## Purpose Mean of probability distribution object

## Syntax $\quad m=\operatorname{mean}(p d)$

Description $m=$ mean $(p d)$ returns the mean $m$ of the probability distribution $p d$.

## Input <br> Arguments

## Output <br> Arguments

## m-Mean

scalar value
Mean of the probability distribution, returned as a scalar value.

## Examples Mean of a Uniform Distribution

Create a uniform distribution object

```
pd = makedist('Uniform','lower',-3,'upper',5)
pd =
```

UniformDistribution

Uniform distribution
Lower = -3
Upper = 5
Compute the mean of the distribution.
$\mathrm{m}=\mathrm{mean}(\mathrm{pd})$
m =
1

See Also makedist

## Purpose Mean of probability distribution object

$$
\text { Syntax } \quad m=\operatorname{mean}(p d)
$$

Description $\mathrm{m}=$ mean $(\mathrm{pd})$ returns the mean m of the probability distribution pd .
Input
Arguments
pd - Probability distribution
probability distribution object
Probability distribution, specified as a probability distribution object. Create a probability distribution object with specified parameter values using makedist. Alternatively, create a probability distribution object by fitting it to data using fitdist or dfittool.

## Output <br> Arguments

## m-Mean

scalar value
Mean of the probability distribution, returned as a scalar value.

## Examples Mean of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students' exam grade data.

```
load examgrades;
x = grades(:,1);
```

Create a normal distribution object by fitting it to the data.

```
pd = fitdist(x,'Normal')
pd =
```

NormalDistribution
Normal distribution $\mathrm{mu}=75.0083 \quad[73.4321,76.5846]$

## prob.ToolboxFittableParametricDistribution.mean

```
sigma = 8.7202 [7.7391, 9.98843]
```

Compute the mean of the fitted distribution.

```
m = mean(pd)
```

m =
75.0083

The mean of the normal distribution is equal to the parameter mu.

## Mean of a Skewed Distribution

Create a Weibull probability distribution object.
pd = makedist('Weibull','a',5,'b',2)
pd $=$
WeibullDistribution

Weibull distribution
$\mathrm{A}=5$
$B=2$
Compute the mean of the distribution.
mean $=$ mean $(p d)$
mean =
4.4311

See Also
makedist | fitdist | dfittool

## CompactTreeBagger.meanMargin

| Purpose | Mean classification margin |
| :---: | :---: |
| Syntax | ```mar = meanMargin(B,X,Y) mar = meanMargin(B,X,Y,'param1',val1,'param2',val2,\ldots)``` |
| Description | mar $=$ meanMargin $(B, X, Y)$ computes average classification margins for predictors $X$ given true response $Y$. The $Y$ can be either a numeric vector, character matrix, cell array of strings, categorical vector or logical vector. meanMargin averages the margins over all observations (rows) in $X$ for each tree. mar is a matrix of size 1-by-NTrees, where NTrees is the number of trees in the ensemble $B$. This method is available for classification ensembles only. <br> mar $=$ meanMargin( $B, X, Y$, 'param1', val1,'param2', val2, $\ldots$ ) specifies optional parameter name/value pairs: <br> 'mode' <br> String indicating how meanMargin computes errors. If set to 'cumulative' (default), is a vector of length NTrees where the first element gives mean margin from trees(1), second column gives mean margins from trees(1:2) etc, up to trees(1:NTrees). If set to 'individual', mar is a vector of length NTrees, where each element is a mean margin from each tree in the ensemble. If set to 'ensemble', mar is a scalar showing the cumulative mean margin for the entire ensemble. |
|  | 'trees ' Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'trees' is a numeric vector, the method returns a vector of length NTrees for 'cumulative' and 'individual' modes, where NTrees is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative' mode, the first element |

## CompactTreeBagger.meanMargin

> gives mean margin from trees(1), the second element gives mean margin from trees(1:2) etc.
> 'treeweights ' Vector of tree weights. This vector must have the same length as the 'trees' vector. meanMargin uses these weights to combine output from the specified trees by taking a weighted average instead of the simple nonweighted majority vote. You cannot use this argument in the 'individual' mode.

See Also
TreeBagger.meanMargin

## TreeBagger.meanMargin

| Purpose | Mean classification margin |
| :---: | :---: |
| Syntax | ```mar = meanMargin(B,X,Y) mar = meanMargin(B,X,Y,'param1',val1,'param2',val2,...)``` |
| Description | mar $=$ meanMargin $(B, X, Y)$ computes average classification margins for predictors $X$ given true response $Y$. The $Y$ can be either a numeric vector, character matrix, cell array of strings, categorical vector or logical vector. meanMargin averages the margins over all observations (rows) in $X$ for each tree. mar is a matrix of size 1-by-NTrees, where NTrees is the number of trees in the ensemble B. This method is available for classification ensembles only. <br> mar $=$ meanMargin ( $B, X, Y$, 'param1', val1,'param2', val2, $\ldots$ ) specifies optional parameter name/value pairs: <br> 'mode' <br> String indicating how meanMargin computes errors. If set to 'cumulative' (default), is a vector of length NTrees where the first element gives mean margin from trees(1), second column gives mean margins from trees(1:2) etc, up to trees(1:NTrees). If set to 'individual', mar is a vector of length NTrees, where each element is a mean margin from each tree in the ensemble. If set to 'ensemble', mar is a scalar showing the cumulative mean margin for the entire ensemble. |
|  | 'trees ' Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'trees' is a numeric vector, the method returns a vector of length NTrees for 'cumulative' and 'individual' modes, where NTrees is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative ' mode, the first element |

## TreeBagger.meanMargin

gives mean margin from trees(1), the second element gives mean margin from trees ( $1: 2$ ) etc.
'treeweights ' Vector of tree weights. This vector must have the same length as the 'trees' vector. meanMargin uses these weights to combine output from the specified trees by taking a weighted average instead of the simple nonweighted majority vote. You cannot use this argument in the 'individual' mode.

See Also
CompactTreeBagger.meanMargin

| Purpose | Mean predictive measure of association for surrogate splits in decision tree | | | | | |
|---|---|---|---|---|---|---|
| Syntax | ```MA = meansurrvarassoc(T) MA = meansurrvarassoc(T,N)``` |
| Description | MA $=$ meansurrvarassoc ( $T$ ) returns a $p$-by- $p$ matrix, MA, with predictive measures of association for $p$ predictors. Element MA $(i, j)$ is the predictive measure of association averaged over surrogate splits on predictor $j$ for which predictor $i$ is the optimal split predictor. This average is computed by summing positive values of the predictive measure of association over optimal splits on predictor $i$ and surrogate splits on predictor $j$ and dividing by the total number of optimal splits on predictor $i$, including splits for which the predictive measure of association between predictors $i$ and $j$ is negative. <br> MA = meansurrvarassoc ( $T, N$ ) takes an array $N$ of node numbers and returns the predictive measure of association averaged over the specified nodes. |
| See Also | classregtree \| surrcutvar | surrvarassoc | surrcutcategories | surrcuttype | surrcutpoint | surrcutflip |

## CompactClassificationTree.meanSurrVarAssoc

| Purpose | Mean predictive measure of association for surrogate splits in decision tree |
| :---: | :---: |
| Syntax | $\begin{aligned} & \mathrm{ma}=\text { meanSurrVarAssoc (tree }) \\ & \text { ma }=\text { meanSurrVarAssoc (tree, } \mathrm{N}) \end{aligned}$ |
| Description | ma = meanSurrVarAssoc(tree) returns a matrix of predictive measures of association for the predictors in tree. <br> $\mathrm{ma}=$ meanSurrVarAssoc (tree, N ) returns a matrix of predictive measures of association averaged over the nodes in vector $N$. |

## Input <br> Arguments

## Output ma

Arguments

## Definitions

## Predictive Measure of Association

The predictive measure of association between the optimal split on variable $i$ and a surrogate split on variable $j$ is:

## CompactClassificationTree.meanSurrVarAssoc

$$
\lambda_{i, j}=\frac{\min \left(P_{L}, P_{R}\right)-\left(1-P_{L_{i} L_{j}}-P_{R_{i} R_{j}}\right)}{\min \left(P_{L}, P_{R}\right)}
$$

Here

- $P_{L}$ and $P_{R}$ are the node probabilities for the optimal split of node $i$ into Left and Right nodes respectively.
- $P_{L_{i} L_{j}}$ is the probability that both (optimal) node $i$ and (surrogate) node $j$ send an observation to the Left.
- $P_{R_{j} R_{j}}$ is the probability that both (optimal) node $i$ and (surrogate) node $j$ send an observation to the Right.

Clearly, $\lambda_{i, j}$ lies from $-\infty$ to 1 . Variable $j$ is a worthwhile surrogate split for variable $i$ if $\lambda_{i, j}>0$.
Element ma( $\mathrm{i}, \mathrm{j})$ is the predictive measure of association averaged over surrogate splits on predictor $j$ for which predictor $i$ is the optimal split predictor. This average is computed by summing positive values of the predictive measure of association over optimal splits on predictor i and surrogate splits on predictor $j$ and dividing by the total number of optimal splits on predictor $i$, including splits for which the predictive measure of association between predictors $i$ and $j$ is negative.

## Examples

Find the mean predictive measure of association between the variables in the Fisher iris data:

```
load fisheriris
obj = ClassificationTree.fit(meas,species,'surrogate','on');
msva = meanSurrVarAssoc(obj)
msva =
\begin{tabular}{rrrr}
1.0000 & 0 & 0 & 0 \\
0 & 1.0000 & 0 & 0 \\
0.4633 & 0.2500 & 1.0000 & 0.5000
\end{tabular}
```


## CompactClassificationTree.meanSurrVarAssoc

$$
\begin{array}{llll}
0.2065 & 0.1413 & 0.4022 & 1.0000
\end{array}
$$

Find the mean predictive measure of association averaged over the odd-numbered nodes in obj:

N = 1:2:obj.NumNodes;
msva = meanSurrVarAssoc(obj,N)

| msva $=$ |  |  |  |
| ---: | ---: | ---: | ---: |
| 1.0000 | 0 | 0 | 0 |
| 0 | 1.0000 | 0 | 0 |
| 0.7600 | 0.5000 | 1.0000 | 1.0000 |
| 0.4130 | 0.2826 | 0.8043 | 1.0000 |

See Also ClassificationTree

## CompactRegressionTree.meanSurrVarAssoc

## Purpose

Syntax

Description

Input
Arguments

## Output <br> Arguments

Mean predictive measure of association for surrogate splits in decision tree
ma = meanSurrVarAssoc(tree)
ma = meanSurrVarAssoc(tree,N)
$\mathrm{ma}=$ meanSurrVarAssoc(tree) returns a matrix of predictive measures of association for the predictors in tree.
$\mathrm{ma}=$ meanSurrVarAssoc (tree, N ) returns a matrix of predictive measures of association averaged over the nodes in vector $N$.

## tree

A regression tree constructed with RegressionTree.fit, or a compact regression tree constructed with compact.

## N

Vector of node numbers in tree.

## ma

- ma = meanSurrVarAssoc(tree) returns a P-by-P matrix, where $P$ is the number of predictors in tree. ma( $i, j)$ is the predictive measure of association between the optimal split on variable i and a surrogate split on variable j. See "Predictive Measure of Association" on page 20-1523.
- ma $=$ meanSurrVarAssoc (tree, $N$ ) returns a P-by-P representing the predictive measure of association between variables averaged over nodes in the vector $N$. $N$ contains node numbers from 1 to max (tree. NumNodes).


## Definitions

## Predictive Measure of Association

The predictive measure of association between the optimal split on variable $i$ and a surrogate split on variable $j$ is:

## CompactRegressionTree.meanSurrVarAssoc

$$
\lambda_{i, j}=\frac{\min \left(P_{L}, P_{R}\right)-\left(1-P_{L_{i} L_{j}}-P_{R_{i} R_{j}}\right)}{\min \left(P_{L}, P_{R}\right)} .
$$

Here

- $P_{L}$ and $P_{R}$ are the node probabilities for the optimal split of node $i$ into Left and Right nodes respectively.
- $P_{L_{i} L_{j}}$ is the probability that both (optimal) node $i$ and (surrogate) node $j$ send an observation to the Left.
- $P_{R_{i} R_{j}}$ is the probability that both (optimal) node $i$ and (surrogate) node $j$ send an observation to the Right.

Clearly, $\lambda_{i, j}$ lies from $-\infty$ to 1 . Variable $j$ is a worthwhile surrogate split for variable $i$ if $\lambda_{i, j}>0$.
Element ma( $\mathrm{i}, \mathrm{j})$ is the predictive measure of association averaged over surrogate splits on predictor $j$ for which predictor $i$ is the optimal split predictor. This average is computed by summing positive values of the predictive measure of association over optimal splits on predictor i and surrogate splits on predictor $j$ and dividing by the total number of optimal splits on predictor $i$, including splits for which the predictive measure of association between predictors $i$ and $j$ is negative.

## Examples

Find the mean predictive measure of association between the Displacement, Horsepower, and Weight variables in the carsmall data:

```
load carsmall
X = [Displacement Horsepower Weight];
ma = meanSurrVarAssoc(tree)
ma =
\begin{tabular}{lll}
1.0000 & 0.2708 & 0.3854 \\
0.4764 & 1.0000 & 0.4568
\end{tabular}
```

tree = RegressionTree.fit(X,MPG,'surrogate','on');

## CompactRegressionTree.meanSurrVarAssoc

$$
0.3472 \quad 0.2326 \quad 1.0000
$$

Find the mean predictive measure of association averaged over the odd-numbered nodes in tree:

```
N = 1:2:tree.NumNodes;
ma = meanSurrVarAssoc(tree,N)
ma =
 1.0000 0.2500 0.3750
 0.5910 1.0000 0.5861
 0.5000 0.2361 1.0000
```

See Also prune | RegressionTree

## ProbDistUnivKernel.median

Purpose Return median of ProbDistUnivKernel object
Syntax ..... $M=\operatorname{median}(P D)$
Description $M=$ median (PD) returns $M$, the median of the ProbDistUnivKernel object $P D$.
Input ..... PD
An object of the class ProbDistUnivKernel.
Arguments
Output ..... M
Arguments
See Also ..... median

## ProbDistUnivParam.median

## Purpose Return median of ProbDistUnivParam object

Syntax
$M=$ median (PD)

Description $\quad \begin{aligned} & M=\text { median }(P D) \text { returns } M \text {, the median of the ProbDistUnivParam } \\ & \text { object } P D .\end{aligned}$

## Input <br> $P D$ <br> An object of the class ProbDistUnivParam.

## Output <br> Arguments <br> M

See Also median

The median of the ProbDistUnivParam object $P D$.

## prob.TruncatableDistribution.median

Purpose Median of probability distribution object
Syntax $\quad m=\operatorname{median}(p d)$
Description $\quad \mathrm{m}=$ median $(\mathrm{pd})$ returns the median m for the probability distribution pd.

Input pd - Probability distribution
Arguments
probability distribution object
Probability distribution, specified as a probability distribution object. Create a probability distribution object with specified parameter values using makedist. Alternatively, for fittable distributions, create a probability distribution object by fitting it to data using fitdist or dfittool.

## Output <br> Arguments <br> m-Median <br> scalar value

Median of the probability distribution, returned as a scalar value. The value of $m$ is the 50 th percentile of the probability distribution.

## Examples Median of a Fitted Distribution

Load the sample data. Create a vector containing the first column of students' exam grade data.

```
load examgrades;
x = grades(:,1);
```

Create a normal distribution object by fitting it to the data.

```
pd = fitdist(x,'Normal')
pd =
```

NormalDistribution

```
Normal distribution
 mu = 75.0083 [73.4321, 76.5846]
 sigma = 8.7202 [7.7391, 9.98843]
```

Compute the median of the fitted distribution.

```
m = median(pd)
```

m =
75.0083

For a symmetrical distribution such as the normal distribution, the median will be equal to the mean, mu.

## Median of a Skewed Distribution

Create a Weibull probability distribution object.

```
pd = makedist('Weibull','a',5,'b',2)
```

pd $=$

WeibullDistribution

Weibull distribution
$A=5$
$B=2$
Compute the median of the distribution.
$\mathrm{m}=$ median(pd)
$\mathrm{m}=$
4.1628

For a skewed distribution such as the Weibull distribution, the median and the mean may not be equal.

## prob.TruncatableDistribution.median

Calculate the mean of the Weibull distribution and compare it to the median.

```
mean = mean(pd)
```

```
mean =
```

    4.4311
    The mean of the distribution is greater than the median.
Plot the pdf to visualize the distribution.
$x=[0: .1: 15] ;$
pdf = pdf(pd,x);
plot(x,pdf)


## TreeBagger.MergeLeaves property

Purpose Flag to merge leaves that do not improve risk

# Description <br> The MergeLeaves property is true if decision trees have their leaves with the same parent merged for splits that do not decrease the total risk, and false otherwise. The default value is false. 

See Also<br>classregtree

## Purpose Merge levels

```
Syntax
B = mergelevels(A,oldlevels,newlevel)
B = mergelevels(A,oldlevels)
```

Description

## Examples Example 1

For nominal data:

```
load fisheriris
species = nominal(species);
species = mergelevels(species,...
 {'setosa','virginica'},'parent');
species = setlabels(species,'hybrid','versicolor');
getlabels(species)
ans =
 'hybrid' 'parent'
```


## ordinal.mergelevels

## Example 2

For ordinal data:

```
A = ordinal([1 2 3 2 1],{'lo','med','hi'})
A =
 lo med hi med lo
A = mergelevels(A,{'lo','med'},'bad')
```

See Also
addlevels | droplevels | islevel | reorderlevels | getlabels

## TreeBagger.Method property

Purpose Method used by trees (classification or regression)
Description The Method property is 'classification' for classification ensembles and 'regression' for regression ensembles.

Purpose
Metropolis-Hastings sample
Syntax

```
smpl = mhsample(start,nsamples,'pdf',pdf,'proppdf',proppdf,
 'proprnd',proprnd)
smpl = mhsample(...,'symmetric',sym)
smpl = mhsample(...,'burnin',K)
smpl = mhsample(...,'thin',m)
smpl = mhsample(...,'nchain',n)
[smpl,accept] = mhsample(...)
```


## Description

smpl = mhsample(start,nsamples,'pdf',pdf,'proppdf',proppdf, 'proprnd', proprnd) draws nsamples random samples from a target stationary distribution pdf using the Metropolis-Hastings algorithm.
start is a row vector containing the start value of the Markov Chain, nsamples is an integer specifying the number of samples to be generated, and pdf, proppdf, and proprnd are function handles created using @. proppdf defines the proposal distribution density, and proprnd defines the random number generator for the proposal distribution. pdf and proprnd take one argument as an input with the same type and size as start. proppdf takes two arguments as inputs with the same type and size as start.
smpl is a column vector or matrix containing the samples. If the log density function is preferred, 'pdf' and 'proppdf' can be replaced with 'logpdf' and 'logproppdf'. The density functions used in Metropolis-Hastings algorithm are not necessarily normalized.
The proposal distribution $q(x, y)$ gives the probability density for choosing $x$ as the next point when $y$ is the current point. It is sometimes written as $q(x \mid y)$.

If the proppdf or logproppdf satisfies $q(x, y)=q(y, x)$, that is, the proposal distribution is symmetric, mhsample implements Random Walk Metropolis-Hastings sampling. If the proppdf or logproppdf satisfies $q(x, y)=q(x)$, that is, the proposal distribution is independent of current values, mhsample implements Independent Metropolis-Hastings sampling.
smpl = mhsample(...,'symmetric',sym) draws nsamples random samples from a target stationary distribution pdf using the Metropolis-Hastings algorithm. sym is a logical value that indicates whether the proposal distribution is symmetric. The default value is false, which corresponds to the asymmetric proposal distribution. If sym is true, for example, the proposal distribution is symmetric, proppdf and logproppdf are optional.
smpl = mhsample(...,'burnin',K) generates a Markov chain with values between the starting point and the $\mathrm{k}^{\text {th }}$ point omitted in the generated sequence. Values beyond the $k^{\text {th }}$ point are kept. $k$ is a nonnegative integer with default value of 0 .
smpl = mhsample(...,'thin',m) generates a Markov chain with $m-1$ out of $m$ values omitted in the generated sequence. $m$ is a positive integer with default value of 1 .
smpl = mhsample(...,'nchain', n) generates $n$ Markov chains using the Metropolis-Hastings algorithm. $n$ is a positive integer with a default value of 1 . smpl is a matrix containing the samples. The last dimension contains the indices for individual chains.
[smpl, accept] = mhsample(...) also returns accept, the acceptance rate of the proposed distribution. accept is a scalar if a single chain is generated and is a vector if multiple chains are generated.

## Examples

Estimate the second order moment of a Gamma distribution using the Independent Metropolis-Hastings sampling.

```
alpha = 2.43;
beta = 1;
pdf = @(x)gampdf(x,alpha,beta); %target distribution
proppdf = @(x,y)gampdf(x,floor(alpha),floor(alpha)/alpha);
proprnd = @(x)sum(...
 exprnd(floor(alpha)/alpha,floor(alpha),1));
nsamples = 5000;
smpl = mhsample(1,nsamples,'pdf',pdf,'proprnd',proprnd,...
 'proppdf',proppdf);
xxhat = cumsum(smpl.^2)./(1:nsamples)';
```



Generate random samples from $N(0,1)$ using the Random Walk Metropolis-Hastings sampling.

```
delta = .5;
pdf = @(x) normpdf(x);
proppdf = @(x,y) unifpdf(y-x,-delta,delta);
proprnd = @(x) x + rand*2*delta - delta;
nsamples = 15000;
x = mhsample(1,nsamples,'pdf',pdf,'proprnd',proprnd,'symmetric',1);
histfit(x,50)
h = get(gca,'Children');
set(h(2),'FaceColor',[.8 . 8 1])
```



See Also
slicesample | rand

## TreeBagger.MinLeaf property

Purpose Minimum number of observations per tree leaf
$\begin{array}{ll}\text { Description } & \text { The MinLeaf property specifies the minimum number of observations } \\ \text { per tree leaf. The default values are } 1 \text { for classification and } 5 \text { for } \\ \text { regression. For classregtree training, the 'minparent' value is set to } \\ & 2 * \text { MinLeaf. }\end{array}$
See Also
classregtree

## Purpose Maximum likelihood estimates

```
Syntax phat = mle(data)
phat = mle(data,'distribution',dist)
phat = mle(data,'pdf',pdf,'start',start)
phat = mle(data,'pdf',pdf,'start',start,'cdf',cdf)
phat = mle(data,'logpdf',logpdf,'start',start)
phat =
mle(data,'logpdf',logpdf,'start',start,'logsf',logsf)
phat = mle(data,'nloglf',nloglf,'start',start)
phat = mle(___,Name,Value)
[phat,pci] = mle(___)
```


## Description

phat $=$ mle(data) returns maximum likelihood estimates (MLEs) for the parameters of a normal distribution, using the sample data in the vector data.
phat $=$ mle(data, 'distribution',dist) returns parameter estimates for a distribution specified by dist.
phat $=$ mle(data,'pdf',pdf,'start',start) returns parameter estimates for a custom distribution specified by the probability density function pdf. You must also specify the initial parameter values, start.
phat = mle(data, 'pdf', pdf,'start',start,'cdf',cdf) returns parameter estimates for a custom distribution specified by the probability density function pdf and custom cumulative distribution function cdf.
phat $=$ mle(data, 'logpdf', logpdf,'start',start) returns parameter estimates for a custom distribution specified by the log
probability density function logpdf. You must also specify the initial parameter values, start.
phat =
mle(data,'logpdf',logpdf,'start',start,'logsf',logsf) returns parameter estimates for a custom distribution specified by the log probability density function logpdf and custom log survival function logsf.
phat $=$ mle(data, 'nloglf', nloglf,'start',start) returns parameter estimates for the custom distribution specified by the negative loglikelihood function nloglf. You must also specify the initial parameter values, start.
phat = mle( __ , Name, Value) also returns the parameter estimates with additional options specified by one or more name-value pair arguments. You can use any of the input arguments in the previous syntaxes.
[phat, pci] = mle( __ ) also returns the $95 \%$ confidence intervals for the parameters.

## Input Arguments

## data-Sample data

vector
Sample data mle uses to estimate the distribution parameters, specified as a vector.

## Data Types

single | double
dist-Distribution type
'normal' (default) | string
Distribution type to estimate parameters for, specified as one of the following.

| dist | Description | Parameter 1 | Parameter 2 | Parameter <br> $\mathbf{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| 'bernoulli' | "Bernoulli Distribution" <br> on page B-3 | p: probability <br> of success for <br> each trial | - | - |
| 'beta' or 'Beta' | "Beta Distribution" on <br> page B-4 | a | b | - |
| 'bino' or <br> 'Binomial' | "Binomial Distribution" <br> on page B-7 | $\mathrm{n}:$ number of <br> trials | p: probability <br> of success for <br> each trial | - |
| 'birnbaumsaunder | "Birnbaum-Saunders <br> Distribution" on page <br> B-10 | $\beta$ : scale | $\gamma$ : shape | - |
| 'burr' or 'Burr' | "Burr Type XII <br> Distribution" on page <br> B-12 | a: scale | c: first shape | k: <br> second <br> shape |
| 'Discrete <br> Uniform' or <br> 'unid' | "Uniform Distribution <br> (Discrete)" on page B-114 | N: maximum <br> observable <br> value | - | - |
| 'exp' or <br> 'Exponential' | "Exponential <br> Distribution" on page <br> B-29 | $\mu:$ mean | - | - |
| 'ev' or 'Extreme <br> Value' | "Extreme Value <br> Distribution" on page <br> B-32 | $\mu$ : location | $\sigma:$ scale | - |
| 'gam' or 'Gamma' | "Gamma Distribution" <br> on page B-40 | a: shape | b: scale | - |
| 'gev' or <br> 'Generalized <br> Extreme Value' | "Generalized Extreme <br> Value Distribution" on <br> page B-45 | k: shape | $\sigma:$ scale | $\mu:$ <br> location |


| dist | Description | Parameter 1 | Parameter 2 | Parameter $3$ |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { 'gp' or } \\ & \text { 'Generalized } \\ & \text { Pareto' } \end{aligned}$ | "Generalized Pareto Distribution" on page B-50 | k: tail index (shape) | $\sigma$ : scale | $\theta$ : threshold |
| $\begin{aligned} & \text { 'geo' or } \\ & \text { 'Geometric' } \end{aligned}$ | "Geometric Distribution" on page B-54 | p: probability | - | - |
| 'inversegaussian | '"Inverse Gaussian Distribution" on page B-58 | $\mu$ : scale | $\lambda$ : shape | - |
| 'logistic' | "Logistic Distribution" on page B-62 | $\mu$ : location | $\sigma$ : scale | - |
| 'loglogistic' | "Loglogistic Distribution" on page B-63 | $\mu$ : log location | $\sigma$ : $\log$ scale | - |
| 'logn' or <br> 'Lognormal' | "Lognormal Distribution" on page B-64 | $\mu$ : log location | $\sigma$ : $\log$ scale | - |
| 'nakagami' | "Nakagami Distribution" on page B-83 | $\mu$ : shape | $\omega$ : scale | - |
| 'nbin' or 'Negative Binomial' | "Negative Binomial Distribution" on page B-85 | $r$ : number of successes | p: probability of success in a single trial | - |
| 'norm' or 'Normal' | "Normal Distribution" on page B-96 | $\mu$ : location (mean) | $\sigma$ : scale (standard deviation) | - |
| 'poiss' or 'Poisson' | "Poisson Distribution" on page B-102 | $\lambda:$ mean | - | - |
| 'rayl' or 'Rayleigh' | "Rayleigh Distribution" on page B-104 | b: scale | - | - |


| dist | Description | Parameter 1 | Parameter 2 | Parameter <br> $\mathbf{3}$ |
| :--- | :--- | :--- | :--- | :--- |
| 'rician' | "Rician Distribution" on <br> page B-106 | $\mathrm{s}:$ <br> noncentrality | $\sigma:$ scale | - |
| 'tlocationscale' | "t Location-Scale <br> Distribution" on page <br> B-110 | $\mu$ : location | $\sigma$ : scale | : <br> degrees <br> of <br> freedom <br> 'unif' or <br> 'Uniform' <br> "Uniform Distribution <br> (Continuous)" on page <br> B-112 <br> a: lower <br> endpoint <br> (minimum) <br> 'wbl' or <br> 'Weibull'"Weibull Distribution" <br> on page B-116 |
| a: scale | b: upper <br> (maximum) | - |  |  |

Example: 'rician'

## pdf - Custom probability density function

function handle

Custom probability distribution function, specified as a function handle created using @.
This custom function accepts the vector data and one or more individual distribution parameters as input parameters, and returns a vector of probability density values.
For example, if the name of the custom probability density function is newpdf, then you can specify the function handle in mle as follows.

## Example: @newpdf

Data Types
function_handle
cdf - Custom cumulative distribution function
function handle

Custom cumulative distribution function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution parameters as input parameters, and returns a vector of cumulative probability values.

You must define cdf with pdf if data is censored and you use the 'censoring' name-value pair argument. If 'censoring' is not present, you do not have to specify cdf while using pdf.

For example, if the name of the custom cumulative distribution function is newcdf, then you can specify the function handle in mle as follows.

## Example: @newcdf

## Data Types <br> function_handle

## logpdf - Custom log probability density function

function handle
Custom log probability density function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution parameters as input parameters, and returns a vector of log probability values.

For example, if the name of the custom log probability density function is customlogpdf, then you can specify the function handle in mle as follows.

## Example: @customlogpdf

Data Types<br>function_handle

## logsf - Custom log survival function

function handle

Custom log survival function, specified as a function handle created using @.
This custom function accepts the vector data and one or more individual distribution parameters as input parameters, and returns a vector of log survival probability values.
You must define logsf with logpdf if data is censored and you use the 'censoring' name-value pair argument. If 'censoring' is not present, you do not have to specify logsf while using logpdf.

For example, if the name of the custom log survival function is logsurvival, then you can specify the function handle in mle as follows.
Example: @logsurvival

## Data Types

function_handle

## nloglf - Custom negative loglikelihood function

function handle
Custom negative loglikelihood function, specified as a function handle created using @.
This custom function accepts the following input arguments.

| params | Vector of distribution parameter values. mle detects <br> tho numbor of noramotore from tho numbor of |
| :--- | :--- |
| data | Vector of data. |
| cens | Boolean vector of censored values. |
| freq | Vector of integer data frequencies. |

nloglf must accept all four arguments even if you do not use the 'censoring' or 'frequency' name-value pair arguments. You can write 'nloglf' to ignore cens and freq arguments in that case.
nloglf returns a scalar negative loglikelihood value and optionally, a negative loglikelihood gradient vector (see the 'GradObj' field in 'options').

If the name of the custom negative log likelihood function is negloglik, then you can specify the function handle in mle as follows.

Example: @negloglik

Data Types<br>function_handle

## start - Initial parameter values

scalar | vector
Initial parameter values for the custom functions, specified as a scalar value or a vector of scalar values.

Use start when you fit custom distributions, that is, when you use pdf and cdf, logpdf and logsf, or nloglf input arguments.

Example: 0.05
Example: [100,2]

## Data Types

single | double

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'censoring', Cens, 'alpha', 0.01, 'options', Opt specifies that mle estimates the parameters for the distribution of censored data specified by array Cens, computes the $99 \%$ confidence limits for the parameter estimates, and uses the algorithm control parameters specified by the structure Opt.

## 'censoring' - Indicator for censoring

array of 0 s (default) | array of 0 s and 1 s

Indicator for censoring, specified as the comma-separated pair consisting of 'censoring' and a Boolean array of the same size as data. Use 1 for observations that are right censored and 0 for observations that are fully observed. The default is all observations are fully observed.

Censoring is not supported for all distributions.
For example, if the censored data information is in the binary array called Censored, then you can specify the censored data as follows.

```
Example: 'censoring', Censored
```


## Data Types

logical

## 'frequency' - Frequency of observations

array of 1 s (default) | vector of nonnegative integer counts
Frequency of observations, specified as the comma-separated pair consisting of 'frequency' and an array containing nonnegative integer counts, which is the same size as data. The default is one observation per element of data.

For example, if the observation frequencies are stored in an array named Freq, you can specify the frequencies as follows.
Example: 'frequency ', Freq
Data Types
single | double

## 'alpha' - Confidence level

0.05 (default) | scalar value in the range ( 0,1 )

Confidence level for the confidence interval of parameter estimates, pci, specified as the comma-separated pair consisting of 'alpha' and a scalar value in the range $(0,1)$. The confidence level of pci is $100(1-\mathrm{alpha}) \%$. The default is 0.05 for $95 \%$ confidence.

For example, for $99 \%$ confidence limits, you can specify the confidence level as follows.

# Example: 'alpha',0.01 

```
Data Types
single | double
'ntrials' - Number of trials
```

scalar value | vector

Number of trials for the corresponding element of data, specified as the comma-separated pair consisting of 'ntrials' and a scalar or a vector of the same size as data.

Applies only to binomial distribution.
Example: 'ntrials', total

## Data Types <br> single | double

## 'options' - Fitting algorithm control parameters

structure
Fitting algorithm control parameters, specified as the comma-separated pair consisting of 'options' and a structure returned by statset.

Not applicable to all distributions.
Use the 'options' name-value pair argument to control details of the maximum likelihood optimization when fitting a custom distribution. For parameter names and default values, type statset('mlecustom'). You can set the options under a new name and use that in the name-value pair argument. mle interprets the following statset parameters for custom distribution fitting.

| Parameter | Value |
| :--- | :--- |
| 'GradObj' | Default is 'off' <br> 'on' or 'off ', indicating whether or not fmincon <br> can expect the custom function provided with the <br> nloglf input argument to return the gradient vector <br> of the negative log-likelihood as a second output. |
| 'DerivStep' | Default is eps^(1/3). <br> The relative difference, specified as a scalar or <br> a vector the same size as start, used in finite <br> difference derivative approximations when using <br> fmincon, and 'GradObj ' is 'off'. <br> mle ignores 'DerivStep' when using fminsearch. |
| 'FunValCheck' | Default is ' on '. <br> 'on' or ' off', indicating whether or not mle should <br> check the values returned by the custom distribution <br> functions for validity. |
| A poor choice of starting point can sometimes cause <br> these functions to return NaNs, infinite values, or <br> out-of-range values if they are written without <br> suitable error checking. |  |
| 'TolBnd' | Default is 1e -6.An offset for upper and lower bounds <br> when using fmincon. |
| mle treats upper and lower bounds as strict |  |
| inequalities, that is, open bounds. With fmincon, |  |
| this is approximated by creating closed bounds |  |
| inset from the specified upper and lower bounds by |  |
| TolBnd. |  |

Example: 'options',statset('mlecustom')
Data Types
struct

## 'lowerbound' - Lower bounds for distribution parameters <br> $-\infty$ (default) | vector

Lower bounds for distribution parameters, specified as the comma-separated pair consisting of 'lowerbound ' and a vector the same size as start.

This name-value pair argument is valid only when you use the pdf and cdf, logpdf and logcdf, or nloglf input arguments.

Example: 'lowerbound',0
Data Types
single | double

## 'upperbound' - Upper bounds for distribution parameters

$\infty$ (default) | vector
Upper bounds for distribution parameters, specified as the comma-separated pair consisting of 'upperbound ' and a vector the same size as start.

This name-value pair argument is valid only when you use the pdf and cdf, logpdf and logsf, or nloglf input arguments.

Example: 'upperbound',1

## Data Types <br> single | double

## 'optimfun' - Optimization function

'fminsearch' (default) | 'fmincon'
Optimization function mle uses in maximizing the likelihood, specified as the comma-separated pair consisting of 'optimfun' and either 'fminsearch' or 'fmincon'.

Default is 'fminsearch'.
You can only specify 'fmincon' if Optimization Toolbox is available.

The 'optimfun' name-value pair argument is valid only when you fit custom distributions, that is, when you use the pdf and cdf, logpdf and logsf, or nloglf input arguments.

Example: 'optimfun','fmincon'

## Output Arguments

## Examples Estimate Parameters of Burr Distribution

Load the sample data.

## load carbig

The variable MPG has the miles per gallon for different models of cars.
Draw a histogram of MPG data.
hist(MPG)


The distribution is somewhat right skewed. A symmetric distribution, such as normal distribution, might not be a good fit.

Estimate the parameters of the Burr Type XII distribution for the MPG data.

```
phat = mle(MPG,'distribution','burr')
phat =
```


## $34.6447 \quad 3.7898 \quad 3.5722$

The maximum likelihood estimates for the scale parameter a is 34.6447. The estimates for the two shape parameters $c$ and $k$ of the Burr Type XII distribution are 3.7898 and 3.5722, respectively.

## Fit Custom Distribution to Censored Data

Navigate to a folder containing sample data.

```
cd(matlabroot)
cd('help/toolbox/stats/examples')
```

Load the sample data.

## load readmissiontimes

The data includes ReadmissionTime, which has readmission times for 100 patients. The column vector Censored has the censorship information for each patient, where 1 indicates a censored observation, and 0 indicates the exact readmission time is observed. This is simulated data.

Define a custom probability density and cumulative distribution function.

```
custpdf = @(data,lambda) lambda*exp(-lambda*data);
custcdf = @(data,lambda) 1-exp(-lambda*data);
```

Estimate the parameter, lambda, of the custom distribution for the censored sample data.

```
phat = mle(ReadmissionTime,'pdf',custpdf,...
'cdf',custcdf,'start',0.05,'Censoring',Censored)
phat
```

phat $=$
0.1096

## Fit Custom Log pdf and Survival Function

Navigate to a folder containing sample data.

```
cd(matlabroot)
cd('help/toolbox/stats/examples')
```

Load the sample data.
load readmissiontimes
The data includes ReadmissionTime, which has readmission times for 100 patients. The column vector Censored has the censorship information for each patient, where 1 indicates a censored observation, and 0 indicates the exact readmission time is observed. This is simulated data.

Define a custom log probability density and survival function.

```
custlogpdf = @(data,lambda,k) log(k)-k*log(lambda)...
 +(k-1)*log(data)-(data/lambda).^k;
custlogsf = @(data,lambda,k) -(data/lambda).^k;
```

Estimate the parameters, lambda and $k$, of the custom distribution for the censored sample data.

```
phat = mle(ReadmissionTime,'logpdf',custlogpdf,...
'logsf',custlogsf,'start',[1,0.75],'Censoring',Censored)
phat =
 9.2090 1.4223
```

The scale and shape parameters of the custom-defined distribution are 9.2090 and 1.4223 , respectively.

## Fit Custom Log Negative Likelihood Function

Navigate to a folder containing sample data.

```
cd(matlabroot)
cd('help/toolbox/stats/examples')
```

Load the sample data.
load readmissiontimes
The data includes ReadmissionTime, which has readmission times for 100 patients. This is simulated data.

Define a negative log likelihood function.

```
custnloglf=@(lambda,data,cens,freq) -length(data)*log(lambda)...
+ nansum(lambda*data);
```

Estimate the parameters of the defined distribution.

```
phat = mle(ReadmissionTime,'nloglf',custnloglf,'start',0.05)
```

phat $=$
0.1462

## Estimate Probability of Success

Generate 100 random observations from a binomial distribution with the number of trials, $n=20$, and the probability of success, $p=0.75$.

```
data = binornd(20,0.75,100,1);
```

Estimate the probability of success and $95 \%$ confidence limits using the simulated sample data.

```
[phat,pci] = mle(data,'distribution','binomial',...
 'alpha',.05,'ntrials',20)
```

phat $=$
0.7370
pci $=$
0.7171

The estimate of probability of success is 0.737 and the lower and upper limits of the $95 \%$ confidence interval are 0.7171 and 0.7562 . This interval covers the true value used to simulate the data.

## Definitions

Tips
When you supply distribution functions, mle computes the parameter estimates using an iterative maximization algorithm. With some models and data, a poor choice of starting point can cause mle to converge to a local optimum that is not the global maximizer, or to fail to converge entirely. Even in cases for which the log-likelihood is well-behaved near the global maximum, the choice of starting point is often crucial to convergence of the algorithm. In particular, if the initial parameter values are far from the MLEs, underflow in the distribution functions can lead to infinite log-likelihoods.

## Survival Function

The survival function is the probability of survival as a function of time. It is also called the survivor function. It gives the probability that the survival time of an individual exceeds a certain value. Since the cumulative distribution function, $F(t)$, is the probability that the survival time is less than or equal to a given point in time, the survival function for a continuous distribution, $S(t)$, is the complement of the cumulative distribution function: $S(t)=1-F(t)$.

[^7]| Purpose | Asymptotic covariance of maximum likelihood estimators |
| :---: | :---: |
| Syntax | acov = mlecov(params, data, 'pdf', pdf) |
|  | acov = mlecov(params, data,'pdf', pdf, 'cdf', cdf) |
|  | acov = mlecov(params,data,'logpdf',logpdf) |
|  | acov = mlecov(params, data,'logpdf',logpdf,'logsf',logsf |
|  | acov = mlecov(params, data, 'nloglf', nloglf) |
|  | acov $=$ mlecov( __ , Name, Value $)$ |
| Description | acov = mlecov(params,data, 'pdf',pdf) returns an approximation to the asymptotic covariance matrix of the maximum likelihood estimators of the parameters for a distribution specified by the custom probability density function pdf. |
|  | mlecov computes a finite difference approximation to the Hessian of the log-likelihood at the maximum likelihood estimates params, given the observed data, and returns the negative inverse of that Hessian. |
|  | acov = mlecov(params,data,'pdf',pdf,'cdf',cdf) returns an approximation to the asymptotic covariance matrix of the maximum likelihood estimators of the parameters for a distribution specified by the custom probability density function pdf and cumulative distribution function cdf. |
|  | acov = mlecov(params,data,'logpdf',logpdf) returns an approximation to the asymptotic covariance matrix of the maximum likelihood estimators of the parameters for a distribution specified by the custom log probability density function logpdf. |
|  | acov $=$ mlecov(params, data, 'logpdf',logpdf,'logsf',logsf) returns an approximation to the asymptotic covariance matrix of the maximum likelihood estimators of the parameters for a distribution |

specified by the custom log probability density function logpdf and custom log survival function logsf.
acov $=$ mlecov(params,data,'nloglf',nloglf) returns an approximation to the asymptotic covariance matrix of the maximum likelihood estimators of the parameters for a distribution specified by the custom negative loglikelihood function nloglf.
acov $=m l e c o v(\ldots$, , Name, Value) also returns an approximation to the asymptotic covariance matrix of the maximum likelihood estimators of the parameters with additional options specified by one or more name-value pair arguments. You can use any of the input arguments in the previous syntaxes.

## Input Arguments

params - Parameter estimates<br>scalar value | vector

Parameter estimates, specified as a scalar value or vector of scalar values. These parameter estimates must be maximum likelihood estimates. For example, you can specify parameter estimates returned by mle.

Data Types
single | double

## data-Sample data

vector
Sample data mle uses to estimate the distribution parameters, specified as a vector.

Data Types
single | double
pdf - Custom probability density function
function handle

Custom probability distribution function, specified as a function handle created using @.
This custom function accepts the vector data and one or more individual distribution parameters as input parameters, and returns a vector of probability density values.
For example, if the name of the custom probability density function is newpdf, then you can specify the function handle in mlecov as follows.

## Example: @newpdf

## Data Types

function_handle

## cdf - Custom cumulative distribution function

## function handle

Custom cumulative distribution function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution parameters as input parameters, and returns a vector of cumulative probability values.

You must define cdf with pdf if data is censored and you use the 'censoring' name-value pair argument. If 'censoring' is not present, you do not have to specify cdf while using pdf.

For example, if the name of the custom cumulative distribution function is newcdf, then you can specify the function handle in mlecov as follows.

## Example: @newcdf

## Data Types

function_handle

## logpdf - Custom log probability density function

function handle
Custom log probability density function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution parameters as input parameters, and returns a vector of log probability values.

For example, if the name of the custom log probability density function is customlogpdf, then you can specify the function handle in mlecov as follows.

## Example: @customlogpdf

## Data Types <br> function_handle

## logsf - Custom log survival function

function handle
Custom log survival function, specified as a function handle created using @.

This custom function accepts the vector data and one or more individual distribution parameters as input parameters, and returns a vector of log survival probability values.

You must define logsf with logpdf if data is censored and you use the 'censoring' name-value pair argument. If 'censoring' is not present, you do not have to specify logsf while using logpdf.

For example, if the name of the custom log survival function is logsurvival, then you can specify the function handle in mlecov as follows.

## Example: @logsurvival

## Data Types <br> function_handle

## nloglf - Custom negative loglikelihood function

function handle
Custom negative loglikelihood function, specified as a function handle created using @.

This custom function accepts the following input arguments.

| params | Vector of distribution parameter values |
| :--- | :--- |
| data | Vector of data |
| cens | Boolean vector of censored values |
| freq | Vector of integer data frequencies |

nloglf must accept all four arguments even if you do not use the 'censoring' or 'frequency' name-value pair arguments. You can write 'nloglf' to ignore cens and freq arguments in that case.
nloglf returns a scalar negative loglikelihood value and optionally, a negative loglikelihood gradient vector (see the 'GradObj' field in 'options').

If the name of the custom negative log likelihood function is negloglik, then you can specify the function handle in mlecov as follows.
Example: @negloglik

## Data Types

function_handle

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'censoring', cens, 'options', opt specifies that mlecov reads the censored data information from the vector cens and performs according to the new options structure opt.

'censoring' - Indicator for censoring

array of 0 s (default) | array of 0 s and 1 s

Indicator for censoring, specified as the comma-separated pair consisting of 'censoring' and a Boolean array of the same size as data. Use 1 for observations that are right censored and 0 for observations that are fully observed. The default is all observations are fully observed.

For censored data, you must use cdf with pdf, or logsf with logpdf, or nloglf must be defined to account for censoring.

For example, if the censored data information is in the binary array called Censored, then you can specify the censored data as follows.

Example: 'censoring', Censored

## Data Types

logical

## 'frequency' - Frequency of observations

array of 1s (default) | vector of nonnegative integer counts
Frequency of observations, specified as the comma-separated pair consisting of 'frequency' and an array containing nonnegative integer counts, which is the same size as data. The default is one observation per element of data.

For example, if the observation frequencies are stored in an array named Freq, you can specify the frequencies as follows.

Example: 'frequency',Freq
Data Types
single | double

## 'options' - Numerical options

structure
Numerical options for the finite difference Hessian calculation, specified as the comma-separated pair consisting of 'options' and a structure returned by statset.

You can set the options under a new name and use it in the name-value pair argument. The applicable statset parameters are as follows.

| Parameter | Value |
| :--- | :--- |
| 'GradObj ' | Default is 'off '. <br> 'on' or 'off ', indicating whether or not the function <br> provided with the nloglf input argument can return <br> the gradient vector of the negative log-likelihood as <br> a second output. |
| 'DerivStep' | Default is eps^ $(1 / 4)$. <br> Relative step size used in finite difference for <br> Hessian calculations. It can be a scalar, or the same <br> size as params. A smaller value than the default <br> might be appropriate if 'GradObj ' is 'on '. |

Example: 'options',statset('mlecov')

## Data Types

struct

## Output Arguments

## Examples

acov - Approximation to asymptotic covariance matrix $p$-by-p matrix

Approximation to asymptotic covariance matrix, returned as a $p$-by- $p$ matrix, where $p$ is the number of parameters in params.

## Custom Probability Density Function

Load the sample data.

## load carbig

The vector Weight shows the weights of 406 cars.
In the MATLAB Editor, create a function that returns the probability density function (pdf) of a lognormal distribution. Save the file in your current working folder as lognormpdf.m.
function newpdf $=$ lognormpdf(data,mu,sigma)

```
newpdf = exp((-(log(data)-mu).^2)/(2*sigma^2))./(data*sigma*sqrt(2*pi));
```

Estimate the parameters, mu and sigma, of the custom-defined distribution.
phat $=$ mle(Weight,'pdf', @lognormpdf,'start',[4.5 0.3])
phat $=$
$7.9600 \quad 0.2804$

Compute the approximate covariance matrix of the parameter estimates.
acov $=$ mlecov(phat,Weight, 'pdf', @lognormpdf)
acov =
1.0e-03 *
$0.1937-0.0000$
-0.0000 0.0968

Estimate the standard errors of estimates.

```
se = sqrt(diag(acov))
se =
 0.0139
 0.0098
```

The standard error of the estimates of mu and sigma are 0.0139 and 0.0098 , respectively.

## Custom Log Probability Density Function

In the MATLAB Editor, create a function that returns the log probability density function of a beta distribution. Save the file in your current working folder as betalogpdf.m.

```
function logpdf = betalogpdf(x,a,b)
logpdf = (a-1)*log(x)+(b-1)*log(1-x)-betaln(a,b);
```

Generate sample data from a beta distribution with parameters 1.23 and 3.45 and estimate the parameters using the simulated data.

```
rng('default')
x = betarnd(1.23,3.45,25,1);
phat = mle(x,'dist','beta')
phat =
```

$$
1.1213 \quad 2.7182
$$

Compute the approximate covariance matrix of the parameter estimates.

```
acov = mlecov(phat,x,'logpdf',@betalogpdf)
```

acov $=$

$$
\begin{array}{ll}
0.0810 & 0.1646 \\
0.1646 & 0.6074
\end{array}
$$

## Custom Log pdf and Survival Function

Navigate to a folder containing sample data.

```
cd(matlabroot)
cd('help/toolbox/stats/examples')
```

Load the sample data.

The sample data includes ReadmissionTime, which has readmission times for 100 patients. The column vector Censored has the censorship information for each patient, where 1 indicates a censored observation, and 0 indicates the exact readmission time is observed. This is simulated data.

Define a custom log probability density and survival function.

```
custlogpdf = @(data,lambda,k) log(k)-k*log(lambda)...
 +(k-1)*log(data)-(data/lambda).^k;
custlogsf = @(data,lambda,k) -(data/lambda).^k;
```

Estimate the parameters, lambda and $k$, of the custom distribution for the censored sample data.

```
phat = mle(ReadmissionTime,'logpdf',custlogpdf,...
```

'logsf', custlogsf,'start',[1,0.75],'Censoring',Censored)
phat $=$

$$
9.2090 \quad 1.4223
$$

The scale and shape parameters of the custom-defined distribution are 9.2090 and 1.4223 , respectively.

Compute the approximate covariance matrix of the parameter estimates.

```
acov = mlecov(phat,ReadmissionTime,...
'logpdf',custlogpdf,'logsf',custlogsf,'Censoring',Censored)
acov =
 0.5653 0.0102
 0.0102 0.0163
```


## Custom Log Negative Likelihood Function

Navigate to a folder containing sample data.

```
cd(matlabroot)
cd('help/toolbox/stats/examples')
```

Load the sample data.

```
load readmissiontimes
```

The sample data includes ReadmissionTime, which has readmission times for 100 patients. This is simulated data.

Define a negative log likelihood function.

```
custnloglf = @(lambda,data,cens,freq) -length(data)*log(lambda)...
+ nansum(lambda*data);
```

Estimate the parameters of the defined distribution.

```
phat = mle(ReadmissionTime,'nloglf',custnloglf,'start',0.05)
phat =
 0.1462
```

Compute the variance of the parameter estimate.

```
acov = mlecov(phat,ReadmissionTime,'nloglf',custnloglf)
acov =
 2.1374e-04
```

Compute the standard error.

```
sqrt(acov)
```

ans $=$

## Definitions

## Survival Function

The survival function is the probability of survival as a function of time. It is also called the survivor function. It gives the probability that the survival time of an individual exceeds a certain value. Since the cumulative distribution function, $F(t)$, is the probability that the survival time is less than or equal to a given point in time, the survival function for a continuous distribution, $S(t)$, is the complement of the cumulative distribution function: $S(t)=1-F(t)$.

## See Also mle

Concepts • "What Is Survival Analysis?" on page 11-2

## Purpose Multinomial probability density function

## Syntax $\quad Y=\operatorname{mnpdf}(X, P R O B)$

Description
$Y=\operatorname{mnpdf}(X, P R O B)$ returns the pdf for the multinomial distribution with probabilities PROB, evaluated at each row of $X . X$ and PROB are $m$-by- $k$ matrices or 1 -by- $k$ vectors, where $k$ is the number of multinomial bins or categories. Each row of PROB must sum to one, and the sample sizes for each observation (rows of $X$ ) are given by the row sums sum ( $X, 2$ ). $Y$ is an $m$-by- $k$ matrix, and mnpdf computes each row of $Y$ using the corresponding rows of the inputs, or replicates them if needed.

## Examples

```
% Compute the distribution
p = [1/2 1/3 1/6]; % Outcome probabilities
n = 10; % Sample size
x1 = 0:n;
x2 = 0:n;
[X1,X2] = meshgrid(x1,x2);
X3 = n-(X1+X2);
Y = mnpdf([X1(:),X2(:),X3(:)],repmat(p,(n+1)^2,1));
% Plot the distribution
Y = reshape(Y, n+1,n+1);
bar3(Y)
set(gca,'XTickLabel',0:n)
set(gca,'YTickLabel',0:n)
xlabel('x_1')
ylabel('x_2')
zlabel('Probability Mass')
title('Trinomial Distribution')
```



Note that the visualization does not show $x_{3}$, which is determined by the constraint $x_{1}+x_{2}+x_{3}=n$.

See Also
mnrnd

- "Multinomial Distribution" on page B-67

| Purpose | Multinomial logistic regression |
| :--- | :--- |
| Syntax | $B=m n r f i t(X, Y)$ |
|  | $B=m n r f i t(X, Y$, Name, Value $)$ |
|  | $[B, \operatorname{dev}, \operatorname{stats}]=\operatorname{mnrfit}\left(\_\right)$ |

## Description

## Input Arguments

$B=\operatorname{mnrfit}(X, Y)$ returns a matrix, $B$, of coefficient estimates for a multinomial logistic regression of the nominal responses in $Y$ on the predictors in X .
$B=m n r f i t(X, Y, N a m e$, Value $)$ returns a matrix, $B$, of coefficient estimates for a multinomial model fit with additional options specified by one or more Name, Value pair arguments.

For example, you can fit a nominal, an ordinal, or a hierarchical model, or change the link function.
[B, dev, stats] = mnrfit( __ ) also returns the deviance of the fit, dev, and the structure stats for any of the previous input arguments. stats contains model statistics such as degrees of freedom, standard errors for coefficient estimates, and residuals.

## X-Observations on predictor variables

$n$-by-p matrix
Observations on predictor variables, specified as an $n$-by- $p$ matrix. X contains $n$ observations for $p$ predictors.

Note mnrfit automatically includes a constant term (intercept) in all
models. Do not include a column of 1 s in X .

Data Types<br>single | double

## Y-Response values

## $n$-by- $k$ matrix | $n$-by- 1 column vector

Response values, specified as a column vector or a matrix. Y can be one of the following:

- An $n$-by- $k$ matrix, where $Y(i, j)$ is the number of outcomes of the multinomial category $j$ for the predictor combinations given by $X(i,:)$. In this case, the number of observations are made at each predictor combination.
- An $n$-by- 1 column vector of scalar integers from 1 to $k$ indicating the value of the response for each observation. In this case, all sample sizes are 1.


## Data Types <br> single | double

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'model', 'ordinal', 'link', 'probit' specifies an ordinal model with a probit link function.

```
'model' - Type of model to fit
'nominal' (default) | 'ordinal' | 'hierarchical'
```

Type of model to fit, specified as the comma-separated pair consisting of 'model' and one of the following.

| 'nominal' | Default. There is no ordering among the response <br> categories. |
| :--- | :--- |
| 'ordinal' | There is a natural ordering among the response <br> categories. |
| 'hierarchical' | The choice of response category is <br> sequential/nested. |

Example: 'model','ordinal'

## 'interactions' - Indicator for interaction between multinomial categories and coefficients

'on' | 'off'
Indicator for an interaction between the multinomial categories and coefficients, specified as the comma-separated pair consisting of 'interactions' and one of the following.

| 'on ' | Default for nominal and hierarchical models. Fit a model <br> with different coefficients across categories. |
| :--- | :--- |
| 'off' | Default for ordinal models. Fit a model with a common <br> set of coefficients for the predictor variables, across all <br> multinomial categories. This is often described as parallel <br> regression or the proportional odds model. |

In all cases, the model has different intercepts across categories. The choice of 'interactions' determines the dimensions of the output array B.

Example: 'interactions', 'off'
Data Types
logical
'link' - Link function
'logit' (default) | 'probit' | 'comploglog' | 'loglog

Link function to use for ordinal and hierarchical models, specified as the comma-separated pair consisting of 'link' and one of the following.

| 'logit' | Default. $f(\gamma)=\ln (\gamma /(1-\gamma))$ |
| :--- | :--- |
| 'probit' | $f(\gamma)=\Phi^{-1}(\gamma)-$ error term is normally distributed <br> with variance 1 |
| 'comploglog' | Complementary log-log $f(\gamma)=\ln (-\ln (1-\gamma))$ |
| 'loglog' | $f(\gamma)=\ln (-\ln (\gamma))$ |

The link function defines the relationship between response probabilities and the linear combination of predictors, $X \beta$. The link functions might be functions of cumulative or conditional probabilities based on whether the model is for an ordinal or a sequential/nested response. For example, for an ordinal model, $\gamma$ represents the cumulative probability of being in categories 1 to $j$ and the model with a logit link function as follows:

$$
\ln \left(\frac{\gamma}{1-\gamma}\right)=\ln \left(\frac{\pi_{1}+\pi_{2}+\cdots+\pi_{j}}{\pi_{j+1}+\cdots+\pi_{k}}\right)=\beta_{0 j}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p}
$$

where $k$ represents the last category.
You cannot specify the 'link' parameter for nominal models; these always use a multinomial logit link,

$$
\ln \left(\frac{\pi_{j}}{\pi_{r}}\right)=\beta_{j 0}+\beta_{j 1} X_{j 1}+\beta_{j 2} X_{j 2}+\cdots+\beta_{j p} X_{j p}, \quad j=1, \ldots, k-1
$$

where $\Pi$ stands for a categorical probability, and $r$ corresponds to the reference category. mnrfit uses the last category as the reference category for nominal models.
Example: 'link', 'loglog'

## 'estdisp' - Indicator for estimating dispersion parameter

[^8]Indicator for estimating a dispersion parameter, specified as the comma-separated pair consisting of 'estdisp' and one of the following.

| 'off' | Default. Use the theoretical dispersion value of 1. |
| :--- | :--- |
| 'on ' | Estimate a dispersion parameter for the multinomial <br> distribution in computing standard errors. |

Example: 'estdisp','on'

## Output Arguments

## B - Coefficient estimates

## vector | matrix

Coefficient estimates for a multinomial logistic regression of the responses in Y , returned as a vector or a matrix.

- If 'interaction' is 'off', then B is a $k-1+p$ vector. The first $k-1$ rows of B correspond to the intercept terms, one for each $k-$ 1 multinomial categories, and the remaining $p$ rows correspond to the predictor coefficients, which are common for all of the first $k-1$ categories.
- If 'interaction' is 'on ', then $\mathbf{B}$ is a $(p+1)$-by- $(k-1)$ matrix. Each column of $B$ corresponds to the estimated intercept term and predictor coefficients, one for each of the first $k-1$ multinomial categories.

The estimates for the $k$ th category are taken to be zero as mnrfit takes the last category as the reference category.

## dev - Deviance of the fit

scalar value
Deviance of the fit, returned as a scalar value. It is twice the difference between the maximum achievable log likelihood and that attained under the fitted model. This corresponds to the sum of deviance residuals,

$$
d e v=2 * \sum_{i}^{n} \sum_{j}^{k} y_{i j} * \log \left(\frac{y_{i j}}{\pi_{i j} * m_{i}}\right)=\sum_{i}^{n} r d_{i},
$$

where $r d_{i}$ are the deviance residuals. For deviance residuals see stats.

## stats - Model statistics

## structure

Model statistics, returned as a structure that contains the following fields.

| beta | The coefficient estimates. These are the same as B. |
| :---: | :---: |
| dfe | Degrees of freedom for error <br> - If 'interactions' is 'off', then degrees of freedom is $n^{*}(k-1)-(k-1+p)$. <br> - If 'interactions' is 'on', then degrees of freedom is $(n-p+1)^{*}(k-1)$. |
| sfit | Estimated dispersion parameter. |
| S | Theoretical or estimated dispersion parameter. <br> - If estdisp is 'off', then s is the theoretical dispersion parameter, 1 . <br> - If estdisp is 'on', then $s$ is equal to the estimated dispersion parameter, sfit. |
| estdisp | Indicator for a theoretical or estimated dispersion parameter. |
| se | Standard errors of coefficient estimates, B. |
| coeffcorr | Estimated correlation matrix for B. |
| covb | Estimated covariance matrix for B. |
| t | $t$ statistics for B. |
| $p$ | $p$-values for B. |


| resid | Raw residuals. Observed minus fitted values, $r_{i j}=y_{i j}-\hat{\pi}_{i j} * m_{i}, \quad\left\{\begin{array}{l} i=1, \cdots, n \\ j=1, \cdots, k \end{array}\right.$ <br> where $\Pi_{i j}$ is the categorical, cumulative or conditional probability, and $m_{i}$ is the corresponding sample size. |
| :---: | :---: |
| residp | Pearson residuals, which are the raw residuals scaled by the estimated standard deviation: $r p_{i j}=\frac{r_{i j}}{\hat{\sigma}_{i j}}=\frac{y_{i j}-\hat{\pi}_{i j} * m_{i}}{\sqrt{\hat{\pi}_{i j} *\left(1-\hat{\pi}_{i j}\right) * m_{i}}}, \quad\left\{\begin{array}{l} i=1, \cdots, n \\ j=1, \cdots, k \end{array}\right.$ <br> where $\Pi_{i j}$ is the categorical, cumulative, or conditional probability, and $m_{i}$ is the corresponding sample size. |
| residd | Deviance residuals: $r d_{i}=2 * \sum_{j}^{k} y_{i j} * \log \left(\frac{y_{i j}}{\pi_{i j} * m_{i}}\right), \quad i=1, \cdots, n .$ <br> where $\Pi_{i j}$ is the categorical, cumulative, or conditional probability, and $m_{i}$ is the corresponding sample size. |

## Examples

## Multinomial Regression for Nominal Responses

Fit a multinomial regression for nominal outcomes and interpret the results.

Load the sample data.
load('fisheriris.mat')

## mnrfit

The column vector, species, consists of iris flowers of three different species, setosa, versicolor, virginica. The double matrix meas consists of four types of measurements on the flowers, the length and width of sepals and petals in centimeters, respectively.

Define the nominal response variable.

```
sp = nominal(species);
sp = double(sp);
```

Now in sp, 1, 2, and 3 indicate the species setosa, versicolor, and virginica, respectively.

Fit a multinomial regression model to predict the species using the measurements.

```
[B,dev,stats] = mnrfit(meas,sp);
B
B =
\begin{tabular}{rr}
13.3860 & 15.4492 \\
2.4623 & 1.8196 \\
5.2948 & 2.5700 \\
-7.4916 & -4.3714 \\
-8.9322 & -7.6467
\end{tabular}
```

This is a nominal model for the response category relative risks, with separate slopes on all four predictors, that is, each category of meas. The first row of B contains the intercept terms for the relative risk of the first two response categories, setosa and versicolor versus the reference category, virginica. The last four rows contain the slopes for the models for the first two categories. mnrfit accepts the third category as the reference category.

The models for the relative risk of an iris flower being a setosa versus a virginica, and the relative risk of an iris flower being a versicolor species versus a virginica species are respectively

$$
\ln \left(\frac{\pi_{\text {setosa }}}{\pi_{\text {virginica }}}\right)=13.38+2.46 X_{1}+5.29 X_{2}-7.49 X_{3}-8.93 X_{4}
$$

and

$$
\ln \left(\frac{\pi_{\text {versicolor }}}{\pi_{\text {virginica }}}\right)=15.45+1.82 X_{1}+2.57 X_{2}-4.37 X_{3}-7.65 X_{4}
$$

The coefficients express the effects of the predictor variables on the relative risk or the log odds of being in one category versus the reference category.
For example, the estimated coefficient 2.46 indicates that the probability of being species 1 (setosa) compared to the probability of being species 3 (virginica) (the relative risk of being a setosa versus a virginica) increases $\exp (2.46)$ times for each unit increase in $X_{1}$, the first measurement, given all else equal.

In terms of log odds, you can say that the relative log odds of being a setosa versus a virginica increases 2.46 times with a one-unit increase in $X_{1}$ given all else is equal.

Check the statistical significance of the model coefficients.
stats.p
ans =

| 0.2457 | 0.0031 |
| :--- | :--- |
| 0.4543 | 0.1048 |
| 0.0773 | 0.0815 |
| 0.0258 | 0.0007 |
| 0.1856 | 0.0002 |

The $p$-value of 0.0258 indicates that the third measure is significant on the relative risk of being a setosa versus a virginica (species 1 compared to species 3 ). The $p$-values of 0.0007 and 0.0002 indicate that the third and fourth measures are significant on the relative risk of being a versicolor versus a virginica (species 2 compared to species 3 ).

Request the standard errors of coefficient estimates.

```
stats.se
ans =
\begin{tabular}{rr}
11.5316 & 5.2201 \\
3.2905 & 1.1218 \\
2.9976 & 1.4753 \\
3.3609 & 1.2869 \\
6.7474 & 2.0846
\end{tabular}
```

Calculate the $95 \%$ confidence limits for the coefficients.

```
LL = stats.beta - 1.96.*stats.se;
UL = stats.beta + 1.96.*stats.se;
```

Display the confidence intervals for the coefficients of the model for the relative risk of being a setosa versus a virginica (the first column of coefficients in B).
[LL(:,1) UL(:,1)]
ans =
$-9.2160 \quad 35.9880$
-3.9869 8.9116
-0.5805 11.1701
-14.0790 -0.9043
-22.1570 4.2926

Find the confidence intervals for the coefficients of the model for the relative risk of being a versicolor versus a virginica (the second column of coefficients in B).
[LL(: , 2) UL(: 2)]
ans =

| 5.2177 | 25.6807 |
| ---: | ---: |
| -0.3791 | 4.0184 |
| -0.3216 | 5.4615 |
| -6.8938 | -1.8490 |
| -11.7324 | -3.5610 |

## Multinomial Regression for Ordinal Responses

Fit a multinomial regression model for categorical responses with natural ordering among categories.

Load the sample data and define the predictor variables.

```
load('carbig.mat')
X = [Acceleration Displacement Horsepower Weight];
```

The predictor variables are the acceleration, engine displacement, horsepower, and weight of the cars. The response variable is miles per gallon (mpg).

Create an ordinal response variable categorizing MPG into four levels from 9 to 48 mpg by labeling the response values in the range $9-19$ as 1 , $20-29$ as $2,30-39$ as 3 , and $40-48$ as 4 .

```
miles = ordinal(MPG,{'1','2','3','4'},[],[9,19,29,39,48]);
miles = double(miles);
```

Fit an ordinal response model for the response variable miles.

```
[B,dev,stats] = mnrfit(X,miles,'model','ordinal');
```

B

## mnrfit

$B=$
-16.6895
-11.7208
-8. 0606
0.1048
0.0103
0.0645
0.0017

The first three elements of $B$ are the intercept terms for the models, and the last four elements of $B$ are the coefficients of the covariates, assumed common across all categories. This model corresponds to parallel regression, which is also called the proportional odds model, where there is a different intercept but common slopes among categories. You can specify this using the 'interactions', 'off' name-value pair argument, which is the default for ordinal models.

```
[B(1:3)'; repmat(B(4:end),1,3)]
ans =
 -16.6895 -11.7208 -8.0606
 0.1048 0.1048 0.1048
 0.0103 0.0103 0.0103
 0.0645 0.0645 0.0645
 0.0017 0.0017 0.0017
```

The link function in the model is logit ('link', 'logit'), which is the default for an ordinal model. The coefficients express the relative risk or log odds of the mpg of a car being less than or equal to one value versus greater than that value.

The proportional odds model in this example is

$$
\begin{aligned}
& \ln \left(\frac{P(m p g \leq 19)}{P(m p g>19)}\right)=-16.6895+0.1048 X_{A}+0.0103 X_{D}+0.0645 X_{H}+0.0017 X_{W} \\
& \ln \left(\frac{P(m p g \leq 29)}{P(m p g>29)}\right)=-11.7208+0.1048 X_{A}+0.0103 X_{D}+0.0645 X_{H}+0.0017 X_{W} \\
& \ln \left(\frac{P(m p g \leq 39)}{P(m p g>39)}\right)=-8.0606+0.1048 X_{A}+0.0103 X_{D}+0.0645 X_{H}+0.0017 X_{W}
\end{aligned}
$$

For example, the coefficient estimate of 0.1048 indicates that a unit change in acceleration would impact the odds of the mpg of a car being less than or equal to 19 versus more than 19 , or being less than or equal to 29 versus greater than 29 , or being less than or equal to 39 versus greater than 39 , by a factor of $\exp (0.01048)$ given all else is equal.

Assess the significance of the coefficients.

```
stats.p
ans =
 0.0000
 0.0000
 0.0000
 0.1899
 0.0350
 0.0000
 0.0118
```

The $p$-values of $0.035,0.0000$, and 0.0118 for engine displacement, horsepower, and weight of a car, respectively, indicate that these factors are significant on the odds of mpg of a car being less than or equal to a certain value versus being greater than that value.

## Hierarchical Multinomial Regression Model

Fit a hierarchical multinomial regression model.
Navigate to the folder containing sample data.

```
cd(matlabroot)
cd('help/toolbox/stats/examples')
```

Load the sample data.
load smoking
The data set smoking contains five variables: sex, age, weight, and systolic and diastolic blood pressure. Sex is a binary variable where 1 indicates female patients, and 0 indicates male patients.

Define the response variable.

```
Y = nominal(smoking.Smoker);
Y = double(Y);
```

The data in Smoker has four categories:

- 0 : Nonsmoker, 0 cigarettes a day
- 1: Smoker, 1-5 cigarettes a day
- 2: Smoker, 6-10 cigarettes a day
- 3: Smoker, 11 or more cigarettes a day

Define the predictor variables.

```
X = [smoking.Sex smoking.Age smoking.Weight...
 smoking.SystolicBP smoking.DiastolicBP];
```

Fit a hierarchical multinomial model.

```
[B,dev,stats] = mnrfit(X,Y,'model','hierarchical');
B
```

$B=$

| 43.8148 | 5.9571 | 44.0712 |
| ---: | ---: | ---: |
| 1.8709 | -0.0230 | 0.0662 |
| 0.0188 | 0.0625 | 0.1335 |
| 0.0046 | -0.0072 | -0.0130 |
| -0.2170 | 0.0416 | -0.0324 |
| -0.2273 | -0.1449 | -0.4824 |

The first column of B includes the intercept and the coefficient estimates for the model of the relative risk of being a nonsmoker versus a smoker. The second column includes the parameter estimates for modeling the log odds of smoking $1-5$ cigarettes a day versus more than five cigarettes a day given that a person is a smoker. Finally, the third column includes the parameter estimates for modeling the log odds of a person smoking 6-10 cigarettes a day versus more than 10 cigarettes a day given he/she smokes more than 5 cigarettes a day.

The coefficients differ across categories. You can specify this using the 'interactions', 'on' name-value pair argument, which is the default for hierarchical models. So, the model in this example is

$$
\begin{aligned}
& \ln \left(\frac{P(y=0)}{P(y>0)}\right)=43.8148+1.8709 X_{S}+0.0188 X_{A}+0.0046 X_{W}-0.2170 X_{S B P}-0.2 \\
& \ln \left(\frac{P(1 \leq y \leq 5)}{P(y>5)}\right)=5.9571-0.0230 X_{S}+0.0625 X_{A}+0.0072 X_{W}+0.0416 X_{S B P}-0 \\
& \ln \left(\frac{P(6 \leq y \leq 10)}{P(y>10)}\right)=44.0712+0.0662 X_{S}+0.1335 X_{A}-0.0130 X_{W}-0.0324 X_{S B P}
\end{aligned}
$$

For example, the coefficient estimate of 1.8709 indicates that the likelihood of being a smoker versus a nonsmoker increases by $\exp (1.8709)=6.49$ times as the gender changes from female to male given everything else held constant.

## mnrfit

Assess the statistical significance of the terms.
stats.p
ans =

| 0.0000 | 0.5363 | 0.2149 |
| :--- | :--- | :--- |
| 0.3549 | 0.9912 | 0.9835 |
| 0.6850 | 0.2676 | 0.2313 |
| 0.9032 | 0.8523 | 0.8514 |
| 0.0009 | 0.5187 | 0.8165 |
| 0.0004 | 0.0483 | 0.0545 |

Sex, age, or weight don't appear significant on any level. The $p$-values of 0.0009 and 0.0004 indicate that both types of blood pressure are significant on the relative risk of a person being a smoker versus a nonsmoker. The $p$-value of 0.0483 shows that only diastolic blood pressure is significant on the odds of a person smoking $0-5$ cigarettes a day versus more than 5 cigarettes a day. Similarly, the $p$-value of 0.0545 indicates that diastolic blood pressure is significant on the odds of a person smoking $6-10$ cigarettes a day versus more than 10 cigarettes a day.

Check if any nonsignificant factors are correlated to each other. Draw a scatterplot of age versus weight grouped by sex.

```
figure()
gscatter(smoking.Age,smoking.Weight,smoking.Sex)
legend('Male','Female')
xlabel('Age')
ylabel('Weight')
```



The range of weight of an individual seems to differ according to gender. Age does not seem to have any obvious correlation with sex or weight. Age is insignificant and weight seems to be correlated with sex, so you can eliminate both and reconstruct the model.

Eliminate age and weight from the model and fit a hierarchical model with sex, systolic blood pressure, and diastolic blood pressure as the predictor variables.

X = double([smoking.Sex smoking.SystolicBP...

```
smoking.DiastolicBP]);
[B,dev,stats] = mnrfit(X,Y,'model','hierarchical');
B
B =
\begin{tabular}{ccc}
44.8456 & 5.3230 & 25.0248 \\
1.6045 & 0.2330 & 0.4982 \\
-0.2161 & 0.0497 & 0.0179 \\
-0.2222 & -0.1358 & -0.3092
\end{tabular}
```

Here, a coefficient estimate of 1.6045 indicates that the likelihood of being a nonsmoker versus a smoker increases by $\exp (1.6045)=4.97$ times as sex changes from male to female. A unit increase in the systolic blood pressure indicates an $\exp (-.2161)=0.8056$ decrease in the likelihood of being a nonsmoker versus a smoker. Similarly, a unit increase in the diastolic blood pressure indicates an $\exp (-.2222)$ $=0.8007$ decrease in the relative rate of being a nonsmoker versus being a smoker.

Assess the statistical significance of the terms.

```
stats.p
```

ans =

| 0.0000 | 0.4715 | 0.2325 |
| :--- | :--- | :--- |
| 0.0210 | 0.7488 | 0.6362 |
| 0.0010 | 0.4107 | 0.8899 |
| 0.0003 | 0.0483 | 0.0718 |

The $p$-values of $0.0210,0.0010$, and 0.0003 indicate that the terms sex and both types of blood pressure are significant on the relative risk of a person being a nonsmoker versus a smoker, given the other terms in the model. Based on the $p$-value of 0.0483 , diastolic blood pressure appears significant on the relative risk of a person smoking $1-5$ cigarettes versus more than 5 cigarettes a day, given that this person is a smoker. Because none of the $p$-values on the third column are less than 0.05 ,
you can say that none of the variables are statistically significant on the relative risk of a person smoking from 6-10 cigarettes versus more than 10 cigarettes, given that this person smokes more than 5 cigarettes a day.

Algorithms mnrfit treats NaNs in either X or Y as missing values, and ignores them.

## References

[1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman \& Hall, 1990.
[2] Long, J. S. Regression Models for Categorical and Limited Dependent Variables. Sage Publications, 1997.
[3] Dobson, A. J., and A. G. Barnett. An Introduction to Generalized Linear Models. Chapman and Hall/CRC. Taylor \& Francis Group, 2008.

See Also GeneralizedLinearModel.fit | mnrval | glmfit | glmval
Concepts - "Multinomial Distribution" on page B-67

- "Multinomial Models for Nominal Responses" on page 10-2
- "Multinomial Models for Ordinal Responses" on page 10-5
- "Hierarchical Multinomial Models" on page 10-9


## Purpose Multinomial random numbers

```
Syntax r m mnrnd(n,p)
R = mnrnd(n,p,m)
R = mnrnd(N,P)
```


## Description

## Examples

Generate 2 random vectors with the same probabilities:

```
n = 1e3;
p = [0.2,0.3,0.5];
R = mnrnd(n,p,2)
R =
 215 282 503
 194 303 503
```

Generate 2 random vectors with different probabilities:

```
n = 1e3;
P = [0.2, 0.3, 0.5; ...
 0.3, 0.4, 0.3;];
R = mnrnd(n,P)
R =
 186 290 524
 290 389 321
```

See Also mnpdf
How To

- "Multinomial Distribution" on page B-67


## Purpose Multinomial logistic regression values

```
Syntax pihat = mnrval(B,X)
[pihat,dlow,dhi] = mnrval(B,X,stats)
[pihat,dlow,dhi] = mnrval(B,X,stats,Name,Value)
yhat = mnrval(B,X,ssize)
[yhat,dlow,dhi] = mnrval(B,X,ssize,stats)
[yhat,dlow,dhi] = mnrval(B,X,ssize,stats,Name,Value)
```


## Description

pihat $=m n r v a l(B, X)$ returns the predicted probabilities for the multinomial logistic regression model with predictors, $X$, and the coefficient estimates, B.
pihat is an $n$-by- $k$ matrix of predicted probabilities for each multinomial category. $B$ is the vector or matrix that contains the coefficient estimates returned by mnrfit. And X is an $n$-by- $p$ matrix which contains $n$ observations for $p$ predictors.

Note mnrval automatically includes a constant term in all models. Do not enter a column of 1 s in X .
[pihat, dlow, dhi] = mnrval(B, X, stats) also returns $95 \%$ error bounds on the predicted probabilities, pihat, using the statistics in the structure, stats, returned by mnrfit.

The lower and upper confidence bounds for pihat are pihat minus dlow and pihat plus dhi, respectively. Confidence bounds are nonsimultaneous and only apply to the fitted curve, not to new observations.
[pihat, dlow,dhi] = mnrval(B,X,stats,Name, Value) returns the predicted probabilities and $95 \%$ error bounds on the predicted probabilities pihat, with additional options specified by one or more Name, Value pair arguments.

For example, you can specify the model type, link function, and the type of probabilities to return.
yhat $=$ mnrval $(B, X, s s i z e)$ returns the predicted category counts for sample sizes, ssize.
[yhat,dlow,dhi] = mnrval(B,X,ssize,stats) also computes 95\% error bounds on the predicted counts yhat, using the statistics in the structure, stats, returned by mnrfit.

The lower and upper confidence bounds for yhat are yhat minus dlo and yhat plus dhi, respectively. Confidence bounds are nonsimultaneous and they apply to the fitted curve, not to new observations.
[yhat,dlow,dhi] = mnrval(B,X,ssize,stats,Name,Value) returns the predicted category counts and $95 \%$ error bounds on the predicted counts yhat, with additional options specified by one or more Name, Value pair arguments.

For example, you can specify the model type, link function, and the type of predicted counts to return.

## Input Arguments

## B - Coefficient estimates <br> vector or matrix returned by mnrfit

Coefficient estimates for the multinomial logistic regression model, specified as a vector or matrix returned by mnrfit. It is a vector or matrix depending on the model and interactions.

Example: $B=\operatorname{mnrfit}(X, y) ;$ pihat $=m n r v a l(B, X)$

## Data Types

single | double

## X - Sample data

matrix

Sample data on predictors, specified as an $n$-by- $p$. X contains $n$ observations for $p$ predictors.

Note mnrval automatically includes a constant term in all models. Do not enter a column of 1 s in X .

```
Example: pihat = mnrval(B,X)
```

```
Data Types
single | double
```

stats - Model statistics
structure returned by mnrfit
Model statistics, specified as a structure returned by mnrfit. You must use the stats input argument in mnrval to compute the lower and upper error bounds on the category probabilities and counts.

Example: [B,dev,stats] = mnrfit(X,y);[pihat,dlo,dhi] = mnrval( $B, X$, stats)

## ssize - Sample sizes

column vector of positive integers
Sample sizes to return the number of items in response categories for each combination of the predictor variables, specified as an $n$-by- 1 column vector of positive integers.

For example, for a response variable having three categories, if an observation of the number of individuals in each category is $y_{1}, y_{2}$, and $y_{3}$, respectively, then the sample size, $m$, for that observation is $m=$ $y_{1}+y_{2}+y_{3}$.
If the sample sizes for $n$ observations are in vector sample, then you can enter the sample sizes as follows.

Example: yhat = mnrval(B,X,sample)

## Data Types

single | double

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example:
'model','ordinal','link','probit','type','cumulative' specifies that mnrval returns the estimates for cumulative probabilities for an ordinal model with a probit link function.

## 'model' - Type of multinomial model

'nominal' (default) | 'ordinal' | 'hierarchical
Type of multinomial model fit by mnrfit, specified as the comma-separated pair consisting of 'model' and one of the following.

| 'nominal' | Default. Specify when there is no ordering among the <br> response categories. |
| :--- | :--- |
| 'ordinal' | Specify when there is a natural ordering among the <br> response categories. |
| 'hierarchic\&pecify when the choice of response category is |  |
| sequential. |  |

Example: 'model','ordinal'

## 'interactions' - Indicator for interaction between multinomial categories and coefficients

```
'on' | 'off'
```

Indicator for an interaction between the multinomial categories and coefficients in the model fit by mnrfit, specified as the comma-separated pair consisting of 'interactions ' and one of the following.

| 'on ' | Default for nominal and hierarchical models. Specify to fit <br> a model with different intercepts and coefficients across <br> categories. |
| :--- | :--- |
| 'off' | Default for ordinal models. Specify to fit a model with <br> different intercepts, but a common set of coefficients for the <br> predictor variables, across all multinomial categories. This <br> is often described as parallel regression or proportional <br> odds model. |

Example: 'interactions','off'

## Data Types

logical

## 'link' - Link function

'logit' (default) | 'probit' | 'comploglog' | 'loglog'
Link function mnrfit uses for ordinal and hierarchical models, specified as the comma-separated pair consisting of 'link' and one of the following.

| 'logit' | Default. $f(\gamma)=\ln (\gamma /(1-\gamma))$ |
| :--- | :--- |
| 'probit' | $f(\gamma)=\Phi^{-1}(\gamma)-$ error term is normally distributed <br> with variance 1 |
| 'comploglog' | Complementary $\log -\log f(\gamma)=\ln (-\ln (1-\gamma))$ |
| 'loglog' | $f(\gamma)=\ln (-\ln (\gamma))$ |

The link function defines the relationship between response probabilities and the linear combination of predictors, $X \beta$.
$\gamma$ might be cumulative or conditional probabilities based on whether the model is for an ordinal or a sequential/nested response.

You cannot specify the 'link' parameter for nominal models; these always use a multinomial logit link,

$$
\ln \left(\frac{\pi_{j}}{\pi_{r}}\right)=\beta_{j 0}+\beta_{j 1} X_{j 1}+\beta_{j 2} X_{j 2}+\cdots+\beta_{j p} X_{j p}, \quad j=1, \ldots, k-1,
$$

where $\Pi$ stands for a categorical probability, and $r$ corresponds to the reference category, $k$ is the total number of response categories, $p$ is the number of predictor variables. mnrfit uses the last category as the reference category for nominal models.

## Example: 'link','loglog'

## 'type' - Type of probabilities or counts to estimate <br> 'category' (default) | 'cumulative' | 'conditional'

Type of probabilities or counts to estimate, specified as the comma-separated pair including 'type' and one of the following.

| 'category' | Default. Specify to return predictions and error <br> bounds for the probabilities (or counts) of the $k$ <br> multinomial categories. |
| :--- | :--- |
| 'cumulative' | Specify to return predictions and confidence <br> bounds for the cumulative probabilities (or <br> counts) of the first $k-1$ multinomial categories, <br> as an $n$-by- $(k-1)$ matrix. The predicted <br> cumulative probability for the $k$ th category is <br> always 1. |
| 'conditional' | Specify to return predictions and error bounds <br> in terms of the first $k-1$ conditional category <br> probabilities (counts), i.e., the probability (count) <br> for category $j$, given an outcome in category $j$ or <br> higher. When ' type' is 'conditional ', and <br> you supply the sample size argument ssize, the <br> predicted counts at each row of $X$ are conditioned <br> on the corresponding element of ssize, across <br> all categories. |

Example: 'type','cumulative'

# 'confidence' - Confidence level <br> 0.95 (default) | Scalar value in the range $(0,1)$ 

Confidence level for the error bounds, specified as the comma-separated pair consisting of 'confidence' and a scalar value in the range $(0,1)$.

For example, for $99 \%$ error bounds, you can specify the confidence as follows:

```
Example: 'confidence',0.99
```

```
Data Types
single | double
```


## Output

Arguments
pihat - Probability estimates
$n$-by- $(k-1)$ matrix
Probability estimates for each multinomial category, returned as an $n$-by-( $k-1$ ) matrix, where $n$ is the number of observations, and $k$ is the number of response categories.

## yhat - Count estimates

$n$-by- $k-1$ matrix
Count estimates for the number in each response category, returned as an $n$-by- $k-1$ matrix, where $n$ is the number of observations, and $k$ is the number of response categories.

## dlow - Lower error bound

column vector
Lower error bound to compute the lower confidence bound for pihat or yhat, returned as a column vector.

The lower confidence bound for pihat is pihat minus dlow. Similarly, the lower confidence bound for yhat is yhat minus dlow. Confidence bounds are nonsimultaneous and only apply to the fitted curve, not to new observations.

## dhi - Upper error bound

[^9]Upper error bound to compute the upper confidence bound for pihat or yhat, returned as a column vector.
The upper confidence bound for pihat is pihat plus dhi. Similarly, the upper confidence bound for yhat is yhat plus dhi. Confidence bounds are nonsimultaneous and only apply to the fitted curve, not to new observations.

## Examples

## Estimate Category Probabilities for Nominal Responses

Fit a multinomial regression for nominal outcomes and estimate the category probabilities.

Load the sample data.

```
load('fisheriris.mat')
```

The column vector, species, consists of iris flowers of three different species, setosa, versicolor, virginica. The double matrix meas consists of four types of measurements on the flowers, the length and width of sepals and petals in centimeters, respectively.

Define the nominal response variable.

```
sp = nominal(species);
sp = double(sp);
```

Now in sp, 1, 2, and 3 indicate the species setosa, versicolor, and virginica, respectively.

Fit a nominal model to estimate the species using the flower measurements as the predictor variables.
[B,dev,stats] = mnrfit(meas,sp);
Estimate the probability of being a certain kind of species for an iris flower having the measurements (6.2, 3.7, 5.8, 0.2).
$\mathrm{x}=[6.2,3.7,5.8,0.2]$;

```
pihat = mnrval(B,meas);
pihat
pihat =
 0.0017 0.9982 0.0001
```

The probability of an iris flower having the measurements (6.2, 3.7, 5.8, 0.2 ) being a setosa is 0.0017 , a versicolor is 0.9982 , and a virginica is 0.0001.

## Estimate Upper and Lower Error Bounds for Probability Estimates of Ordinal Responses

Fit a multinomial regression model for categorical responses with natural ordering among categories. Then estimate the upper and lower confidence bounds for the category probability estimates.

Load the sample data and define the predictor variables.
load('carbig.mat')
X = [Acceleration Displacement Horsepower Weight];
The predictor variables are the acceleration, engine displacement, horsepower, and the weight of the cars. The response variable is miles per gallon (MPG).

Create an ordinal response variable categorizing MPG into four levels from 9 to 48 mpg .

```
miles = ordinal(MPG,{'1','2','3','4'},[],[9,19,29,39,48]);
miles = double(miles);
```

Now in miles, 1 indicates the cars with miles per gallon from 9 to 19, and 2 indicates the cars with miles per gallon from 20 to 29. Similarly, 3 and 4 indicate the cars with miles per gallon from 30 to 39 and 40 to 48 , respectively.

Fit a multinomial regression model for the response variable miles. For an ordinal model, the default 'link' is logit and the default 'interactions' is 'off'.

```
[B,dev,stats] = mnrfit(X,miles,'model','ordinal');
```

Compute the probability estimates and $95 \%$ error bounds for probability confidence intervals for miles per gallon of a car with $x=(12,113$, 110, 2670).

```
x = [12,113,110,2670];
[pihat,dlow,hi] = mnrval(B,x,stats,'model','ordinal');
pihat
pihat =
 0.0615 0.8426 0.0932 0.0027
```

Calculate the confidence bounds for the category probability estimates.
LL = pihat - dlow;
UL = pihat + hi;
[LL;UL]
ans =

| 0.0073 | 0.7829 | 0.0283 | -0.0003 |
| ---: | ---: | ---: | ---: |
| 0.1157 | 0.9022 | 0.1580 | 0.0057 |

## Estimate Category Counts and Error Bounds for Nominal Responses

Fit a multinomial regression for nominal outcomes and estimate the category counts.

Load the sample data.
load('fisheriris.mat')

The column vector, species, consists of iris flowers of three different species, setosa, versicolor, and virginica. The double matrix meas consists of four types of measurements on the flowers, the length and width of sepals and petals in centimeters, respectively.

Define the nominal response variable.
sp = nominal(species);
sp = double(sp);
Now in sp, 1, 2, and 3 indicate the species setosa, versicolor, and virginica, respectively.

Fit a nominal model to estimate the species based on the flower measurements.

```
[B,dev,stats] = mnrfit(meas,sp);
```

Estimate the number in each species category for a sample of 100 iris flowers all with the measurements (6.2, 3.7, 5.8, 0.2).

```
x = [6.2,3.7,5.8,0.2];
yhat = mnrval(B,x,18)
yhat =
 0.0314 17.9671 0.0016
```

Estimate the error bounds for the counts.

```
[yhat,dlow,hi] = mnrval(B,x,18,stats,'model','nominal');
```

Calculate the confidence bounds for the category probability estimates.

```
LL = yhat - dlow;
UL = yhat + hi;
[LL;UL]
ans =
```

| -0.7084 | 17.2272 | -0.0115 |
| ---: | ---: | ---: |
| 0.7711 | 18.7069 | 0.0146 |

## Plot the Count Estimates

Create sample data with one predictor variable and a categorical response variable with three categories.

```
x = [-3 -2 -1 0 1 2 3]';
Y = [1 11 13; 2 9 14; 6 14 5; 5 10 10;...
 5 14 6; 7 13 5; 8 11 6];
[Y x]
ans =
```

| 1 | 11 | 13 | -3 |
| ---: | ---: | ---: | ---: |
| 2 | 9 | 14 | -2 |
| 6 | 14 | 5 | -1 |
| 5 | 10 | 10 | 0 |
| 5 | 14 | 6 | 1 |
| 7 | 13 | 5 | 2 |
| 8 | 11 | 6 | 3 |

There are observations on seven different values of the predictor variable $x$. The response variable $Y$ has three categories and the data shows how many of the 25 individuals are in each category of $Y$ for each observation of $x$. For example, when $x$ is $-3,1$ of 25 individuals is observed in category 1,11 observed in category 2 , and 13 observed in category 3 . Similarly, when $x$ is 1,5 of the individuals are observed in category 1,14 are observed in category 2 , and 6 are observed in category 3.

Plot the number in each category versus the x values, on a stacked bar graph.

```
bar(x,Y,'stacked');
ylim([0 25]);
```



Fit a nominal model for the individual response category probabilities, with separate slopes on the single predictor variable, x , for each category.

```
betaHatNom = mnrfit(x,Y,'model','nominal',...
 'interactions','on')
betaHatNom =
\[
\begin{array}{rr}
-0.6028 & 0.3832 \\
0.4068 & 0.1948
\end{array}
\]
```

The first row of betaHatNom contains the intercept terms for the first two response categories. The second row contains the slopes. mnrfit accepts the third category as the reference category and hence assumes the coefficients for the third category are zero.

Compute the predicted probabilities for the three response categories.
xx = linspace(-4,4)';
piHatNom = mnrval(betaHatNom,xx,'model','nominal',...
'interactions', 'on');
The probability of being in the third category is simply $1-\mathrm{P}(y=1)$ $-\mathrm{P}(y=2)$.

Plot the estimated cumulative number in each category on the bar graph.
line(xx, cumsum(25*piHatNom,2),'LineWidth',2);


The cumulative probability for the third category is always 1 .
Now, fit a "parallel" ordinal model for the cumulative response category probabilities, with a common slope on the single predictor variable, $x$, across all categories:

```
betaHatOrd = mnrfit(x,Y,'model','ordinal',...
```

    'interactions','off')
    betaHatOrd =

$$
\begin{array}{r}
-1.5001 \\
0.7266 \\
0.2642
\end{array}
$$

The first two elements of betaHatOrd are the intercept terms for the first two response categories. The last element of betaHatOrd is the common slope.

Compute the predicted cumulative probabilities for the first two response categories. The cumulative probability for the third category is always 1 .

```
piHatOrd = mnrval(betaHatOrd,xx,'type','cumulative',...
 'model','ordinal','interactions','off');
```

Plot the estimated cumulative number on the bar graph of the observed cumulative number.

```
figure()
bar(x,cumsum(Y,2),'grouped');
ylim([0 25]);
line(xx,25*pHatOrd,'LineWidth',2);
```



## References

[1] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman \& Hall, 1990.

See Also GeneralizedLinearModel.fit | mnrfit | glmfit | glmval

## Concepts

- "Multinomial Models for Nominal Responses" on page 10-2
- "Multinomial Models for Ordinal Responses" on page 10-5
- "Hierarchical Multinomial Models" on page 10-9


## Purpose Central moments

## Syntax <br> m = moment(X,order) <br> moment (X,order,dim)

## Description

Note that the central first moment is zero, and the second central moment is the variance computed using a divisor of $n$ rather than $n-$ 1 , where $n$ is the length of the vector x or the number of rows in the matrix $X$.

The central moment of order $k$ of a distribution is defined as

$$
m_{k}=E(x-\mu)^{k}
$$

where $E(x)$ is the expected value of $x$.

## Examples

```
X = randn([6 5])
X =
 1.1650 0.0591 1.2460 -1.2704 -0.0562
 0.6268 1.7971 -0.6390 0.9846 0.5135
 0.0751 0.2641 0.5774 -0.0449 0.3967
 0.3516 0.8717 -0.3600 -0.7989 0.7562
 -0.6965 -1.4462 -0.1356 -0.7652 0.4005
 1.6961 -0.7012 -1.3493 0.8617 -1.3414
m = moment(X,3)
m =
 -0.0282 0.0571 0.1253 0.1460 -0.4486
```

See Also
kurtosis | mean | skewness | std | var

## gmdistribution.Mu property

Purpose Input matrix of means MU
Description Input matrix of means mu.
Purpose Multiple comparison test
Syntax $\quad c=$ multcompare (stats)
c = multcompare(stats,param1,val1,param2,val2,...)
[c,m] = multcompare(...)
[c,m,h] = multcompare(...)
[c,m,h,gnames] = multcompare(...)
c = multcompare(stats) performs a multiple comparison test using the information in the stats structure, and returns a matrix c of pairwise comparison results. It also displays an interactive graph of the estimates with comparison intervals around them. See "Examples" on page 20-1620.
In a one-way analysis of variance, you compare the means of several groups to test the hypothesis that they are all the same, against the general alternative that they are not all the same. Sometimes this alternative may be too general. You may need information about which pairs of means are significantly different, and which are not. A test that can provide such information is called a multiple comparison procedure.
When you perform a simple t-test of one group mean against another, you specify a significance level that determines the cutoff value of the t statistic. For example, you can specify the value alpha $=0.05$ to insure that when there is no real difference, you will incorrectly find a significant difference no more than $5 \%$ of the time. When there are many group means, there are also many pairs to compare. If you applied an ordinary t-test in this situation, the alpha value would apply to each comparison, so the chance of incorrectly finding a significant difference would increase with the number of comparisons. Multiple comparison procedures are designed to provide an upper bound on the probability that any comparison will be incorrectly found significant.
The output c contains the results of the test in the form of a five-column matrix. Each row of the matrix represents one test, and there is one row for each pair of groups. The entries in the row indicate the means being compared, the estimated difference in means, and a confidence interval for the difference.

For example, suppose one row contains the following entries.

$$
\begin{array}{lllll}
2.0000 & 5.0000 & 1.9442 & 8.2206 & 14.4971
\end{array}
$$

These numbers indicate that the mean of group 2 minus the mean of group 5 is estimated to be 8.2206 , and a $95 \%$ confidence interval for the true difference of the means is [1.9442, 14.4971].

In this example the confidence interval does not contain 0.0 , so the difference is significant at the 0.05 level. If the confidence interval did contain 0.0 , the difference would not be significant at the 0.05 level.

The multcompare function also displays a graph with each group mean represented by a symbol and an interval around the symbol. Two means are significantly different if their intervals are disjoint, and are not significantly different if their intervals overlap. You can use the mouse to select any group, and the graph will highlight any other groups that are significantly different from it.
c = multcompare(stats,param1,val1,param2,val2,...) specifies one or more of the parameter name/value pairs described in the following table.

| Parameter | Values |
| :--- | :--- |
| ' alpha' | Scalar between 0 and 1 that determines the <br> confidence levels of the intervals in the matrix <br> c and in the figure (default is 0.05). The <br> confidence level is 100(1-alpha)\%. |
| 'display' | Either 'on ' (the default) to display a graph <br> of the estimates with comparison intervals <br> around them, or ' off ' to omit the graph. See <br> "Examples" on page 20-1620. |
| 'ctype' | Specifies the type of critical value to use for the <br> multiple comparison. "Values of ctype" on page <br> 20-1618 describes the allowed values for ctype. |


| Parameter | Values |
| :--- | :--- |
| 'dimension' | A vector specifying the dimension or dimensions <br> over which the population marginal means <br> are to be calculated. Use only if you create <br> stats with the function anovan. The default <br> is 1 to compute over the first dimension. See <br> "Dimension Parameter" on page 20-1620 for <br> more information. |
| 'estimate' | Specifies the estimate to be compared. The <br> allowable values of estimate depend on the <br> function that was the source of the stats <br> structure, as described in "Values of estimate" <br> on page 20-1619 |

[c,m] = multcompare(...) returns an additional matrix $m$. The first column of $m$ contains the estimated values of the means (or whatever statistics are being compared) for each group, and the second column contains their standard errors.
[ $\mathrm{c}, \mathrm{m}, \mathrm{h}]=$ multcompare (...) returns a handle h to the comparison graph. Note that the title of this graph contains instructions for interacting with the graph, and the $x$-axis label contains information about which means are significantly different from the selected mean. If you plan to use this graph for presentation, you may want to omit the title and the $x$-axis label. You can remove them using interactive features of the graph window, or you can use the following commands.

```
title('')
xlabel('')
```

[ $\mathrm{c}, \mathrm{m}, \mathrm{h}$, gnames] = multcompare(...) returns gnames, a cell array with one row for each group, containing the names of the groups.

The intervals shown in the graph are computed so that to a very close approximation, two estimates being compared are significantly different if their intervals are disjoint, and are not significantly different if their intervals overlap. (This is exact for multiple comparison of means from
anova1, if all means are based on the same sample size.) You can click on any estimate to see which means are significantly different from it.

## Values of ctype

The following table describes the allowed values for the parameter ctype.

| Value | Description |
| :--- | :--- |
| 'hsd ' or <br> 'tukey-kramer' | Use Tukey's honestly significant difference <br> criterion. This is the default, and it is based on the <br> Studentized range distribution. It is optimal for <br> balanced one-way ANOVA and similar procedures <br> with equal sample sizes. It has been proven <br> to be conservative for one-way ANOVA with <br> different sample sizes. According to the unproven <br> Tukey-Kramer conjecture, it is also accurate for <br> problems where the quantities being compared <br> are correlated, as in analysis of covariance with <br> unbalanced covariate values. |
| 'lsd' | Use Tukey's least significant difference procedure. <br> This procedure is a simple t-test. It is reasonable <br> if the preliminary test (say, the one-way ANOVA <br> $F$ statistic) shows a significant difference. If it is <br> used unconditionally, it provides no protection <br> against multiple comparisons. |
| 'bonferroni' | Use critical values from the t distribution, after a <br> Bonferroni adjustment to compensate for multiple <br> comparisons. This procedure is conservative, but <br> usually less so than the Scheffé procedure. |


| Value | Description |
| :--- | :--- |
| 'dunn-sidak' | Use critical values from the t distribution, after <br> an adjustment for multiple comparisons that was <br> proposed by Dunn and proved accurate by Sidák. <br> This procedure is similar to, but less conservative <br> than, the Bonferroni procedure. |
| 'scheffe' | Use critical values from Scheffés S procedure, <br> derived from the F distribution. This procedure <br> provides a simultaneous confidence level for <br> comparisons of all linear combinations of the <br> means, and it is conservative for comparisons of <br> simple differences of pairs. |

## Values of estimate

The allowable values of the parameter 'estimate' depend on the function that was the source of the stats structure, according to the following table.

| Source | Values |
| :--- | :--- |
| 'anova1' | Ignored. Always compare the group means. |
| 'anova2' | Either 'column' (the default) or 'row ' to <br> compare column or row means. |
| 'anovan' | Ignored. Always compare the population <br> marginal means as specified by the dim <br> argument. |
| 'aoctool' | Either 'slope ', 'intercept', or 'pmm' to <br> compare slopes, intercepts, or population <br> marginal means. If the analysis of covariance <br> model did not include separate slopes, then <br> 'slope' is not allowed. If it did not include <br> separate intercepts, then no comparisons are <br> possible. |


| Source | Values |
| :--- | :--- |
| 'friedman ' | Ignored. Always compare average column ranks. |
| 'kruskalwallis' | Ignored. Always compare average group ranks. |

## Dimension Parameter

The dimension parameter is a vector specifying the dimension or dimensions over which the population marginal means are to be calculated. For example, if $\operatorname{dim}=1$, the estimates that are compared are the means for each value of the first grouping variable, adjusted by removing effects of the other grouping variables as if the design were balanced. If dim = [ $\left.\begin{array}{ll}1 & 3\end{array}\right]$, population marginal means are computed for each combination of the first and third grouping variables, removing effects of the second grouping variable. If you fit a singular model, some cell means may not be estimable and any population marginal means that depend on those cell means will have the value NaN .
Population marginal means are described by Milliken and Johnson (1992) and by Searle, Speed, and Milliken (1980). The idea behind population marginal means is to remove any effect of an unbalanced design by fixing the values of the factors specified by dim, and averaging out the effects of other factors as if each factor combination occurred the same number of times. The definition of population marginal means does not depend on the number of observations at each factor combination. For designed experiments where the number of observations at each factor combination has no meaning, population marginal means can be easier to interpret than simple means ignoring other factors. For surveys and other studies where the number of observations at each combination does have meaning, population marginal means may be harder to interpret.

## Examples

## Example 1

The following example performs a 1 -way analysis of variance (ANOVA) and displays group means with their names.

```
load carsmall
```

```
[p,t,st] = anova1(MPG,Origin,'off');
[c,m,h,nms] = multcompare(st,'display','off');
[nms num2cell(m)]
ans =
\begin{tabular}{lll}
'USA' & {\([21.1328]\)} & {\([0.8814]\)} \\
'Japan' & {\([31.8000]\)} & {\([1.8206]\)} \\
'Germany' & {\([28.4444]\)} & {\([2.3504]\)} \\
'France' & {\([23.6667]\)} & {\([4.0711]\)} \\
'Sweden' & {\([22.5000]\)} & {\([4.9860]\)} \\
'Italy' & {\([28.0000]\)} & {\([7.0513]\)}
\end{tabular}
```

multcompare also displays the following graph of the estimates with comparison intervals around them.


You can click the graphs of each country to compare its mean to those of other countries.

## Example 2

The following continues the example described in the anova1 reference page, which is related to testing the material strength in structural beams. From the anova1 output you found significant evidence that the three types of beams are not equivalent in strength. Now you can determine where those differences lie. First you create the data arrays and you perform one-way ANOVA.

```
strength = [82 86 79 83 84 85 86 87 74 82 ...
 78 75 76 77 79 79 77 78 82 79];
alloy = {'st','st','st','st','st','st','st','st',...
 'al1','al1','al1','al1','al1','al1',...
 'al2','al2','al2','al2','al2','al2'};
[p,a,s] = anova1(strength,alloy);
```

Among the outputs is a structure that you can use as input to multcompare.

```
[c,m,h,nms] = multcompare(s);
[nms num2cell(c)]
ans =
\begin{tabular}{lllllll}
'st' & {\([1]\)} & {\([2]\)} & {\([3.6064]\)} & {\([8]\)} & {\([10.3936]\)} \\
'al1' & {\([1]\)} & {\([3]\)} & {\([1.6064]\)} & {\([5]\)} & {\([8.3936]\)} \\
'al2' & {\([2]\)} & {\([3]\)} & {\([-5.6280]\)} & {\([-2]\)} & {\([8.6280]\)}
\end{tabular}
```



The third row of the output matrix shows that the differences in strength between the two alloys is not significant. A $95 \%$ confidence interval for the difference is $[-5.6,1.6]$, so you cannot reject the hypothesis that the true difference is zero.

The first two rows show that both comparisons involving the first group (steel) have confidence intervals that do not include zero. In other words, those differences are significant. The graph shows the same information.

## References

[1] Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures. Hoboken, NJ: John Wiley \& Sons, 1987.
[2] Milliken, G. A., and D. E. Johnson. Analysis of Messy Data, Volume 1: Designed Experiments. Boca Raton, FL: Chapman \& Hall/CRC Press, 1992.
[3] Searle, S. R., F. M. Speed, and G. A. Milliken. "Population marginal means in the linear model: an alternative to least-squares means." American Statistician. 1980, pp. 216-221.

See Also anova1| anova2 | anovan | aoctool | friedman | kruskalwallis

## Superclasses ParametricTruncatableDistribution

Purpose Multinomial probability distribution object
Description prob.MultinomialDistribution is an object consisting of parameters and a model description for a multinomial probability distribution. Create a probability distribution object with specified parameters using makedist.

## Construction pd = makedist('Multinomial') creates a multinomial probability

 distribution object using the default parameter values.pd = makedist('Multinomial','Probabilities', probabilities) creates a multinomial distribution object using the specified parameter value.

## Input Arguments

## probabilities - outcome probabilities

## [0.500 0.500] (default) | vector of scalar values in the range [0,1]

Outcome probabilities, specified as a vector of scalar values in the range $[0,1]$. Each vector element is the probability that a multinomial trial has a particular corresponding outcome. The values in probabilities must sum to 1 .

Data Types<br>single | double

## Properties

## probabilities

Outcome probabilities for the multinomial distribution, stored as a vector of scalar values in the range $[0,1]$. The values in probabilities must sum to 1 .

## Data Types

single | double
DistributionName

## prob.MultinomialDistribution

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

## Data Types

char

## IsTruncated

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated. If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

## Data Types

logical

## NumParameters

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

```
Data Types
single | double
```


## ParameterDescription

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

## Data Types

char

## ParameterNames

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

## Data Types char

## ParameterValues

Values of distribution parameters, stored as a vector. This property is read-only.

## Data Types

single | double

## Truncation

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

## Data Types

single | double

## Methods Inherited Methods

| cdf | Cumulative distribution function <br> of probability distribution object |
| :--- | :--- |
| icdf | Inverse cumulative distribution <br> function of probability <br> distribution object |
| iqr | Interquartile range of probability <br> distribution object |
| median | Median of probability distribution <br> object |
| pdf | Probability density function of <br> probability distribution object |
| random | Generate random numbers from <br> probability distribution object |
| truncate | Truncate probability distribution <br> object |

## prob.MultinomialDistribution

mean
std
var

Mean of probability distribution object
Standard deviation of probability distribution object

Variance of probability distribution object

## Definitions

## Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution. While the binomial distribution gives the probability of the number of "successes" in $n$ independent trials of a two-outcome process, the multinomial distribution gives the probability of each combination of outcomes in $n$ independent trials of a $k$-outcome process. The probability of each outcome in any one trial is given by the fixed probabilities $p_{1}, \ldots, p_{\mathrm{k}}$.
The multinomial distribution uses the following parameters.

| Parameter | Description | Support |
| :--- | :--- | :--- |
| probabilities | Outcome <br> probabilities | $0 \leq \operatorname{probabilities~}(i) \leq 1 ; \sum_{\text {all }(i)} \operatorname{probabilities}(i)=1$ |

The probability density function (pdf) is
where $x=\left(x_{1}, \ldots, x_{k}\right)$ gives the number of each $k$ outcome in $n$ trials of a process with fixed probabilities $p=\left(p_{1}, \ldots, p_{k}\right)$ of individual outcomes in any one trial.

## Examples Create a Multinomial Distribution Object Using Default Parameters

Create a multinomial distribution object using the default parameter values.

```
pd = makedist('Multinomial')
pd =
```

MultinomialDistribution

Probabilities:
$0.5000 \quad 0.5000$

## Create a Multinomial Distribution Object Using Specified Parameters

Create a multinomial distribution object for a distribution with three possible outcomes. Outcome 1 has a probability of $1 / 2$, outcome 2 has a probability of $1 / 3$, and outcome 3 has a probability of $1 / 6$.

```
pd = makedist('Multinomial','probabilities',[1/2 1/3 1/6])
pd =
```

MultinomialDistribution
Probabilities:
$0.5000 \quad 0.3333 \quad 0.1667$
Generate a random outcome from the distribution.

```
rng('default'); % for reproducibility
```

$r=r a n d o m(p d)$
$r=$

## prob.MultinomialDistribution

The result of this trial is outcome 2. By default, the number of trials in each experiment, $n$, equals 1 .

Generate random outcomes from the distribution when the number of trials in each experiment, $n$, equals 1 , and the experiment is repeated ten times.

```
rng('default'); % for reproducibility
```

$r=\operatorname{random}(p d, 10,1)$
$r=$

$$
\begin{aligned}
& 2 \\
& 3 \\
& 1 \\
& 3 \\
& 2 \\
& 2 \\
& 1 \\
& 1 \\
& 2 \\
& 3 \\
& 3
\end{aligned}
$$

Each element in the array is the outcome of an individual experiment that contains one trial.

Generate random outcomes from the distribution when the number of trials in each experiment, $n$, equals 5 , and the experiment is repeated ten times.

```
rng('default'); % for reproducibility
```

$r=\operatorname{random}(p d, 10,5)$
$r=$

| 2 | 1 | 2 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 3 | 1 | 1 | 1 |


| 1 | 3 | 3 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | 3 | 1 | 2 |
| 2 | 2 | 2 | 1 | 1 |
| 1 | 1 | 2 | 2 | 1 |
| 1 | 1 | 2 | 2 | 1 |
| 2 | 3 | 1 | 1 | 2 |
| 3 | 2 | 2 | 3 | 2 |
| 3 | 3 | 1 | 1 | 2 |

Each element in the resulting matrix is the outcome of one trial. The columns correspond to the five trials in each experiment, and the rows correspond to the ten experiments. For example, in the first experiment (corresponding to the first row), 2 of the 5 trials resulted in outcome 1, and 3 of the 5 trials resulted in outcome 2 .

## See Also makedist

## Concepts <br> - "Multinomial Distribution" on page B-67

- Class Attributes
- Property Attributes


## multivarichart

Purpose Multivari chart for grouped data
Syntax $\left.\quad \begin{array}{l}\text { multivarichart(y, GROUP) } \\ \text { multivarichart(Y) } \\ \\ \text { multivarichart }(\ldots, \text { param1, val1, param2, val2, ...) } \\ \end{array}\right]$
Description
multivarichart ( $y$, GROUP) displays the multivari chart for the vector y grouped by entries in the cell array GROUP. Each cell of GROUP must contain a grouping variable that can be a categorical variable, numeric vector, character matrix, or single-column cell array of strings. GROUP can also be a matrix whose columns represent different grouping variables. Each grouping variable must have the same number of elements as $y$. The number of grouping variables must be 2,3 , or 4 .
Each subplot of the plot matrix contains a multivari chart for the first and second grouping variables. The $x$-axis in each subplot indicates values of the first grouping variable. The legend at the bottom of the figure window indicates values of the second grouping variable. The subplot at position $(i, j)$ is the multivari chart for the subset of $y$ at the $i$ th level of the third grouping variable and the $j$ th level of the fourth grouping variable. If the third or fourth grouping variable is absent, it is considered to have only one level.
multivarichart $(\mathrm{Y})$ displays the multivari chart for a matrix Y . The data in different columns represent changes in one factor. The data in different rows represent changes in another factor.
multivarichart(...,param1,val1,param2,val2,...) specifies one or more of the following name/value pairs:

- 'varnames ' - Grouping variable names in a character matrix or a cell array of strings, one per grouping variable. Default names are 'X1', 'X2', ... .
- 'plotorder' - A string with the value 'sorted' or a vector containing a permutation of the integers from 1 to the number of grouping variables.

If 'plotorder' is a string with value 'sorted', the grouping variables are rearranged in descending order according to the number of levels in each variable.

If 'plotorder' is a vector, it indicates the order in which each grouping variable should be plotted. For example, [2,3,1,4] indicates that the second grouping variable should be used as the $x$-axis of each subplot, the third grouping variable should be used as the legend, the first grouping variable should be used as the columns of the plot, and the fourth grouping variable should be used as the rows of the plot.
[charthandle,AXESH] = multivarichart(...) returns a handle charthandle to the figure window and a matrix AXESH of handles to the subplot axes.

Examples Display a multivari chart for data with two grouping variables:

```
y = randn(100,1); % response
group = [ceil(3*rand(100,1)) ceil(2*rand(100,1))];
multivarichart(y,group)
```



Display a multivari chart for data with four grouping variables:

```
y = randn(1000,1); % response
group = {ceil(2*rand(1000,1)),ceil(3*rand(1000,1)), ...
 ceil(2*rand(1000,1)),ceil(3*rand(1000,1))};
multivarichart(y,group)
```








$$
\circ \quad \times 2=1 \quad \square \quad \times 2=2 \quad \Leftrightarrow \quad \times 2=3
$$

See Also
How To
maineffectsplot | interactionplot

- "Grouping Variables" on page 2-51


## Purpose Multivariate normal cumulative distribution function

Syntax
$y=\operatorname{mvncdf}(X)$
$y=\operatorname{mvncdf}(X, m u$, SIGMA $)$
$y=\operatorname{mvncdf}(x l, x u, m u, S I G M A)$
[y,err] = mvncdf(...)
[...] = mvncdf(...,options)

## Description

$y=m v n c d f(X)$ returns the cumulative probability of the multivariate normal distribution with zero mean and identity covariance matrix, evaluated at each row of $X$. Rows of the $n$-by- $d$ matrix X correspond to observations or points, and columns correspond to variables or coordinates. y is an $n$-by- 1 vector.
$y=m v n c d f(X$, mu, SIGMA $)$ returns the cumulative probability of the multivariate normal distribution with mean mu and covariance SIGMA, evaluated at each row of X. mu is a 1 -by- $d$ vector, and SIGMA is a $d$-by- $d$ symmetric, positive definite matrix. mu can also be a scalar value, which mvncdf replicates to match the size of $X$. If the covariance matrix is diagonal, containing variances along the diagonal and zero covariances off the diagonal, SIGMA may also be specified as a 1-by-d vector containing just the diagonal. Pass in the empty matrix [] for mu to use as its default value when you want to only specify SIGMA.

The multivariate normal cumulative probability at X is defined as the probability that a random vector V , distributed as multivariate normal, will fall within the semi-infinite rectangle with upper limits defined by X , for example, $\operatorname{Pr}\{\mathrm{V}(1) \leq \mathrm{X}(1), \mathrm{V}(2) \leq \mathrm{X}(2), \ldots, \mathrm{V}(d) \leq \mathrm{X}(d)\}$. $y=m v n c d f(x l, x u, m u, S I G M A)$ returns the multivariate normal cumulative probability evaluated over the rectangle with lower and upper limits defined by $x l$ and $x u$, respectively.
[y,err] $=\operatorname{mvncdf}(\ldots)$ returns an estimate of the error in $y$. For bivariate and trivariate distributions, mvncdf uses adaptive quadrature on a transformation of the $t$ density, based on methods developed by Drezner and Wesolowsky and by Genz, as described in the references. The default absolute error tolerance for these cases is 1e-8. For four or more dimensions, mvncdf uses a quasi-Monte Carlo integration
algorithm based on methods developed by Genz and Bretz, as described in the references. The default absolute error tolerance for these cases is $1 \mathrm{e}-4$.
[...] = mvncdf(..., options) specifies control parameters for the numerical integration used to compute $y$. This argument can be created by a call to statset. Choices of statset parameters:

- 'TolFun' - Maximum absolute error tolerance. Default is 1e-8 when $d<4$, or $1 \mathrm{e}-4$ when $d \geq 4$.
- 'MaxFunEvals' - Maximum number of integrand evaluations allowed when $d \geq 4$. Default is 1 e 7 . 'MaxFunEvals' is ignored when $d<4$.
- 'Display' - Level of display output. Choices are 'off' (the default), 'iter', and 'final'. 'Display' is ignored when $d<4$.

```
Examples mu = [1 -1]; SIGMA = [.9 .4; .4 .3];
[X1,X2] = meshgrid(linspace(-1,3,25)',linspace(-3,1,25)');
X = [X1(:) X2(:)];
p = mvncdf(X,mu,SIGMA);
surf(X1,X2,reshape(p,25,25));
```



## References

[1] Drezner, Z. "Computation of the Trivariate Normal Integral." Mathematics of Computation. Vol. 63, 1994, pp. 289-294.
[2] Drezner, Z., and G. O. Wesolowsky. "On the Computation of the Bivariate Normal Integral." Journal of Statistical Computation and Simulation. Vol. 35, 1989, pp. 101-107.
[3] Genz, A. "Numerical Computation of Rectangular Bivariate and Trivariate Normal and t Probabilities." Statistics and Computing. Vol. 14, No. 3, 2004, pp. 251-260.
[4] Genz, A., and F. Bretz. "Numerical Computation of Multivariate t Probabilities with Application to Power Calculation of Multiple

Contrasts." Journal of Statistical Computation and Simulation. Vol. 63, 1999, pp. 361-378.
[5] Genz, A., and F. Bretz. "Comparison of Methods for the Computation of Multivariate $t$ Probabilities." Journal of Computational and Graphical Statistics. Vol. 11, No. 4, 2002, pp. 950-971.

See Also mvnpdf | mvnrnd
How To . "Multivariate Normal Distribution" on page B-71

Purpose Multivariate normal probability density function
Syntax $\quad \begin{aligned} y & =\operatorname{mvnpdf}(X) \\ y & =\operatorname{mvnpdf}(X, M U) \\ y & =\operatorname{mvnpdf}(X, M U, \text { SIGMA })\end{aligned}$
Description
$\mathrm{y}=\operatorname{mvnpdf}(\mathrm{X})$ returns the $n$-by- 1 vector y , containing the probability density of the multivariate normal distribution with zero mean and identity covariance matrix, evaluated at each row of the $n$-by- $d$ matrix X. Rows of X correspond to observations and columns correspond to variables or coordinates.
$\mathrm{y}=\mathrm{mvnpdf}(\mathrm{X}, \mathrm{MU})$ returns the density of the multivariate normal distribution with mean mu and identity covariance matrix, evaluated at each row of X . MU is a 1 -by- $d$ vector, or an $n$-by- $d$ matrix. If MU is a matrix, the density is evaluated for each row of $X$ with the corresponding row of MU. MU can also be a scalar value, which mvnpdf replicates to match the size of $X$.
$y=m v n p d f(X, M U, S I G M A)$ returns the density of the multivariate normal distribution with mean MU and covariance SIGMA, evaluated at each row of X. SIGMA is a $d$-by- $d$ matrix, or a $d$-by- $d$-by- $n$ array, in which case the density is evaluated for each row of $X$ with the corresponding page of SIGMA, i.e., mvnpdf computes y(i) using X(i,:) and SIGMA (:,:,i). If the covariance matrix is diagonal, containing variances along the diagonal and zero covariances off the diagonal, SIGMA may also be specified as a 1-by- $d$ vector or a 1-by- $d$-by- $n$ array, containing just the diagonal. Specify [] for MU to use its default value when you want to specify only SIGMA.

If X is a 1 -by- $d$ vector, mvnpdf replicates it to match the leading dimension of mu or the trailing dimension of SIGMA.

## Examples

```
mu = [1 -1];
SIGMA = [.9 .4; .4 .3];
X = mvnrnd(mu,SIGMA,10);
p = mvnpdf(X,mu,SIGMA);
```

See Also mvncdf | mvnrnd | normpdf
How To . "Multivariate Normal Distribution" on page B-71

## Purpose Multivariate linear regression

```
Syntax beta = mvregress(X,Y)
beta = mvregress(X,Y,Name,Value)
[beta,Sigma] = mvregress(___)
[beta,Sigma,E,CovB,logL] = mvregress(___)
```


## Description

## Input <br> Arguments

beta $=$ mvregress $(\mathrm{X}, \mathrm{Y})$ returns a $K$-by- 1 vector of estimated coefficients for a multivariate normal regression of the $d$-dimensional responses in Y on the design matrices in X .
mvregress treats NaN values in X or Y as missing values. Rows with missing values in X are ignored. Missing values in Y are handled according to the estimation algorithm.
beta $=$ mvregress $(X, Y$, Name, Value $)$ uses additional estimation options specified by one or more name-value pair arguments.
[beta,Sigma] = mvregress ( _ _ ) additionally returns the estimated $d$-by- $d$ variance-covariance matrix of Y. You can use any of the input arguments in the previous syntaxes.
[beta,Sigma, E, CovB,logL] = mvregress( $\qquad$ ) returns a matrix of residuals $E$, estimated variance-covariance matrix of the regression coefficients CovB, and the value of the log likelihood objective function after the last iteration logL.

## X - Design matrices

matrix | cell array of matrices
Design matrices for the multivariate regression, specified as an $N$-by- $K$ matrix, or a cell array of $d$-by- $K$ matrices, where $K$ is the number of regression coefficients to estimate.

To include a constant term in the regression model, each design matrix should have a column of 1 s .

- If $d=1$, then specify X as a single $N$-by- $K$ matrix.
- If $d>1$, then specify X as a cell array of matrices. If you are using the same $d$-by- $K$ design matrix for all $N$ observations, then X can be a single cell. Otherwise, specify X as a length- $N$ cell array of $d$-by- $K$ matrices.


## Data Types

single | double | cell

## Y - Response variables

matrix
Response variables, specified as an $N$-by- $d$ matrix. When $d=1$, mvregress treats the values in Y like $N$ independent response values.

## Data Types

single | double

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'algorithm','cwls','covar0', C specifies covariance-weighted least squares estimation using the covariance matrix $C$.

'algorithm' - Estimation algorithm<br>'mvn' | 'ecm' | 'cwls'

Estimation algorithm, specified as the comma-separated pair consisting of 'algorithm' and one of the following strings:

| 'mvn' | Ordinary multivariate normal maximum <br> likelihood estimation. |
| :--- | :--- |
| 'ecm' | Maximum likelihood estimation via the ECM <br> algorithm. |
| 'cwls' | Covariance-weighted least squares estimation. |

The default algorithm depends on the presence of missing data.

- For complete data, the default is 'mvn'.
- If there are any missing responses (indicated by NaN), the default is 'ecm', provided the sample size is sufficient to estimate all parameters. Otherwise, the default algorithm is 'cwls'.

Note If algorithm has value 'mvn', then mvregress removes observations with missing response values before estimation.

Example: 'algorithm', ecm'

## 'beta0' - Initial estimates for regression coefficients

vector
Initial estimates for the regression coefficients, specified as the comma-separated pair consisting of 'beta0' and a vector with $K$ elements. The default value is a vector of 0s.

The beta0 argument is not used if the estimation algorithm is 'mvn'.
For example, suppose b0 is a $K$-element vector of initial estimates.
Example: 'beta0', b0

## 'covar0' - Initial estimate for variance-covariance matrix <br> matrix

Initial estimate for the variance-covariance matrix, Sigma, specified as the comma-separated pair consisting of 'covaro' and a symmetric, positive definite, $d$-by- $d$ matrix. The default value is the identity matrix.

If the estimation algorithm is 'cwls', then mvregress uses covar0 as the weighting matrix at each iteration, without changing it.

For example, suppose C is a valid $d$-by- $d$ covariance matrix.
Example: 'covaro', C

## 'covtype' - Type of variance-covariance matrix

'full' (default) | 'diagonal'
Type of variance-covariance matrix to estimate for Y , specified as the comma-separated pair consisting of 'covtype' and one of 'full' or 'diagonal'.

- If the value is 'full', then mvregress estimates all $d(d+1) / 2$ variance-covariance elements.
- If the value is 'diagonal', then mvregress estimates only the $d$ diagonal elements of the variance-covariance matrix.

Example: 'covtype', 'diagonal'

## 'maxiter' - Maximum number of iterations

100 (default) | positive integer
Maximum number of iterations for the estimation algorithm, specified as the comma-separated pair consisting of 'maxiter' and a positive integer.

Iterations continue until estimates are within the convergence tolerances tolbeta and tolobj, or the maximum number of iterations specified by maxiter is reached. If both tolbeta and tolobj are zero, then mvregress performs maxiter iterations with no convergence tests.

Example: 'maxiter',50

'outputfen' - Function to evaluate each iteration<br>function handle

Function to evaluate at each iteration, specified as the comma-separated pair consisting of 'outputfon' and a function handle. The function must return a logical true or false. At each iteration, mvregress evaluates the function. If the result is true, iterations stop. Otherwise, iterations continue. For example, you could specify a function that plots or displays current iteration results, and returns true if you close the figure.

The function must accept three input arguments, in this order:

- Vector of current coefficient estimates.
- Structure with three fields:

| Covar | Current value of the variance-covariance <br> matrix |
| :--- | :--- |
| iteration | Current iteration number |
| fval | Current value of the loglikelihood objective <br> function |

- Text string that takes these three values:

| 'init' | For when the function is called during <br> initialization |
| :--- | :--- |
| 'iter' | For when the function is called after an <br> iteration |
| 'done' | For when called after completion |

'tolbeta' - Convergence tolerance for regression coefficients
sqrt(eps) (default) | positive scalar value
Convergence tolerance for regression coefficients, specified as the comma-separated pair consisting of 'tolbeta' and a positive scalar value. The default tolerance is sqrt(eps).

Let $\mathbf{b}^{t}$ denote the estimate of the coefficient vector at iteration $t$, and
$\tau_{\beta}$ be the tolerance specified by tolbeta. The convergence criterion for regression coefficient estimation is

$$
\left\|\mathbf{b}^{t}-\mathbf{b}^{t-1}\right\|<\tau_{\beta} \sqrt{K}\left(1+\left\|\mathbf{b}^{t}\right\|\right),
$$

where $K$ is the length of $\mathbf{b}^{t}$ and $\|\mathbf{v}\|$ is the norm of a vector $\mathbf{v}$.
Iterations continue until estimates are within the convergence tolerances tolbeta and tolobj, or the maximum number of iterations specified by maxiter is reached. If both tolbeta and tolobj are zero, then mvregress performs maxiter iterations with no convergence tests.

Example: 'tolbeta', 1e-5

## 'tolobj' - Convergence tolerance for loglikelihood objective function

eps^(3/4) (default) | positive scalar value
Convergence tolerance for the loglikelihood objective function, specified as the comma-separated pair consisting of 'tolobj' and a positive scalar value. The default tolerance is $\mathrm{eps}^{\wedge}(3 / 4)$.

Let $L^{t}$ denote the value of the loglikelihood objective function at iteration $t$, and $\tau_{\ell}$ be the tolerance specified by tolobj. The convergence criterion for the objective function is

$$
\left|L^{t}-L^{t-1}\right|<\tau_{\ell}\left(1+\left|L^{t}\right|\right) .
$$

Iterations continue until estimates are within the convergence tolerances tolbeta and tolobj, or the maximum number of iterations specified by maxiter is reached. If both tolbeta and tolobj are zero, then mvregress performs maxiter iterations with no convergence tests.

Example: 'tolobj',1e-5

## 'varformat' - Format for parameter estimate variance-covariance matrix <br> ```'beta' (default) | 'full'```

Format for the parameter estimate variance-covariance matrix, CovB, specified as the comma-separated pair consisting of 'varformat' and one of these strings:

| 'beta' | Return the variance-covariance matrix for only <br> the regression coefficient estimates, beta. |
| :--- | :--- |
| 'full' | Return the variance-covariance matrix for both <br> the regression coefficient estimates, beta, <br> and the variance-covariance matrix estimate, |
| Sigma. |  |

Example: 'varformat','full'

## 'vartype' - Type of variance-covariance matrix for parameter estimates

```
'hessian' (default) | 'fisher'
```

Type of variance-covariance matrix for parameter estimates, specified as the comma-separated pair consisting of 'vartype' and either 'hessian' or 'fisher'.

- If the value is 'hessian', then mvregress uses the Hessian, or observed information, matrix to compute CovB.
- If the value is 'fisher', then mvregress uses the complete-data Fisher, or expected information, matrix to compute CovB.

The 'hessian' method takes into account the increase uncertainties due to missing data, while the 'fisher' method does not.

Example: 'vartype', 'fisher'

## Output Arguments

## beta - Estimated regression coefficients

column vector
Estimated regression coefficients, returned as a $K$-by- 1 vector.

## Sigma-Estimate variance-covariance matrix <br> square matrix <br> Estimated variance-covariance matrix for the responses in Y, returned as a $d$-by- $d$ square matrix.

Note The estimated variance-covariance matrix, Sigma, is not the sample covariance matrix of the residual matrix, E .

## E - Residuals

matrix
Residuals for the fitted regression model, returned as an $N$-by- $d$ matrix.
If algorithm has value 'ecm' or 'cwls', then mvregress computes the residual values corresponding to missing values in Y as the difference between conditionally-imputed values and the fitted values.

Note If algorithm has value 'mvn', then mvregress removes observations with missing response values before estimation.

## CovB - Parameter estimate variance-covariance matrix square matrix

Parameter estimate variance-covariance matrix, returned as a square matrix.

- If varformat has value 'beta' (the default), then CovB is the estimated variance-covariance matrix of the coefficient estimates in beta.
- If varformat has value 'full', then CovB is the estimated variance-covariance matrix of the combined estimates in beta and Sigma.


## logL - Loglikelihood objective function value

## scalar value

Loglikelihood objective function value after the last iteration, returned as a scalar value.

## Examples

## Multivariate Regression Model for Panel Data with Different Intercepts

Fit a multivariate regression model to panel data, assuming different intercepts and common slopes.

Load sample data.
load('flu')

The dataset array, flu, contains national CDC flu estimates, and nine separate regional estimates based on Google ${ }^{\circledR}$ queries.

Extract response and predictor data.
Y = double(flu(:,2:end-1));
[N,d] = size(Y);
The responses are the Google query estimates. There are observations for every week, so $N=52$. The dimension of the responses corresponds to the regions, so $d=9$.
x = flu.WtdILI;

The predictors are national CDC flu estimates.

```
regions = flu.Properties.VarNames(2:end-1);
figure()
plot(x,Y,'x')
legend(regions,'Location','NorthWest')
```



Fit the multivariate regression model

$$
y_{i j}=\alpha_{j}+\beta x_{i j}+\varepsilon_{i j}, i=1, \ldots, N ; j=1, \ldots, d,
$$

with between-region concurrent correlation,

$$
\operatorname{COV}\left(\varepsilon_{i j}, \varepsilon_{i j^{\prime}}\right)=\sigma_{j j^{\prime}}, j=1, \ldots, d
$$

There are $K=10$ regression coefficients to estimate: 9 intercept terms and a common slope. The input argument X should be an $N$-element cell array of $d$-by- $K$ design matrices.

```
X = cell(N,1);
for i=1:N
 X{i} = [eye(d) repmat(x(i),d,1)];
```

end
[beta,Sigma] $=$ mvregress $(X, Y)$;
beta contains estimates of the $K$-dimensional coefficient vector,

$$
\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{9}, \beta\right)^{\prime}
$$

Sigma contains estimates of the $d$-by- $d$ variance-covariance matrix for the between-region concurrent correlations,

$$
\left(\begin{array}{ccc}
\sigma_{11} & \ldots & \sigma_{1,9} \\
\vdots & \ddots & \vdots \\
\sigma_{9,1} & \cdots & \sigma_{9,9}
\end{array}\right)
$$

Plot the fitted regression model.

```
B = [beta(1:d)';repmat(beta(end),1,d)];
xx = linspace(.5,3.5)';
fits = [ones(size(xx)),xx]*B;
figure()
h = plot(x,Y,'x',xx,fits,'-');
for i = 1:d
 set(h(d+i),'color',get(h(i),'color'));
end
legend(regions,'Location','NorthWest')
```



## Multivariate Regression for Panel Data with Different Slopes

Fit a multivariate regression model to panel data using least squares, assuming different intercepts and slopes.

Load sample data.
load('flu')
The dataset array, flu, contains national CDC flu estimates, and nine separate regional estimates based on Google queries.

Extract response and predictor data.

```
Y = double(flu(:,2:end-1));
[N,d] = size(Y);
```

The responses are the Google query estimates. There are observations for every week, so $N=52$. The dimension of the responses corresponds to the regions, so $d=9$.

```
x = flu.WtdILI;
```

The predictors are national CDC flu estimates.
Fit the multivariate regression model

$$
y_{i j}=\alpha_{j}+\beta_{j} x_{i j}+\varepsilon_{i j}, i=1, \ldots, N ; j=1, \ldots, d,
$$

with between-region concurrent correlation,

$$
\operatorname{COV}\left(\varepsilon_{i j}, \varepsilon_{i j^{\prime}}\right)=\sigma_{j j^{\prime}}, \quad j=1, \ldots, d
$$

There are $K=18$ regression coefficients to estimate: 9 intercept terms and 9 slope terms. The input argument X should be an $N$-element cell array of $d$-by- $K$ design matrices.

```
X = cell(N,1);
for i=1:N
 X{i} = [eye(d) x(i)*eye(d)];
end
[beta,Sigma] = mvregress(X,Y,'algorithm','cwls');
```

beta contains estimates of the $K$-dimensional coefficient vector,

$$
\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{9}, \beta_{1}, \beta_{2}, \ldots, \beta_{9}\right)^{\prime}
$$

Plot the fitted regression model.

```
B = [beta(1:d)';beta(d+1:end)'];
xx = linspace(.5,3.5)';
fits = [ones(size(xx)),xx]*B;
figure()
```

```
h = plot(x,Y,'x',xx,fits,'-');
for i = 1:d
 set(h(d+i),'color',get(h(i),'color'));
end
regions = flu.Properties.VarNames(2:end-1);
legend(regions,'Location','NorthWest')
```



## Definitions

## Multivariate Normal Regression

Multivariate normal regression is the regression of a $d$-dimensional response on a design matrix of predictor variables, with normally distributed errors. The errors can be heteroscedastic and correlated. The model is

$$
\mathbf{y}_{i}=\mathbf{X}_{i} \beta+\mathbf{e}_{i}, \quad i=1, \ldots, N
$$

where

- $\mathbf{y}_{i}$ is a $d$-dimensional vector of responses.
- $\mathbf{X}_{i}$ is a $d$-by- $K$ design matrix of predictor variables.
- $\beta$ is a $K$-dimensional vector of regression coefficients.
- $\mathbf{e}_{i}$ is a d-dimensional vector of error terms, with multivariate normal distribution

$$
\mathbf{e}_{i} \sim M V N_{d}(\mathbf{0}, \Sigma)
$$

## Conditionally-Imputed Values

The expectation/conditional maximization ('ecm') and covariance-weighted least squares ('cwls') estimation algorithms include imputation of missing response values.

Let $\tilde{\mathbf{y}}$ denote missing observations. The conditionally-imputed values are the expected value of the missing observation given the observed data, $\mathrm{E}(\tilde{\mathbf{y}} \mid \mathbf{y})$.
The joint distribution of the missing and observed responses is a multivariate normal distribution,

$$
\binom{\tilde{\mathbf{y}}}{\mathbf{y}} \sim M V N\left\{\binom{\tilde{\mathbf{x}} \beta}{\mathbf{X} \beta},\left(\begin{array}{cc}
\Sigma_{\tilde{y}} & \Sigma_{\tilde{y} y} \\
\Sigma_{y \tilde{y}} & \Sigma_{y}
\end{array}\right)\right\} .
$$

Using properties of the multivariate normal distribution, the imputed conditional expectation is given by

$$
\mathrm{E}(\tilde{\mathbf{y}} \mid \mathbf{y})=\tilde{\mathbf{x}} \beta+\Sigma_{\tilde{y} y} \Sigma_{y}^{-1}(\mathbf{y}-\mathbf{X} \beta)
$$

> Note mvregress only imputes missing response values. Observations with missing values in the design matrix are removed.

## References

[1] Little, Roderick J. A., and Donald B. Rubin. Statistical Analysis with Missing Data. 2nd ed., Hoboken, NJ: John Wiley \& Sons, Inc., 2002.
[2] Meng, Xiao-Li, and Donald B. Rubin. "Maximum Likelihood Estimation via the ECM Algorithm." Biometrika. Vol. 80, No. 2, 1993, pp. 267-278.
[3] Sexton, Joe, and A. R. Swensen. "ECM Algorithms that Converge at the Rate of EM." Biometrika. Vol. 87, No. 3, 2000, pp. 651-662.
[4] Dempster, A. P., N. M. Laird, and D. B. Rubin. "Maximum Likelihood from Incomplete Data via the EM Algorithm." Journal of the Royal Statistical Society. Series B, Vol. 39, No. 1, 1977, pp. 1-37.

## See Also

Related
Examples

Concepts
manova1 | mvregresslike

- "Set Up Multivariate Regression Problems" on page 12-16
- "Multivariate General Linear Model" on page 12-30
- "Fixed Effects Panel Model with Concurrent Correlation" on page

12-35

- "Longitudinal Analysis" on page 12-43
- "Multivariate Linear Regression" on page 12-3
- "Estimation of Multivariate Regression Models" on page 12-6

Purpose Negative log-likelihood for multivariate regression
Syntax $\quad \begin{array}{ll}\text { nlogL }=\text { mvregresslike }(X, Y, b, S I G M A, ~ a l g) ~ \\ {[n l o g L, C O V B]=\text { mvregresslike }(\ldots)} \\ & {[\text { nlogL }, \text { COVB }]=\text { mvregresslike }(\ldots, \text { type, format })}\end{array}$

## Description

nlogL $=$ mvregresslike $(X, Y, b$, SIGMA,$a l g)$ computes the negative log-likelihood nlogL for a multivariate regression of the $d$-dimensional multivariate observations in the $n$-by- $d$ matrix Y on the predictor variables in the matrix or cell array $X$, evaluated for the $p$-by- 1 column vector b of coefficient estimates and the $d$-by- $d$ matrix SIGMA specifying the covariance of a row of Y . If $d=1, \mathrm{X}$ can be an $n$-by- $p$ design matrix of predictor variables. For any value of $d, \mathrm{X}$ can also be a cell array of length $n$, with each cell containing a $d$-by- $p$ design matrix for one multivariate observation. If all observations have the same $d$-by- $p$ design matrix, $X$ can be a single cell.
NaN values in $X$ or $Y$ are taken as missing. Observations with missing values in $X$ are ignored. Treatment of missing values in $Y$ depends on the algorithm specified by alg.
alg should match the algorithm used by mvregress to obtain the coefficient estimates $b$, and must be one of the following:

- 'ecm' - ECM algorithm
- 'cwls' - Least squares conditionally weighted by SIGMA
- 'mvn' - Multivariate normal estimates computed after omitting rows with any missing values in $Y$
[nlogL,COVB] = mvregresslike(...) also returns an estimated covariance matrix COVB of the parameter estimates $b$.
[nlogL,COVB] = mvregresslike(...,type,format) specifies the type and format of COVB.
type is either:
- 'hessian' - To use the Hessian or observed information. This method takes into account the increased uncertainties due to missing data. This is the default.
- 'fisher' - To use the Fisher or expected information. This method uses the complete data expected information, and does not include uncertainty due to missing data.
format is either:
- 'beta' - To compute COVB for $b$ only. This is the default.
- 'full' - To compute COVB for both b and SIGMA.


## See Also

How To
mvregress | manova1

- "Multivariate Normal Distribution" on page B-71


## Purpose Multivariate normal random numbers

```
Syntax \(\quad R=\operatorname{mvnrnd}(M U, S I G M A)\)
\(r=\) mvnrnd(MU,SIGMA, cases)
```

$R=$ mvnrnd(MU,SIGMA) returns an $n$-by- $d$ matrix $R$ of random vectors chosen from the multivariate normal distribution with mean MU, and covariance SIGMA. MU is an $n$-by- $d$ matrix, and mvnrnd generates each row of R using the corresponding row of mu. SIGMA is a $d$-by- $d$ symmetric positive semi-definite matrix, or a $d$-by- $d$-by-n array. If SIGMA is an array, mvnrnd generates each row of R using the corresponding page of SIGMA, i.e., mvnrnd computes R(i,:) using MU(i,:) and SIGMA(:,:,i). If the covariance matrix is diagonal, containing variances along the diagonal and zero covariances off the diagonal, SIGMA may also be specified as a 1 -by- $d$ vector or a 1-by- $d$-by- $n$ array, containing just the diagonal. If $M U$ is a 1 -by- $d$ vector, mvnrnd replicates it to match the trailing dimension of SIGMA.
$r=$ mvnrnd(MU,SIGMA, cases) returns a cases-by-d matrix R of random vectors chosen from the multivariate normal distribution with a common 1-by-d mean vector MU, and a common d-by-d covariance matrix SIGMA.

## Examples <br> mu = [2 3]; <br> SIGMA = [1 1.5; 1.5 3]; <br> $r=m v n r n d(m u, S I G M A, 100) ;$ <br> plot(r(:,1),r(:,2),'+')



See Also
mvnpdf | mvncdf | normrnd
How To . "Multivariate Normal Distribution" on page B-71

```
Purpose Multivariate \(t\) cumulative distribution function
Syntax \(\quad y=\operatorname{mvtcdf}(X, C, D F)\)
\(y=\operatorname{mvtcdf}(x l, x u, C, D F)\)
[y,err] = mvtcdf(...)
[...] = mvntdf(...,options)
```


## Description

$y=m v t c d f(X, C, D F)$ returns the cumulative probability of the multivariate $t$ distribution with correlation parameters C and degrees of freedom DF, evaluated at each row of X. Rows of the $n$-by- $d$ matrix $X$ correspond to observations or points, and columns correspond to variables or coordinates. y is an n -by- 1 vector.

C is a symmetric, positive definite, $d$-by- $d$ matrix, typically a correlation matrix. If its diagonal elements are not 1, mvtcdf scales $C$ to correlation form. mvtcdf does not rescale X. DF is a scalar, or a vector with $n$ elements.

The multivariate $t$ cumulative probability at X is defined as the probability that a random vector T , distributed as multivariate $t$, will fall within the semi-infinite rectangle with upper limits defined by $x$, i.e., $\operatorname{Pr}\{T(1) \leq X(1), T(2) \leq X(2), \ldots T(d) \leq X(d)\}$.
$\mathrm{y}=\operatorname{mvtcdf}(\mathrm{xl}, \mathrm{xu}, \mathrm{C}, \mathrm{DF})$ returns the multivariate $t$ cumulative probability evaluated over the rectangle with lower and upper limits defined by $x l$ and $x u$, respectively.
[y,err] $=\operatorname{mvtcdf}(\ldots)$ returns an estimate of the error in $y$. For bivariate and trivariate distributions, mvtcdf uses adaptive quadrature on a transformation of the $t$ density, based on methods developed by Genz, as described in the references. The default absolute error tolerance for these cases is $1 e-8$. For four or more dimensions, mvtcdf uses a quasi-Monte Carlo integration algorithm based on methods developed by Genz and Bretz, as described in the references. The default absolute error tolerance for these cases is 1e-4.
[...] = mvntdf(..., options) specifies control parameters for the numerical integration used to compute $y$. This argument can be created by a call to statset. Choices of statset parameters are:

- 'TolFun' - Maximum absolute error tolerance. Default is 1e-8 when $d<4$, or $1 \mathrm{e}-4$ when $d \geq 4$.
- 'MaxFunEvals' - Maximum number of integrand evaluations allowed when $d \geq 4$. Default is 1e7. 'MaxFunEvals' is ignored when $d<4$.
- 'Display' - Level of display output. Choices are 'off' (the default), 'iter', and 'final'. 'Display' is ignored when $d<4$.

```
Examples
C = [1 .4; .4 1]; df = 2;
[X1,X2] = meshgrid(linspace(-2,2,25)',linspace(-2,2,25)');
X = [X1(:) X2(:)];
p = mvtcdf(X,C,df);
surf(X1,X2,reshape(p,25,25));
```



## References

[1] Genz, A. "Numerical Computation of Rectangular Bivariate and Trivariate Normal and t Probabilities." Statistics and Computing. Vol. 14, No. 3, 2004, pp. 251-260.
[2] Genz, A., and F. Bretz. "Numerical Computation of Multivariate t Probabilities with Application to Power Calculation of Multiple Contrasts." Journal of Statistical Computation and Simulation. Vol. 63, 1999, pp. 361-378.
[3] Genz, A., and F. Bretz. "Comparison of Methods for the Computation of Multivariate $t$ Probabilities." Journal of Computational and Graphical Statistics. Vol. 11, No. 4, 2002, pp. 950-971.
$\begin{array}{ll}\text { See Also } & \text { mvtpdf | mvtrnd } \\ \text { How To } & \text { - "Multivariate t Distribution" on page B-77 }\end{array}$

Purpose Multivariate $t$ probability density function

## Syntax $\quad y=\operatorname{mvtpdf}(x, C, d f)$

Description
$y=m v t p d f(X, C, d f)$ returns the probability density of the multivariate $t$ distribution with correlation parameters C and degrees of freedom df , evaluated at each row of X . Rows of the $n$-by- $d$ matrix X correspond to observations or points, and columns correspond to variables or coordinates. C is a symmetric, positive definite, $d$-by- $d$ matrix, typically a correlation matrix. If its diagonal elements are not 1, mvtpdf scales C to correlation form. mvtcdf does not rescale $X$. $d f$ is a scalar, or a vector with $n$ elements. y is an $n$-by- 1 vector.

## Examples Visualize a multivariate $t$ distribution:

```
[X1,X2] = meshgrid(linspace(-2,2,25)',linspace(-2,2,25)');
X = [X1(:) X2(:)];
C = [1 .4; .4 1];
df = 2;
p = mvtpdf(X,C,df);
surf(X1,X2,reshape(p,25,25))
```



See Also
mvtcdf | mvtrnd
How To

- "Multivariate t Distribution" on page B-77


## Purpose Multivariate $t$ random numbers

```
Syntax \(\quad R=\operatorname{mvtrnd}(C, d f\), cases \()\)
R = mvtrnd(C,df)
```

Description

Examples
$R=m v t r n d(C, d f$, cases $)$ returns a matrix of random numbers chosen from the multivariate $t$ distribution, where C is a correlation matrix. $d f$ is the degrees of freedom and is either a scalar or is a vector with cases elements. If $p$ is the number of columns in C , then the output $R$ has cases rows and $p$ columns.

Let $t$ represent a row of $R$. Then the distribution of $t$ is that of a vector having a multivariate normal distribution with mean 0 , variance 1 , and covariance matrix C , divided by an independent chi-square random value having df degrees of freedom. The rows of $R$ are independent.
$C$ must be a square, symmetric and positive definite matrix. If its diagonal elements are not all 1 (that is, if C is a covariance matrix rather than a correlation matrix), mvtrnd rescales C to transform it to a correlation matrix before generating the random numbers.
$R=m v t r n d(C, d f)$ returns a single random number from the multivariate $t$ distribution.

SIGMA = [1 0.8;0.8 1];
R = mvtrnd(SIGMA, 3,100);
plot(R(:,1),R(:,2),'+')


See Also
How To . "Multivariate $t$ Distribution" on page B-77

## cvpartition.N property

$\begin{array}{ll}\text { Purpose } & \begin{array}{l}\text { Number of observations (including observations with missing group } \\ \text { values) }\end{array} \\ \text { Description } & \begin{array}{l}\text { Number of observations (including observations with missing group } \\ \text { values). }\end{array}\end{array}$

## Purpose Naive Bayes classifier

Description A NaiveBayes object defines a Naive Bayes classifier. A Naive Bayes classifier assigns a new observation to the most probable class, assuming the features are conditionally independent given the class value.

## Construction

NaiveBayes
Create NaiveBayes object

## Methods

disp
display
fit
posterior
predict
subsasgn
subsref

Display NaiveBayes classifier object
Display NaiveBayes classifier object
Create Naive Bayes classifier object by fitting training data

Compute posterior probability of each class for test data

Predict class label for test data
Subscripted reference for NaiveBayes object
Subscripted reference for NaiveBayes object

## Properties

CIsNonEmpty
CLevels
CNames
CPrior

Flag for non-empty classes
Class levels
Class names
Class priors

## NaiveBayes

| Dist | Distribution names |
| :--- | :--- |
| NClasses | Number of classes |
| NDims | Number of dimensions |
| Params | Parameter estimates |

Copy
Semantics

Examples Predict the class label using the Naive Bayes classifier:
load fisheriris
Use the default Gaussian distribution and a confusion matrix:

```
01 = NaiveBayes.fit(meas,species);
C1 = 01.predict(meas);
cMat1 = confusionmat(species,C1)
```

This returns:
cMat1 $=$

| 50 | 0 | 0 |
| ---: | ---: | ---: |
| 0 | 47 | 3 |
| 0 | 3 | 47 |

Use the Gaussian distribution for features 1 and 3 and use the kernel density estimation for features 2 and 4 :

```
02 = NaiveBayes.fit(meas,species,'dist',...
{'normal','kernel','normal','kernel'});
C2 = 02.predict(meas);
cMat2 = confusionmat(species,C2)
```

This returns:
cMat2 $=$

| 50 | 0 | 0 |
| ---: | ---: | ---: |
| 0 | 47 | 3 |
| 0 | 3 | 47 |

## References [1] Mitchell, T. (1997) Machine Learning, McGraw Hill.

[2] Vangelis M., Ion A., and Geogios P. Spam Filtering with Naive Bayes - Which Naive Bayes? (2006) Third Conference on Email and Anti-Spam.
[3] George H. John and Pat Langley. Estimating continuous distributions in bayesian classifiers (1995) the Eleventh Conference on Uncertainty in Artificial Intelligence.

How To . "Naive Bayes Classification" on page 14-36

- "Grouping Variables" on page 2-51


## NaiveBayes

$$
\begin{array}{ll}
\text { Purpose } & \text { Create NaiveBayes object } \\
\text { Description } & \begin{array}{l}
\text { You cannot create a NaiveBayes classifier by calling the constructor. } \\
\text { Use NaiveBayes.fit to create a NaiveBayes classifier by fitting the } \\
\text { object to training data. }
\end{array}
\end{array}
$$

See Also fit

Superclasses ToolboxFittableParametricDistribution
Purpose Nakagami probability distribution object
Description prob.NakagamiDistribution is an object consisting of parameters, a model description, and sample data for a Nakagami probability distribution.

Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

## Construction

pd = makedist('Nakagami') creates a Nakagami probability distribution object using the default parameter values.
pd = makedist('Nakagami','mu', mu,'omega',omega) creates a Nakagami probability distribution object using the specified parameter values.

## Input Arguments

mu - Shape parameter
1 (default) | positive scalar value
Shape parameter for the Nakagami distribution, specified as a positive scalar value.

## Data Types <br> single | double <br> omega - Scale parameter

1 (default) | positive scalar value
Scale parameter for the Nakagami distribution, specified as a positive scalar value.

Data Types<br>single | double

## prob.NakagamiDistribution

## Properties

mu
Shape parameter for the Nakagami distribution, stored as a positive scalar value.

## Data Types <br> single | double <br> omega

Scale parameter for the Nakagami distribution, stored as a positive scalar value.

## Data Types <br> single | double

## DistributionName

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

## Data Types <br> char

## InputData

Data used for distribution fitting, stored as a structure containing the following:

- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.

## Data Types

single | double

## IsTruncated

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated.

If IsTruncated equals 1, the distribution is truncated. This property is read-only.

## Data Types

logical

## NumParameters

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

## Data Types

single | double

## ParameterCovariance

Covariance matrix of the parameter estimates, stored as a $p$-by- $p$ matrix, where $p$ is the number of parameters in the distribution. The ( $i, j$ ) element is the covariance between the estimates of the $i$ th parameter and the $j$ th parameter. The ( $i, i$ ) element is the estimated variance of the ith parameter. If parameter $i$ is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

## Data Types

single | double

## ParameterDescription

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

## Data Types

char

## Parameterlsfixed

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

## prob.NakagamiDistribution

## Data Types <br> logical <br> ParameterNames

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

## Data Types

char

## ParameterValues

Values of distribution parameters, stored as a vector. This property is read-only.

## Data Types <br> single | double <br> Truncation

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

```
Data Types
single | double
```


## Methods Inherited Methods

| cdf | Cumulative distribution function <br> of probability distribution object |
| :--- | :--- |
| icdf | Inverse cumulative distribution <br> function of probability <br> distribution object |
| iqr | Interquartile range of probability <br> distribution object |
| median | Median of probability distribution <br> object |

## prob.NakagamiDistribution

| pdf | Probability density function of <br> probability distribution object |
| :--- | :--- |
| random | Generate random numbers from <br> probability distribution object |
| truncate | Truncate probability distribution <br> object |
| mean | Mean of probability distribution <br> object |
| negloglik | Negative loglikelihood of <br> probability distribution object <br> Confidence intervals for |
| paramci | probability distribution <br> parameters |
| proflik | Profile likelihood function for <br> probability distribution object |
| std | Standard deviation of probability <br> distribution object |
| var | Variance of probability <br> distribution object |

## Definitions Nakagami Distribution

The Nakagami distribution is commonly used in communication theory to model scattered signals that reach a receiver using multiple paths.

The Nakagami distribution uses the following parameters.

| Parameter | Description | Support |
| :--- | :--- | :--- |
| mu | Shape parameter | $\mu>0$ |
| omega | Scale parameter | $\omega>0$ |

## prob.NakagamiDistribution

The probability density function (pdf) is

$$
f(x \mid \mu, \omega)=2\left(\frac{\mu^{\mu}}{\omega}\right) \frac{1}{\Gamma(\mu)} x^{(2 \mu-1)} \exp \left\{\frac{-\mu}{\omega} x^{2}\right\} \quad ; \quad x>0
$$

where $\Gamma(\cdot)$ is the Gamma function.

## Examples

## Create a Nakagami Distribution Object Using Default Parameters

Create a Nakagami distribution object using the default parameter values.

```
pd = makedist('Nakagami')
pd =
```

NakagamiDistribution
Nakagami distribution
mu $=1$
omega = 1

## Create a Nakagami Distribution Object Using Specified Parameters

Create a Nakagami distribution object by specifying parameter values.

```
pd = makedist('Nakagami','mu',5,'omega',2)
pd =
```

NakagamiDistribution
Nakagami distribution
mu $=5$
omega = 2

## prob.NakagamiDistribution

Compute the mean of the distribution.
$\mathrm{m}=\mathrm{mean}(\mathrm{pd})$
$\mathrm{m}=$
1.3794

See Also makedist | fitdist | dfittool
Concepts - "Nakagami Distribution" on page B-83

- Class Attributes
- Property Attributes


## Purpose Covariance ignoring NaN values

## Syntax <br> Description

$Y=n a n c o v(X)$
$Y=\operatorname{nancov}(X 1, X 2)$
$Y=\operatorname{nancov}(. . ., 1)$
Y = nancov(...,'pairwise')

Examples observations with NaN values. (rows) containing any NaN values are removed. X2(:)]. normalization by $n$, use $Y=\operatorname{nancov}(\ldots, 1)$. matrix.
$Y=\operatorname{nancov}(X)$ is the covariance cov of $X$, computed after removing

For vectors $x$, $\operatorname{nancov}(x)$ is the sample variance of the remaining elements, once NaN values are removed. For matrices X, nancov (X) is the sample covariance of the remaining observations, once observations
$Y=\operatorname{nancov}(X 1, X 2)$, where $X 1$ and $X 2$ are matrices with the same number of elements, is equivalent to nancov $(X)$, where $X=[X 1(:)$
nancov removes the mean from each variable (column for matrix $X$ ) before calculating Y. If $n$ is the number of remaining observations after removing observations with NaN values, nancov normalizes Y by either $n-1$ or $n$, depending on whether $n>1$ or $n=1$, respectively. To specify
$Y=$ nancov(...,'pairwise') computes $Y(i, j)$ using rows with no NaN values in columns i or $j$. The result $Y$ may not be a positive definite

Generate random data for two variables (columns) with random missing values:

```
X = rand(10,2);
p = randperm(numel(X));
X(p(1:5)) = NaN
X =
 0.8147 0.1576
 NaN NaN
 0.1270 0.9572
```

| 0.9134 | NaN |
| :--- | ---: |
| 0.6324 | NaN |
| 0.0975 | 0.1419 |
| 0.2785 | 0.4218 |
| 0.5469 | 0.9157 |
| 0.9575 | 0.7922 |
| 0.9649 | NaN |

Establish a correlation between a third variable and the other two variables:

| $\mathrm{X}(:, 3)=\operatorname{sum}(X, 2)$ |  |  |
| :--- | ---: | ---: |
| $X=$ |  |  |
| 0.8147 | 0.1576 | 0.9723 |
| NaN | NaN | NaN |
| 0.1270 | 0.9572 | 1.0842 |
| 0.9134 | NaN | NaN |
| 0.6324 | NaN | NaN |
| 0.0975 | 0.1419 | 0.2394 |
| 0.2785 | 0.4218 | 0.7003 |
| 0.5469 | 0.9157 | 1.4626 |
| 0.9575 | 0.7922 | 1.7497 |
| 0.9649 | NaN | NaN |

Compute the covariance matrix for the three variables after removing observations (rows) with NaN values:

```
Y = nancov(X)
Y =
\begin{tabular}{lll}
0.1311 & 0.0096 & 0.1407 \\
0.0096 & 0.1388 & 0.1483 \\
0.1407 & 0.1483 & 0.2890
\end{tabular}
```

See Also
NaN | cov | var | nanvar

## Purpose Maximum ignoring NaN values

```
Syntax
y = nanmax(X)
Y = nanmax(X1,X2)
y = nanmax(X,[],dim)
[y,indices] = nanmax(...)
```

Description

Examples
Find column maxima and their indices for data with missing values:

```
X = magic(3);
X([1 6:9]) = repmat(NaN,1,5)
X =
 NaN 1 NaN
 3 NaN
 4 ~ N a N ~ N a N
[y,indices] = nanmax(X)
y =
 4 NaN
indices =
 3 2 1
```


## See Also

## Purpose Mean ignoring NaN values

Syntax $\quad y=$ nanmean $(X)$
y = nanmean(X,dim)
Description $\quad y=$ nanmean $(X)$ is the mean of $X$, computed after removing NaN values.
For vectors $x$, nanmean $(x)$ is the mean of the remaining elements, once NaN values are removed. For matrices $X$, nanmean (X) is a row vector of column means, once NaN values are removed. For multidimensional arrays $X$, nanmean operates along the first nonsingleton dimension.
$\mathrm{y}=$ nanmean( $\mathrm{X}, \mathrm{dim}$ ) takes the mean along dimension dim of X .

Note If X contains a vector of all NaN values along some dimension, the vector is empty once the NaN values are removed, so the sum of the remaining elements is 0 . Since the mean involves division by 0 , its value is NaN . The output NaN is not a mean of NaN values.

Examples Find column means for data with missing values:

```
X = magic(3);
X([1 6:9]) = repmat(NaN,1,5)
X =
 NaN 1 NaN
 3 5 NaN
 4 ~ N a N ~ N a N
y = nanmean(X)
y =
 3.5000 3.0000 NaN
```


## See Also

NaN | mean | nanmedian

## Purpose Median ignoring NaN values

```
Syntax
y = nanmedian(X)
y = nanmedian(X,dim)
```

$y=$ nanmedian $(X)$ is the median of $X$, computed after removing NaN values.

For vectors $x$, nanmedian $(x)$ is the median of the remaining elements, once NaN values are removed. For matrices X , nanmedian (X) is a row vector of column medians, once NaN values are removed. For multidimensional arrays X , nanmedian operates along the first nonsingleton dimension.
$\mathrm{y}=$ nanmedian( $\mathrm{X}, \mathrm{dim}$ ) takes the mean along dimension dim of X .

## Examples <br> Find column medians for data with missing values: <br> ```X = magic(3); \\ X([1 6:9]) = repmat(NaN,1,5) \\ X = \\ NaN 1 NaN \\ 3 5 NaN \\ NaN NaN \\ y = nanmedian(X) \\ y = \\ 3.5000 3.0000 NaN```

See Also NaN | median | nanmean

## Purpose Minimum ignoring NaN values

```
Syntax y = nanmin(X)
Y = nanmin(X1,X2)
y = nanmin(X,[],dim)
[y,indices] = nanmin(...)
```

Description $\quad y=n a n m i n(X)$ is the minimum min of $X$, computed after removing NaN values.

For vectors x , nanmin $(\mathrm{x})$ is the minimum of the remaining elements, once NaN values are removed. For matrices $X$, nanmin $(X)$ is a row vector of column minima, once NaN values are removed. For multidimensional arrays $X$, nanmin operates along the first nonsingleton dimension.
$\mathrm{Y}=$ nanmin( $\mathrm{X} 1, \mathrm{X} 2)$ returns an array Y the same size as X 1 and X 2 with $Y(i, j)=\operatorname{nanmin}(X 1(i, j), X 2(i, j))$. Scalar inputs are expanded to an array of the same size as the other input.
$\mathrm{y}=\operatorname{nanmin}(\mathrm{X},[\mathrm{l}, \mathrm{dim})$ operates along the dimension $\operatorname{dim}$ of X .
[ $y$, indices] $=$ nanmin(...) also returns the row indices of the minimum values for each column in the vector indices.

## Examples <br> Find column minima and their indices for data with missing values:

```
X = magic(3);
X([1 6:9]) = repmat(NaN,1,5)
X =
 NaN 1 NaN
 3 5 NaN
 4 ~ N a N ~ N a N
[y,indices] = nanmin(X)
y =
 3 1 NaN
indices =
 2 1 1
```


## See Also <br> NaN | min | nanmax

## Purpose Standard deviation ignoring NaN values

```
Syntax y = nanstd(X)
y = nanstd(X,1)
y = nanstd(X,flag,dim)
```


## Description

## Examples Find column standard deviations for data with missing values:

```
X = magic(3);
X([1 6:9]) = repmat(NaN,1,5)
X =
 NaN 1 NaN
 3 5 NaN
 4 ~ N a N ~ N a N
y = nanstd(X)
y =
 0.7071 2.8284 NaN
```

See Also NaN \| std \| nanvar | nanmean

## Purpose <br> Sum ignoring NaN values

Syntax

```
y = nansum(X)
y = nansum(X,dim)
```

Description
$y=$ nansum $(X)$ is the sum of $X$, computed after removing NaN values.
For vectors $x$, nansum ( $x$ ) is the sum of the remaining elements, once NaN values are removed. For matrices $X$, nansum (X) is a row vector of column sums, once NaN values are removed. For multidimensional arrays $X$, nansum operates along the first nonsingleton dimension.
$\mathrm{y}=$ nansum(X, dim) takes the sum along dimension dim of X .

Note If X contains a vector of all NaN values along some dimension, the vector is empty once the NaN values are removed, so the sum of the remaining elements is 0 . The output 0 is not a sum of NaN values.

## Examples Find column sums for data with missing values:

```
X = magic(3);
X([1 6:9]) = repmat(NaN,1,5)
X =
 NaN 1 NaN
 3 NaN
 4 ~ N a N ~ N a N
y = nansum(X)
y =
 7 6 0
```


## See Also <br> NaN | sum

## Purpose Variance, ignoring NaN values

```
Syntax
y = nanvar(X)
y = nanvar(X,1)
y = nanvar(X,w)
y = nanvar(X,w,dim)
```

Description

Examples Find column standard deviations for data with missing values:

```
X = magic(3);
X([1 6:9]) = repmat(NaN,1,5)
X =
 NaN 1 NaN
 3 NaN
 N NaN NaN
y = nanvar(X)
```

$$
y=0.5000 \mathrm{NaN}
$$

See Also NaN | var | nanstd | nanmean

Purpose Negative binomial cumulative distribution function

## Syntax $\quad Y=\operatorname{nbincdf}(X, R, P)$

Description
$Y=n b i n c d f(X, R, P)$ computes the negative binomial cdf at each of the values in $X$ using the corresponding number of successes, $R$ and probability of success in a single trial, P. X, R, and P can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of Y . A scalar input for $\mathrm{X}, \mathrm{R}$, or P is expanded to a constant array with the same dimensions as the other inputs.

The negative binomial cdf is

$$
y=F(x \mid r, p)=\sum_{i=0}^{x}\binom{r+i-1}{i} p^{r} q^{i} I_{(0,1, \ldots)}(i)
$$

The simplest motivation for the negative binomial is the case of successive random trials, each having a constant probability $P$ of success. The number of extra trials you must perform in order to observe a given number R of successes has a negative binomial distribution. However, consistent with a more general interpretation of the negative binomial, nbincdf allows $R$ to be any positive value, including nonintegers. When $R$ is noninteger, the binomial coefficient in the definition of the cdf is replaced by the equivalent expression

$$
\frac{\Gamma(r+i)}{\Gamma(r) \Gamma(i+1)}
$$

## Examples

```
x = (0:15);
p = nbincdf(x, 3,0.5);
stairs(x,p)
```



See Also cdf | nbinpdf | nbininv | nbinstat | nbinfit | nbinrnd
How To . "Negative Binomial Distribution" on page B- 85

Purpose Negative binomial parameter estimates

```
Syntax parmhat = nbinfit(data)
[parmhat,parmci] = nbinfit(data,alpha)
[...] = nbinfit(data,alpha,options)
```


## Description

parmhat $=$ nbinfit(data) returns the maximum likelihood estimates (MLEs) of the parameters of the negative binomial distribution given the data in the vector data.
[parmhat, parmci] = nbinfit(data,alpha) returns MLEs and 100 (1-alpha) percent confidence intervals. By default, alpha $=0.05$, which corresponds to $95 \%$ confidence intervals.
[...] = nbinfit(data,alpha,options) accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood estimates. The negative binomial fit function accepts an options structure which you can create using the function statset. Enter statset('nbinfit') to see the names and default values of the parameters that nbinfit accepts in the options structure. See the reference page for statset for more information about these options.

Note The variance of a negative binomial distribution is greater than its mean. If the sample variance of the data in data is less than its sample mean, nbinfit cannot compute MLEs. You should use the poissfit function instead.

See Also nbincdf | nbininv | nbinpdf | nbinrnd | nbinstat | mle | statset
How To . "Negative Binomial Distribution" on page B-85
Purpose Negative binomial inverse cumulative distribution function
Syntax $\quad X=\operatorname{nbininv}(Y, R, P)$
Description
$X=$ nbininv $(Y, R, P)$ returns the inverse of the negative binomial cdf with corresponding number of successes, $R$ and probability of success in a single trial, P. Since the binomial distribution is discrete, nbininv returns the least integer $X$ such that the negative binomial cdf evaluated at $X$ equals or exceeds $Y$. $Y, R$, and $P$ can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of $X$. A scalar input for $Y, R$, or $P$ is expanded to a constant array with the same dimensions as the other inputs.
The simplest motivation for the negative binomial is the case of successive random trials, each having a constant probability $P$ of success. The number of extra trials you must perform in order to observe a given number R of successes has a negative binomial distribution. However, consistent with a more general interpretation of the negative binomial, nbininv allows $R$ to be any positive value, including nonintegers.

## Examples

How many times would you need to flip a fair coin to have a $99 \%$ probability of having observed 10 heads?
flips = nbininv(0.99,10,0.5) + 10
flips = nbininv(0.99,10,0.5) + 10
flips =
flips =
33
33

Note that you have to flip at least 10 times to get 10 heads. That is why the second term on the right side of the equals sign is a 10 .

See Also icdf | nbincdf | nbinpdf | nbinstat | nbinfit | nbinrnd
How To . "Negative Binomial Distribution" on page B-85

Purpose Negative binomial probability density function

## Syntax $\quad Y=\operatorname{nbinpdf}(X, R, P)$

Description
$Y=n b i n p d f(X, R, P)$ returns the negative binomial pdf at each of the values in $X$ using the corresponding number of successes, $R$ and probability of success in a single trial, P. X, R, and P can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of Y . A scalar input for $\mathrm{X}, \mathrm{R}$, or P is expanded to a constant array with the same dimensions as the other inputs. Note that the density function is zero unless the values in X are integers.

The negative binomial pdf is

$$
y=f(x \mid r, p)=\binom{r+x-1}{x} p^{r} q^{x} I_{(0,1, \ldots)}(x)
$$

The simplest motivation for the negative binomial is the case of successive random trials, each having a constant probability $P$ of success. The number of extra trials you must perform in order to observe a given number R of successes has a negative binomial distribution. However, consistent with a more general interpretation of the negative binomial, nbinpdf allows $R$ to be any positive value, including nonintegers. When $R$ is noninteger, the binomial coefficient in the definition of the pdf is replaced by the equivalent expression

$$
\frac{\Gamma(r+x)}{\Gamma(r) \Gamma(x+1)}
$$

## Examples

```
x = (0:10);
y = nbinpdf(x,3,0.5);
plot(x,y,'+')
set(gca,'Xlim',[-0.5,10.5])
```



See Also pdf | nbincdf | nbininv | nbinstat | nbinfit | nbinrnd
How To . "Negative Binomial Distribution" on page B-85

Purpose Negative binomial random numbers

Syntax

RND $=$ nbinrnd ( $\mathrm{R}, \mathrm{P}$ )
RND $=$ nbinrnd( $R, P, m, n, \ldots$ )
RND $=$ nbinrnd( $R, P,[m, n, \ldots])$

## Examples

See Also random | nbinpdf | nbincdf | nbininv | nbinstat | nbinfit
How To
Suppose you want to simulate a process that has a defect probability of 0.01 . How many units might Quality Assurance inspect before finding three defective items?

```
r = nbinrnd(3,0.01,1,6)+3
r =
 496
```

random | nbinpdf | nbincdf | nbininv | nbinstat | nbinfit

- "Negative Binomial Distribution" on page B-85

RND = nbinrnd ( $R, P$ ) is a matrix of random numbers chosen from a negative binomial distribution with corresponding number of successes, R and probability of success in a single trial, P. R and P can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of RND. A scalar input for R or P is expanded to a constant array with the same dimensions as the other input.

RND $=n b i n r n d(R, P, m, n, \ldots)$ or RND $=n b i n r n d(R, P,[m, n, \ldots])$ generates an m-by-n-by-... array. The R, P parameters can each be scalars or arrays of the same size as R.

The simplest motivation for the negative binomial is the case of successive random trials, each having a constant probability P of success. The number of extra trials you must perform in order to observe a given number R of successes has a negative binomial distribution. However, consistent with a more general interpretation of the negative binomial, nbinrnd allows $R$ to be any positive value, including nonintegers.

## Purpose Negative binomial mean and variance

## Syntax <br> [M,V] = nbinstat(R,P)

## Description

$[M, V]=$ nbinstat $(R, P)$ returns the mean of and variance for the negative binomial distribution with corresponding number of successes, $R$ and probability of success in a single trial, P. R and P can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of M and V . A scalar input for R or P is expanded to a constant array with the same dimensions as the other input.

The mean of the negative binomial distribution with parameters $r$ and $p$ is $r q / p$, where $q=1-p$. The variance is $r q / p^{2}$.

The simplest motivation for the negative binomial is the case of successive random trials, each having a constant probability P of success. The number of extra trials you must perform in order to observe a given number R of successes has a negative binomial distribution. However, consistent with a more general interpretation of the negative binomial, nbinstat allows R to be any positive value, including nonintegers.

## Examples

```
p = 0.1:0.2:0.9;
r = 1:5;
[R,P] = meshgrid(r,p);
[M,V] = nbinstat(R,P)
M =
 9.0000 18.0000 27.0000 36.0000 45.0000
```



```
 1.0000 2.0000 3.0000 4.0000 5.0000
 0.4286
 0.1111 0.2222
V =
 90.0000 180.0000 270.0000 360.0000 450.0000
```



```
 2.0000 4.0000 6.0000 8.0000 10.0000
```

| 0.6122 | 1.2245 | 1.8367 | 2.4490 | 3.0612 |
| :--- | :--- | :--- | :--- | :--- |
| 0.1235 | 0.2469 | 0.3704 | 0.4938 | 0.6173 |


| See Also | nbinpdf \| nbincdf | nbininv | nbinfit | nbinrnd |
| :--- | :--- |
| How To | - "Negative Binomial Distribution" on page B-85 |

## Purpose Noncentral $F$ cumulative distribution function

$$
\text { Syntax } \quad P=\operatorname{ncfcdf}(X, N U 1, N U 2, D E L T A)
$$

Description
$\mathrm{P}=\mathrm{ncfcdf}(\mathrm{X}, \mathrm{NU} 1, \mathrm{NU} 2, \mathrm{DELTA})$ computes the noncentral $F \mathrm{cdf}$ at each of the values in $X$ using the corresponding numerator degrees of freedom in NU1, denominator degrees of freedom in NU2, and positive noncentrality parameters in DELTA. NU1, NU2, and DELTA can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of P. A scalar input for X, NU1, NU2, or DELTA is expanded to a constant array with the same dimensions as the other inputs.

The noncentral $F$ cdf is

$$
F\left(x \mid v_{1}, v_{2}, \delta\right)=\sum_{j=0}^{\infty}\left(\frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{\frac{-\delta}{2}}\right) Z\left(\left.\frac{v_{1} \cdot x}{v_{2}+v_{1} \cdot x} \right\rvert\, \frac{v_{1}}{2}+j, \frac{v_{2}}{2}\right)
$$

where $I(x \mid a, b)$ is the incomplete beta function with parameters $a$ and $b$.

## Examples

Compare the noncentral $F$ cdf with $\delta=10$ to the $F$ cdf with the same number of numerator and denominator degrees of freedom (5 and 20 respectively).

```
x = (0.01:0.1:10.01)';
p1 = ncfcdf(x,5,20,10);
p = fcdf(x,5,20);
plot(x,p,'-',x,p1,'-')
```



# References <br> [1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2. Hoboken, NJ: John Wiley \& Sons, Inc., 1970, pp. 189-200. 

See Also cdf | ncfpdf | ncfinv | ncfstat | ncfrnd
How To

- "Noncentral F Distribution" on page B-91


## Purpose Noncentral $F$ inverse cumulative distribution function

$$
\text { Syntax } \quad X=\operatorname{ncfinv}(P, N U 1, N U 2, D E L T A)
$$

Description $\quad X=$ ncfinv $(P, N U 1, N U 2, D E L T A)$ returns the inverse of the noncentral $F$ cdf with numerator degrees of freedom NU1, denominator degrees of freedom NU2, and positive noncentrality parameter DELTA for the corresponding probabilities in P. P, NU1, NU2, and DELTA can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of X. A scalar input for P, NU1, NU2, or DELTA is expanded to a constant array with the same dimensions as the other inputs.

## Examples

One hypothesis test for comparing two sample variances is to take their ratio and compare it to an $F$ distribution. If the numerator and denominator degrees of freedom are 5 and 20 respectively, then you reject the hypothesis that the first variance is equal to the second variance if their ratio is less than that computed below.

```
critical = finv(0.95,5,20)
critical =
 2.7109
```

Suppose the truth is that the first variance is twice as big as the second variance. How likely is it that you would detect this difference?

```
prob = 1 - ncfcdf(critical,5,20,2)
prob =
 0.1297
```

If the true ratio of variances is 2 , what is the typical (median) value you would expect for the $F$ statistic?

```
ncfinv(0.5,5,20,2)
ans =
 1.2786
```

| References | [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. |
| :--- | :--- |
| Hoboken, NJ: Wiley-Interscience, 2000. |  |

## Purpose Noncentral $F$ probability density function

Syntax $\quad Y=\operatorname{ncfpdf}(X, N U 1, N U 2, D E L T A)$

Description

## Examples

## References

See Also

Compare the noncentral $F$ pdf with $\delta=10$ to the F pdf with the same number of numerator and denominator degrees of freedom (5 and 20 respectively).

```
x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
plot(x,p,'-',x,p1,'-')
```


[1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2. Hoboken, NJ: John Wiley \& Sons, Inc., 1970, pp. 189-200.
pdf | ncfcdf | ncfinv | ncfstat | ncfrnd

How To . "Noncentral F Distribution" on page B-91


See Also random \| ncfpdf \| ncfcdf \| ncfinv \| ncfstat
How To - "Noncentral F Distribution" on page B-91

## Purpose Noncentral $F$ mean and variance

## Syntax <br> [M, V] = ncfstat(NU1,NU2,DELTA)

Description
$[M, V]=$ ncfstat (NU1, NU2, DELTA) returns the mean of and variance for the noncentral $F \mathrm{pdf}$ with corresponding numerator degrees of freedom in NU1, denominator degrees of freedom in NU2, and positive noncentrality parameters in DELTA. NU1, NU2, and DELTA can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of M and V . A scalar input for NU1, NU2, or DELTA is expanded to a constant array with the same dimensions as the other input.

The mean of the noncentral F distribution with parameters $v_{1}, v_{2}$, and $\delta$ is

$$
\frac{v_{2}\left(\delta+v_{1}\right)}{v_{1}\left(v_{2}-2\right)}
$$

where $\mathrm{v}_{2}>2$.
The variance is

$$
2\left(\frac{v_{2}}{v_{1}}\right)^{2}\left[\frac{\left(\delta+v_{1}\right)^{2}+\left(2 \delta+v_{1}\right)\left(v_{2}-2\right)}{\left(v_{2}-2\right)^{2}\left(v_{2}-4\right)}\right]
$$

where $v_{2}>4$.

## Examples

$[m, v]=\operatorname{ncfstat}(10,100,4)$
$m=$
1.4286
$v=$
0.4252

## References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley \& Sons, Inc., 1993, pp. 73-74.
[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2. Hoboken, NJ: John Wiley \& Sons, Inc., 1970, pp. 189-200.

| See Also | ncfpdf \| ncfcdf | ncfinv | ncfrnd |
| :--- | :--- |
| How To | - "Noncentral F Distribution" on page B-91 |

## NaiveBayes.NClasses property

Purpose Number of classes
Description The NClasses property specifies the number of classes in the grouping variable used to create the Naive Bayes classifier.

## gmdistribution.NComponents property

## Purpose Number $k$ of mixture components

## Description The number $k$ of mixture components.

## Purpose Noncentral $t$ cumulative distribution function

$$
\text { Syntax } \quad P=\operatorname{nctcdf}(X, N U, D E L T A)
$$

Description $\quad P=\operatorname{nctcdf}(X, N U, D E L T A)$ computes the noncentral $t$ cdf at each of the values in X using the corresponding degrees of freedom in NU and noncentrality parameters in DELTA. X, NU, and DELTA can be vectors, matrices, or multidimensional arrays that have the same size, which is also the size of P . A scalar input for X , NU, or DELTA is expanded to a constant array with the same dimensions as the other inputs.

Examples Compare the noncentral $t$ cdf with DELTA $=1$ to the $t \mathrm{cdf}$ with the same number of degrees of freedom (10).

```
x = (-5:0.1:5)';
p1 = nctcdf(x,10,1);
p = tcdf(x,10);
plot(x,p,'-',x,p1,'-')
```



## References

See Also
cdf | nctpdf | nctinv | nctstat | nctrnd

How To<br>- "Noncentral t Distribution" on page B-93

| Purpose | Noncentral $t$ inverse cumulative distribution function | | | |
|---|---|---|---|---|
| Syntax | $\mathrm{X}=\operatorname{nctinv}(\mathrm{P}, \mathrm{NU}, \mathrm{DELTA})$ |
| Description | $\mathrm{X}=\mathrm{nctinv}(\mathrm{P}, \mathrm{NU}, \mathrm{DELTA})$ returns the inverse of the noncentral $t \mathrm{cdf}$ with NU degrees of freedom and noncentrality parameter DELTA for the corresponding probabilities in P. P, NU, and DELTA can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of X . A scalar input for $\mathrm{P}, \mathrm{NU}$, or DELTA is expanded to a constant array with the same dimensions as the other inputs. |
| Examples | $\begin{aligned} x & =\operatorname{nctinv}\left(\left[\begin{array}{ll} 0.1 & 0.2 \end{array}\right], 10,1\right) \\ x & = \\ & -0.2914 \quad 0.1618 \end{aligned}$ |
| References | [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley \& Sons, Inc., 1993, pp. 147-148. <br> [2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2. Hoboken, NJ: John Wiley \& Sons, Inc., 1970, pp. 201-219. |
| See Also | icdf \| nctedf | nctpdf | nctstat | nctrnd |
| How To | - "Noncentral t Distribution" on page B-93 |

Purpose Noncentral $t$ probability density function
Syntax $\quad Y=\operatorname{nctpdf}(X, V, D E L T A)$
Description $\quad Y=\operatorname{nctpdf}(X, V, D E L T A)$ computes the noncentral $t$ pdf at each of the values in $X$ using the corresponding degrees of freedom in $V$ and noncentrality parameters in DELTA. Vector or matrix inputs for $X, V$, and DELTA must have the same size, which is also the size of Y . A scalar input for $\mathrm{X}, \mathrm{V}$, or DELTA is expanded to a constant matrix with the same dimensions as the other inputs.

Examples Compare the noncentral $t \mathrm{pdf}$ with DELTA $=1$ to the $t \mathrm{pdf}$ with the same number of degrees of freedom (10):

```
x = (-5:0.1:5)';
nct = nctpdf(x,10,1);
t = tpdf(x,10);
plot(x,nct,'b-','LineWidth', 2)
hold on
plot(x,t,'g--','LineWidth',2)
legend('nct','t')
```



[^10]See Also
pdf | nctcdf | nctinv | nctstat | nctrnd
How To . "Noncentral $t$ Distribution" on page B-93

## Purpose Noncentral $t$ random numbers

```
Syntax R = nctrnd(V,DELTA)
R = nctrnd(V,DELTA,m,n,...)
R = nctrnd(V,DELTA,[m,n,...])
```

Description

Examples nctrnd $(10,1,5,1)$
ans =
1.6576
1.0617
1.4491
0.2930
3.6297

## References

See Also random \| nctpdf | nctcdf | nctinv | nctstat
How To . "Noncentral t Distribution" on page B-93

## Purpose Noncentral $t$ mean and variance

## Syntax <br> [M, V$]=$ nctstat(NU, DELTA)

Description
$[M, V]=n c t s t a t(N U, D E L T A)$ returns the mean of and variance for the noncentral $t$ pdf with NU degrees of freedom and noncentrality parameter DELTA. NU and DELTA can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of $M$ and $V$. A scalar input for NU or DELTA is expanded to a constant array with the same dimensions as the other input.

The mean of the noncentral t distribution with parameters $v$ and $\delta$ is

$$
\frac{\delta(v / 2)^{1 / 2} \Gamma((v-1) / 2)}{\Gamma(v / 2)}
$$

where $v>1$.
The variance is

$$
\frac{v}{(v-2)}\left(1+\delta^{2}\right)-\frac{v}{2} \delta^{2}\left[\frac{\Gamma((v-1) / 2)}{\Gamma(v / 2)}\right]^{2}
$$

where $v>2$.

## Examples

```
[m,v] = nctstat(10,1)
m =
 1.0837
v =
 1.3255
```


## References

[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley \& Sons, Inc., 1993, pp. 147-148.
[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2. Hoboken, NJ: John Wiley \& Sons, Inc., 1970, pp. 201-219.

| See Also | nctpdf \| nctcdf | nctinv | nctrnd |
| :--- | :--- |
| How To | . "Noncentral t Distribution" on page B-93 |

## Purpose Noncentral chi-square cumulative distribution function

## Syntax $\quad P=\operatorname{ncx} 2 c d f(X, V, D E L T A)$

Description $\quad P=n c x 2 c d f(X, V, D E L T A)$ computes the noncentral chi-square cdf at each of the values in $X$ using the corresponding degrees of freedom in $V$ and positive noncentrality parameters in DELTA. $\mathrm{X}, \mathrm{V}$, and DELTA can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of P. A scalar input for X , V , or DELTA is expanded to a constant array with the same dimensions as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh, Rayleigh-Rice, or Rice distribution.

The noncentral chi-square cdf is

$$
F(x \mid v, \delta)=\sum_{j=0}^{\infty}\left(\frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{\frac{-\delta}{2}}\right) \operatorname{Pr}\left[\chi_{v+2 j}^{2} \leq x\right]
$$

## Examples <br> Compare the noncentral chi-square cdf with DELTA $=2$ to the

 chi-square cdf with the same number of degrees of freedom (4):```
x = (0:0.1:10)';
ncx2 = ncx2cdf(x,4,2);
chi2 = chi2cdf(x,4);
plot(x,ncx2,'b-','LineWidth',2)
hold on
plot(x,chi2,'g--','LineWidth',2)
legend('ncx2','chi2','Location','NW')
```


References [1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2. Hoboken, NJ: John Wiley \& Sons, Inc., 1970, pp. 130-148.

See Also cdf | ncx2pdf | ncx2inv | ncx2stat | ncx2rnd
How To

- "Noncentral Chi-Square Distribution" on page B-89
Purpose Noncentral chi-square inverse cumulative distribution function
Syntax X = ncx2inv(P,V,DELTA)
Description $X=n c x 2 i n v(P, V, D E L T A)$ returns the inverse of the noncentralchi-square cdf using the corresponding degrees of freedom in V andpositive noncentrality parameters in DELTA, at the correspondingprobabilities in P. P, V, and DELTA can be vectors, matrices, ormultidimensional arrays that all have the same size, which is also thesize of X . A scalar input for P, V, or DELTA is expanded to a constantarray with the same dimensions as the other inputs.
Algorithmsncx2inv uses Newton's method to converge to the solution.
Examples ncx2inv([0.01 0.050 .1$], 4,2)$
ans = $0.4858 \quad 1.1498 \quad 1.7066$
References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley \& Sons, Inc., 1993, pp. 50-52.
[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2. Hoboken, NJ: John Wiley \& Sons, Inc., 1970, pp. 130-148.
See Also icdf | ncx2cdf | ncx2pdf | ncx2stat | ncx2rnd
How To . "Noncentral Chi-Square Distribution" on page B-89

ncx2pdf

Purpose Noncentral chi-square probability density function

```
Syntax \(\quad Y=\operatorname{ncx} 2 p d f(X, V, D E L T A)\)
```

Description $\quad Y=n c x 2 p d f(X, V, D E L T A)$ computes the noncentral chi-square pdf at each of the values in X using the corresponding degrees of freedom in V and positive noncentrality parameters in DELTA. Vector or matrix inputs for X, V, and DELTA must have the same size, which is also the size of Y . A scalar input for X, V, or DELTA is expanded to a constant array with the same dimensions as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh, Rayleigh-Rice, or Rice distribution.

Examples

Compare the noncentral chi-square pdf with DELTA $=2$ to the chi-square pdf with the same number of degrees of freedom (4):

```
x = (0:0.1:10)';
ncx2 = ncx2pdf(x,4,2);
chi2 = chi2pdf(x,4);
plot(x,ncx2,'b-','LineWidth',2)
hold on
plot(x,chi2,'g--','LineWidth',2)
legend('ncx2','chi2')
```


References [1] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2. Hoboken, NJ: John Wiley \& Sons, Inc., 1970, pp. 130-148.

See Also pdf | ncx2cdf | ncx2inv | ncx2stat | ncx2rnd
How To

- "Noncentral Chi-Square Distribution" on page B-89

Purpose	Noncentral chi-square random numbers
Syntax	$R=n c x 2 r n d(V, D E L T A)$
	$R=n c x 2 r n d(V, D E L T A, m, n, \ldots)$
	$R=n c x 2 r n d(V, D E L T A,[m, n, \ldots])$

Purpose Noncentral chi-square mean and variance
Syntax [M,V] = ncx2stat(NU,DELTA)
Description $[\mathrm{M}, \mathrm{V}]=$ ncx2stat(NU, DELTA) returns the mean of and variancefor the noncentral chi-square pdf with NU degrees of freedom andnoncentrality parameter DELTA. NU and DELTA can be vectors, matrices,or multidimensional arrays that all have the same size, which is alsothe size of M and V . A scalar input for NU or DELTA is expanded to aconstant array with the same dimensions as the other input.
The mean of the noncentral chi-square distribution with parameters v and δ is $\mathrm{v}+\delta$, and the variance is $2(\mathrm{v}+2 \delta)$.
Examples

[m,v] = ncx2stat(4,2)

$\mathrm{m}=$

 6
 v =

 16
 References [1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley \& Sons, Inc., 1993, pp. 50-52.
[2] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2. Hoboken, NJ: John Wiley \& Sons, Inc., 1970, pp. 130-148.
See Also ncx2pdf | ncx2cdf | ncx2inv | ncx2rnd
How To - "Noncentral Chi-Square Distribution" on page B-89

Purpose Number of dimensions of categorical array

Syntax $\quad n=\operatorname{ndims}(A)$

Description $\quad n=\operatorname{ndims}(A)$ returns the number of dimensions in the categorical array A. The number of dimensions in an array is always greater than or equal to 2. Trailing singleton dimensions are ignored. Put simply, ndims(A) is length (size(A)).

See Also size

gmdistribution.NDimensions property

$\begin{array}{ll}\text { Purpose } & \text { Dimension } d \text { of multivariate Gaussian distributions } \\ \text { Description } & \text { The dimension } d \text { of the multivariate Gaussian distributions. }\end{array}$

dataset.ndims

Purpose Number of dimensions of dataset array

Syntax $\quad n=\operatorname{ndims}(A)$

Description $n=$ ndims (A) returns the number of dimensions in the dataset A. The number of dimensions in an array is always 2 .

See Also size
Purpose Number of dimensions in matrix
Syntax

$\mathrm{n}=\operatorname{ndims}(\mathrm{p})$

Description $\quad n=$ ndims (p) returns the number of dimensions in the matrix that is created by the $\operatorname{syntax} p(:,:)$. Since this is always a 2 -D matrix, n is always equal to 2 .

See Also qrandset | size

NaiveBayes.NDims property

Purpose Number of dimensions

Description The NDims property specifies the number of dimensions, which is equal to the number of features in the training data used to create the Naive Bayes classifier.

Purpose Not equal relation for handles

Syntax
 h1 ~= h2

Description Handles are equal if they are handles for the same object and are unequal otherwise.
h1 ~= h2 performs element-wise comparisons between handle arrays h 1 and h2. h 1 and h2 must be of the same dimensions unless one is a scalar. The result is a logical array of the same dimensions, where each element is an element-wise $\sim=$ result.

If one of h1 or h2 is scalar, scalar expansion is performed and the result will match the dimensions of the array that is not scalar.
$\mathrm{tf}=\mathrm{ne}(\mathrm{h} 1, \mathrm{~h} 2)$ stores the result in a logical array of the same dimensions.

See Also qrandstream | eq | ge | gt | le | lt

prob.NegativeBinomialDistribution

Superclasses ToolboxFittableParametricDistribution
Purpose Negative binomial distribution object
Description prob.NegativeBinomialDistribution is an object consisting of parameters, a model description, and sample data for a negative binomial probability distribution.
Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

Construction

pd = makedist('NegativeBinomial') creates a negative binomial probability distribution object using the default parameter values.
pd = makedist('NegativeBinomial','R', r,' ${ }^{\prime}$ ', p) creates a negative binomial probability distribution object using the specified parameter values.

Input Arguments

\mathbf{r} - Number of successes

1 (default) | positive scalar value
Number of successes for the negative binomial distribution, specified as a positive scalar value.

Data Types
 single | double

p - Probability of success

0.5 (default) | positive scalar value in the range $(0,1]$

Probability of success of any individual trial for the negative binomial distribution, specified as a positive scalar value in the range $(0,1]$.

Data Types
single | double

Properties

Number of successes for the negative binomial distribution, stored as a positive scalar value.

Data Types

single | double

p

Probability of success of any individual trial for the negative binomial distribution, specified as a positive scalar value in the range $(0,1]$.

Data Types

single | double

DistributionName

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

Data Types

char

InputData

Data used for distribution fitting, stored as a structure containing the following:

- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.
Data Types
single | double

IsTruncated

prob.NegativeBinomialDistribution

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated. If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

Data Types

logical

NumParameters

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

Data Types

single | double

ParameterCovariance

Covariance matrix of the parameter estimates, stored as a p-by- p matrix, where p is the number of parameters in the distribution. The (i, j) element is the covariance between the estimates of the i ith parameter and the j th parameter. The (i, i) element is the estimated variance of the ith parameter. If parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

Data Types

single | double

ParameterDescription

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

Data Types
 char

ParameterlsFixed

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames
array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

Data Types

logical

ParameterNames

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

Data Types
 char

ParameterValues

Values of distribution parameters, stored as a vector. This property is read-only.

Data Types

single | double

Truncation

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

```
Data Types
single | double
```


Methods Inherited Methods

cdf	Cumulative distribution function of probability distribution object
icdf	Inverse cumulative distribution function of probability distribution object
iqr	Interquartile range of probability distribution object

prob.NegativeBinomialDistribution

median	Median of probability distribution object
pdf	Probability density function of probability distribution object Generate random numbers from probability distribution object Truncate probability distribution object
random	Mean of probability distribution object
mean	Negative loglikelihood of probability distribution object
negloglik	Confidence intervals for probability distribution parameters
paramci	Profile likelihood function for probability distribution object
proflik	Standard deviation of probability distribution object
std	Variance of probability
distribution object	

Definitions Negative Binomial Distribution

The negative binomial distribution models the number of failures x before a specified number of successes is reached in a series of independent, identical trials. This distribution can also model count data, in which case r does not need to be an integer value.

The negative binomial distribution uses the following parameters.

Parameter	Description	Support
R	Number of successes	$r>0$
p	Probability of success	$0<p \leq 1$

The probability density function (pdf) when r is an integer is

$$
f(x \mid r, p)=\binom{r+x+1}{x} p^{r} q^{x} \quad ; \quad x=1,2, \ldots, \infty
$$

where $q=1-p$ and $\binom{r+x+1}{x}$ is the binomial coefficient.
When r is not an integer, the binomial coefficient in the definition of the pdf is replaced by the equivalent expression

$$
\frac{\Gamma(r+x)}{\Gamma(r) \Gamma(x+1)},
$$

where $\Gamma(\cdot)$ is the Gamma function.

Examples
 Create a Negative Binomial Distribution Object Using Default Parameters

Create a negative binomial distribution object using the default parameter values.

```
pd = makedist('NegativeBinomial')
pd =
```

NegativeBinomialDistribution
Negative Binomial distribution
$R=1$
$P=0.5$

prob.NegativeBinomialDistribution

Create a Negative Binomial Distribution Object Using Specified Parameters

Create a negative binomial distribution object by specifying the parameter values.

```
pd = makedist('NegativeBinomial','r',5,'p',.1)
pd =
```

 NegativeBinomialDistribution
 Negative Binomial distribution
 \(\mathrm{R}=5\)
 \(P=0.1\)
 Compute the mean of the distribution.
$\mathrm{m}=\mathrm{mean}(\mathrm{pd})$
$\mathrm{m}=$
45
See Also makedist | fitdist | dfittool
Concepts • "Negative Binomial Distribution" on page B-85

- Class Attributes
- Property Attributes

Purpose	Negative loglikelihood
Syntax	$n \mathrm{ll}=$ negloglik(pd)
Description	nll = negloglik(pd) returns the value of the negative log likelihood function for the data used to fit the probability distribution pd.
Input Arguments	pd - Probability distribution probability distribution object
	Probability distribution, specified as a probability distribution object. Fit a probability distribution object to data using fitdist or dfittool.
Output Arguments	nll - Negative log likelihood scalar value
	Negative log likelihood value for the data used to fit the distribution, returned as a scalar value.
Examples	Negative Loglikelihood for a Kernel Distribution
	Load the sample data. Fit a kernel distribution to the miles per gallon (MPG) data.
	```load carsmall; pd = fitdist(MPG,'Kernel')```
	pd $=$

KernelDistribution
Kernel = normal
Bandwidth = 4.11428
Support = unbounded
Compute the negative loglikelihood.

```
nll = negloglik(pd)
nll =
```

327.3139

See Also fitdist | dfittool

## Purpose

Negative loglikelihood of probability distribution object

## Syntax

Description

## Input Arguments

nll $=$ negloglik(pd)
nll = negloglik(pd) returns the value of the negative loglikelihood function for the data used to fit the probability distribution pd.

pd - Probability distribution

probability distribution object

Probability distribution, specified as a probability distribution object. Create a probability distribution object with specified parameter values using makedist. Alternatively, create a probability distribution object by fitting it to data using fitdist or dfittool.

## nll - Negative log likelihood

scalar value
Negative log likelihood value for the data used to fit the distribution, returned as a scalar value.

## Examples Negative Log Likelihood for a Fitted Distribution

Load the sample data.
load carsmall;
Create a Weibull distribution object by fitting it to the mile per gallon (MPG) data.
pd = fitdist(MPG,'Weibull')
pd $=$
WeibullDistribution

Weibull distribution

```
A = 26.5079 [24.8333, 28.2954]
B = 3.27193 [2.79441, 3.83104]
```

Compute the negative log likelihood for the fitted Weibull distribution.
wnll $=$ negloglik(p)
wnll =
327.4942

See Also makedist | fitdist | dfittool

Purpose	Nearest neighbor search object
Description	NeighborSearcher is an abstract class used for nearest neighbor   search. You cannot create instances of this class directly. Instead,   create an instance of a derived class such as ExhaustiveSearcher or   KDTreeSearcher either by calling the derived class constructor or by   calling the function createns.
Construction	NeighborSearcher is an abstract class. You cannot create instances of   this class directly. You can construct an object in a subclass, such as   KDTreeSearcher or ExhaustiveSearcher, either by calling the subclass   constructors or by using the createns function.
Properties	X $\quad$A matrix used to create the object.
	Distance
A string specifying a built-in distance metric (applies to both	
ExhaustiveSearcher and kDTreeSearcher) or a function handle	
(only appliest to ExhaustiveSearcher) that you provide when you	
create the object. This property is the default distance metric used	
when you call the knnsearch method to find nearest neighbors	
for future query points.	

Specifies the additional parameter for the chosen distance metric. The value is:

- If 'Distance' is 'minkowski': A positive scalar indicating the exponent of the Minkowski distance. (Applies for both ExhaustiveSearcher and KDTreeSearcher.)
- If 'Distance' is 'mahalanobis': A positive definite matrix representing the covariance matrix used for computing the Mahalanobis distance. (Only applies for ExhaustiveSearcher.)


## NeighborSearcher

- If 'Distance' is 'seuclidean': A vector representing the scale value of the data when computing the 'seuclidean' distance. (Only applies for ExhaustiveSearcher.)
- Otherwise: Empty.

See Also createns | KDTreeSearcher | ExhaustiveSearcher

## Purpose

Generate quasi-random point set

## Syntax <br> $X=\operatorname{net}(p, n)$

$X=\operatorname{net}(p, n)$ returns the first $n$ points $X$ from the point set $p$ of the qrandset class. X is n -by- $d$, where $d$ is the dimension of the point set.

Objects p of the @qrandset class encapsulate properties of a specified quasi-random sequence. Values of the point set are not generated and stored in memory until $p$ is accessed using net or parenthesis indexing.

## Examples

Use haltonset to generate a 3-D Halton point set, skip the first 1000 values, and then retain every 101st point:

```
p = haltonset(3,'Skip',1e3,'Leap',1e2)
p =
 Halton point set in 3 dimensions (8.918019e+013 points)
 Properties:
 Skip : 1000
 Leap : 100
 ScrambleMethod : none
```

Use scramble to apply reverse-radix scrambling:

```
p = scramble(p,'RR2')
p =
 Halton point set in 3 dimensions (8.918019e+013 points)
 Properties:
 Skip : 1000
 Leap : 100
 ScrambleMethod : RR2
```

Use net to generate the first four points:

```
XO = net(p,4)
XO =
 0.0928 0.6950 0.0029
 0.6958 0.2958 0.8269
```


## qrandset.net

0.3013	0.6497	0.4141
0.9087	0.7883	0.2166

Use parenthesis indexing to generate every third point, up to the 11th point:

0.0928	0.6950	0.0029
0.9087	0.7883	0.2166
0.3843	0.9840	0.9878
0.6831	0.7357	0.7923

See Also
haltonset | sobolset | qrandstream

## CompactClassificationDiscriminant.nLinearCoeffs

## Purpose Number of nonzero linear coefficients

Syntax<br>Description

## Input <br> Arguments

## Output <br> Arguments

```
ncoeffs = nLinearCoeffs(obj)
ncoeffs = nLinearCoeffs(obj,delta)
```

ncoeffs $=$ nLinearCoeffs (obj) returns the number of nonzero linear coefficients in the linear discriminant model obj.
ncoeffs $=$ nLinearCoeffs(obj, delta) returns the number of nonzero linear coefficients for threshold parameter delta.

## obi

Discriminant analysis classifier, produced using ClassificationDiscriminant.fit.

## delta

Scalar or vector value of the Delta parameter. See "Gamma and Delta" on page 20-1749.

## ncoeffs

Nonnegative integer, the number of nonzero coefficients in the discriminant analysis model obj.

If you call nLinearCoeffs with a delta argument, ncoeffs is the number of nonzero linear coefficients for threshold parameter delta. If delta is a vector, ncoeffs is a vector with the same number of elements.

If obj is a quadratic discriminant model, ncoeffs is the number of predictors in obj.

## Definitions Gamma and Delta

Regularization is the process of finding a small set of predictors that yield an effective predictive model. For linear discriminant analysis, there are two parameters, $\gamma$ and $\delta$, that control regularization as follows. cvshrink helps you select appropriate values of the parameters.

## CompactClassificationDiscriminant.nLinearCoeffs

Let $\Sigma$ represent the covariance matrix of the data $X$, and let $\hat{X}$ be the centered data (the data $X$ minus the mean by class). Define

$$
D=\operatorname{diag}\left(\hat{X}^{T} * \hat{X}\right)
$$

The regularized covariance matrix $\tilde{\Sigma}$ is

$$
\tilde{\Sigma}=(1-\gamma) \Sigma+\gamma D
$$

Whenever $\gamma \geq$ MinGamma, $\tilde{\Sigma}$ is nonsingular.
Let $\mu_{k}$ be the mean vector for those elements of $X$ in class $k$, and let $\mu_{0}$ be the global mean vector (the mean of the rows of $X$ ). Let $C$ be the correlation matrix of the data $X$, and let $\tilde{C}$ be the regularized correlation matrix:

$$
\tilde{C}=(1-\gamma) C+\gamma I,
$$

where $I$ is the identity matrix.
The linear term in the regularized discriminant analysis classifier for a data point $x$ is

$$
\left(x-\mu_{0}\right)^{T} \tilde{\Sigma}^{-1}\left(\mu_{k}-\mu_{0}\right)=\left[\left(x-\mu_{0}\right)^{T} D^{-1 / 2}\right]\left[\tilde{C}^{-1} D^{-1 / 2}\left(\mu_{k}-\mu_{0}\right)\right] .
$$

The parameter $\delta$ enters into this equation as a threshold on the final term in square brackets. Each component of the vector
$\left[\tilde{C}^{-1} D^{-1 / 2}\left(\mu_{k}-\mu_{0}\right)\right]$ is set to zero if it is smaller in magnitude than the threshold $\delta$. Therefore, for class $k$, if component $j$ is thresholded to zero, component $j$ of $x$ does not enter into the evaluation of the posterior probability.

The DeltaPredictor property is a vector related to this threshold. When $\delta \geq$ DeltaPredictor(i), all classes $k$ have

## CompactClassificationDiscriminant.nLinearCoeffs

$$
\left|\tilde{C}^{-1} D^{-1 / 2}\left(\mu_{k}-\mu_{0}\right)\right| \leq \delta .
$$

Therefore, when $\delta \geq$ DeltaPredictor(i), the regularized classifier does not use predictor i.

## Examples Find the Number of Nonzero Coefficients in a Discriminant Analysis Classifier

Find the number of nonzero coefficients in a discriminant analysis classifier for various Delta values.

Create a discriminant analysis classifier from the fishseriris data.

```
load fisheriris
obj = ClassificationDiscriminant.fit(meas,species);
```

Find the number of nonzero coefficients in obj.

```
ncoeffs = nLinearCoeffs(obj)
ncoeffs =
```

4

Find the number of nonzero coefficients for delta $=1,2,4$, and 8.

```
delta = [1 2 4 8];
ncoeffs = nLinearCoeffs(obj,delta)
ncoeffs =
```

    4
    4
    3
    0
    The DeltaPredictor property gives the values of delta where the number of nonzero coefficients changes.

## CompactClassificationDiscriminant.nLinearCoeffs

```
ncoeffs2 = nLinearCoeffs(obj,obj.DeltaPredictor)
ncoeffs2 =
```

    4
    3
    1
    2
    | See Also | CompactClassificationDiscriminant \| cvshrink | <br> ClassificationDiscriminant.fit \| |
| :--- | :--- |
| Concepts | - "Discriminant Analysis" on page 14-3 |

## Purpose Nonlinear regression

Syntax<br>Description

```
beta = nlinfit(X,Y,modelfun,betaO)
beta = nlinfit(X,Y,modelfun,betaO,options)
beta = nlinfit(___,Name,Value)
[beta,R,J,CovB,MSE,ErrorModelInfo] = nlinfit(___)
```


## Input Arguments

beta $=$ nlinfit( $\mathrm{X}, \mathrm{Y}$, modelfun, beta0 $)$ returns a vector of estimated coefficients for the nonlinear regression of the responses in $Y$ on the predictors in X using the model specified by modelfun. The coefficients are estimated using iterative least squares estimation, with initial values specified by beta0.
beta $=$ nlinfit $(X, Y$, modelfun, beta0,options) fits the nonlinear regression using the algorithm control parameters in the structure options. You can return any of the output arguments in the previous syntaxes.
beta = nlinfit( __ , Name, Value) uses additional options specified by one or more name-value pair arguments. For example, you can specify observation weights or a nonconstant error model. You can use any of the input arguments in the previous syntaxes.
[beta,R,J,CovB,MSE,ErrorModelInfo] = nlinfit(__ ) additionally returns the residuals, R, the Jacobian of modelfun, J, the estimated variance-covariance matrix for the estimated coefficients, CovB, an estimate of the variance of the error term, MSE, and a structure containing details about the error model, ErrorModelInfo.

## X - Predictor variables

matrix
Predictor variables for the nonlinear regression function, specified as a matrix. Typically, X is a design matrix of predictor (independent

## nlinfit

variable) values, with one row for each value in $Y$, and one column for each coefficient. However, $X$ can be any array that modelfun can accept.

```
Data Types
single | double
```


## Y - Response values

vector
Response values (dependent variable) for fitting the nonlinear regression function, specified as a vector with the same number of rows as $X$.

Data Types<br>single | double

## modelfun - Nonlinear regression model function

function handle
Nonlinear regression model function, specified as a function handle. modelfun must accept two input arguments, a coefficient vector and an array X-in that order-and return a vector of fitted response values.

For example, to specify the hougen nonlinear regression function, use the function handle @hougen.

```
Data Types
function_handle
```


## beta0 - Initial coefficient values

vector
Initial coefficient values for the least squares estimation algorithm, specified as a vector.

Note Poor starting values can lead to a solution with large residual error.

Data Types
single | double

## options - Estimation algorithm options

structure created using statset
Estimation algorithm options, specified as a structure you create using statset. The following statset parameters are applicable to nlinfit.

## DerivStep - Relative difference for finite difference gradient eps^(1/3) (default) | positive scalar value | vector

Relative difference for the finite difference gradient calculation, specified as a positive scalar value, or a vector the same size as beta. Use a vector to specify a different relative difference for each coefficient.

## Display - Level of output display

```
'off'(default) | 'iter' | 'final'
```

Level of output display during estimation, specified as one of 'off', 'iter', or 'final'. If you specify 'iter', output is displayed at each iteration. If you specify 'final', output is displayed after the final iteration.

## FunValCheck - Indicator for whether to check for invalid values 'on' (default) | 'off'

Indicator for whether to check for invalid values such as NaN or Inf from the objective function, specified as 'on' or 'off'.

## Maxlter - Maximum number of iterations <br> 100 (default) | positive integer

Maximum number of iterations for the estimation algorithm, specified as a positive integer. Iterations continue until estimates are within the convergence tolerance, or the maximum number of iterations specified by MaxIter is reached.

## RobustWgtFun - Weight function

## nlinfit

## string | function handle | []

Weight function for robust fitting, specified as a valid string or function handle.

Note RobustWgtFun must have value [] when you use observation weights, W.

The following table describes the possible string values. Let $r$ denote normalized residuals and $w$ denote robust weights. The indicator function $\mathrm{I}[x]$ is equal to 1 if the expression $x$ is true, and 0 otherwise.

Weight   Function	Equation	Default Tuning   Constant
' ' (default)	No robust fitting	-
'andrews'	$w=I[\|r\|<\pi] \times \sin (r) / r$	1.339
'bisquare'	$w=I[\|r\|<1] \times\left(1-r^{2}\right)^{2}$	4.685
'cauchy'	$w=1 /\left(1+r^{2}\right)$	2.385
'fair'	$w=1 /(1+\|r\|)$	1.400


Weight   Function	Equation	Default Tuning   Constant
'huber'	$w=1 / \max (1,\|r\|)$	1.345
'logistic'	$w=\tanh (r) / r$	1.205
'talwar'	$w=I[\|r\|<1]$	2.795
'welsch'	$w=\exp \left\{-r^{2}\right\}$	2.985

You can alternatively specify a function handle that accepts a vector of normalized residuals as input, and returns a vector of robust weights as output. If you use a function handle, you must provide a Tune constant.

## Tune - Tuning constant

positive scalar value
Tuning constant for robust fitting, specified as a positive scalar value. The tuning constant is used to normalize residuals before applying a robust weight function. The default tuning constant depends on the function specified by RobustWgtFun.
If you use a function handle to specify RobustWgtFun, then you must specify a value for Tune.

## TolFun - Termination tolerance on residual sum of squares 1e-8 (default) | positive scalar value

Termination tolerance for the residual sum of squares, specified as a positive scalar value. Iterations continue until estimates are within the

## nlinfit

convergence tolerance, or the maximum number of iterations specified by MaxIter is reached.

## ToIX - Termination tolerance on estimated coefficients

1e-8 (default) | positive scalar value
Termination tolerance on the estimated coefficients, beta, specified as a positive scalar value. Iterations continue until estimates are within the convergence tolerance, or the maximum number of iterations specified by MaxIter is reached.

## Robust - Indicator for robust fitting

'off' (default) | 'on'
Indicator for robust fitting, specified as 'off' or 'on'.

Note Robust will be removed in a future software release. Use RobustWgtFun for robust fitting.

## WgtFun - Weight function for robust fitting

## string \| function handle

Weight function for robust fitting, specified as a string indicating a weight function, or a function handle. WgtFun is valid only when Robust has value 'on'.

Note WgtFun will be removed in a future software release. Use RobustWgtFun instead.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'ErrorModel','proportional','ErrorParameters',0.5 specifies a proportional error model, with initial value 0.5 for the error parameter estimation

## 'ErrorModel' - Form of error term

'constant' (default) | 'proportional' | 'combined'
Form of the error term, specified as the comma-separated pair consisting of 'ErrorModel' and one of the following strings indicating the error model. Each model defines the error using a standard mean-zero and unit-variance variable $e$ in combination with independent components: the function value $f$, and one or two parameters $a$ and $b$.

```
'constant' (default)
 \(y=f+a e\)
'proportional'
 \(y=f+b f e\)
combined'
\[
y=f+(a+b|f|) e
\]
```

The only allowed error model when using Weights is 'constant'.

Note options.RobustWgtFun must have value [] when using an error model other than 'constant'.

## 'ErrorParameters' - Initial estimates for error model parameters

1 or [1,1] (default) | scalar value | two-element vector
Initial estimates for the error model parameters in the chosen ErrorModel, specified as the comma-separated pair consisting of 'ErrorParameters' and a scalar value or two-element vector.

## nlinfit

Error Model	Parameters	Default Values
'constant'	$a$	1
'proportional'	$b$	1
'combined'	$a, b$	$[1,1]$

For example, if 'ErrorModel' has the value 'combined', you can specify the starting value 1 for $a$ and the starting value 2 for $b$ as follows.

```
Example: 'ErrorParameters',[1,2]
```

You can only use the 'constant' error model when using Weights.

Note options.RobustWgtFun must have value [] when using an error model other than 'constant'.

## Data Types <br> double | single

## 'Weights' - Observation weights

## vector | function handle

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of real positive weights or a function handle. You can use observation weights to down-weight the observations that you want to have less influence on the fitted model.

- If W is a vector, then it must be the same size as Y .
- If $W$ is a function handle, then it must accept a vector of predicted response values as input, and return a vector of real positive weights as output.

Note options.RobustWgtFun must have value [] when you use observation weights.

## Data Types <br> double | single | function_handle

## Output <br> Arguments

## beta - Estimated regression coefficients

vector
Estimated regression coefficients, returned as a vector. The number of elements in beta equals the number of elements in beta0.

Let $f\left(X_{i}, \mathbf{b}\right)$ denote the nonlinear function specified by modelfun, where $\mathbf{x}_{i}$ are the predictors for observation $i, i=1, \ldots, N$, and $\mathbf{b}$ are the regression coefficients. The vector of coefficients returned in beta minimizes the weighted least squares equation,

$$
\sum_{i=1}^{N} w_{i}\left[y_{i}-f\left(\mathbf{x}_{i}, \mathbf{b}\right)\right]^{2} .
$$

For unweighted nonlinear regression, all of the weight terms are equal to 1 .

## R - Residuals

## vector

Residuals for the fitted model, returned as a vector.

- If you specify observation weights using the name-value pair argument Weights, then R contains weighted residuals.
- If you specify an error model other than 'constant' using the name-value pair argument ErrorModel, then you can no longer interpret R as model fit residuals.


## J - Jacobian

## matrix

Jacobian of the nonlinear regression model, modelfun, returned as an $N$-by- $p$ matrix, where $N$ is the number of observations and $p$ is the number of estimated coefficients.

## nlinfit

- If you specify observation weights using the name-value pair argument Weights, then $J$ is the weighted model function Jacobian.
- If you specify an error model other than 'constant' using the name-value pair argument ErrorModel, then you can no longer interpret $J$ as the model function Jacobian.


## CovB - Estimated variance-covariance matrix

matrix
Estimated variance-covariance matrix for the fitted coefficients, beta, returned as a $p$-by- $p$ matrix, where $p$ is the number of estimated coefficients. If the model Jacobian, $J$, has full column rank, then CovB $=$ $\operatorname{inv}(J ' * J) * M S E$, where MSE is the mean squared error.

## MSE - Mean squared error

scalar value
Mean squared error (MSE) of the fitted model, returned as a scalar value. MSE is an estimate of the variance of the error term. If the model Jacobian, J, has full column rank, then MSE $=\left(R^{\prime *} R\right) /(N-p)$, where $N$ is the number of observations, and $p$ is the number of estimated coefficients.

## ErrorModelInfo - Information about error model fit

structure
Information about the error model fit, returned as a structure with the following fields:

ErrorModel Chosen error model
ErrorParameters
Estimated error parameters
ErrorVariance
Function handle that accepts an $N$-by- $p$ matrix, X, and returns an $N$-by- 1 vector of error variances using the estimated error model

MSE	Mean squared error
ScheffeSimPred	Scheffé parameter for simultaneous   prediction intervals when using the   estimated error model
WeightFunction	Logical with value true if you used a   custom weight function previously in   nlinfit
FixedWeights	Logical with value true if you used fixed   weights previously in nlinfit
RobustWeightFunction	Logical with value true if you used robust   fitting previously in

## Examples <br> Nonlinear Regression Model Using Default Options

Load sample data.

```
S = load('reaction');
X = S.reactants;
y = S.rate;
betaO = S.beta;
```

Fit the Hougen-Watson model to the rate data using the initial values in beta0.

```
beta = nlinfit(X,y,@hougen,betaO)
```

beta $=$
1.2526
0.0628
0.0400
0.1124
1.1914

## Nonlinear Regression Using Robust Options

Generate sample data from the nonlinear regression model

$$
y=b_{1}+b_{2} \exp \left\{-b_{3} x\right\}+\varepsilon
$$

where $b_{1}, b_{2}$, and $b_{3}$ are coefficients, and the error term is normally distributed with mean 0 and standard deviation 0.1 .

```
modelfun = a(b,x)(b(1)+b(2)*exp(-b(3)*x));
rng('default') % for reproducibility
b = [1;3;2];
x = exprnd(2,100,1);
y = modelfun(b,x) + normrnd(0,0.1,100,1);
```

Set robust fitting options.

```
opts = statset('nlinfit');
opts.RobustWgtFun = 'bisquare';
```

Fit the nonlinear model using the robust fitting options.

```
betaO = [2;2;2];
beta = nlinfit(x,y,modelfun,beta0,opts)
beta =
```

    1.0041
    3.0997
    2.1483
    
## Nonlinear Regression Using Observation Weights

Load sample data.

```
S = load('reaction');
X = S.reactants;
y = S.rate;
```

```
betaO = S.beta;
```

Specify a vector of known observation weights.
W = [8 216129121010122108$] ' ;$

Fit the Hougen-Watson model to the rate data using the specified observation weights.

```
[beta,R,J,CovB] = nlinfit(X,y,@hougen,betaO,'Weights',W);
beta
beta =
 2.2068
 0.1077
 0.0766
 0.1818
 0.6516
```

Display the coefficient standard errors.

```
sqrt(diag(CovB))
ans =
 2.5721
 0.1251
 0.0950
 0.2043
 0.7735
```


## Nonlinear Regression Using Weights Function Handle

Load sample data.

```
S = load('reaction');
X = S.reactants;
y = S.rate;
```


## nlinfit

```
beta0 = S.beta;
```

Specify a function handle for observation weights. The function accepts the model fitted values as input, and returns a vector of weights.

```
a = 1; b = 1;
weights = @(yhat) 1./((a + b*abs(yhat)).^2);
```

Fit the Hougen-Watson model to the rate data using the specified observation weights function.
[beta,R,J,CovB] = nlinfit(X,y,@hougen,betaO,'Weights', weights); beta
beta $=$
0.8308
0.0409
0.0251
0.0801
1.8261

Display the coefficient standard errors.

```
sqrt(diag(CovB))
```

ans $=$
0.5822
0.0297
0.0197
0.0578
1.2810

## Nonlinear Regression Using Nonconstant Error Model

Load sample data.
S = load('reaction');

```
X = S.reactants;
y = S.rate;
beta0 = S.beta;
```

Fit the Hougen-Watson model to the rate data using the combined error model.

```
[beta,R,J,CovB,MSE,ErrorModelInfo] = nlinfit(X,y,@hougen,beta0,'Errorl
``` beta
beta =
1.2526
0.0628
0.0400
0.1124
1.1914

Display the error model information.

\section*{ErrorModelInfo}

\section*{ErrorModelInfo =}

ErrorModel: 'combined'
ErrorParameters: [0.1517 5.6783e-08]
ErrorVariance: @(x)mse*(errorparam(1)+errorparam(2)*abs(mod
MSE: 1.6245
ScheffeSimPred: 6
WeightFunction: 0
FixedWeights: 0
RobustWeightFunction: 0
Tips
- To produce error estimates on predictions, use the optional output arguments R, J, CovB, or MSE as inputs to nlpredci.
- To produce error estimates on the estimated coefficients, beta, use the optional output arguments R, J, CovB, or MSE as inputs to nlparci.
- If you use the robust fitting option, RobustWgtFun, you must use CovB-and might need MSE-as inputs to nlpredci or nlparci to ensure that the confidence intervals take the robust fit properly into account.

\section*{Algorithms}

\section*{Definitions}

\section*{Weighted Residuals}

A weighted residual is a residual multiplied by the square root of the corresponding observation weight.

Given estimated regression coefficients, \(\mathbf{b}\), the residual for observation \(i\) is
\[
r_{i}=y_{i}-f\left(\mathbf{x}_{i}, \mathbf{b}\right)
\]
where \(y_{i}\) is the observed response and \(f\left(\mathbf{x}_{i}, \mathbf{b}\right)\) is the fitted response at predictors \(\mathbf{x}_{i}\).
When you fit a weighted nonlinear regression with weights \(w_{i}, i=\) \(1, \ldots, N\), nlinfit returns the weighted residuals,
\[
r_{i}^{*}=\sqrt{w_{i}}\left(y_{i}-f\left(\mathbf{x}_{i}, \mathbf{b}\right)\right) .
\]

\section*{Weighted Model Function Jacobian}

The weighted model function Jacobian is the nonlinear model Jacobian multiplied by the square root of the observation weight matrix.

Given estimated regression coefficients, \(\mathbf{b}\), the estimated model
Jacobian, \(\mathbf{J}\), for the nonlinear function \(f\left(\mathbf{x}_{i}, \mathbf{b}\right)\) has elements
\[
\mathbf{J}_{i j}=\frac{\partial f\left(\mathbf{x}_{i}, \mathbf{b}\right)}{\partial b_{j}},
\]
where \(b_{j}\) is the \(j\) th element of \(\mathbf{b}\).
When you fit a weighted nonlinear regression with diagonal weights matrix \(\mathbf{W}\), nlinfit returns the weighted Jacobian matrix,
\[
\mathbf{J}^{*}=\mathbf{W}^{1 / 2} \mathbf{J} .
\]

\section*{References}
[1] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-Interscience, 2003.
[2] DuMouchel, W. H., and F. L. O'Brien. "Integrating a Robust Option into a Multiple Regression Computing Environment." Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface. Alexandria, VA: American Statistical Association, 1989.
[3] Holland, P. W., and R. E. Welsch. "Robust Regression Using Iteratively Reweighted Least-Squares." Communications in Statistics: Theory and Methods, A6, 1977, pp. 813-827.

See Also NonLinearModel.fit | nlparci | nlpredci | nlintool

Concepts
- "Nonlinear Regression" on page 9-198

\section*{Purpose Interactive nonlinear regression}
```

Syntax
nlintool (X,y,fun, beta0)
nlintool(X,y,fun, betaO, alpha)
nlintool(X,y,fun, beta0, alpha, 'xname','yname')

```

\section*{Description}

\section*{Examples}
nlintool ( \(X, y\), fun, beta0) is a graphical user interface to the nlinfit function, and uses the same input arguments. The interface displays plots of the fitted response against each predictor, with the other predictors held fixed. The fixed values are in the text boxes below each predictor axis. Change the fixed values by typing in a new value or by dragging the vertical lines in the plots to new positions. When you change the value of a predictor, all plots update to display the model at the new point in predictor space. Dashed red curves show \(95 \%\) simultaneous confidence bands for the function.
nlintool(X,y,fun, beta0, alpha) shows 100(1-alpha)\% confidence bands. These are simultaneous confidence bounds for the function value. Using the Bounds menu you can switch between simultaneous and non-simultaneous bounds, and between bounds on the function and bounds for predicting a new observation.
nlintool(X,y,fun, beta0, alpha, 'xname', 'yname') labels the plots using the string matrix 'xname' for the predictors and the string 'yname' for the response.

The data in reaction.mat are partial pressures of three chemical reactants and the corresponding reaction rates. The function hougen implements the nonlinear Hougen-Watson model for reaction rates. The following fits the model to the data:
```

load reaction
nlintool(reactants,rate,@hougen, beta, 0.01,xn,yn)

```


See Also nlinfit | polytool | rstool

- PHI - A 1-by-p vector of model parameters.

\section*{nlmefit}
- XFUN - A \(k\)-by- \(h\) array of predictors, where:
- \(k=1\) if XFUN is a single row of X.
- \(k=n_{i}\) if XFUN contains the rows of X for a single group of size \(n_{i}\).
- \(k=n\) if XFUN contains all rows of X.
- VFUN - Group-specific predictors given by one of:
- A 1-by-g vector corresponding to a single group and a single row of \(V\).
- An \(n\)-by-g array, where the \(j\) th row is \(\mathrm{V}(\mathrm{I},:)\) if the \(j\) th observation is in group I.

If V is empty, nlmefit calls modelfun with only two inputs.
- yfit - A \(k\)-by-1 vector of fitted values

When either PHI or VFUN contains a single row, it corresponds to all rows in the other two input arguments.

Note If modelfun can compute yfit for more than one vector of model parameters per call, use the 'Vectorization' parameter (described later) for improved performance.
beta0 is a \(q\)-by- 1 vector with initial estimates for \(q\) fixed effects. By default, \(q\) is the number of model parameters \(p\).
nlmefit fits the model by maximizing an approximation to the marginal likelihood with random effects integrated out, assuming that:
- Random effects are multivariate normally distributed and independent between groups.
- Observation errors are independent, identically normally distributed, and independent of the random effects.
[beta, PSI] = nlmefit(X,y,group, V,fun, beta0) also returns PSI, an \(r\)-by- \(r\) estimated covariance matrix for the random effects. By default, \(r\) is equal to the number of model parameters \(p\).
[beta, PSI, stats] = nlmefit(X,y,group, \(V\),fun, beta0) also returns stats, a structure with fields:
- dfe - The error degrees of freedom for the model
- logl - The maximized loglikelihood for the fitted model
- rmse - The square root of the estimated error variance (computed on the log scale for the exponential error model)
- errorparam - The estimated parameters of the error variance model
- aic - The Akaike information criterion, calculated as aic \(=-2 * \log 1\) +2 * numParam, where numParam is the number of fitting parameters, including the degree of freedom for covariance matrix of the random effects, the number of fixed effects and the number of parameters of the error model, and logl is a field in the stats structure
- bic - The Bayesian information criterion, calculated as bic \(=\) \(-2 * \log 1+\log (M) *\) numParam
- \(M\) is the number of groups.
- numParam and logl are defined as in aic.

Note that some literature suggests that the computation of bic should be, bic \(=-2^{*} \log l+\log (N) *\) numParam, where \(N\) is the number of observations.
- covb - The estimated covariance matrix of the parameter estimates
- sebeta - The standard errors for beta
- ires - The population residuals (y-y_population), where y_population is the individual predicted values
- pres - The population residuals (y-y_population), where y_population is the population predicted values
- iwres - The individual weighted residuals

\section*{nlmefit}
- pwres - The population weighted residuals
- cwres - The conditional weighted residuals
[beta, PSI, stats, \(B\) ] = nlmefit (X, y, group, V, fun, beta0) also returns B, an \(r\)-by- \(m\) matrix of estimated random effects for the \(m\) groups. By default, \(r\) is equal to the number of model parameters \(p\).
[beta,PSI,stats,B] =
nlmefit(X,y,group,V,fun, betaO, 'Name', value) specifies one or more optional parameter name/value pairs. Specify Name inside single quotes.
Use the following parameters to fit a model different from the default. (The default model is obtained by setting both FEConstDesign and REConstDesign to eye ( \(p\) ), or by setting both FEParamsSelect and REParamsSelect to 1:p.) Use at most one parameter with an 'FE' prefix and one parameter with an 'RE' prefix. The nlmefit function requires you to specify at least one fixed effect and one random effect.
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline FEParamsSelect & \begin{tabular}{l} 
A vector specifying which elements of the \\
parameter vector PHI include a fixed effect, \\
given as a numeric vector of indices from \\
1 to \(p\) or as a 1-by- \(p\) logical vector. If \(q\) is \\
the specified number of elements, then the \\
model includes \(q\) fixed effects.
\end{tabular} \\
\hline FEConstDesign & \begin{tabular}{l} 
A \(p\)-by- \(q\) design matrix ADESIGN, where \\
ADESIGN*beta are the fixed components of \\
the \(p\) elements of PHI.
\end{tabular} \\
\hline FEGroupDesign & \begin{tabular}{l} 
A \(p\)-by- \(q\)-by- \(m\) array specifying a different \\
\(p-\) by- \(q\) fixed-effects design matrix for each \\
of the \(m\) groups.
\end{tabular} \\
\hline FEObsDesign & \begin{tabular}{l} 
A \(p\)-by- \(q\)-by- \(n\) array specifying a different \\
\(p\)-by- \(q\) fixed-effects design matrix for each \\
of the \(n\) observations.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline REParamsSelect & \begin{tabular}{l} 
A vector specifying which elements of the \\
parameter vector PHI include a random \\
effect, given as a numeric vector of indices \\
from 1 to \(p\) or as a 1-by- \(p\) logical vector. The \\
model includes \(r\) random effects, where \(r\) \\
is the specified number of elements.
\end{tabular} \\
\hline REConstDesign & \begin{tabular}{l} 
A \(p\)-by- \(r\) design matrix BDESIGN, where \\
BDESIGN*B are the random components of \\
the \(p\) elements of PHI.
\end{tabular} \\
\hline REGroupDesign & \begin{tabular}{l} 
A \(p\)-by- \(r\)-by- \(m\) array specifying a different \\
\(p-\) by- random-effects design matrix for \\
each of \(m\) groups.
\end{tabular} \\
\hline REObsDesign & \begin{tabular}{l} 
A \(p\)-by- \(r\)-by- \(n\) array specifying a different \\
\(p\)-by- \(r\) random-effects design matrix for \\
each of \(n\) observations.
\end{tabular} \\
\hline
\end{tabular}

Use the following parameters to control the iterative algorithm for maximizing the likelihood:
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline RefineBeta0 & \begin{tabular}{l} 
Determines whether nlmef it makes an \\
initial refinement of betao by first fitting \\
modelfun without random effects and \\
replacing beta0 with beta. Choices are \\
'on' and 'off'. The default value is 'on '.
\end{tabular} \\
\hline ErrorModel & \begin{tabular}{l} 
A string specifying the form of the error \\
term. Default is 'constant '. Each model \\
defines the error using a standard normal \\
(Gaussian) variable \(e\), the function value \\
\(f\), and one or two parameters \(a\) and \(b\). \\
Choices are:
\end{tabular} \\
- 'constant ' \(: y=f+a^{*} e\)
\end{tabular}

\section*{nlmefit}
\begin{tabular}{|c|c|}
\hline Parameter & Value \\
\hline & \begin{tabular}{l}
- 'proportional': \(y=f+b^{*} f^{*} e\) \\
- 'combined' \(: y=f+\left(a+b^{*} f\right) * e\) \\
- 'exponential': \(y=f^{*} \exp \left(a^{*} e\right)\), or equivalently \(\log (y)=\log (f)+a^{*} e\) \\
If this parameter is given, the output stats.errorparam field has the value \\
- \(a\) for 'constant ' and 'exponential' \\
- \(b\) for 'proportional' \\
- \([a b]\) for 'combined'
\end{tabular} \\
\hline ApproximationType & \begin{tabular}{l}
The method used to approximate the likelihood of the model. Choices are: \\
- 'LME' - Use the likelihood for the linear mixed-effects model at the current conditional estimates of beta and \(B\). This is the default. \\
- 'RELME ' - Use the restricted likelihood for the linear mixed-effects model at the current conditional estimates of beta and \(B\). \\
- 'FO' - First-order Laplacian approximation without random effects. \\
- 'FOCE' - First-order Laplacian approximation at the conditional estimates of B.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline Vectorization & \begin{tabular}{l} 
Indicates acceptable sizes for the PHI, \\
XFUN, and VFUN input arguments to \\
modelfun. Choices are:
\end{tabular} \\
& \begin{tabular}{l} 
- 'SinglePhi' - modelfun can only \\
accept a single set of model parameters \\
at a time, so PHI must be a single \\
row vector in each call. nlmefit calls \\
modelfun in a loop, if necessary, with \\
a single PHI vector and with XFUN \\
containing rows for a single observation \\
or group at a time. VFUN may be a single \\
row that applies to all rows of XFUN, or a \\
matrix with rows corresponding to rows
\end{tabular} \\
& in XFUN. This is the default. \\
&
\end{tabular}
- 'SingleGroup' - modelfun can only accept inputs corresponding to a single group in the data, so XFUN must contain rows of \(X\) from a single group in each call. Depending on the model, PHI is a single row that applies to the entire group or a matrix with one row for each observation. VFUN is a single row.
- 'Full' - modelfun can accept inputs for multiple parameter vectors and multiple groups in the data. Either PHI or VFUN may be a single row that applies to all rows of XFUN or a matrix with rows corresponding to rows in XFUN. This option can improve performance by reducing the number of calls to modelfun, but may require modelfun to perform singleton expansion on PHI or V.

\section*{nlmefit}
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline CovParameterization & \begin{tabular}{l} 
Specifies the parameterization used \\
internally for the scaled covariance matrix. \\
Choices are 'chol' for the Cholesky \\
factorization or 'logm' the matrix \\
logarithm. The default is 'logm'.
\end{tabular} \\
\hline CovPattern & \begin{tabular}{l} 
Specifies an \(r\)-by- \(r\) logical or numeric \\
matrix P that defines the pattern of the \\
random-effects covariance matrix PSI. \\
nlmefit estimates the variances along \\
the diagonal of PSI and the covariances \\
specified by nonzeros in the off-diagonal \\
elements of P. Covariances corresponding \\
to zero off-diagonal elements in P are \\
constrained to be zero. If P does not specify \\
a row-column permutation of a block \\
diagonal matrix, nlmefit adds nonzero \\
elements to P as needed. The default \\
value of P is eye (r), corresponding to \\
uncorrelated random effects.
\end{tabular} \\
Alternatively, P may be a 1-by- \(r\) vector \\
containing values in 1: \(r\), with equal values \\
specifying groups of random effects. In this \\
case, nlmefit estimates covariances only \\
within groups, and constrains covariances \\
across groups to be zero.
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter & Value \\
\hline ParamTransform & \begin{tabular}{l}
A vector of \(p\)-values specifying a transformation function \(f()\) for each of the \(P\) parameters: \(X B=\) ADESIGN*BETA + BDESIGN*B PHI \(=f(X B)\). Each element of the vector must be one of the following integer codes specifying the transformation for the corresponding value of PHI : \\
- \(0: \mathrm{PHI}=\mathrm{XB}\) (default for all parameters) \\
- \(1: \log (\mathrm{PHI})=X B\) \\
- 2: \(\operatorname{probit}(\mathrm{PHI})=X B\) \\
- 3: \(\operatorname{logit}(\mathrm{PHI})=X B\)
\end{tabular} \\
\hline Options & \begin{tabular}{l}
A structure of the form returned by statset. nlmefit uses the following statset parameters: \\
- 'DerivStep' - Relative difference used in finite difference gradient calculation. May be a scalar, or a vector whose length is the number of model parameters \(p\). The default is \(\operatorname{eps}^{\wedge}(1 / 3)\). \\
- 'Display' - Level of iterative display during estimation. Choices are: \\
- 'off' (default) - Displays no information \\
- 'final' - Displays information after the final iteration \\
- 'iter' - Displays information at each iteration \\
- 'FunValCheck' - Check for invalid values, such as NaN or Inf, from
\end{tabular} \\
\hline
\end{tabular}

\section*{nlmefit}
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline & \begin{tabular}{l} 
modelfun. Choices are 'on' and 'off '. \\
The default is 'on '.
\end{tabular} \\
& \begin{tabular}{l} 
- MaxIter' - Maximum number of \\
iterations allowed. The default is 200. \\
- OutputFcn' — Function handle \\
specified using @, a cell array with \\
function handles or an empty array \\
(default). The solver calls all output \\
functions after each iteration.
\end{tabular} \\
- 'TolFun' — Termination tolerance on \\
the loglikelihood function. The default \\
is 1e-4. \\
- 'TolX' - Termination tolerance on the \\
estimated fixed and random effects. The \\
default is 1e-4.
\end{tabular}

Examples Display data on the growth of five orange trees:
```

CIRC = [l30 58 87 115 120 142 145;
33 69 111 156 172 203 203;
30 51 75 108 115 139 140;
32 62 112 167 179 209 214;
30 49 81 125 142 174 177];
time = [118 484 664 1004 1231 1372 1582];
h = plot(time,CIRC','o','LineWidth',2);

```
```

xlabel('Time (days)')
ylabel('Circumference (mm)')
title('{\bf Orange Tree Growth}')
legend([repmat('Tree ',5,1),num2str((1:5)')],...
Location','NW')
grid on
hold on

```

Orange Tree Growth


Use an anonymous function to specify a logistic growth model:
```

model=@(PHI,t)(PHI(:,1))./(1+exp(-(t-PHI(:,2))./PHI(:,3)));

```

\section*{nlmefit}

Fit the model using nlmefit with default settings (that is, assuming each parameter is the sum of a fixed and a random effect, with no correlation among the random effects):
```

TIME = repmat(time,5,1);
NUMS = repmat((1:5)',size(time));
beta0 = [100 100 100];
[beta1,PSI1,stats1] = nlmefit(TIME(:),CIRC(:),NUMS(:),...
[],model,beta0)
beta1 =
191.3189
723.7608
346.2517
PSI1 =
962.1534 0 0
0 0.0000 0
0 0 297.9881
stats1 =
dfe: 28
logl: -131.5457
mse: 59.7882
rmse: 7.9016
errorparam: 7.7323
aic: 277.0913
bic: 274.3574
covb: [3x3 double]
sebeta: [15.2249 33.1579 26.8235]
ires: [35x1 double]
pres: [35x1 double]
iwres: [35x1 double]
pwres: [35\times1 double]
cwres: [35x1 double]

```

The negligible variance of the second random effect, PSI1 \((2,2)\), suggests that it can be removed to simplify the model:
```

[beta2,PSI2,stats2,b2] = nlmefit(TIME(:),CIRC(:),...
NUMS(:),[],model,beta0,'REParamsSelect',[1 3])
beta2 =
191.3194
723.7628
346.2548
PSI2 =
962.2114 0
0 298.3989
stats2 =
dfe: 29
logl: -131.5456
mse: 59.7851
rmse: 7.7640
errorparam: 7.7321
aic: 275.0913
bic: 272.7479
covb: [3\times3 double]
sebeta: [15.2252 33.1572 26.8246]
ires: [35x1 double]
pres: [35x1 double]
iwres: [35x1 double]
pwres: [35x1 double]
cwres: [35x1 double]
b2 =
-28.5250 31.6063 -36.5070 39.0735 -5.6479
10.0097 -0.7638 6.0117 -9.4685 -5.7892

```

\section*{nlmefit}

The loglikelihood logl is unaffected, and both the Akaike and Bayesian information criteria (aic and bic) are reduced, supporting the decision to drop the second random effect from the model.

Use the estimated fixed effects in beta2 and the estimated random effects for each tree in b2 to plot the model through the data:
```

PHI = repmat(beta2,1,5) + ... % Fixed effects
[b2(1,:);zeros(1,5);b2(2,:)]; % Random effects
colors = get(h,'Color');
tplot = 0:0.1:1600;
for I = 1:5
fitted_model=@(t)(PHI(1,I))./(1+exp(-(t-PHI(2,I))./ ...
PHI(3,I)));
plot(tplot,fitted_model(tplot),'Color',colors{I}, ...
'LineWidth',2)
end

```


\section*{References}
[1] Lindstrom, M. J., and D. M. Bates. "Nonlinear mixed-effects models for repeated measures data." Biometrics. Vol. 46, 1990, pp. 673-687.
[2] Davidian, M., and D. M. Giltinan. Nonlinear Models for Repeated Measurements Data. New York: Chapman \& Hall, 1995.
[3] Pinheiro, J. C., and D. M. Bates. "Approximations to the log-likelihood function in the nonlinear mixed-effects model." Journal of Computational and Graphical Statistics. Vol. 4, 1995, pp. 12-35.
[4] Demidenko, E. Mixed Models: Theory and Applications. Hoboken, NJ: John Wiley \& Sons, Inc., 2004.

\author{
See Also \\ nlinfit | nlpredci | nlmefitsa \\ How To \\ - "Mixed-Effects Models" on page 9-219
}
- "Grouping Variables" on page 2-51

\section*{Purpose}

Fit nonlinear mixed-effects model with stochastic EM algorithm

\section*{Syntax}

\section*{Description}

\section*{Input \\ Arguments}
```

[BETA,PSI,STATS,B] = nlmefitsa(X,Y,GROUP,V,MODELFUN,BETAO)
[BETA,PSI,STATS,B] = nlmefitsa(X,Y,GROUP,V,MODELFUN,BETAO,
'Name',Value)

```
[BETA,PSI,STATS,B] = nlmefitsa(X,Y,GROUP, V,MODELFUN,BETAO) fits a nonlinear mixed-effects regression model and returns estimates of the fixed effects in BETA. By default, nlmefitsa fits a model where each model parameter is the sum of a corresponding fixed and random effect, and the covariance matrix of the random effects is diagonal, i.e., uncorrelated random effects.

The BETA, PSI, and other values this function returns are the result of a random (Monte Carlo) simulation designed to converge to the maximum likelihood estimates of the parameters. Because the results are random, it is advisable to examine the plot of simulation to results to be sure that the simulation has converged. It may also be helpful to run the function multiple times, using multiple starting values, or use the 'Replicates' parameter to perform multiple simulations.
[BETA,PSI,STATS,B] =
nlmefitsa(X, Y, GROUP, V, MODELFUN, BETAO, 'Name' , Value) accepts one or more comma-separated parameter name/value pairs. Specify Name inside single quotes.

\section*{Definitions:}

In the following list of arguments, the following variable definitions apply:
- \(n\) - number of observations
- \(h\) - number of predictor variables
- \(m\) - number of groups
- \(g\) - number of group-specific predictor variables
- \(p\) - number of parameters

\section*{nlmefitsa}
- \(f\) - number of fixed effects

\section*{X}

An \(n\)-by- \(h\) matrix of \(n\) observations on \(h\) predictor variables.

\section*{Y}

An \(n\)-by- 1 vector of responses.

\section*{GROUP}

A grouping variable indicating to which of \(m\) groups each observation belongs. GROUP can be a categorical variable, a numeric vector, a character matrix with rows for group names, or a cell array of strings.

\section*{V}

An \(m\)-by- \(g\) matrix of \(g\) group-specific predictor variables for each of the \(m\) groups in the data. These are predictor values that take on the same value for all observations in a group. Rows of V are ordered according to GRP2IDX (GROUP). Use an \(m\)-by- \(g\) cell array for \(V\) if any of the group-specific predictor values vary in size across groups. Specify [ ] for \(V\) if there are no group predictors.

\section*{MODELFUN}

A handle to a function that accepts predictor values and model parameters, and returns fitted values. MODELFUN has the form YFIT = MODELFUN (PHI, XFUN, VFUN) with input arguments
- PHI - A 1-by-p vector of model parameters.
- XFUN - An \(l\)-by- \(h\) array of predictor variables where
- \(l\) is 1 if XFUN is a single row of \(X\)
- \(l\) is \(n_{i}\) if XFUN contains the rows of X for a single group of size \(n_{i}\)
- \(l\) is \(n\) if XFUN contains all rows of X .
- VFUN - Either
- A 1-by-g vector of group-specific predictors for a single group, corresponding to a single row of V
- An \(n\)-by- \(g\) matrix, where the \(k\)-th row of VFUN is \(\mathrm{V}(i,:)\) if the \(k\)-th observation is in group \(i\).
If \(V\) is empty, nlmefitsa calls MODELFUN with only two inputs. MODELFUN returns an \(l\)-by- 1 vector of fitted values YFIT. When either PHI or VFUN contains a single row, that one row corresponds to all rows in the other two input arguments. For improved performance, use the 'Vectorization' parameter name/value pair (described below) if MODELFUN can compute YFIT for more than one vector of model parameters in one call.

\section*{BETAO}

An \(f\)-by- 1 vector with initial estimates for the \(f\) fixed effects. By default, \(f\) is equal to the number of model parameters \(p\). BETAO can also be an \(f\)-by-REPS matrix, and the estimation is repeated REPS times using each column of BETAO as a set of starting values.

\section*{Name-Value Pair Arguments}

By default, nlmefitsa fits a model where each model parameter is the sum of a corresponding fixed and random effect. Use the following parameter name/value pairs to fit a model with a different number of or dependence on fixed or random effects. Use at most one parameter name with an 'FE' prefix and one parameter name with an 'RE' prefix. Note that some choices change the way nlmefitsa calls MODELFUN, as described further below.

\section*{'FEParamsSelect'}

A vector specifying which elements of the model parameter vector PHI include a fixed effect, as a numeric vector with elements in \(1: p\), or as a 1 -by- \(p\) logical vector. The model will include \(f\) fixed effects, where \(f\) is the specified number of elements.

\section*{'FEConstDesign'}

\section*{nlmefitsa}

A \(p\)-by-f design matrix ADESIGN, where ADESIGN*BETA are the fixed components of the \(p\) elements of PHI.

\section*{'FEGroupDesign'}

A \(p\)-by- \(f\)-by- \(m\) array specifying a different \(p\)-by- \(f\) fixed effects design matrix for each of the \(m\) groups.

\section*{'REParamsSelect'}

A vector specifying which elements of the model parameter vector PHI include a random effect, as a numeric vector with elements in 1:p, or as a 1-by- \(p\) logical vector. The model will include \(r\) random effects, where \(r\) is the specified number of elements.

\section*{'REConstDesign'}

A \(p\)-by- \(r\) design matrix BDESIGN, where BDESIGN*B are the random components of the \(p\) elements of PHI. This matrix must consist of 0 s and 1 s , with at most one 1 per row.

The default model is equivalent to setting both FEConstDesign and REConstDesign to eye ( \(p\) ), or to setting both FEParamsSelect and REParamsSelect to 1:p.

Additional optional parameter name/value pairs control the iterative algorithm used to maximize the likelihood:

\section*{'CovPattern'}

Specifies an \(r\)-by-r logical or numeric matrix PAT that defines the pattern of the random effects covariance matrix PSI. nlmefitsa computes estimates for the variances along the diagonal of PSI as well as covariances that correspond to non-zeroes in the off-diagonal of PAT. nlmefitsa constrains the remaining covariances, i.e., those corresponding to off-diagonal zeroes in PAT, to be zero. PAT must be a row-column permutation of a block diagonal matrix, and nlmefitsa adds non-zero elements to PAT as needed to produce such a pattern. The
default value of PAT is eye \((r)\), corresponding to uncorrelated random effects.

Alternatively, specify PAT as a 1-by- \(r\) vector containing values in 1:r. In this case, elements of PAT with equal values define groups of random effects, nlmefitsa estimates covariances only within groups, and constrains covariances across groups to be zero.

\section*{'CovO'}

Initial value for the covariance matrix PSI. Must be an \(r\)-by- \(r\) positive definite matrix. If empty, the default value depends on the values of BETAO.

\section*{'ComputeStdErrors'}
true to compute standard errors for the coefficient estimates and store them in the output STATS structure, or false (default) to omit this computation.

\section*{'ErrorModel'}

A string specifying the form of the error term. Default is 'constant '. Each model defines the error using a standard normal (Gaussian) variable \(e\), the function value \(f\), and one or two parameters \(a\) and \(b\). Choices are
- 'constant' \(-y=f+a^{*} e\)
- 'proportional' - \(y=f+b^{*} f^{*} e\)
- 'combined' \(-y=f+\left(a+b^{*} f\right)^{*} e\)
- 'exponential' \(-y=f^{*} \exp \left(a^{*} e\right)\), or equivalently \(\log (y)=\log (f)+a^{*} e\) If this parameter is given, the output STATS.errorparam field has the value
- \(a\) for 'constant' and 'exponential'
- \(b\) for 'proportional'
- \([a b]\) for 'combined'

\section*{nlmefitsa}

\section*{'ErrorParameters'}

A scalar or two-element vector specifying starting values for parameters of the error model. This specifies the \(a, b\), or \([a b]\) values depending on the ErrorModel parameter.

\section*{'LogLikMethod'}

Specifies the method for approximating the loglikelihood. Choices are:
- 'is' - Importance sampling
- 'gq' - Gaussian quadrature
- 'lin' - Linearization
- 'none ' - Omit the loglikelihood approximation (default)

\section*{'NBurnIn'}

Number of initial burn-in iterations during which the parameter estimates are not recomputed. Default is 5 .

\section*{'NChains'}

Number \(c\) of "chains" simulated. Default is 1 . Setting \(c>1\) causes \(c\) simulated coefficient vectors to be computed for each group during each iteration. Default depends on the data, and is chosen to provide about 100 groups across all chains.

\section*{'Nlterations'}

Number of iterations. This can be a scalar or a three-element vector. Controls how many iterations are performed for each of three phases of the algorithm:

\section*{1 simulated annealing}

2 full step size
3 reduced step size

Default is [150 150 100]. A scalar is distributed across the three phases in the same proportions as the default.

\section*{'NMCMCIterations'}

Number of Markov Chain Monte Carlo (MCMC) iterations. This can be a scalar or a three-element vector. Controls how many of three different types of MCMC updates are performed during each phase of the main iteration:

1 full multivariate update
2 single coordinate update
3 multiple coordinate update
Default is [2 2 2]. A scalar value is treated as a three-element vector with all elements equal to the scalar.

\section*{'OptimFun'}

Either 'fminsearch' or 'fminunc ', specifying the optimization function to be used during the estimation process. Default is 'fminsearch'. Use of 'fminunc' requires Optimization Toolbox.

\section*{'Options'}

A structure created by a call to statset. nlmefitsa uses the following statset parameters:
- 'DerivStep' - Relative difference used in finite difference gradient calculation. May be a scalar, or a vector whose length is the number of model parameters \(p\). The default is eps^(1/3).
- Display - Level of display during estimation.
- 'off' (default) - Displays no information
- 'final' - Displays information after the final iteration of the estimation algorithm

\section*{nlmefitsa}
- 'iter' - Displays information at each iteration
- FunValCheck
- 'on ' (sdefault) - Check for invalid values (such as NaN or Inf) from MODELFUN
- 'off' - Skip this check
- OutputFcn - Function handle specified using @, a cell array with function handles or an empty array. nlmefitsa calls all output functions after each iteration. See nlmefitoutputfon.m (the default output function for nlmefitsa) for an example of an output function.

\section*{'ParamTransform'}

A vector of \(p\)-values specifying a transformation function \(f()\) for each of the \(p\) parameters:
```

XB = ADESIGN*BETA + BDESIGN*B
PHI = f(XB)

```

Each element of the vector must be one of the following integer codes specifying the transformation for the corresponding value of PHI:
- \(0:\) PHI = XB (default for all parameters)
- \(1: \log (\) PHI \()=X B\)
- 2: probit(PHI) = XB
- 3: logit(PHI) = XB

\section*{'Replicates'}

Number REPS of estimations to perform starting from the starting values in the vector BETAO. If BETAO is a matrix, REPS must match the number of columns in BETAO. Default is the number of columns in BETAO.

\section*{'Vectorization'}

Determines the possible sizes of the PHI, XFUN, and VFUN input arguments to MODELFUN. Possible values are:

\section*{nlmefitsa}
- 'SinglePhi' - MODELFUN is a function (such as an ODE solver) that can only compute YFIT for a single set of model parameters at a time, i.e., PHI must be a single row vector in each call. nlmefitsa calls MODELFUN in a loop if necessary using a single PHI vector and with XFUN containing rows for a single observation or group at a time. VFUN may be a single row that applies to all rows of XFUN, or a matrix with rows corresponding to rows in XFUN.
- 'SingleGroup ' - MODELFUN can only accept inputs corresponding to a single group in the data, i.e., XFUN must contain rows of \(X\) from a single group in each call. Depending on the model, PHI is a single row that applies to the entire group, or a matrix with one row for each observation. VFUN is a single row.
- 'Full' - MODELFUN can accept inputs for multiple parameter vectors and multiple groups in the data. Either PHI or VFUN may be a single row that applies to all rows of XFUN, or a matrix with rows corresponding to rows in XFUN. Using this option can improve performance by reducing the number of calls to MODELFUN, but may require MODELFUN to perform singleton expansion on PHI or V.
The default for 'Vectorization' is 'SinglePhi'. In all cases, if V is empty, nlmefitsa calls MODELFUN with only two inputs.

\section*{Output Arguments}

\section*{BETA}

Estimates of the fixed effects

\section*{PSI}

An \(r\)-by- \(r\) estimated covariance matrix for the random effects. By default, \(r\) is equal to the number of model parameters \(p\).

\section*{STATS}

A structure with the following fields:
- logl - The maximized loglikelihood for the fitted model; empty if the LogLikMethod parameter has its default value of 'none'

\section*{nlmefitsa}
- rmse - The square root of the estimated error variance (computed on the log scale for the exponential error model)
- errorparam - The estimated parameters of the error variance model
- aic - The Akaike information criterion (empty if logl is empty), calculated as aic \(=-2 * \operatorname{logl}+2\) * numParam, where
- logl is the maximized loglikelihood.
- numParam is the number of fitting parameters, including the degree of freedom for covariance matrix of the random effects, the number of fixed effects and the number of parameters of the error model.
- bic - The Bayesian information criterion (empty if logl is empty), calculated as bic \(=-2 * \log 1+\log (\mathrm{M}) *\) numParam
- \(M\) is the number of groups.
- logl and numParam are defined as in aic.

Note that some literature suggests that the computation of bic should be , bic \(=-2^{*} \operatorname{logl}+\log (\mathrm{N})\) * numParam, where \(N\) is the number of observations. To adjust the value of the output you can redefine bic as follows: bic = bic - numel(unique(group)) + numel(Y)
- sebeta - The standard errors for BETA (empty if the ComputeStdErrors parameter has its default value of false)
- covb - The estimated covariance of the parameter estimates (empty if ComputeStdErrors is false)
- dfe - The error degrees of freedom
- pres - The population residuals (y-y_population), where y_population is the population predicted values
- ires - The population residuals (y-y_population), where y_population is the individual predicted values
- pwres - The population weighted residuals
- cwres - The conditional weighted residuals
- iwres - The individual weighted residuals

Examples
Fit a model to data on concentrations of the drug indomethacin in the bloodstream of six subjects over eight hours:
```

load indomethacin
model = @(phi,t)(phi(:,1).*exp(-phi(:,2).*t)+phi(:,3).*exp(-phi(:,4).*t));
phiO = [[1 1 1 1 1 1];
% log transform for 2nd and 4th parameters
xform = [00 1 0 1];
[beta,PSI,stats,br] = nlmefitsa(time,concentration,...
subject,[],model,phi0,'ParamTransform',xform)

```


\section*{nlmefitsa}
```

% Plot the data along with an overall "population" fit
clf
phi = [beta(1), exp(beta(2)), beta(3), exp(beta(4))];
h = gscatter(time,concentration,subject);
xlabel('Time (hours)')
ylabel('Concentration (mcg/ml)')
title('{\bf Indomethacin Elimination}')
xx = linspace(0,8);
line(xx,model(phi,xx),'linewidth',2,'color','k')
% Plot individual curves based on random effect estimates
for j=1:6
phir = [beta(1)+br(1,j), exp(beta(2)+br(2,j)), ...
beta(3)+br(3,j), exp(beta(4)+br(4,j))];
line(xx,model(phir, xx),'color',get(h(j),'color'))
end

```

\section*{Indomethacin Elimination}


\section*{Algorithms}

In order to estimate the parameters of a nonlinear mixed effects model, we would like to choose the parameter values that maximize a likelihood function. These values are called the maximum likelihood estimates. The likelihood function can be written in the form
\[
p\left(y \mid \beta, \sigma^{2}, \Sigma\right)=\int p\left(y \mid \beta, b, \sigma^{2}\right) p(b \mid \Sigma) d b
\]
where
- \(y\) is the response data

\section*{nlmefitsa}
- \(B\) is the vector of population coefficients
- \(\sigma^{2}\) is the residual variance
- \(\sum\) is the covariance matrix for the random effects
- \(b\) is the set of unobserved random effects

Each \(p()\) function on the right-hand-side is a normal (Gaussian) likelihood function that may depend on covariates.

Since the integral does not have a closed form, it is difficult to find parameters that maximize it. Delyon, Lavielle, and Moulines [1] proposed to find the maximum likelihood estimates using an Expectation-Maximization (EM) algorithm in which the E step is replaced by a stochastic procedure. They called their algorithm SAEM, for Stochastic Approximation EM. They demonstrated that this algorithm has desirable theoretical properties, including convergence under practical conditions and convergence to a local maximum of the likelihood function. Their proposal involves three steps:

1 Simulation: Generate simulated values of the random effects \(b\) from the posterior density \(p(b \mid \Sigma)\) given the current parameter estimates.

2 Stochastic approximation: Update the expected value of the loglikelihood function by taking its value from the previous step, and moving part way toward the average value of the loglikelihood calculated from the simulated random effects.

3 Maximization step: Choose new parameter estimates to maximize the loglikelihood function given the simulated values of the random effects.

\section*{References}
[1] Delyon, B., M. Lavielle, and E. Moulines, Convergence of a stochastic approximation version of the EM algorithm, Annals of Statistics, 27, 94-128, 1999.
[2] Mentré, France, and Marc Lavielle, Stochastic EM algorithms in population PKPD analyses, 2008.

\author{
See Also nlinfit | nlpredci | nlmefit \\ How To - "Mixed-Effects Models" on page 9-219 \\ - "Grouping Variables" on page 2-51
}

\section*{gmdistribution.NlogL property}

Purpose Negative of log-likelihood
Description The negative of the log-likelihood of the data.

Note This property applies only to gmdistribution objects constructed with fit.

\section*{ProbDistParametric.NLogL property}
\begin{tabular}{ll} 
Purpose & \begin{tabular}{l} 
Read-only value specifying negative log likelihood for input data to \\
ProbDistParametric object
\end{tabular} \\
Description \(\quad\)\begin{tabular}{l} 
NLogL is a read-only property of the ProbDistParametric class. NLogL \\
is a value specifying the negative log likelihood for input data used to fit \\
a distribution represented by a ProbDistParametric object.
\end{tabular} \\
Values & \begin{tabular}{l} 
The value is a numeric scalar for a distribution fit to input data, that \\
is, a distribution created using the fitdist function. This property is \\
empty for distributions created without fitting to data, that is, by using \\
the ProbDistUnivParam. ProbDistUnivParam constructor. Use this \\
information to view and compare the negative log likelihood for input \\
data supplied to create distributions.
\end{tabular}
\end{tabular}

\section*{ProbDistUnivKernel.NLogL property}

\author{
Purpose Read-only value specifying negative log likelihood for input data to ProbDistUnivKernel object \\ Description \\ Values \\ NLogL is a read-only property of the ProbDistUnivKernel class. NLogL is a value specifying the negative log likelihood for input data used to fit a distribution represented by a ProbDistUnivKernel object. \\ The value is a numeric scalar for a distribution fit to input data, that is, a distribution created using the fitdist function. Use this information to view and compare the negative log likelihood for input data used to create distributions.
}

\section*{Purpose Nonlinear regression parameter confidence intervals}
```

Syntax ci = nlparci(beta,resid,'covar',sigma)
ci = nlparci(beta,resid,'jacobian',J)
ci = nlparci(...,'alpha',alpha)

```

\section*{Description}

\section*{Examples}
ci = nlparci(beta, resid,'covar',sigma) returns the \(95 \%\) confidence intervals ci for the nonlinear least squares parameter estimates beta. Before calling nlparci, use nlinfit to fit a nonlinear regression model and get the coefficient estimates beta, residuals resid, and estimated coefficient covariance matrix sigma.
ci = nlparci(beta, resid,'jacobian', J) is an alternative syntax that also computes \(95 \%\) confidence intervals. \(J\) is the Jacobian computed by nlinfit. If the 'robust' option is used with nlinfit, use the 'covar' input rather than the 'jacobian' input so that the required sigma parameter takes the robust fitting into account.
ci = nlparci(...,'alpha',alpha) returns 100(1-alpha)\% confidence intervals.
nlparci treats \(N a N s\) in resid or \(J\) as missing values, and ignores the corresponding observations.

The confidence interval calculation is valid for systems where the length of resid exceeds the length of beta and \(J\) has full column rank. When \(J\) is ill-conditioned, confidence intervals may be inaccurate.

\section*{Fit to exponential decay}

Suppose you have data, and want to fit a model of the form
\[
y_{i}=a_{1}+a_{2} \exp \left(-a_{3} x_{i}\right)+\varepsilon_{i} .
\]

Here the \(\alpha_{i}\) are the parameters you want to estimate, \(x_{i}\) are the data points, the \(y_{i}\) are the responses, and the \(\varepsilon_{i}\) are noise terms.

1 Write a function handle that represents the model:
```

$m d l=@(a, x)(a(1)+a(2) * \exp (-a(3) * x)) ;$

```

2 Generate synthetic data with parameters a \(=[1 ; 3 ; 2]\), with the \(x\) data points distributed exponentially with parameter 2 , and normally distributed noise with standard deviation 0.1:
```

rng(9845,'twister') % for reproducibility
a = [1;3;2];
x = exprnd(2,100,1);
epsn = normrnd(0,0.1,100,1);
y = mdl(a,x) + epsn;

```

3 Fit the model to data starting from the arbitrary guess a0 \(=[2 ; 2 ; 2]\) :
aO = [2;2;2];
[ahat,r,J,cov,mse] = nlinfit(x,y,mdl,aO);
ahat
ahat \(=\)
1.0153
3.0229
2.1070

4 Check whether [1;3;2] is in a \(95 \%\) confidence interval using the Jacobian argument in nlparci:
```

ci = nlparci(ahat,r,'Jacobian',J)
ci =
0.9869 1.0438
2.9401 3.1058
1.9963 2.2177

```

5 You can obtain the same result using the covariance argument:
```

ci = nlparci(ahat,r,'covar',cov)
Ci =
0.9869 1.0438

```
```

2.9401
3.1058
1.9963
2.2177

```

See Also nlinfit | nlpredci

\section*{nlpredci}

Purpose Nonlinear regression prediction confidence intervals
```

Syntax
[Ypred,delta] = nlpredci(modelfun,X,beta,R,'Covar', CovB)
[Ypred,delta] =
nlpredci(modelfun, X, beta, R, 'Covar', CovB, Name,
Value)
[Ypred,delta] = nlpredci(modelfun, X, beta, R, 'Jacobian', J)
[Ypred,delta] =
nlpredci(modelfun, X, beta, R, 'Jacobian', J,Name,
Value)

```

\section*{Description}
[Ypred,delta] = nlpredci(modelfun, X, beta, R, 'Covar', CovB) returns predictions, Ypred, and \(95 \%\) confidence interval half-widths, delta, for the nonlinear regression model modelfun at input values X. Before calling nlpredci, use nlinfit to fit modelfun and get the estimated coefficients, beta, residuals, R, and variance-covariance matrix, CovB.
[Ypred,delta] =
nlpredci(modelfun, X, beta, R, 'Covar', CovB, Name, Value) uses additional options specified by one or more name-value pair arguments.
[Ypred,delta] = nlpredci(modelfun, X, beta, R, 'Jacobian', J) returns predictions, Ypred, and \(95 \%\) confidence interval half-widths, delta, for the nonlinear regression model modelfun at input values X. Before calling nlpredci, use nlinfit to fit modelfun and get the estimated coefficients, beta, residuals, R, and Jacobian, J.

If you use a robust option with nlinfit, then you should use the Covar syntax rather than the Jacobian syntax. The variance-covariance matrix, CovB, is required to properly take the robust fitting into account.
[Ypred,delta] =
nlpredci(modelfun, X, beta, R, 'Jacobian', J,Name, Value) uses additional options specified by one or more name-value pair arguments.

\section*{Input Arguments}

\section*{modelfun - Nonlinear regression model function \\ function handle}

Nonlinear regression model function, specified as a function handle. modelfun must accept two input arguments, a coefficient vector and an array \(X\)-in that order-and return a vector of fitted response values.

For example, to specify the hougen nonlinear regression function, use the function handle @nougen.

Data Types
function_handle

\section*{X - Input values for predictions}

\section*{matrix}

Input values for predictions, specified as a matrix. nlpredci makes a prediction for the covariates in each row of \(X\). There should be a column in \(X\) for each coefficient in the model.
```

Data Types
single | double

```

\section*{beta-Estimated regression coefficients}
vector returned by nlinfit
Estimated regression coefficients, specified as the vector of fitted coefficients returned by a previous call to nlinfit.

Data Types
single | double

\section*{R-Residuals}
vector returned by nlinfit
Residuals for the fitted modelfun, specified as the vector of residuals returned by a previous call to nlinfit.

\section*{CovB - Estimated variance-covariance matrix}
matrix returned by nlinfit

\section*{nlpredci}

Estimated variance-covariance matrix for the fitted coefficients, beta, specified as the variance-covariance matrix returned by a previous call to nlinfit.

\section*{J - Estimated Jacobian}
matrix returned by nlinfit
Estimated Jacobian of the nonlinear regression model, modelfun, specified as the Jacobian matrix returned by a previous call to nlinfit.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Alpha',0.1,'PredOpt','observation' specifies 90\% prediction intervals for new observations.

\section*{'Alpha' - Significance level}
0.05 (default) | scalar value in the range \((0,1)\)

Significance level for the confidence interval, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range ( 0,1 ). If Alpha has value \(a\), then nlpredci returns intervals with \(100 \times(1-\alpha) \%\) confidence level.

The default confidence level is \(95 \%\) ( \(\alpha=0.05\) ).
Example: 'Alpha', 0.1
Data Types
single | double

\section*{'ErrorModelinfo' - Information about error model fit}
structure returned by nlinfit

Information about the error model fit, specified as the comma-separated pair consisting of 'ErrorModelInfo' and a structure returned by a previous call to nlinfit.
ErrorModelInfo only has an effect on the returned prediction interval when PredOpt has the value 'observation'. If you do not use ErrorModelInfo, then nlpredci assumes the error variance model is 'constant'.

The error model structure returned by nlinfit has the following fields:
\begin{tabular}{ll} 
ErrorModel & Chosen error model \\
ErrorParameters & \begin{tabular}{l} 
Estimated error parameters \\
ErrorVariance
\end{tabular} \\
\begin{tabular}{l} 
Function handle that accepts an \(N\)-by-p \\
matrix, X, and returns an \(N\)-by-1 vector of \\
error variances using the estimated error \\
model
\end{tabular} \\
MSE & \begin{tabular}{l} 
Mean squared error
\end{tabular} \\
ScheffeSimPred & \begin{tabular}{l} 
Scheffé parameter for simultaneous \\
prediction intervals when using the \\
estimated error model
\end{tabular} \\
WeightFunction & \begin{tabular}{l} 
Logical with value true if you used a \\
custom weight function previously in \\
nlinfit
\end{tabular} \\
FixedWeights & \begin{tabular}{l} 
Logical with value true if you used fixed \\
weights previously in nlinfit
\end{tabular} \\
RobustWeightFunction & \begin{tabular}{l} 
Logical with value true if you used robust \\
fitting previously in
\end{tabular}
\end{tabular}

\section*{'MSE' - Mean squared error}

MSE returned by nlinfit
Mean squared error (MSE) for the fitted nonlinear regression model, specified as the comma-separated pair consisting of 'MSE' and the MSE value returned by a previous call to nlinfit.

\section*{nlpredci}

If you use a robust option with nlinfit, then you must specify the MSE when predicting new observations to properly take the robust fitting into account. If you do not specify the MSE, then nlpredci computes the MSE from the residuals, R, and does not take the robust fitting into account.

For example, if mse is the MSE value returned by nlinfit, then you can specify 'MSE',mse.

Data Types
single | double

\section*{'PredOpt' - Prediction interval to compute}
'curve' (default) | 'observation'
Prediction interval to compute, specified as the comma-separated pair consisting of 'PredOpt' and either 'curve' or 'observation'.
- If you specify the value 'curve', then nlpredci returns confidence intervals for the estimated curve (function value) at the observations X.
- If you specify the value 'observation', then nlpredci returns prediction intervals for new observations at \(X\).
If you specify 'observation ' after using a robust option with nlinfit, then you must also specify a value for MSE to provide the robust estimate of the mean squared error.

Example: 'PredOpt','observation'

\section*{Data Types \\ char}

\section*{'SimOpt' - Indicator for specifying simultaneous bounds 'off' (default) | 'on'}

Indicator for specifying simultaneous bounds, specified as the comma-separated pair consisting of 'SimOpt' and either 'off' or 'on'. Use the value 'off' to compute nonsimultaneous bounds, and 'on' for simultaneous bounds.

\section*{'Weights' - Observation weights}

\section*{vector | function handle}

Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of positive scalar values or a function handle. The default is no weights.
- If you specify a vector of weights, then it must have the same number of elements as the number of observations (rows) in \(X\).
- If you specify a function handle for the weights, then it must accept a vector of predicted response values as input, and return a vector of real positive weights as output.
Given weights, W, nlpredci estimates the error variance at observation \(i\) by mse*(1/W(i)), where mse is the mean squared error value specified using MSE.

\section*{Example: 'Weights', @WFun}

Data Types
double | single | function_handle

\section*{Output \\ Arguments}

\section*{Ypred - Predicted responses}
vector
Predicted responses, returned as a vector with the same number of rows as X .

\section*{delta - Confidence interval half-widths}
vector
Confidence interval half-widths, returned as a vector with the same number of rows as X. By default, delta contains the half-widths for nonsimultaneous \(95 \%\) confidence intervals for modelfun at the observations in X. You can compute the lower and upper bounds of the confidence intervals as Ypred-delta and Ypred+delta, respectively.

If 'PredOpt' has value 'observation', then delta contains the half-widths for prediction intervals of new observations at the values in \(X\).

\section*{nlpredci}

\section*{Examples Confidence Interval for Nonlinear Regression Curve}

Load sample data.
```

S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

```

Fit the Hougen-Watson model to the rate data using the initial values in beta0.
[beta, R,J] = nlinfit(X,y, @hougen, beta0);
Obtain the predicted response and \(95 \%\) confidence interval half-width for the value of the curve at average reactant levels.
[ypred,delta] = nlpredci(@hougen,mean(X),beta,R,'Jacobian',J)
ypred =
5.4622
delta =
0.1921

Compute the \(95 \%\) confidence interval for the value of the curve.
[ypred-delta,ypred+delta]
ans \(=\)
\(5.2702 \quad 5.6543\)

\section*{Prediction Interval for New Observation}

Load sample data.
```

S = load('reaction');
X = S.reactants;
y = S.rate;
betaO = S.beta;

```

Fit the Hougen-Watson model to the rate data using the initial values in beta0.
```

[beta,R,J] = nlinfit(X,y,@hougen,beta0);

```

Obtain the predicted response and \(95 \%\) prediction interval half-width for a new observation with reactant levels [100, 100, 100].
```

[ypred,delta] = nlpredci(@hougen,[100,100,100],beta,R,'Jacobian',J,..
'PredOpt','observation')

```
ypred =
    1.8346
delta =
    0.5101

Compute the \(95 \%\) prediction interval for the new observation.
[ypred-delta,ypred+delta]
ans \(=\)
\(1.3245 \quad 2.3447\)

\section*{Simultaneous Confidence Intervals for Robust Fit Curve}

Generate sample data from the nonlinear regression model
\[
y=b_{1}+b_{2} \exp \left\{-b_{3} x\right\}+\varepsilon,
\]

\section*{nlpredci}
where \(b_{1}, b_{2}\), and \(b_{3}\) are coefficients, and the error term is normally distributed with mean 0 and standard deviation 0.5 .
```

modelfun = @(b,x)(b(1)+b(2)*exp(-b(3)*x));
rng('default') % for reproducibility
b = [1;3;2];
x = exprnd(2,100,1);
y = modelfun(b,x) + normrnd(0,0.5,100,1);

```

Fit the nonlinear model using robust fitting options.
```

opts = statset('nlinfit');
opts.RobustWgtFun = 'bisquare';
betaO = [2;2;2];
[beta,R,J,CovB,MSE] = nlinfit(x,y,modelfun,betaO,opts);

```

Plot the fitted regression model and simultaneous \(95 \%\) confidence bounds.
```

xrange = min(x):.01:max(x);
[ypred,delta] = nlpredci(modelfun,xrange,beta,R,'Covar',CovB,...
'MSE',MSE,'SimOpt','on');
lower = ypred - delta;
upper = ypred + delta;
figure()
plot(x,y,'ko') % observed data
hold on
plot(xrange,ypred,'k','LineWidth',2)
plot(xrange,[lower;upper],'r--','LineWidth',1.5)

```


\section*{Confidence Interval Using Observation Weights}

Load sample data.
S = load('reaction');
X = S.reactants;
y = S.rate;
betao = S.beta;
Specify a function handle for observation weights, then fit the
Hougen-Watson model to the rate data using the specified observation weights function.
```

a = 1; b = 1;
weights = @(yhat) 1./((a + b*abs(yhat)).^2);
[beta,R,J,CovB] = nlinfit(X,y,@hougen,betaO,'Weights',weights);

```

\section*{nlpredci}

Compute the \(95 \%\) prediction interval for a new observation with reactant levels [100, 100, 100] using the observation weight function.
```

[ypred,delta] = nlpredci(@hougen,[100,100,100],beta,R,'Jacobian',J,...
'PredOpt','observation','Weights',weights);
[ypred-delta,ypred+delta]
ans =
1.5264 2.1033

```

\section*{Confidence Interval Using Nonconstant Error Model}

Load sample data.
```

S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;

```

Fit the Hougen-Watson model to the rate data using the combined error variance model.
[beta,R,J,CovB,MSE,S] = nlinfit(X,y, @hougen, betaO,'ErrorModel','combined'
Compute the \(95 \%\) prediction interval for a new observation with reactant levels [ \(100,100,100\) ] using the fitted error variance model.
```

[ypred,delta] = nlpredci(@hougen,[100,100,100],beta,R,'Jacobian',J,...
'PredOpt','observation','ErrorModelInfo',S);
[ypred-delta,ypred+delta]

```
ans =
    \(1.3245 \quad 2.3447\)

\section*{Algorithms}
- nlpredci treats NaN values in the residuals, R, or the Jacobian, J, as missing values, and ignores the corresponding observations.
- If the Jacobian, J, does not have full column rank, then some of the model parameters might be nonidentifiable. In this case, nlpredci tries to construct confidence intervals for estimable predictions, and returns NaN for those that are not.

\section*{Tips}
- To compute confidence intervals for complex parameters or data, you need to split the problem into its real and imaginary parts. When calling nlinfit:

1 Define your parameter vector beta as the concatenation of the real and imaginary parts of the original parameter vector.
2 Concatenate the real and imaginary parts of the response vector \(Y\) as a single vector.

3 Modify your model function modelfun to accept \(X\) and the purely real parameter vector, and return a concatenation of the real and imaginary parts of the fitted values.
With the problem formulated this way, nlinfit computes real estimates, and confidence intervals are feasible.

\section*{Definitions}

\section*{Confidence Intervals for Estimable Predictions}

When the estimated model Jacobian is not of full rank, then it might not be possible to construct sensible confidence intervals at all prediction points. In this case, nlpredci still tries to construct confidence intervals for any estimable prediction points.

For example, suppose you fit the linear function
\(f\left(\mathbf{x}_{i}, \beta\right)=\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\beta_{3} x_{i 3}\) at the points in the design matrix

\section*{nlpredci}
\[
\mathbf{X}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right)
\]

The estimated Jacobian at the values in \(\mathbf{X}\) is the design matrix itself, \(\mathbf{J}=\mathbf{X}\). Thus, the Jacobian is not of full rank:
```

rng('default') % For reproducibility
y = randn(6,1);
linfun = @(b,x) x*b;
beta0 = [1;1;1];
X = [repmat([1 1 0],3,1); repmat([1 0 1],3,1)];
[beta,R,J] = nlinfit(X,y,linfun,beta0);
Warning: The Jacobian at the solution is ill-conditioned, and
some model parameters may not be estimated well (they are not
identifiable). Use caution in making predictions.
> In nlinfit at 283

```

In this example, nlpredci can only compute prediction intervals at points that satisfy the linear relationship
\[
x_{i 1}=x_{i 2}+x_{i 3} .
\]

If you try to compute confidence intervals for predictions at nonidentifiable points, nlpredci returns NaN for the corresponding interval half-widths:
```

xpred = [$$
\begin{array}{lllllllll}{1}&{1;0 1 -1;2 1 1];}\end{array}
$$]
[ypred,delta] = nlpredci(linfun,xpred,beta,R,'Jacobian',J)
ypred =

```
```

 \(-0.0035\)
 0.0798
 -0.0047
 delta =
NaN
3.8102
3.8102

```

Here, the first element of delta is NaN because the first row in xpred does not satisfy the required linear dependence, and is therefore not an estimable contrast.

\section*{References}
[1] Lane, T. P. and W. H. DuMouchel. "Simultaneous Confidence Intervals in Multiple Regression." The American Statistician. Vol. 48, No. 4, 1994, pp. 315-321.
[2] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-Interscience, 2003.

\section*{See Also}
nlinfit | nlparciNonLinearModel |

Purpose Nonnegative matrix factorization
```

Syntax
[W, H] $=\operatorname{nnmf}(A, k)$
[W,H] = nnmf(A,k,param1,val1,param2,val2,...)
[W,H,D] = nnmf(...)

```

\section*{Description}
\([\mathrm{W}, \mathrm{H}]=\operatorname{nnmf}(\mathrm{A}, \mathrm{k})\) factors the nonnegative \(n\)-by- \(m\) matrix A into nonnegative factors W ( \(n\)-by-k) and \(\mathrm{H}(\mathrm{k}-\mathrm{by}-m\) ). The factorization is not exact; \(\mathrm{W} * \mathrm{H}\) is a lower-rank approximation to A . The factors W and H are chosen to minimize the root-mean-squared residual D between \(A\) and W*H:

D = sqrt(norm(A-W*H,'fro')/(N*M))
The factorization uses an iterative method starting with random initial values for \(W\) and \(H\). Because the root-mean-squared residual D may have local minima, repeated factorizations may yield different W and H . Sometimes the algorithm converges to a solution of lower rank than \(k\), which may indicate that the result is not optimal.

W and H are normalized so that the rows of H have unit length. The columns of \(W\) are ordered by decreasing length.
\([\mathrm{W}, \mathrm{H}]=\mathrm{nnmf}(\mathrm{A}, \mathrm{k}\), param1, val1, param2, val2, ...) specifies optional parameter name/value pairs from the following table.
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline 'algorithm' & \begin{tabular}{l} 
Either 'als ' (the default) to use an alternating \\
least-squares algorithm, or 'mult ' to use a \\
multiplicative update algorithm.
\end{tabular} \\
\begin{tabular}{l} 
In general, the 'als ' algorithm converges faster \\
and more consistently. The 'mult ' algorithm is \\
more sensitive to initial values, which makes it a
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & good choice when using 'replicates' to find \(W\) and \(H\) from multiple random starting values. \\
\hline 'w0' & An \(n\)-by-k matrix to be used as the initial value for \(W\). \\
\hline 'h0' & A k-by- \(m\) matrix to be used as the initial value for H . \\
\hline 'options' & \begin{tabular}{l}
An options structure as created by the statset function. nnmf uses the following fields of the options structure: \\
- Display - Level of display. Choices: \\
- 'off' (default) - No display \\
- 'final' - Display final result \\
- 'iter' - Iterative display of intermediate results \\
- MaxIter - Maximum number of iterations. Default is 100 . Unlike in optimization settings, reaching MaxIter iterations is treated as convergence. \\
- TolFun - Termination tolerance on change in size of the residual. Default is 1e-4. \\
- TolX - Termination tolerance on relative change in the elements of \(W\) and \(H\). Default is 1e-4. \\
- UseParallel - Set to true to compute in parallel. Default is false. \\
- UseSubstreams - Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter & Value \\
\hline & \begin{tabular}{l}
to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'. \\
- Streams - A RandStream object or cell array of such objects. If you do not specify Streams, nnmf uses the default stream or streams. If you choose to specify Streams, use a single object except in the case \\
- You have an open MATLAB pool \\
- UseParallel is true \\
- UseSubstreams is false \\
In that case, use a cell array the same size as the MATLAB pool.
\end{tabular} \\
\hline 'replicates' & The number of times to repeat the factorization, using new random starting values for W and H , except at the first replication if 'wo' and 'ho' are given. This is most beneficial with the 'mult' algorithm. The default is 1 . \\
\hline
\end{tabular}

\section*{Examples}

\section*{Example 1}

Compute a nonnegative rank-two approximation of the measurements of the four variables in Fisher's iris data:
```

load fisheriris
[W,H] = nnmf(meas,2);
H
H =

0.6852	0.2719	0.6357	0.2288
0.8011	0.5740	0.1694	0.0087

```

The first and third variables in meas (sepal length and petal length, with coefficients 0.6852 and 0.6357 , respectively) provide relatively
strong weights to the first column of W . The first and second variables in meas (sepal length and sepal width, with coefficients 0.8011 and 0.5740 ) provide relatively strong weights to the second column of W .

Create a biplot of the data and the variables in meas in the column space of W:
```

biplot(H','scores',W,'varlabels',{'sl','sw','pl','pw'});
axis([0 1.1 0 1.1])
xlabel('Column 1')
ylabel('Column 2')

```


\section*{Example 2}

Starting from a random array X with rank 20 , try a few iterations at several replicates using the multiplicative algorithm:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{```
X = rand(100,20)*rand(20,50);
opt = statset('MaxIter',5,'Display','final')
[WO,HO] = nnmf(X,5,'replicates',10,...
    'options',opt,...
    'algorithm','mult');
```} \\
\hline rep & iteration & rms resid & |delta x \\
\hline 1 & 5 & 0.560887 & 0.0245182 \\
\hline 2 & 5 & 0.66418 & 0.0364471 \\
\hline 3 & 5 & 0.609125 & 0.0358355 \\
\hline 4 & 5 & 0.608894 & 0.0415491 \\
\hline 5 & 5 & 0.619291 & 0.0455135 \\
\hline 6 & 5 & 0.621549 & 0.0299965 \\
\hline 7 & 5 & 0.640549 & 0.0438758 \\
\hline 8 & 5 & 0.673015 & 0.0366856 \\
\hline 9 & 5 & 0.606835 & 0.0318931 \\
\hline 10 & 5 & 0.633526 & 0.0319591 \\
\hline
\end{tabular}

Final root mean square residual \(=0.560887\)

Continue with more iterations from the best of these results using alternating least squares:
```

opt = statset('Maxiter',1000,'Display','final');
[W,H] = nnmf(X,5,'wO',WO,'hO',HO,...
'options',opt,...
'algorithm','als');
rep iteration rms resid |delta x|
1 80 0.256914 9.78625e-005
Final root mean square residual = 0.256914

```

\section*{References \\ [1] Berry, M. W., et al. "Algorithms and Applications for Approximate Nonnegative Matrix Factorization." Computational Statistics and Data Analysis. Vol. 52, No. 1, 2007, pp. 155-173.}

See Also pca | factoran | statset

\section*{classregtree.nodeclass}

Purpose Class values of nodes of classification tree
```

Syntax
NAME=nodeclass(T)
NAME=nodeclass(T,J)
[ NAME, ID]=nodeclass(. . .)

```

\section*{Description}

See Also

NAME=nodeclass(T) returns an \(n\)-element cell array with the names of the most probable classes in each node of the tree T, where \(n\) is the number of nodes in the tree. Every element of this array is a string equal to one of the class names returned by classname(\(T\)). For regression trees, nodeclass returns an empty cell array.

NAME=nodeclass \((T, J)\) takes an array \(J\) of node numbers and returns the class names for the specified nodes.
[NAME, ID]=nodeclass(...) also returns a numeric array with the class index for each node. The class index is determined by the order of classes classname returns.
classregtree | classname | numnodes

Purpose
Syntax

Description

\section*{Examples}

Return vector of node errors
e = nodeerr(t)
e = nodeerr(t,nodes)
e = nodeerr(t) returns an \(n\)-element vector e of the errors of the nodes in the tree \(t\), where \(n\) is the number of nodes. For a regression tree, the error \(e(i)\) for node \(i\) is the variance of the observations assigned to node i. For a classification tree, e(i) is the misclassification probability for node i.
e = nodeerr(t, nodes) takes a vector nodes of node numbers and returns the errors for the specified nodes.

The error e is the so-called resubstitution error computed by applying the tree to the same data used to create the tree. This error is likely to under estimate the error you would find if you applied the tree to new data. The test function provides options to compute the error (or cost) using cross-validation or a test sample.

Create a classification tree for Fisher's iris data:
```

load fisheriris;
t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2 class = setosa
3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
5 class = virginica
6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica

```

\section*{classregtree.nodeerr}

\section*{view(t)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Click to display: |dentity & \(\checkmark\) & Magnification: & 100\% & & Pruning level: & 0 of 4 & \(\wedge\) \\
\hline
\end{tabular}

\[
\begin{aligned}
& \mathrm{e}= \text { nodeerr }(\mathrm{t}) \\
& \mathrm{e}= 0.6667 \\
& 0 \\
& 0.5000 \\
& 0.0926 \\
& 0.0217 \\
& 0.0208
\end{aligned}
\]
0.3333

0
0

\author{
References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984. \\ See Also classregtree | numnodes | test
}

\section*{classregtree.nodemean}

Purpose Mean values of nodes of regression tree
Syntax
NM = nodemean(T)
NM = nodemean(\(\mathrm{T}, \mathrm{J}\))

Description \(\quad N M=\) nodemean \((T)\) returns an \(n\)-element numeric array with mean values in each node of the tree \(T\), where \(n\) is the number of nodes in the tree. Every element of this array is computed by averaging true Y values over all observations in the node. For classification trees, nodemean returns an empty numeric array.
\(N M=\) nodemean \((T, J)\) takes an array \(J\) of node numbers and returns the mean values for the specified nodes.

\section*{See Also \\ classregtree | numnodes}

\section*{classregtree.nodeprob}

\section*{Purpose Node probabilities}
```

Syntax
p = nodeprob(t)
p = nodeprob(t,nodes)

```
\(p=\) nodeprob(\(t\)) returns an \(n\)-element vector \(p\) of the probabilities of the nodes in the tree \(t\), where \(n\) is the number of nodes. The probability of a node is computed as the proportion of observations from the original data that satisfy the conditions for the node. For a classification tree, this proportion is adjusted for any prior probabilities assigned to each class.
\(p\) = nodeprob(t, nodes) takes a vector nodes of node numbers and returns the probabilities for the specified nodes.

\section*{Examples Create a classification tree for Fisher's iris data:}
```

load fisheriris;
t = classregtree(meas,species,...
names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2 class = setosa
3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
5 class = virginica
6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica
view(t)

```

\section*{classregtree.nodeprob}

\[
\begin{aligned}
& p=\text { nodeprob(t) } \\
& p= \\
& 1.0000 \\
& 0.3333 \\
& 0.6667 \\
& 0.3600 \\
& 0.3067 \\
& 0.3200 \\
& 0.0400 \\
& 0.3133
\end{aligned}
\]
\[
0.0067
\]

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification

\author{
See Also \\ classregtree | nodesize | numnodes
}

\section*{classregtree.nodesize}

\section*{Purpose Return node size}
```

Syntax
sizes = nodesize(t)
sizes = nodesize(t,nodes)

```
sizes \(=\) nodesize(t) returns an \(n\)-element vector sizes of the sizes of the nodes in the tree \(t\), where \(n\) is the number of nodes. The size of a node is defined as the number of observations from the data used to create the tree that satisfy the conditions for the node.
sizes = nodesize(t, nodes) takes a vector nodes of node numbers and returns the sizes for the specified nodes.

\section*{Examples \\ Create a classification tree for Fisher's iris data:}
```

load fisheriris;
t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2 class = setosa
if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
class = virginica
if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
class = virginica
class = versicolor
class = virginica
view(t)

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Click to display: Identity & \(\checkmark\) & Magnification: & 100\% & \(\checkmark\) & Pruning level: & 0 of 4 & - \\
\hline
\end{tabular}

```

sizes = nodesize(t)
sizes =
150
50
100
54
46
48
6
4 7

```

\section*{classregtree.nodesize}

1

\section*{References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.}

See Also classregtree | numnodes

\section*{Purpose Notify listeners of event}
```

Syntax notify(h,'eventname')
notify(h,'eventname',data)

```

Description notify (h, 'eventname') notifies listeners added to the event named eventname on handle object array \(h\) that the event is taking place. \(h\) is the array of handles to objects triggering the event, and eventname must be a string.
notify (h, 'eventname',data) provides a way of encapsulating information about an event which can then be accessed by each registered listener. data must belong to the event. eventdata class.

\author{
See Also
}
addlistener | event.EventData | events | qrandstream

\section*{Superclasses \\ categorical}

\section*{Purpose Arrays for nominal categorical data}

Description Nominal arrays are used to store discrete values that are not numeric and that do not have an ordering. A nominal array provides efficient storage and convenient manipulation of such data, while also maintaining meaningful labels for the values. Nominal arrays are often used as grouping variables.

You can subscript, concatenate, reshape, etc. nominal arrays much like ordinary numeric arrays. You can test equality between elements of two nominal arrays, or between a nominal array and a single string representing a nominal value.

\section*{Construction}

Use the nominal constructor to create a nominal array from a numeric, logical, or character array, or from a cell array of strings.
nominal
Construct nominal categorical array

Methods
Each nominal array carries along a list of possible values that it can store, known as its levels. The list is created when you create a nominal array, and you can access it using the getlevels method, or modify it using the addlevels, mergelevels, or droplevels methods. Assignment to the array will also add new levels automatically if the values assigned are not already levels of the array.

You can change the order of the list of levels for a nominal array using the reorderlevels method, however, that order has no significance for the values in the array. The order is used only for display purposes, or when you convert the nominal array to numeric values using methods such as double or subsindex, or compare two arrays using isequal. If you need to work with values that have a mathematical ordering, you should use an ordinal array instead.

\section*{Inherited Methods}

Methods in the following table are inherited from categorical.
\begin{tabular}{ll}
addlevels & Add levels to categorical array \\
cat \\
cellstr & \begin{tabular}{l}
Concatenate categorical arrays \\
Convert categorical array to cell \\
array of strings
\end{tabular} \\
char & \begin{tabular}{l}
Convert categorical array to \\
character array
\end{tabular} \\
circshift & Shift categorical array circularly \\
ctranspose & Transpose categorical matrix \\
disp & \begin{tabular}{l}
Display categorical array \\
display
\end{tabular} \\
double & \begin{tabular}{l}
Convert categorical array to \\
double array
\end{tabular} \\
droplevels & \begin{tabular}{l}
Drop levels \\
end
\end{tabular} \\
\begin{tabular}{l}
Last index in indexing expression \\
for categorical array
\end{tabular} \\
flipdim & \begin{tabular}{l}
Flip categorical array along \\
specified dimension
\end{tabular} \\
fliplr & \begin{tabular}{l}
Flip categorical matrix in \\
left/right direction
\end{tabular} \\
flipud & \begin{tabular}{l}
Flip categorical matrix in \\
up/down direction
\end{tabular} \\
getlabels & \begin{tabular}{l}
Access categorical array labels
\end{tabular} \\
getlevels & \begin{tabular}{l}
Get categorical array levels
\end{tabular} \\
hist & Plot histogram of categorical data
\end{tabular}
\begin{tabular}{ll}
horzcat & \begin{tabular}{l}
Horizontal concatenation for \\
categorical arrays \\
Convert categorical array to \\
signed 16-bit integer array
\end{tabular} \\
int16 & \begin{tabular}{l}
Convert categorical array to \\
signed 32-bit integer array \\
Convert categorical array to \\
signed 64-bit integer array
\end{tabular} \\
int64 & \begin{tabular}{l}
Convert categorical array to \\
signed 8-bit integer array
\end{tabular} \\
int8 & \begin{tabular}{l}
Set intersection for categorical \\
arrays
\end{tabular} \\
intersect & \begin{tabular}{l}
Inverse permute dimensions of \\
categorical array
\end{tabular} \\
ipermute & \begin{tabular}{l}
True for empty categorical array
\end{tabular} \\
isempty & \begin{tabular}{l}
True if categorical arrays are \\
equal
\end{tabular} \\
isequal & \begin{tabular}{l}
Test for levels
\end{tabular} \\
islevel & \begin{tabular}{l}
True for elements of categorical \\
array in set
\end{tabular} \\
ismember & \begin{tabular}{l}
True if categorical array is scalar
\end{tabular} \\
isscalar & Test for undefined elements
\end{tabular}
\begin{tabular}{ll}
permute & \begin{tabular}{l}
Permute dimensions of \\
categorical array
\end{tabular} \\
reorderlevels & \begin{tabular}{l}
Reorder levels \\
Replicate and tile categorical \\
array
\end{tabular} \\
repmat & \begin{tabular}{l}
Resize categorical array \\
Rotate categorical matrix 90 \\
degrees
\end{tabular} \\
rot90 & \begin{tabular}{l}
Set difference for categorical \\
arrays
\end{tabular} \\
setdiff & \begin{tabular}{l}
Label levels
\end{tabular} \\
setlabels & \begin{tabular}{l}
Set exclusive-or for categorical \\
arrays
\end{tabular} \\
setxor & \begin{tabular}{l}
Shift dimensions of categorical \\
array
\end{tabular} \\
shiftdim & \begin{tabular}{l}
Convert categorical array to \\
single array
\end{tabular} \\
single & \begin{tabular}{l}
Size of categorical array \\
Squeeze singleton dimensions \\
from categorical array
\end{tabular} \\
size & \begin{tabular}{l}
Subscripted assignment for \\
categorical array
\end{tabular} \\
squeeze & \begin{tabular}{l}
Subscript index for categorical \\
array
\end{tabular} \\
subsasgn & \begin{tabular}{l}
Subscripted reference for \\
categorical array
\end{tabular} \\
subsindex & \begin{tabular}{l}
Summary statistics for categorical \\
array
\end{tabular} \\
subsref & \begin{tabular}{l}
Product of categorical arrays
\end{tabular} \\
summary &
\end{tabular}
\begin{tabular}{ll}
transpose & \begin{tabular}{l}
Transpose categorical matrix \\
uint16
\end{tabular} \\
uint32 & \begin{tabular}{l}
unsigned 16-bit integers to \\
Convert categorical array to \\
unsigned 32-bit integers
\end{tabular} \\
uint64 & \begin{tabular}{l}
Convert categorical array to \\
unsigned 64-bit integers
\end{tabular} \\
uint8 & \begin{tabular}{l}
Convert categorical array to \\
unsigned 8-bit integers
\end{tabular} \\
union & \begin{tabular}{l}
Set union for categorical arrays
\end{tabular} \\
unique & \begin{tabular}{l}
Unique values in categorical \\
array
\end{tabular} \\
vertcat & \begin{tabular}{l}
Vertical concatenation for \\
categorical arrays
\end{tabular} \\
\hline
\end{tabular}

\section*{Properties Inherited Properties}

Properties in the following table are inherited from categorical.
\begin{tabular}{ll}
labels & Text labels for levels \\
undeflabel & Text label for undefined levels
\end{tabular}

\section*{Copy \\ Semantics}

\section*{Examples}

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes in the MATLAB Object-Oriented Programming documentation.

Create a nominal array from string data in a cell array:
```

colors = nominal({'r' 'b' 'g';'g' 'r' 'b';'b' 'r' 'g'},...
{'blue' 'green' 'red'})
% Find elements meeting a criterion
colors == 'red'

```
```

ismember(colors,{'red' 'blue'})
% Compare two nominal arrays
colors2 = fliplr(colors)
colors == colors2

```

See Also histc | ordinal
Purpose \(\quad\)\begin{tabular}{ll}
Construct nominal categorical array \\
Syntax & \(B=\operatorname{nominal}(A)\) \\
& \(B=n o m i n a l(A, l a b e l s)\) \\
& \(B=n o m i n a l(A, l a b e l s, l e v e l s)\) \\
& \(B=n o m i n a l(A, l a b e l s,[]\), edges \()\)
\end{tabular}

Description
\(B=\) nominal \((A)\) creates a nominal array \(B\) from the array \(A\). A can be numeric, logical, character, categorical, or a cell array of strings. nominal creates the levels of \(B\) from the sorted unique values in \(A\), and creates default labels for them.
\(B=\) nominal(A, labels) labels the levels in B using the character array or cell array of strings labels. nominal assigns labels to levels in B in order according to the sorted unique values in A.
\(B=\) nominal(A, labels, levels) creates a nominal array with possible levels defined by levels. levels is a vector whose values can be compared to those in A using the equality operator. nominal assigns labels to each level from the corresponding elements of labels. If A contains any values not present in levels, the levels of the corresponding elements of \(B\) are undefined.
\(B=\) nominal(A, labels, [], edges) creates a nominal array by binning the numeric array \(A\) with bin edges given by the numeric vector edges. The uppermost bin includes values equal to the right-most edge. nominal assigns labels to each level in B from the corresponding elements of labels. edges must have one more element than labels.

By default, an element of \(B\) is undefined if the corresponding element of \(A\) is \(\operatorname{NaN}\) (when \(A\) is numeric), an empty string (when \(A\) is character), or undefined (when A is categorical). nominal treats such elements as "undefined" or "missing" and does not include entries for them among the possible levels for B. To create an explicit level for such elements instead of treating them as undefined, you must use the levels input, and include NaN , the empty string, or an undefined element.

You may include duplicate labels in labels in order to merge multiple values in A into a single level in \(B\).

Examples Create a nominal array from Fisher's iris data:
```

load fisheriris
species = nominal(species);
summary(species)
setosa versicolor virginica
50 50 50

```

Create a nominal array from characters, and provide explicit labels:
```

colors1 = nominal({'r' 'b' 'g'; 'g' 'r' 'b'; 'b' 'r' 'g'},...
{'blue' 'green' 'red'})

```

Create a nominal array from characters, and provide both explicit labels and an explicit order for display:
```

colors2 = nominal({'r' 'b' 'g'; 'g' 'r' 'b'; 'b' 'r' 'g'}, ...
{'red' 'green' 'blue'},{'r' 'g' 'b'})

```

Create a nominal array from integer data, merging odd and even values into only two nominal levels. Provide explicit labels:
```

toss = nominal(randi([1 4],5,2),{'odd' 'even' 'odd' 'even'},1:4)

```

1 Load patient data from the CSV file hospital. dat and store the information in a dataset array with observation names given by the first column in the data (patient identification):
```

patients = dataset('file','hospital.dat',...
'delimiter',',',...
'ReadObsNames',true);

```

2 Make the \(\{0,1\}\)-valued variable smoke nominal, and change the labels to 'No' and 'Yes':
patients.smoke = nominal(patients.smoke,\{'No','Yes'\});
3 Add new levels to smoke as placeholders for more detailed histories of smokers:
```

patients.smoke = addlevels(patients.smoke,...
{'0-5 Years','5-10 Years','LongTerm'});

```

4 Assuming the nonsmokers have never smoked, relabel the 'No' level:
```

patients.smoke = setlabels(patients.smoke,'Never','No');

```

5 Drop the undifferentiated 'Yes' level from smoke:
patients.smoke = droplevels(patients.smoke,'Yes');
Warning: OLDLEVELS contains categorical levels that were present in A, caused some array elements to have undefined levels.

Note that smokers now have an undefined level.
6 Set each smoker to one of the new levels, by observation name:
```

patients.smoke('YPL-320') = '5-10 Years';

```

\section*{See Also \\ histc | ordinal}
\begin{tabular}{|c|c|}
\hline Purpose & Nonlinear regression model class \\
\hline Description & An object comprising training data, model description, diagnostic information, and fitted coefficients for a nonlinear regression. Predict model responses with the predict or feval methods. \\
\hline \multirow[t]{12}{*}{Construction} & nlm = NonLinearModel.fit(ds,modelfun,betaO) or nlm = NonLinearModel.fit (\(X, y\), modelfun, betaO) create a nonlinear model of a dataset array ds, or of the responses y to a data matrix X. For details, see NonLinearModel.fit. \\
\hline & Input Arguments \\
\hline & ds \\
\hline & Dataset array, where by default the last column is the response variable, and all other columns are the predictors. Predictors can be numeric, or can be any grouping variable type, such as logical or categorical (see "Grouping Variables" on page 2-51). The response must be numeric or logical. \\
\hline & To set a different column as the response variable, use the ResponseVar name-value pair. To use a subset of the columns as predictors, use the PredictorVars name-value pair. \\
\hline & X \\
\hline & Matrix of predictor values. Each column of X represents one variable, and each row represents one observation. \\
\hline & \(y\) \\
\hline & Vector of response values with the same number of rows as \(X\). Each entry in \(y\) is the response to the data in the corresponding row of \(X\). \\
\hline & modelfun \\
\hline & Functional form of the model. Either a: \\
\hline & - Function handle @modelfun or \(@(\mathrm{~b}, \mathrm{x})\) modelfun, where \\
\hline
\end{tabular}

\section*{NonLinearModel}
- \(b\) is a coefficient vector with the same number of elements as beta0.
- x is a matrix with the same number of columns as X or the data columns of ds.
modelfun(\(\mathrm{b}, \mathrm{x}\)) returns a column vector that contains the same number of rows as x. Each row of the vector is the result of evaluating modelfun on the corresponding row of \(x\). In other words, modelfun is a vectorized function, one that operates on all data rows and returns all evaluations in one function call.
- String of the form
'y~f(b1,b2,...,bk,x1,x2, ...,xk)'
\(f\) represents a scalar function of the scalar coefficient variables \(\mathrm{b} 1, \ldots, \mathrm{bk}\) and the scalar data variables \(\mathrm{x} 1, \ldots, \mathrm{xk}\).

\section*{beta0}

Numeric vector of coefficients for the modelfun nonlinear model. NonLinearModel.fit starts its search for optimal coefficients from beta0.

\section*{Properties CoefficientCovariance}

Covariance matrix of coefficient estimates.

\section*{CoefficientNames}

Cell array of strings containing a label for each coefficient.

\section*{Coefficients}

Table of coefficient values in a dataset array. Coefficients has one row for each coefficient and these columns:
- Estimate - Estimated coefficient value
- SE - Standard error of the estimate
- tStat - \(t\) statistic for a test that the coefficient is zero
- pValue - \(p\)-value for the \(t\) statistic

To obtain any of these columns as a vector, index into the property using dot notation. For example, in mdl the estimated coefficient vector is
beta \(=\) mdl.Coefficients.Estimate
Use coeftest to perform other tests on the coefficients.

\section*{Diagnostics}

Dataset array with diagnostics helpful in finding outliers and influential observations. The structure contains the following fields.
\begin{tabular}{l|l|l}
\hline Field & Meaning & Utility \\
\hline Leverage & \begin{tabular}{l}
Diagonal elements of \\
HatMatrix
\end{tabular} & \begin{tabular}{l}
Leverage indicates to what extent the predicted \\
value for an observation is determined by \\
the observed value for that observation. A \\
value close to 1 indicates that the prediction is \\
largely determined by that observation, with \\
little contribution from the other observations. \\
A value close to 0 indicates the fit is largely \\
determined by the other observations. For a \\
model with P coefficients and N observations, \\
the average value of Leverage is P/N. An
\end{tabular} \\
\hline
\end{tabular}

\section*{NonLinearModel}
\begin{tabular}{l|l|l}
\hline Field & Meaning & Utility \\
\hline \multicolumn{2}{|c}{} & \begin{tabular}{l}
observation with Leverage larger than 2*P/N \\
can be regarded as having high leverage.
\end{tabular} \\
\hline CooksDistance & \begin{tabular}{l}
Cook's measure of \\
scaled change in \\
fitted values
\end{tabular} & \begin{tabular}{l}
CooksDistance is a measure of scaled \\
change in fitted values. An observation with \\
CooksDistance larger than three times the \\
mean Cook's distance can be an outlier.
\end{tabular} \\
\hline HatMatrix & \begin{tabular}{l}
Projection matrix to \\
compute fitted from \\
observed responses
\end{tabular} & \begin{tabular}{l}
HatMatrix is an N-by-N matrix such that \\
Fitted = HatMatrix*Y, where Y is the response \\
vector and Fitted is the vector of fitted response \\
values.
\end{tabular} \\
\hline
\end{tabular}

\section*{DFE}

Degrees of freedom for error (residuals), equal to the number of observations minus the number of estimated coefficients.

\section*{Fitted}

Vector of predicted values based on the training data.
NonLinearModel.fit attempts to make Fitted as close as possible to the response data.

\section*{Formula}

Object that represents the mathematical form of the model.

\section*{Iterative}

Structure with information about the fitting process. Fields:
- InitialCoefs - Initial coefficient values (the beta0 vector)
- IterOpts - Options included in the Options name-value pair for NonLinearModel.fit

\section*{LogLikelihood}

Log likelihood of the model distribution at the response values, with mean fitted from the model, and other parameters estimated as part of the model fit.

\section*{ModelCriterion}

AIC and other information criteria for comparing models. A structure with fields:
- AIC - Akaike information criterion
- AICc - Akaike information criterion corrected for sample size
- BIC - Bayesian information criterion
- CAIC - Consistent Akaike information criterion

To obtain any of these values as a scalar, index into the property using dot notation. For example, in a model mdl, the AIC value aic is:
aic = mdl.ModelCriterion.AIC

\section*{MSE}

Mean squared error, a scalar that is an estimate of the variance of the error term in the model.

\section*{NumCoefficients}

Number of coefficients in the fitted model, a scalar. NumCoefficients is the same as NumEstimatedCoefficients for NonLinearModel objects. NumEstimatedCoefficients is equal to the degrees of freedom for regression.

\section*{NumEstimatedCoefficients}

Number of estimated coefficients in the fitted model, a scalar. NumEstimatedCoefficients is the same as NumCoefficients for NonLinearModel objects. NumEstimatedCoefficients is equal to the degrees of freedom for regression.

\section*{NumPredictors}

\section*{NonLinearModel}

Number of variables NonLinearModel.fit used as predictors for fitting.

\section*{NumVariables}

Number of variables in the data. NumVariables is the number of variables in the original dataset when the fit is based on a dataset, or the total number of columns in the predictor matrix and response vector when the fit is based on those arrays. It includes variables, if any, that are not used as predictors or as the response.

\section*{ObservationInfo}

Dataset with the same number of rows as the input data (ds or X).
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Weights & Observation weights. Default is all 1. \\
\hline Excluded & \begin{tabular}{l}
Logical value, 1 indicates an observation that \\
you excluded from the fit with the Exclude \\
name-value pair.
\end{tabular} \\
\hline Missing & \begin{tabular}{l}
Logical value, 1 indicates a missing value in \\
the input. Missing values are not used in the \\
fit.
\end{tabular} \\
\hline Subset & \begin{tabular}{l}
Logical value, 1 indicates the observation is \\
not excluded or missing, so is used in the fit.
\end{tabular} \\
\hline
\end{tabular}

\section*{ObservationNames}

Cell array of strings containing the names of the observations used in the fit.
- If the fit is based on a dataset containing observation names, ObservationNames uses those names.
- Otherwise, ObservationNames is an empty cell array

\section*{PredictorNames}

Cell array of strings, the names of the predictors used in fitting the model.

\section*{Residuals}

Dataset array containing a table of residuals, with one row for each observation and these variables.
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Raw & Observed minus fitted values. \\
\hline Pearson & Raw residuals divided by RMSE. \\
\hline Standardized & \begin{tabular}{l}
Raw residuals divided by their estimated \\
standard deviation.
\end{tabular} \\
\hline Studentized & \begin{tabular}{l}
Residual divided by an independent estimate \\
of the residual standard deviation. The \\
residual for observation \(i\) is divided by an \\
estimate of the error standard deviation based \\
on all observations except for observation \(i\).
\end{tabular} \\
\hline
\end{tabular}

To obtain any of these columns as a vector, index into the property using dot notation. For example, in a model mdl, the ordinary raw residual vector \(r\) is:
\(r=\) mdl.Residuals.Raw
Rows not used in the fit because of missing values (in ObservationInfo.Missing) contain NaN values.

Rows not used in the fit because of excluded values (in ObservationInfo.Excluded) contain NaN values, with the following exceptions:
- raw contains the difference between the observed and predicted values.
- standardized is the residual, standardized in the usual way.

\section*{NonLinearModel}
- studentized matches the standardized values because this residual is not used in the estimate of the residual standard deviation.

\section*{ResponseName}

String giving naming the response variable.

\section*{RMSE}

Root mean squared error, a scalar that is an estimate of the standard deviation of the error term in the model.

\section*{Robust}

Structure that is empty unless NonLinearModel.fit constructed the model using robust regression.
\begin{tabular}{l|l}
\hline Field & Description \\
\hline WgtFun & \begin{tabular}{l}
Robust weighting function, such as \\
'bisquare ' (see robustfit)
\end{tabular} \\
\hline Tune & \begin{tabular}{l}
Value specified for tuning parameter (can be \\
{\([\)]) }
\end{tabular} \\
\hline Weights & \begin{tabular}{l}
Vector of weights used in final iteration of \\
robust fit
\end{tabular} \\
\hline
\end{tabular}

\section*{Rsquared}

Proportion of total sum of squares explained by the model. The ordinary R-squared value relates to the SSR and SST properties:
```

Rsquared = SSR/SST = 1 - SSE/SST.

```

Rsquared is a structure with two fields:
- Ordinary - Ordinary (unadjusted) R-squared
- Adjusted - R-squared adjusted for the number of coefficients

To obtain any of these values as a scalar, index into the property using dot notation. For example, the adjusted R -squared value in mdl is
r2 = mdl.Rsquared.Adjusted

\section*{SSE}

Sum of squared errors (residuals).
The Pythagorean theorem implies
SST = SSE + SSR.

SSR
Regression sum of squares, the sum of squared deviations of the fitted values from their mean.

The Pythagorean theorem implies
SST = SSE + SSR.

\section*{SST}

Total sum of squares, the sum of squared deviations of \(y\) from mean(y).

The Pythagorean theorem implies
```

SST = SSE + SSR.

```

\section*{Variablelnfo}

Dataset array containing metadata about Variables. There is one row for each term in the model, and the following columns.

\section*{NonLinearModel}
\begin{tabular}{l|l}
\hline Field & Description \\
\hline Class & String giving variable class, such as 'double '
\end{tabular}

\section*{VariableNames}

Cell array of strings containing names of the variables in the fit.
- If the fit is based on a dataset, this property provides the names of the variables in that dataset.
- If the fit is based on a predictor matrix and response vector, VariableNames is the values in the VarNames name-value pair of the fitting method.
- Otherwise the variables have the default fitting names.

\section*{Variables}

Dataset array containing the data, both observations and responses, that the fitting function used to construct the fit. If the fit is based on a dataset array, Variables is a copy of that dataset. Otherwise, Variables is a dataset created from the input data matrix \(X\) and response vector \(y\).

\section*{Methods}
\begin{tabular}{ll}
coefCI & \begin{tabular}{l}
Confidence intervals of coefficient \\
estimates of nonlinear regression \\
model
\end{tabular} \\
coefTest & \begin{tabular}{l}
Linear hypothesis test on \\
nonlinear regression model \\
coefficients
\end{tabular} \\
disp & \begin{tabular}{l}
Display nonlinear regression \\
model
\end{tabular} \\
feval & \begin{tabular}{l}
Evaluate nonlinear regression \\
model prediction
\end{tabular} \\
fit & \begin{tabular}{l}
Fit nonlinear regression model
\end{tabular} \\
plotDiagnostics & \begin{tabular}{l}
Plot diagnostics of nonlinear \\
regression model
\end{tabular} \\
plotResiduals & \begin{tabular}{l}
Plot residuals of nonlinear \\
regression model
\end{tabular} \\
plotSlice & \begin{tabular}{l}
Plot of slices through fitted \\
nonlinear regression surface
\end{tabular} \\
predict & \begin{tabular}{l}
Predict response of nonlinear \\
regression model
\end{tabular} \\
random & \begin{tabular}{l}
Simulate responses for nonlinear \\
regression model
\end{tabular} \\
\hline
\end{tabular}

\section*{Definitions Hat Matrix}

The hat matrix \(H\) is defined in terms of the data matrix \(X\) and the Jacobian matrix \(J\) :
\[
J_{i, j}=\left.\frac{\partial f}{\partial \beta_{j}}\right|_{x_{i}, \beta}
\]

\section*{NonLinearModel}

Here \(f\) is the nonlinear model function, and \(\beta\) is the vector of model coefficients.

The Hat Matrix \(H\) is
\[
H=J\left(J^{T} J\right)^{-1} J^{T} .
\]

The diagonal elements \(H_{i i}\) satisfy
\[
\begin{aligned}
& 0 \leq h_{i i} \leq 1 \\
& \sum_{i=1}^{n} h_{i i}=p
\end{aligned}
\]
where \(n\) is the number of observations (rows of \(X\)), and \(p\) is the number of coefficients in the regression model.

\section*{Leverage}

The leverage of observation \(i\) is the value of the \(i\) th diagonal term of the hat matrix \(H_{i i}\). Because the sum of the leverage values is \(p\) (the number of coefficients in the regression model), an observation \(i\) can be considered to be an outlier if its leverage substantially exceeds \(p / n\), where \(n\) is the number of observations.

\section*{Cook's Distance}

The Cook's distance \(D_{i}\) of observation \(i\) is
\[
D_{i}=\frac{\sum_{j=1}^{n}\left(\hat{y}_{j}-\hat{y}_{j(i)}\right)^{2}}{p M S E},
\]
where
- \(\hat{y}_{j}\) is the \(j\) th fitted response value.
- \(\hat{y}_{j(i)}\) is the \(j\) th fitted response value, where the fit does not include observation \(i\).
- MSE is the mean squared error.
- \(p\) is the number of coefficients in the regression model.

Cook's distance is algebraically equivalent to the following expression:
\[
D_{i}=\frac{r_{i}^{2}}{p M S E}\left(\frac{h_{i i}}{\left(1-h_{i i}\right)^{2}}\right),
\]
where \(e_{i}\) is the \(i\) th residual.

\section*{Copy Semantics}

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

\section*{Examples}

\section*{Nonlinear Model}

Create a nonlinear model for auto mileage based on the carbig data. Predict the mileage of an average car.

Load the data and create a nonlinear model.
```

load carbig
X = [Horsepower,Weight];
y = MPG;
modelfun = @(b,x)b(1) + b(2)*x(:,1).^b(3) + ...
b(4)*x(:,2).^b(5);
beta0 = [-50 500 -1 500 -1];
mdl = NonLinearModel.fit(X,y,modelfun,beta0)
mdl =

```
Nonlinear regression model:
 \(y \sim b 1+b 2 * x 1^{\wedge} b 3+b 4 * x 2^{\wedge} b 5\)

\section*{NonLinearModel}
```

Estimated Coefficients:

	Estimate	SE	tStat	pValue
b1	-49.383	119.97	-0.41164	0.68083
b2	376.43	567.05	0.66384	0.50719
b3	-0.78193	0.47168	-1.6578	0.098177
b4	422.37	776.02	0.54428	0.58656
b5	-0.24127	0.48325	-0.49926	0.61788

Number of observations: 392, Error degrees of freedom: 387
Root Mean Squared Error: 3.96
R-Squared: 0.745, Adjusted R-Squared 0.743
F-statistic vs. constant model: 283, p-value = 1.79e-113

```

Find the predicted mileage of an average auto. The data contain some observations with NaN , so compute the mean using nanmean.
```

Xnew = nanmean(X)
Xnew =
1.0e+03 *
0.1051 2.9794
MPGnew = predict(mdl,Xnew)
MPGnew =

```
 21.8073
\begin{tabular}{ll}
See Also & \begin{tabular}{l}
GeneralizedLinearModel | LinearModel | \\
nlinfitNonLinearModel.fit | NonLinearModel.predict |
\end{tabular} \\
\begin{tabular}{ll}
Related & - "Nonlinear Regression Workflow" on page 9-212 \\
Examples & \\
Concepts & - "Nonlinear Regression" on page 9-198
\end{tabular} (
\end{tabular}

\section*{Superclasses ToolboxFittableParametricDistribution}

Purpose Normal probability distribution object
Description prob.NormalDistribution is an object consisting of parameters, a model description, and sample data for a normal probability distribution.

Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

\section*{Construction}
pd = makedist('Normal') creates a normal probability distribution object using the default parameter values.
pd = makedist('Normal','mu',mu,'sigma',sigma) creates a normal distribution object using the specified parameter values.

\section*{Input Arguments}
mu - Mean
0 (default) | scalar value
Mean of the normal distribution, specified as a scalar value.

\section*{Data Types}
single | double

\section*{sigma-Standard deviation}

1 (default) | nonnegative scalar value
Standard deviation of the normal distribution, specified as a nonnegative scalar value.
```

Data Types
single | double

```

\section*{Properties \\ mu}

Mean of the normal distribution, stored as a scalar value.

\section*{prob.NormalDistribution}

\author{
Data Types \\ single | double \\ sigma
}

Standard deviation of the normal distribution, stored as a nonnegative scalar value.

\section*{Data Types}
single | double

\section*{DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{Data Types}
char

\section*{InputData}

Data used for distribution fitting, stored as a structure containing the following:
- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.

\section*{Data Types}
single | double

\section*{IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated. If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

\section*{Data Types \\ logical}

\section*{NumParameters}

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterCovariance}

Covariance matrix of the parameter estimates, stored as a \(p\)-by- \(p\) matrix, where \(p\) is the number of parameters in the distribution. The (\(i, j\)) element is the covariance between the estimates of the ith parameter and the \(j\) th parameter. The (\(i, i\)) element is the estimated variance of the \(i\) th parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

\section*{Data Types}
```

single | double

```

\section*{ParameterDescription}

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

\section*{Data Types}
char

\section*{ParameterlsFixed}

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

\section*{Data Types}
logical

\section*{ParameterNames}

\section*{prob.NormalDistribution}

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

\section*{Data Types \\ char}

\section*{ParameterValues}

Values of distribution parameters, stored as a vector. This property is read-only.

\section*{Data Types \\ single | double \\ Truncation}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.
```

Data Types
single | double

```

\section*{Methods Inherited Methods}
\begin{tabular}{ll}
cdf & \begin{tabular}{l}
Cumulative distribution function \\
of probability distribution object
\end{tabular} \\
icdf & \begin{tabular}{l}
Inverse cumulative distribution \\
function of probability \\
distribution object
\end{tabular} \\
iqr & \begin{tabular}{l}
Interquartile range of probability \\
distribution object
\end{tabular} \\
median & \begin{tabular}{l}
Median of probability distribution \\
object
\end{tabular} \\
pdf & \begin{tabular}{l}
Probability density function of \\
probability distribution object
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
random & \begin{tabular}{l}
Generate random numbers from \\
probability distribution object
\end{tabular} \\
truncate & \begin{tabular}{l}
Truncate probability distribution \\
object
\end{tabular} \\
mean & \begin{tabular}{l}
Mean of probability distribution \\
object
\end{tabular} \\
negloglik & \begin{tabular}{l}
Negative loglikelihood of \\
probability distribution object
\end{tabular} \\
paramci & \begin{tabular}{l}
Confidence intervals for \\
probability distribution \\
parameters
\end{tabular} \\
proflik & \begin{tabular}{l}
Profile likelihood function for \\
probability distribution object
\end{tabular} \\
std & \begin{tabular}{l}
Standard deviation of probability \\
distribution object
\end{tabular} \\
var & \begin{tabular}{l}
Variance of probability \\
distribution object
\end{tabular} \\
\hline
\end{tabular}

\section*{Definitions Normal Distribution}

The normal distribution, sometimes called the Gaussian distribution, is a two-parameter family of curves. The usual justification for using the normal distribution for modeling is the Central Limit theorem, which states (roughly) that the sum of independent samples from any distribution with finite mean and variance converges to the normal distribution as the sample size goes to infinity.

The normal distribution uses the following parameters.

\section*{prob.NormalDistribution}
\begin{tabular}{l|l|l}
\hline Parameter & Description & Support \\
\hline mu & Mean & \(-\infty<\mu<\infty\) \\
\hline sigma & \begin{tabular}{l}
Standard \\
deviation
\end{tabular} & \(\sigma \geq 0\) \\
\hline
\end{tabular}

The probability density function (pdf) is
\[
f(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} \quad, \quad-\infty<x<\infty .
\]

\section*{Examples Create a Normal Distribution Object Using Default Parameters}

Create a normal distribution object using the default parameter values.
```

pd = makedist('Normal')

```
pd =
NormalDistribution
```

Normal distribution
mu = 0
sigma = 1

```

\section*{Create a Normal Distribution Object Using Specified Parameters}

Create a normal distribution object by specifying the parameter values.
pd = makedist('Normal','mu',75,'sigma', 10)
pd =

NormalDistribution
```

Normal distribution
mu = 75
sigma = 10

```

Compute the interquartile range of the distribution.
```

r = iqr(pd)

```
\(r=\)
13.4898

\section*{Fit a Normal Distribution Object}

Load the sample data. Create a vector containing the first column of students' exam grades data.
load examgrades;
x = grades(:,1);
Create a normal distribution object by fitting it to the data.
```

pd = fitdist(x,'Normal')

```
pd \(=\)

NormalDistribution
```

    Normal distribution
            mu = 75.0083 [73.4321, 76.5846]
        sigma = 8.7202 [7.7391, 9.98843]
    ```
See Also makedist | fitdist | dfittool
Concepts - "Normal Distribution" on page B-96
- Class Attributes
- Property Attributes

Purpose Normal cumulative distribution function
```

Syntax $\quad P=\operatorname{normcdf}(X$, mu, sigma $)$
[P,PLO,PUP] = normcdf(X,mu,sigma,pcov,alpha)

```

\section*{Description}
\(P=\operatorname{normcdf}(X, m u\), sigma \()\) computes the normal cdf at each of the values in X using the corresponding mean mu and standard deviation sigma. \(X\), mu, and sigma can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in sigma must be positive.
[P,PLO,PUP] = normcdf(X,mu,sigma,pcov,alpha) produces confidence bounds for \(P\) when the input parameters mu and sigma are estimates. pcov is the covariance matrix of the estimated parameters. alpha specifies \(100(1-a l p h a) \%\) confidence bounds. The default value of alpha is 0.05 . PLO and PUP are arrays of the same size as P containing the lower and upper confidence bounds.

The function normdf computes confidence bounds for P using a normal approximation to the distribution of the estimate
\[
\frac{X-\hat{\mu}}{\hat{\sigma}}
\]
and then transforming those bounds to the scale of the output P. The computed bounds give approximately the desired confidence level when you estimate mu, sigma, and pcov from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The normal cdf is
\[
p=F(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{x} e^{\frac{-(t-\mu)^{2}}{2 \sigma^{2}}} d t
\]

The result, \(p\), is the probability that a single observation from a normal distribution with parameters \(\mu\) and \(\sigma\) will fall in the interval \((-\infty x]\).

The standard normal distribution has \(\mu=0\) and \(\sigma=1\).
Examples What is the probability that an observation from a standard normal distribution will fall on the interval [-1 1]?
```

p = normcdf([-1 1]);
p(2)-p(1)
ans =
0.6827

```

More generally, about \(68 \%\) of the observations from a normal distribution fall within one standard deviation, \(\sigma\), of the mean, \(\mu\).

See Also
cdf | normpdf | norminv | normstat | normfit | normlike | normrnd
How To
- "Normal Distribution" on page B-96

\section*{Purpose Normal parameter estimates}
```

Syntax
[muhat,sigmahat] = normfit(data)
[muhat,sigmahat,muci,sigmaci] = normfit(data)
[muhat,sigmahat,muci,sigmaci] = normfit(data,alpha)
[...] = normfit(data,alpha,censoring)
[...] = normfit(data,alpha,censoring,freq)
[...] = normfit(data,alpha,censoring,freq,options)

```

\section*{Description}
[muhat, sigmahat] = normfit(data) returns an estimate of the mean \(\mu\) in muhat, and an estimate of the standard deviation \(\sigma\) in sigmahat, of the normal distribution given the data in data.
[muhat,sigmahat,muci,sigmaci] = normfit(data) returns 95\% confidence intervals for the parameter estimates on the mean and standard deviation in the arrays muci and sigmaci, respectively. The first row of muci contains the lower bounds of the confidence intervals for \(\mu\) the second row contains the upper bounds. The first row of sigmaci contains the lower bounds of the confidence intervals for \(\sigma\), and the second row contains the upper bounds.
[muhat,sigmahat,muci,sigmaci] = normfit(data,alpha) returns 100(1-alpha) \% confidence intervals for the parameter estimates, where alpha is a value in the range [0 1] specifying the width of the confidence intervals. By default, alpha is 0.05 , which corresponds to \(95 \%\) confidence intervals.
[...] = normfit(data, alpha, censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly. data must be a vector in order to pass in the argument censoring.
[...] = normfit(data,alpha, censoring,freq) accepts a frequency vector, freq, of the same size as data. Typically, freq contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for alpha, censoring, or freq to use their default values.
[...] = normfit(data,alpha,censoring,freq,options) accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood estimates when there is censoring. The normal fit function accepts an options structure which you can create using the function statset. Enter statset('normfit') to see the names and default values of the parameters that normfit accepts in the options structure. See the reference page for statset for more information about these options.

Note With no censoring, normfit computes muhat using the sample mean and sigmahat using the square root of the unbiased estimator of the variance. With censoring, both muhat and sigmahat are the maximum likelihood estimates.
```

Examples In this example the data is a two-column random normal matrix. Both columns have $\mu=10$ and $\sigma=2$. Note that the confidence intervals below contain the "true values."
data = normrnd(10,2,100,2);
[mu,sigma,muci,sigmaci] = normfit(data)
mu =
10.1455 10.0527
sigma =
1.9072 2.1256
muci =
9.7652 9.6288
10.5258 10.4766
sigmaci =
1.6745 1.8663
2.2155 2.4693

```
See Also
mle | normlike | normpdf | normcdf | norminv | normstat | normrnd
How To . "Normal Distribution" on page B-96

\section*{norminv}

Purpose Normal inverse cumulative distribution function
```

Syntax }X==\mathrm{ norminv( P,mu,sigma)
[X,XLO,XUP] = norminv(P,mu,sigma,pcov,alpha)

```
\(X=\) norminv(\(P\), mu, sigma) computes the inverse of the normal cdf using the corresponding mean mu and standard deviation sigma at the corresponding probabilities in P. P, mu, and sigma can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in sigma must be positive, and the values in \(P\) must lie in the interval [01].
[X,XLO,XUP] = norminv(P,mu,sigma, pcov,alpha) produces confidence bounds for \(X\) when the input parameters mu and sigma are estimates. pcov is the covariance matrix of the estimated parameters. alpha specifies \(100(1\) - alpha) \(\%\) confidence bounds. The default value of alpha is 0.05 . XLO and XUP are arrays of the same size as X containing the lower and upper confidence bounds.

The function norminv computes confidence bounds for P using a normal approximation to the distribution of the estimate
\[
\hat{\mu}+\hat{\sigma} q
\]
where \(q\) is the Pth quantile from a normal distribution with mean 0 and standard deviation 1 . The computed bounds give approximately the desired confidence level when you estimate mu, sigma, and pcov from large samples, but in smaller samples other methods of computing the confidence bounds may be more accurate.

The normal inverse function is defined in terms of the normal cdf as
\[
x=F^{-1}(p \mid \mu, \sigma)=\{x: F(x \mid \mu, \sigma)=p\}
\]
where
\[
p=F(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{x} e^{\frac{-(t-\mu)^{2}}{2 \sigma^{2}}} d t
\]

The result, \(x\), is the solution of the integral equation above where you supply the desired probability, \(p\).

\section*{Examples}

How To

\section*{See Also}

Find an interval that contains \(95 \%\) of the values from a standard normal distribution.
```

x = norminv([0.025 0.975],0,1)
x =
-1.9600 1.9600

```

Note that the interval \(x\) is not the only such interval, but it is the shortest.
```

xl = norminv([0.01 0.96],0,1)
xl =
-2.3263 1.7507

```

The interval xl also contains \(95 \%\) of the probability, but it is longer than \(x\).
icdf | normcdf | normpdf | normstat | normfit | normlike | normrnd
- "Normal Distribution" on page B-96

\section*{normlike}
Purpose Normal negative log-likelihood
Syntax nlogL = normlike(params,data)

[nlogL,AVAR] = normlike(params,data)

[...] = normlike(param,data, censoring)

[...] = normlike(param,data,censoring,freq)

\section*{Description}

How To
nlogL \(=\) normlike(params, data) returns the negative of the normal log-likelihood function. params (1) is the mean, mu, and params (2) is the standard deviation, sigma.
[nlogL,AVAR] = normlike(params,data) also returns the inverse of Fisher's information matrix, AVAR. If the input parameter values in params are the maximum likelihood estimates, the diagonal elements of AVAR are their asymptotic variances. AVAR is based on the observed Fisher's information, not the expected information.
[...] = normlike(param,data, censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = normlike(param,data, censoring,freq) accepts a frequency vector, freq, of the same size as data. The vector freq typically contains integer frequencies for the corresponding elements in data, but can contain any nonnegative values. Pass in [] for censoring to use its default value.
normlike is a utility function for maximum likelihood estimation.
```

See Also
See Also normfit | normpdf | normcdf | norminv | normstat | normrnd

```

\section*{Purpose Normal probability density function}

Syntax
Y = normpdf(X,mu,sigma)
Y = normpdf(X)
Y = normpdf(X,mu)

\section*{Description}

\section*{Examples}
```

mu = [0:0.1:2];
[y i] = max(normpdf(1.5,mu,1));
MLE = mu(i)
MLE =

```

\subsection*{1.5000}

\section*{See Also}

How To
- "Normal Distribution" on page B-96

\section*{Purpose Normal probability plot}
\[
\text { Syntax } \quad h=\operatorname{normplot}(X)
\]

Description \(\quad \mathrm{h}=\) normplot \((\mathrm{X})\) displays a normal probability plot of the data in X . For matrix X , normplot displays a line for each column of X . h is a handle to the plotted lines.
The plot has the sample data displayed with the plot symbol ' + '. Superimposed on the plot is a line joining the first and third quartiles of each column of X (a robust linear fit of the sample order statistics.) This line is extrapolated out to the ends of the sample to help evaluate the linearity of the data.

The purpose of a normal probability plot is to graphically assess whether the data in X could come from a normal distribution. If the data are normal the plot will be linear. Other distribution types will introduce curvature in the plot. normplot uses midpoint probability plotting positions. Use probplot when the data included censored observations.

\section*{Examples Generate a normal sample and a normal probability plot of the data.}
```

x = normrnd(10,1, 25,1);
normplot(x)

```


\footnotetext{
See Also

How To . "Normal Distribution" on page B-96
}
\begin{tabular}{ll}
Purpose & Normal random numbers \\
Syntax & \(R=\operatorname{normrnd}(m u\), sigma \()\) \\
& \(R=\operatorname{normrnd}(m u\), sigma, \(m, \ldots)\) \\
& \(R=\operatorname{normrnd}(m u, \operatorname{sigma},[m, n, \ldots])\)
\end{tabular}

Description

\section*{Examples}

See Also

How To . "Normal Distribution" on page B-96

Purpose Normal density plot between specifications
```

Syntax normspec(specs)
normspec(specs,mu,sigma)
normspec(specs,mu,sigma,region)
p = normspec(...)
[p,h] = normspec(...)

```

\section*{Description}

Examples
normspec (specs) plots the standard normal density, shading the portion inside the specification limits given by the two-element vector specs. Set specs(1) to - Inf if there is no lower limit; set specs(2) to Inf if there is no upper limit.
normspec (specs, mu, sigma) shades the portion inside the specification limits of a normal density with parameters mu and sigma. The defaults are mu \(=0\) and sigma \(=1\).
normspec(specs,mu,sigma, region) shades the region either 'inside' or 'outside' the specification limits. The default is 'inside'.
\(\mathrm{p}=\) normspec (...) also returns the probability, p , of the shaded area.
\([p, h]=\) normspec (...) also returns a handle \(h\) to the line objects.

A production process fills cans of paint. The average amount of paint in any can is 1 gallon, but variability in the process produces a standard deviation of 2 ounces (\(2 / 128\) gallons). What is the probability that cans will be filled under specification by 3 or more ounces?
```

p = normspec([1-3/128,Inf],1,2/128,'outside')
p =
0.0668

```

Probability Less than Lower Bound is 0.066807

\(\begin{array}{ll}\text { See Also } & \text { capaplot | histfit } \\ \text { How To } & \text {. "Normal Distribution" on page B-96 }\end{array}\)

Purpose Normal mean and variance
\[
\text { Syntax } \quad[M, V]=\text { normstat }(m u, \text { sigma })
\]

Description \([M, V]=\) normstat (mu, sigma) returns the mean of and variance for the normal distribution using the corresponding mean mu and standard deviation sigma. mu and sigma can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of \(M\) and \(V\). A scalar input for mu or sigma is expanded to a constant array with the same dimensions as the other input.

The mean of the normal distribution with parameters \(\mu\) and \(\sigma\) is \(\mu\), and the variance is \(\sigma^{2}\).

\section*{Examples \\ \(\mathrm{n}=1: 5 ;\) \\ [m,v] = normstat(n'*n,n'*n) \\ m = \\ \begin{tabular}{lllll}
1 & 2 & 3 & 4 & 5
\end{tabular} \\ \(\begin{array}{lllll}2 & 4 & 6 & 8 & 10\end{array}\) \\ \(\begin{array}{lllll}3 & 6 & 9 & 12 & 15\end{array}\) \\ \(\begin{array}{lllll}4 & 8 & 12 & 16 & 20\end{array}\) \\ \(\begin{array}{lllll}5 & 10 & 15 & 20 & 25\end{array}\) \\ v = \\ \(\begin{array}{lllll}1 & 4 & 9 & 16 & 25\end{array}\) \\ \(\begin{array}{lllll}4 & 16 & 36 & 64 & 100\end{array}\) \\ \(\begin{array}{lllll}9 & 36 & 81 & 144 & 225\end{array}\) \\ \(16 \quad 64144256400\) \\ 25100225400625}

See Also normpdf | normcdf | norminv | normfit | normlike | normrnd
How To . "Normal Distribution" on page B-96
```

Purpose Number of segments
Syntax n = nsegments(obj)
Description n = nsegments(obj) returns the number of segments n in the
piecewise distribution object obj.
Examples $\quad$ Fit Pareto tails to a $t$ distribution at cumulative probabilities 0.1 and 0.9:
t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
n = nsegments(obj)
n =
3

```

See Also
paretotails | boundary | segment

\section*{TreeBagger.NTrees property}
Purpose Number of decision trees in ensemble
Description The NTrees property is a scalar equal to the number of decision trees in the ensemble.
See Also Trees

\section*{ProbDistParametric.NumParams property}
\begin{tabular}{ll}
Purpose & \begin{tabular}{l}
Read-only value specifying number of parameters of ProbDistParametric \\
object
\end{tabular} \\
Description & \begin{tabular}{l}
NumParams is a read-only property of the ProbDistParametric class. \\
NumParams is a value specifying the number of parameters of a \\
distribution represented by a ProbDistParametric object.
\end{tabular} \\
Values & \begin{tabular}{l}
This value is an integer that counts both the specified parameters and \\
parameters that are fit to the data. Use this information to view and \\
compare the number of parameters supplied to create distributions.
\end{tabular}
\end{tabular}

Purpose Number of elements in dataset array
Syntax
\(\mathrm{n}=\) numel \((\mathrm{A})\)
\(\mathrm{n}=\) numel(A, varargin)
\begin{tabular}{|c|c|}
\hline Description & \(\mathrm{n}=\) numel(A) returns 1 . To find the number of elements, n , in the dataset array \(A\), use prod(size(A)) or numel(A,':',':'). \\
\hline & \(\mathrm{n}=\) numel (A, varargin) returns the number of subscripted elements, n , in \(\mathrm{A}(\) index1, index2, ..., indexn), where varargin is a cell array whose elements are index1, index2, ... indexn. \\
\hline
\end{tabular}

See Also length | size
Purpose Number of elements in categorical array
Syntax \(\quad\)\begin{tabular}{rl}
\(n\) & \(=\operatorname{numel}(A)\) \\
\(n\) & \(=\operatorname{numel}(A\), varargin \()\)
\end{tabular}

Description \(\quad n=\) numel \((A)\) returns the number of elements in the categorical array A.
\(\mathrm{n}=\) numel (A, varargin) returns the number of subscripted elements, n , in \(\mathrm{A}(\) index1, index2, ..., indexN), where varargin is a cell array whose elements are index1, index2, ... indexN.

\author{
See Also
}
size

\section*{classregtree.numnodes}

Purpose Number of nodes

\section*{Syntax \(\quad n=\) numnodes \((t)\)}

Description \(n=\) numnodes \((t)\) returns the number of nodes \(n\) in the tree \(t\).

\section*{Examples Create a classification tree for Fisher's iris data:}
```

load fisheriris;
t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})
t=
Decision tree for classification
1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2 class = setosa
3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
5 class = virginica
6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica
view(t)

```

\section*{classregtree.numnodes}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & - \\
\hline Click to display: & Identity & \(\checkmark\) & Magnification: & 100\% & \(\checkmark\) & Pruning level: & 0 of 4 & \\
\hline
\end{tabular}

```

n = numnodes(t)
n =
9

```

\section*{References \\ [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.}

\section*{See Also}
classregtree

\section*{cvpartition.NumTestSets property}

\section*{Purpose Number of test sets}

Description \(\quad \begin{aligned} & \text { Value is the number of folds in partitions of type 'kfold' and } \\ & \text { 'leaveout '. } \\ & \\ & \text { Value is } 1 \text { in partitions of type 'holdout ' and 'resubstitution'. }\end{aligned}\)

\section*{TreeBagger.NVarToSample property}

\author{
Purpose Number of variables for random feature selection \\ Description The NVarToSample property specifies the number of predictor or feature variables to select at random for each decision split. By default, it is set to the square root of the total number of variables for classification and one third of the total number of variables for regression. Setting this argument to any valid value except 'all' invokes Breiman's "random forest" algorithm.
}

\author{
See Also \\ classregtree
}

\section*{dataset.ObsNames property}

Purpose Cell array of nonempty, distinct strings giving names of observations in data set

\section*{Description}

A cell array of nonempty, distinct strings giving the names of the observations in the data set. This property may be empty, but if not empty, the number of strings must equal the number of observations.

\section*{Purpose}

Syntax

Description

\section*{Input Arguments}

Optimal leaf ordering for hierarchical clustering
```

leafOrder = optimalleaforder(tree,D)
leafOrder = optimalleaforder(tree,D,Name,Value)

```
leafOrder = optimalleaforder(tree, D) returns an optimal leaf ordering for the hierarchical binary cluster tree, tree, using the distances, D. An optimal leaf ordering of a binary tree maximizes the sum of the similarities between adjacent leaves by flipping tree branches without dividing the clusters.
leafOrder = optimalleaforder(tree, D,Name, Value) returns the optimal leaf ordering using one or more name-value pair arguments.

\section*{tree - Hierarchical binary cluster tree}
matrix returned by linkage
Hierarchical binary cluster tree, specified as an (\(M-1\))-by-3 matrix that you generate using linkage, where \(M\) is the number of leaves.

\section*{D - Distances}
matrix | vector
Distances for determining similarities between leaves, specified as a matrix or vector of distances. For example, you can generate distances using pdist.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Criteria', 'group', 'Transformation','inverse' specifies that the sum of similarities be maximized between every leaf

\section*{optimalleaforder}
and all other leaves in adjacent clusters, using an inverse similarity transformation.

\section*{'Criteria' - Optimization criterion}
'adjacent' (default) | 'group'
Optimization criterion for determining an optimal leaf ordering, specified as the comma-separated pair consisting of 'criteria' and one of these strings:
\begin{tabular}{ll}
'adjacent' & \begin{tabular}{l}
Maximize the sum of similarities between adjacent \\
leaves.
\end{tabular} \\
'group ' & \begin{tabular}{l}
Maximize the sum of similarities between every leaf \\
and all other leaves in the adjacent clusters at the \\
same level of the dendrogram.
\end{tabular}
\end{tabular}

Example: 'Criteria','group'

\section*{Data Types}
char

\section*{'Transformation' - Method for transforming distances to similarities}
```

'linear' (default) | 'inverse' | function handle

```

Method for transforming distances to similarities, specified as the comma-separated pair consisting of 'Transformation' and one of 'linear', 'inverse', or a function handle.

Let \(d_{i, j}\) and \(\operatorname{Sim}_{i, j}\) denote the distance and similarity between leaves \(i\) and \(j\), respectively. The included similarity transformations are:
\[
\begin{array}{ll}
\text { 'linear' } & \operatorname{Sim}_{i, j}=\max _{i, j}\left(d_{i, j}\right)-d_{i, j} \\
\text { 'inverse' } & \operatorname{Sim}_{i, j}=1 / d_{i, j}
\end{array}
\]

To use a custom transformation function, specify a handle to a function that accepts a matrix of distances, \(D\), and returns a matrix of similarities, S . The function should be monotonic decreasing in the
range of distance values. S must have the same size as \(D\), with \(S(i, j)\) being the similarity computed based on \(D(i, j)\).

Example: 'Transformation', @myTransform

\section*{Data Types}
char | function_handle

\section*{Output Arguments}

\section*{leafOrder - Optimal leaf order \\ vector}

Optimal leaf order, returned as a length- \(M\) vector, where \(M\) is the number of leaves. leafOrder is a permutation of the vector \(1: \mathrm{M}\), giving an optimal leaf ordering based on the specified distances and similarity transformation.

\section*{Examples}

\section*{Plot Dendrogram With Optimal Leaf Order}

Create a hierarchical binary cluster tree using linkage. Then, compare the dendrogram plot with the default ordering to a dendrogram with an optimal leaf ordering.

Generate sample data.
```

rng('default') % For reproducibility
X = rand(10,2);

```

Create a distance vector and a hierarchical binary clustering tree. Use the distances and clustering tree to determine an optimal leaf order.
```

D = pdist(X);
tree = linkage(D,'average');
leafOrder = optimalleaforder(tree,D);

```

Plot the dendrogram with the default ordering and the dendrogram with the optimal leaf ordering.
figure()
subplot (2,1,1)
dendrogram(tree)
```

title('Default Leaf Order')
subplot(2,1,2)
dendrogram(tree,'reorder',leafOrder)
title('Optimal Leaf Order')

```


Optimal Leaf Order

The order of the leaves in the bottom figure corresponds to the elements in leafOrder.
leafOrder

\section*{leafOrder =}

\section*{Optimal Leaf Order Using Inverse Distance Similarity}

Generate sample data.
```

rng('default') % For reproducibility
X = rand(10,2);

```

Create a distance vector and a hierarchical binary clustering tree.
```

D = pdist(X);
tree = linkage(D,'average');

```

Use the inverse distance similarity transformation to determine an optimal leaf order.
leafOrder = optimalleaforder(tree, D,'Transformation','inverse')
leafOrder =
\begin{tabular}{llllllllll}
1 & 4 & 9 & 10 & 2 & 5 & 8 & 3 & 7 & 6
\end{tabular}

\section*{References}
[1] Bar-Joseph, Z., Gifford, D.K., and Jaakkola, T.S. (2001). Fast optimal leaf ordering for hierarchical clustering. Bioinformatics 17, Suppl 1:S22-9. PMID: 11472989.

See Also dendrogram | linkage | pdist

\section*{ClassificationBaggedEnsemble.oobEdge}

Purpose Out-of-bag classification edge

Description edge = oobEdge(ens) returns out-of-bag classification edge for ens.
edge = oobEdge(ens,Name, Value) computes classification edge with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, ,NameN, ValueN.

\section*{Input \\ Arguments}

\section*{ens}

A classification bagged ensemble, constructed with fitensemble.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'learners'}

Indices of weak learners in the ensemble ranging from 1 to ens.NTrained. oobEdge uses only these learners for calculating loss.

Default: 1:NTrained

\section*{'mode'}

String representing the meaning of the output L:
- 'ensemble' - L is a scalar value, the loss for the entire ensemble.

\section*{ClassificationBaggedEnsemble.oobEdge}
- 'individual' - L is a vector with one element per trained learner.
- 'cumulative' - \(L\) is a vector in which element \(J\) is obtained by using learners \(1: J\) from the input list of learners.

Default: 'ensemble'

\section*{Output Arguments}

\section*{Definitions}

\section*{edge}

Classification edge, a weighted average of the classification margin.

\section*{Edge}

The edge is the weighted mean value of the classification margin. The weights are the class probabilities in ens. Prior.

\section*{Margin}

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix ens. X .

\section*{Out of Bag}

Bagging, which stands for "bootstrap aggregation", is a type of ensemble learning. To bag a weak learner such as a decision tree on a dataset, fitensemble generates many bootstrap replicas of the dataset and grows decision trees on these replicas. fitensemble obtains each bootstrap replica by randomly selecting N observations out of N with replacement, where \(N\) is the dataset size. To find the predicted response of a trained ensemble, predict take an average over predictions from individual trees.

Drawing N out of N observations with replacement omits on average \(37 \%(1 / e)\) of observations for each decision tree. These are "out-of-bag" observations. For each observation, oobLoss estimates the out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this observation is out of bag. It then compares the computed

\section*{ClassificationBaggedEnsemble.oobEdge}
prediction against the true response for this observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses against the true responses for all observations used for training. This out-of-bag average is an unbiased estimator of the true ensemble error.
```

Examples Find the out-of-bag edge for a bagged ensemble from the Fisher iris data:
load fisheriris
ens = fitensemble(meas,species,'Bag',100,...
'Tree','type','classification');
edge = oobEdge(ens)
edge =
0.8730

```

See Also oobMargin | oobPredict | oobLoss

\section*{TreeBagger.oobError}
\begin{tabular}{|c|c|}
\hline Purpose & Out-of-bag error \\
\hline Syntax & ```
err = oobError(B)
err = oobError(B,'param1',val1,'param2',val2,...)
``` \\
\hline Description & \begin{tabular}{l}
err \(=\) oobError(B) computes the misclassification probability (for classification trees) or mean squared error (for regression trees) for out-of-bag observations in the training data, using the trained bagger \(B\). err is a vector of length NTrees, where NTrees is the number of trees in the ensemble. \\
err = oobError(B,'param1',val1,'param2', val2,...) specifies optional parameter name/value pairs: \\
'mode ' \\
String indicating how oobError computes errors. If set to 'cumulative' (default), the method computes cumulative errors and err is a vector of length NTrees, where the first element gives error from trees (1), second element gives error from trees(1:2) etc, up to trees ( \(1:\) NTrees). If set to 'individual', err is a vector of length NTrees, where each element is an error from each tree in the ensemble. If set to 'ensemble', err is a scalar showing the cumulative error for the entire ensemble.
\end{tabular} \\
\hline & \begin{tabular}{l}
'trees' \\
Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'trees' is a numeric vector, the method returns a vector of length NTrees for 'cumulative' and 'individual' modes, where NTrees is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative' mode, the
\end{tabular} \\
\hline
\end{tabular}

\section*{TreeBagger.oobError}
first element gives error from trees(1), the second element gives error from trees (1:2) etc.
'treeweights' Vector of tree weights. This vector must have the same length as the 'trees' vector. oobError uses these weights to combine output from the specified trees by taking a weighted average instead of the simple nonweighted majority vote. You cannot use this argument in the 'individual' mode.

See Also
CompactTreeBagger.error

\section*{TreeBagger.OOBIndices property}

\author{
Purpose Indicator matrix for out-of-bag observations \\ Description The 00BIndices property is a logical array of size Nobs-by-NTrees where Nobs is the number of observations in the training data and NTrees is the number of trees in the ensemble. The ( \(I, J\) ) element is true if observation I is out-of-bag for tree \(J\) and false otherwise. In other words, a true value means observation I was not selected for the training data used to grow tree J .
}

\author{
See Also \\ classregtree
}

\section*{TreeBagger.OOBInstanceWeight property}

Purpose Count of out-of-bag trees for each observation
Description The 00BInstanceWeight property is a numeric array of size Nobs-by-1 containing the number of trees used for computing out-of-bag response for each observation. Nobs is the number of observations in the training data used to create the ensemble.

\section*{ClassificationBaggedEnsemble.oobLoss}
\begin{tabular}{ll} 
Purpose & Out-of-bag classification error \\
Syntax & L \(=\) oobloss(ens) \\
& L \(=\) oobloss(ens, Name, Value)
\end{tabular}

Description \(L=\) oobloss(ens) returns the classification error for ens computed for out-of-bag data.

L = oobloss(ens, Name, Value) computes error with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1,Value1, ,NameN,ValueN.

\section*{Input \\ Arguments}
ens
A classification bagged ensemble, constructed with fitensemble.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'learners'}

Indices of weak learners in the ensemble ranging from 1 to NTrained. oobLoss uses only these learners for calculating loss.

Default: 1:NTrained

\section*{'lossfun'}

Function handle or string representing a loss function. Built-in loss functions:
- 'binodeviance' - See "Loss Functions" on page 20-1911
- 'classiferror' - Fraction of misclassified data

\section*{ClassificationBaggedEnsemble.oobLoss}
- 'exponential' - See "Loss Functions" on page 20-1911

You can write your own loss function in the syntax described in "Loss Functions" on page 20-1911.

Default: 'classiferror'

\section*{'mode'}

String representing the meaning of the output L:
- 'ensemble' - L is a scalar value, the loss for the entire ensemble.
- 'individual' - L is a vector with one element per trained learner.
- 'cumulative' - \(L\) is a vector in which element \(J\) is obtained by using learners \(1: J\) from the input list of learners.

Default: 'ensemble'

\section*{Output}

Arguments

\section*{Definitions}

L
Classification error of the out-of-bag observations, a scalar. L can be a vector, or can represent a different quantity, depending on the name-value settings.

\section*{Out of Bag}

Bagging, which stands for "bootstrap aggregation", is a type of ensemble learning. To bag a weak learner such as a decision tree on a dataset, fitensemble generates many bootstrap replicas of the dataset and grows decision trees on these replicas. fitensemble obtains each bootstrap replica by randomly selecting N observations out of N with replacement, where \(N\) is the dataset size. To find the predicted response of a trained ensemble, predict take an average over predictions from individual trees.

\section*{ClassificationBaggedEnsemble.oobLoss}

Drawing N out of N observations with replacement omits on average \(37 \%(1 / e)\) of observations for each decision tree. These are "out-of-bag" observations. For each observation, oobLoss estimates the out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this observation is out of bag. It then compares the computed prediction against the true response for this observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses against the true responses for all observations used for training. This out-of-bag average is an unbiased estimator of the true ensemble error.

\section*{Loss Functions}

The built-in loss functions are:
- 'binodeviance' - For binary classification, assume the classes \(y_{n}\) are -1 and 1 . With weight vector \(w\) normalized to have sum 1 , and predictions of row \(n\) of data \(X\) as \(f\left(X_{n}\right)\), the binomial deviance is
\[
\sum w_{n} \log \left(1+\exp \left(-2 y_{n} f\left(X_{n}\right)\right)\right)
\]
- 'classiferror' - Fraction of misclassified data, weighted by \(w\).
- 'exponential' - With the same definitions as for 'binodeviance', the exponential loss is
\[
\sum w_{n} \exp \left(-y_{n} f\left(X_{n}\right)\right)
\]

To write your own loss function, create a function file of the form
```

function loss = lossfun(C,S,W,COST)

```
- \(N\) is the number of rows of \(X\).
- K is the number of classes in tree, represented in tree.ClassNames.
- \(C\) is an N-by-K logical matrix, with one true per row for the true class. The index for each class is its position in tree.ClassNames.

\section*{ClassificationBaggedEnsemble.oobLoss}
- \(S\) is an N -by-K numeric matrix. S is a matrix of posterior probabilities for classes with one row per observation, similar to the posterior output from predict.
- \(W\) is a numeric vector with \(N\) elements, the observation weights.
- COST is a K-by-K numeric matrix of misclassification costs. The default 'classiferror' cost function uses a cost of 0 for correct classification, and 1 for misclassification. In other words, 'classiferror' uses COST=ones(K)-eye(K).
- The output loss should be a scalar.

Pass the function handle @lossfun as the value of the lossfun name-value pair.
```

Examples Find the out-of-bag error for a bagged ensemble from the Fisher iris
data:
load fisheriris
ens = fitensemble(meas,species,'Bag',100,...
'Tree','type', 'classification');
L = oobLoss(ens)
L =
0.0467

```
```

See Also
loss | oobEdge | oobMargin | oobPredict

```

\section*{RegressionBaggedEnsemble.oobLoss}
\begin{tabular}{ll} 
Purpose & Out-of-bag regression error \\
Syntax & L \(=\) oobLoss(ens) \\
& L \(=00 b L o s s(e n s\), Name, Value)
\end{tabular}

\section*{Description}

\section*{Input} Arguments
\(\mathrm{L}=\) oobLoss(ens) returns the mean squared error for ens computed for out-of-bag data.

L = oobLoss(ens,Name, Value) computes error with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, ,NameN, ValueN.

\section*{ens}

A regression bagged ensemble, constructed with fitensemble.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'learners'}

Indices of weak learners in the ensemble ranging from 1 to NTrained. oobLoss uses only these learners for calculating loss.

Default: 1:NTrained

\section*{'lossfun'}

Function handle for loss function, or the string 'mse', meaning mean squared error. If you pass a function handle fun, oobLoss calls it as

FUN(Y,Yfit,W)

\section*{RegressionBaggedEnsemble.oobLoss}
re \(Y\), Yfit, and \(W\) are numeric vectors of the same length. \(Y\) is the observed response, Yfit is the predicted response, and \(W\) is the observation weights.

Default: 'mse'

\section*{'mode'}

String representing the meaning of the output L:
- 'ensemble' - L is a scalar value, the loss for the entire ensemble.
- 'individual' - L is a vector with one element per trained learner.
- 'cumulative' - L is a vector in which element J is obtained by using learners \(1: J\) from the input list of learners.

Default: 'ensemble'

\section*{Output}

Arguments

\section*{Definitions}

L
Mean squared error of the out-of-bag observations, a scalar. L can be a vector, or can represent a different quantity, depending on the name-value settings.

\section*{Out of Bag}

Bagging, which stands for "bootstrap aggregation", is a type of ensemble learning. To bag a weak learner such as a decision tree on a dataset, fitensemble generates many bootstrap replicas of the dataset and grows decision trees on these replicas. fitensemble obtains each bootstrap replica by randomly selecting N observations out of N with replacement, where \(N\) is the dataset size. To find the predicted response of a trained ensemble, predict take an average over predictions from individual trees.

Drawing \(N\) out of \(N\) observations with replacement omits on average \(37 \%\) (1/e) of observations for each decision tree. These are "out-of-bag"

\section*{RegressionBaggedEnsemble.oobLoss}

\section*{Examples Compute the out-of-bag error for the carsmall data:}
```

load carsmall
X = [Displacement Horsepower Weight];
ens = fitensemble(X,MPG,'bag',100,'Tree',...
'type','regression');
L = oobLoss(ens)
L =
17.0665

```
See Also oobPredict ..... loss

\section*{ClassificationBaggedEnsemble.oobMargin}

Purpose Out-of-bag classification margins

Syntax

Description

\section*{Input}

Arguments

\section*{Output}

Arguments

\section*{Definitions}

\section*{margin}

A numeric column vector of length size(ens. \(\mathrm{X}, 1\) ).

\section*{Out of Bag}

Bagging, which stands for "bootstrap aggregation", is a type of ensemble learning. To bag a weak learner such as a decision tree on a dataset, fitensemble generates many bootstrap replicas of the dataset and

\section*{ClassificationBaggedEnsemble.oobMargin}
grows decision trees on these replicas. fitensemble obtains each bootstrap replica by randomly selecting N observations out of N with replacement, where \(N\) is the dataset size. To find the predicted response of a trained ensemble, predict take an average over predictions from individual trees.
Drawing N out of N observations with replacement omits on average \(37 \%(1 / e)\) of observations for each decision tree. These are "out-of-bag" observations. For each observation, oobLoss estimates the out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this observation is out of bag. It then compares the computed prediction against the true response for this observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses against the true responses for all observations used for training. This out-of-bag average is an unbiased estimator of the true ensemble error.

\section*{Margin}

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix ens. x .

\section*{Examples}

Find the out-of-bag margin for a bagged ensemble from the Fisher iris data: Find how many elements of margin are equal to 1.
```

load fisheriris
ens = fitensemble(meas,species,'Bag',100,···
'Tree','type','classification');
margin = oobMargin(ens);
sum(margin == 1)
ans =
108

```

See Also oobPredict | oobLoss | oobEdge | margin

\section*{TreeBagger.oobMargin}
\begin{tabular}{|c|c|}
\hline Purpose & Out-of-bag margins \\
\hline Syntax & ```
mar = oobMargin(B)
mar = oobMargin(B,'param1',val1,'param2',val2,...)
``` \\
\hline Description & \begin{tabular}{l}
mar \(=\) oobMargin(B) computes an Nobs-by-NTrees matrix of classification margins for out-of-bag observations in the training data, using the trained bagger B. \\
mar = oobMargin(B,'param1', val1,'param2', val2,...) specifies optional parameter name/value pairs:
\end{tabular} \\
\hline & \begin{tabular}{l}
'mode ' \\
String indicating how oobMargin computes errors. If set to 'cumulative' (default), the method computes cumulative margins and mar is an Nobs-by-NTrees matrix, where the first column gives margins from trees (1), second column gives margins from trees(1:2) etc, up to trees(1:NTrees). If set to 'individual', mar is an Nobs-by-NTrees matrix, where each column gives margins from each tree in the ensemble. If set to 'ensemble', mar is a single column of length Nobs showing the cumulative margins for the entire ensemble.
\end{tabular} \\
\hline & \begin{tabular}{l}
'trees' \\
Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'trees' is a numeric vector, the method returns an Nobs-by-NTrees matrix for 'cumulative' and 'individual' modes, where NTrees is the number of elements in the input vector, and a single column for 'ensemble' mode. For example, in the 'cumulative' mode, the first column gives
\end{tabular} \\
\hline
\end{tabular}

\section*{TreeBagger.oobMargin}
\[
\begin{array}{ll}
& \begin{array}{l}
\text { margins from trees(1), the second column gives } \\
\text { margins from trees(1:2) etc. }
\end{array} \\
\text { 'treeweights' } & \begin{array}{l}
\text { Vector of tree weights. This vector must have the } \\
\text { same length as the 'trees' vector. oobMargin uses } \\
\text { these weights to combine output from the specified } \\
\text { trees by taking a weighted average instead of the } \\
\text { simple nonweighted majority vote. You cannot use } \\
\text { this argument in the 'individual ' mode. }
\end{array}
\end{array}
\]

See Also
CompactTreeBagger.margin

\section*{TreeBagger.oobMeanMargin}
\begin{tabular}{|c|c|}
\hline Purpose & Out-of-bag mean margins \\
\hline Syntax & ```
mar = oobMeanMargin(B)
mar = oobMeanMargin(B,'param1',val1,'param2',val2,...)
``` \\
\hline \multirow[t]{3}{*}{Description} & \begin{tabular}{l}
mar = oobMeanMargin(B) computes average classification margins for out-of-bag observations in the training data, using the trained bagger B. oobMeanMargin averages the margins over all out-of-bag observations. mar is a row-vector of length NTrees, where NTrees is the number of trees in the ensemble. \\
mar = oobMeanMargin(B,'param1',val1,'param2', val2,...) specifies optional parameter name/value pairs: \\
'mode' \\
String indicating how oobMargin computes errors. If set to 'cumulative' (default), is a vector of length NTrees where the first element gives mean margin from trees(1), second column gives mean margins from trees(1:2) etc, up to trees(1:NTrees). If set to 'individual', mar is a vector of length NTrees, where each element is a mean margin from each tree in the ensemble. If set to 'ensemble', mar is a scalar showing the cumulative mean margin for the entire ensemble.
\end{tabular} \\
\hline & 'trees ' Vector of indices indicating what trees to include in this calculation. By default, this argument is set to 'all' and the method uses all trees. If 'trees' is a numeric vector, the method returns a vector of length NTrees for 'cumulative' and 'individual' modes, where NTrees is the number of elements in the input vector, and a scalar for 'ensemble' mode. For example, in the 'cumulative' mode, the first element gives mean margin from trees(1), the second element gives mean margin from trees(1:2) etc. \\
\hline & 'treeweights ' Vector of tree weights. This vector must have the same length as the 'trees' vector. oobMeanMargin uses these weights to combine output from the specified trees by taking a weighted average instead of the simple nonweighted majority vote. You cannot use this argument in the 'individual' mode. \\
\hline
\end{tabular}

\section*{TreeBagger.oobMeanMargin}

See Also
CompactTreeBagger.meanMargin

\section*{TreeBagger.OOBPermutedVarCountRaiseMargin property}

Purpose Variable importance for raising margin
Description
The 00BPermutedVarCountRaiseMargin property is a numeric array of size 1-by-Nvars containing a measure of variable importance for each predictor. For any variable, the measure is the difference between the number of raised margins and the number of lowered margins if the values of that variable are permuted across the out-of-bag observations. This measure is computed for every tree, then averaged over the entire ensemble and divided by the standard deviation over the entire ensemble. This property is empty for regression trees.

\section*{TreeBagger.OOBPermutedVarDeltaError property}

Purpose Variable importance for prediction error
Description The OOBPermutedVarDeltaError property is a numeric array of size 1-by-Nvars containing a measure of importance for each predictor variable (feature). For any variable, the measure is the increase in prediction error if the values of that variable are permuted across the out-of-bag observations. This measure is computed for every tree, then averaged over the entire ensemble and divided by the standard deviation over the entire ensemble.

\section*{TreeBagger.OOBPermutedVarDeltaMeanMargin property}

Purpose Variable importance for classification margin
Description
The OOBPermutedVarDeltaMeanMargin property is a numeric array of size 1-by-Nvars containing a measure of importance for each predictor variable (feature). For any variable, the measure is the decrease in the classification margin if the values of that variable are permuted across the out-of-bag observations. This measure is computed for every tree, then averaged over the entire ensemble and divided by the standard deviation over the entire ensemble. This property is empty for regression trees.

\section*{ClassificationBaggedEnsemble.oobPredict}

\section*{Purpose}

Predict out-of-bag response of ensemble

\section*{Syntax}

Description

Input Arguments
```

[label,score] = oobPredict(ens)

```
[label,score] = oobPredict(ens,Name,Value)
[label, score] = oobPredict(ens) returns class labels and scores for ens for out-of-bag data.
[label, score] = oobPredict(ens,Name, Value) computes labels and scores with additional options specified by one or more Name, Value pair arguments.

\section*{ens}

A classification bagged ensemble, constructed with fitensemble.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'learners'}

Indices of weak learners in the ensemble ranging from 1 to ens.NTrained. oobEdge uses only these learners for calculating loss.

Default: 1:NTrained

\section*{Output \\ Arguments}

\section*{label}

Classification labels of the same data type as the training data Y . There are \(N\) elements or rows, where \(N\) is the number of training observations. The label is the class with the highest score. In case of a tie, the label is earliest in ens.ClassNames.

\section*{score}

\section*{ClassificationBaggedEnsemble.oobPredict}

An N-by-K numeric matrix for N observations and K classes. A high score indicates that an observation is likely to come from this class. Scores are in the range 0 to 1 .

\section*{Definitions}

\section*{Out of Bag}

Bagging, which stands for "bootstrap aggregation", is a type of ensemble learning. To bag a weak learner such as a decision tree on a dataset, fitensemble generates many bootstrap replicas of the dataset and grows decision trees on these replicas. fitensemble obtains each bootstrap replica by randomly selecting N observations out of N with replacement, where \(N\) is the dataset size. To find the predicted response of a trained ensemble, predict take an average over predictions from individual trees.

Drawing N out of N observations with replacement omits on average \(37 \%\) ( \(1 / e\) ) of observations for each decision tree. These are "out-of-bag" observations. For each observation, oobLoss estimates the out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this observation is out of bag. It then compares the computed prediction against the true response for this observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses against the true responses for all observations used for training. This out-of-bag average is an unbiased estimator of the true ensemble error.

\section*{Score (ensemble)}

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:
- AdaBoostM1 scores range from \(-\infty\) to \(\infty\).
- Bag scores range from 0 to 1 .

\section*{ClassificationBaggedEnsemble.oobPredict}
```

Examples Find the out-of-bag predictions and scores for the Fisher iris data. Find
the scores in the range ($0.2,0.8$); these are the scores where there is
notable uncertainty in the resulting classifications.
load fisheriris
ens = fitensemble(meas,species,'Bag',100,...
'Tree','type', 'classification');
[label score] = oobPredict(ens);
unsure $=($ (score > .2) \& (score < .8)) ;
sum(sum(unsure)) \% How many uncertain predictions?
ans =
16
See Also oobMargin | oobPredict | oobLoss | oobEdge | predict

```

\section*{RegressionBaggedEnsemble.oobPredict}


\section*{Output Arguments}

\section*{ens}

A regression bagged ensemble, constructed with fitensemble.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'learners'}

Indices of weak learners in the ensemble ranging from 1 to NTrained. oobLoss uses only these learners for calculating loss.

Default: 1:NTrained

Yfit
A vector of predicted responses for out-of-bag data. Yfit has size(ens.X,1) elements.
You can find the indices of out-of-bag observations for weak learner \(L\) with the command
~ens.UseObsForLearner(: , L)

\section*{RegressionBaggedEnsemble.oobPredict}

\section*{Definitions Out of Bag}

Bagging, which stands for "bootstrap aggregation", is a type of ensemble learning. To bag a weak learner such as a decision tree on a dataset, fitensemble generates many bootstrap replicas of the dataset and grows decision trees on these replicas. fitensemble obtains each bootstrap replica by randomly selecting \(N\) observations out of \(N\) with replacement, where \(N\) is the dataset size. To find the predicted response of a trained ensemble, predict take an average over predictions from individual trees.

Drawing N out of N observations with replacement omits on average \(37 \%\) (1/e) of observations for each decision tree. These are "out-of-bag" observations. For each observation, oobLoss estimates the out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this observation is out of bag. It then compares the computed prediction against the true response for this observation. It calculates the out-of-bag error by comparing the out-of-bag predicted responses against the true responses for all observations used for training. This out-of-bag average is an unbiased estimator of the true ensemble error.

\section*{Examples}

Compute out-of-bag predictions for the carsmall data. Look at the first three terms of the fit:
```

load carsmall
X = [Displacement Horsepower Weight];
ens = fitensemble(X,MPG,'bag',100,'Tree',...
'type','regression');
Yfit = oobPredict(ens);
Yfit(1:3) % first three terms
ans =
15.7964
14.7162
14.8062

```

See Also oobLoss | predict

\section*{TreeBagger.oobPredict}

Purpose Ensemble predictions for out-of-bag observations
```

Syntax
Y = oobPredict(B)
Y = oobPredict(B,'param1',val1,'param2',val2,...)

```

Description \(\quad Y=\) oobPredict \((B)\) computes predicted responses using the trained bagger B for out-of-bag observations in the training data. The output has one prediction for each observation in the training data. The returned Y is a cell array of strings for classification and a numeric array for regression.

Y = oobPredict(B,'param1',val1,'param2',val2,...) specifies optional parameter name/value pairs:
\begin{tabular}{ll} 
'trees' & \begin{tabular}{l} 
Array of tree indices to use for computation of \\
responses. Default is 'all'.
\end{tabular} \\
'treeweights ' & \begin{tabular}{l} 
Array of NTrees weights for weighting votes from \\
the specified trees.
\end{tabular}
\end{tabular}

See Also CompactTreeBagger.predict | OOBIndices

\section*{Superclasses categorical}

\section*{Purpose Arrays for ordinal categorical data}

Description Ordinal arrays are used to store discrete values that have an ordering but are not numeric. An ordinal array provides efficient storage and convenient manipulation of such data, while also maintaining meaningful labels for the values. Ordinal arrays are often used as grouping variables.

Like a numerical array, an ordinal array can have any size or dimension. You can subscript, concatenate, reshape, sort, etc. ordinal arrays, much like ordinary numeric arrays. You can make comparisons between elements of two ordinal arrays, or between an ordinal array and a single string representing a ordinal value.

\section*{Construction}

Use the ordinal constructor to create an ordinal array from a numeric, logical, or character array, or from a cell array of strings.
\[
\begin{array}{ll}
\text { ordinal } & \begin{array}{l}
\text { Construct ordinal categorical } \\
\text { array }
\end{array}
\end{array}
\]

\section*{Methods}

Each ordinal array carries along a list of possible values that it can store, known as its levels. The list is created when you create an ordinal array, and you can access it using the getlevels method, or modify it using the addlevels, mergelevels, or droplevels methods. Assignment to the array will also add new levels automatically if the values assigned are not already levels of the array. The ordering on values stored in an ordinal array is defined by the order of the list of levels. You can change that order using the reorderlevels method.

The following table lists operations available for ordinal arrays.
\begin{tabular}{ll} 
ismember & Test for membership \\
mergelevels & Merge levels
\end{tabular}
sort
sortrows

Sort elements of ordinal array
Sort rows

\section*{Inherited Methods}

Methods in the following table are inherited from categorical.
\begin{tabular}{ll} 
addlevels & Add levels to categorical array \\
cat \\
cellstr & \begin{tabular}{l} 
Concatenate categorical arrays \\
Convert categorical array to cell \\
array of strings \\
Convert categorical array to \\
character array
\end{tabular} \\
char & Shift categorical array circularly \\
circshift & \begin{tabular}{l} 
Transpose categorical matrix
\end{tabular} \\
ctranspose & \begin{tabular}{l} 
Display categorical array
\end{tabular} \\
disp & \begin{tabular}{l} 
Display categorical array \\
Convert categorical array to \\
double array
\end{tabular} \\
display & \begin{tabular}{l} 
Drop levels
\end{tabular} \\
droplevels & \begin{tabular}{l} 
Last index in indexing expression \\
for categorical array
\end{tabular} \\
end & \begin{tabular}{l} 
Flip categorical array along \\
specified dimension
\end{tabular} \\
flipdim & \begin{tabular}{l} 
Flip categorical matrix in \\
left/right direction
\end{tabular} \\
fliplr & \begin{tabular}{l} 
Flip categorical matrix in \\
up/down direction
\end{tabular} \\
flipud & \begin{tabular}{l} 
Access categorical array labels \\
Get categorical array levels
\end{tabular} \\
getlabels & getlevels
\end{tabular}
\begin{tabular}{|c|c|}
\hline hist & Plot histogram of categorical data \\
\hline horzcat & Horizontal concatenation for categorical arrays \\
\hline int16 & Convert categorical array to signed 16-bit integer array \\
\hline int32 & Convert categorical array to signed 32 -bit integer array \\
\hline int64 & Convert categorical array to signed 64-bit integer array \\
\hline int8 & Convert categorical array to signed 8 -bit integer array \\
\hline intersect & Set intersection for categorical arrays \\
\hline ipermute & Inverse permute dimensions of categorical array \\
\hline isempty & True for empty categorical array \\
\hline isequal & True if categorical arrays are equal \\
\hline islevel & Test for levels \\
\hline ismember & True for elements of categorical array in set \\
\hline isscalar & True if categorical array is scalar \\
\hline isundefined & Test for undefined elements \\
\hline isvector & True if categorical array is vector \\
\hline length & Length of categorical array \\
\hline levelcounts & Element counts by level \\
\hline ndims & Number of dimensions of categorical array \\
\hline
\end{tabular}
\begin{tabular}{ll} 
numel & \begin{tabular}{l} 
Number of elements in categorical \\
array
\end{tabular} \\
permute & \begin{tabular}{l} 
Permute dimensions of \\
categorical array
\end{tabular} \\
reorderlevels & \begin{tabular}{l} 
Reorder levels \\
Replicate and tile categorical \\
array
\end{tabular} \\
repmat & \begin{tabular}{l} 
Resize categorical array \\
Rotate categorical matrix 90 \\
degrees
\end{tabular} \\
reshape & \begin{tabular}{l} 
Set difference for categorical \\
arrays
\end{tabular} \\
rot90 & \begin{tabular}{l} 
Label levels
\end{tabular} \\
setdiff & \begin{tabular}{l} 
Set exclusive-or for categorical \\
arrays
\end{tabular} \\
setlabels & \begin{tabular}{l} 
Shift dimensions of categorical \\
array
\end{tabular} \\
setxor & \begin{tabular}{l} 
Convert categorical array to \\
single array
\end{tabular} \\
shiftdim & \begin{tabular}{l} 
Size of categorical array \\
Squeeze singleton dimensions
\end{tabular} \\
single & \begin{tabular}{l} 
Srom categorical array \\
from \\
Subscripted assignment for \\
categorical array
\end{tabular} \\
size & \begin{tabular}{l} 
Subscript index for categorical \\
array
\end{tabular} \\
squeeze & \begin{tabular}{l} 
Subscripted reference for \\
categorical array
\end{tabular} \\
subsasgn & subsindex
\end{tabular}
\begin{tabular}{ll} 
summary & \begin{tabular}{l} 
Summary statistics for categorical \\
array
\end{tabular} \\
times & \begin{tabular}{l} 
Product of categorical arrays \\
transpose \\
uint16
\end{tabular} \\
uint32 & \begin{tabular}{l} 
Transpose categorical matrix \\
Convert categorical array to \\
unsigned 16-bit integers \\
Convert categorical array to \\
unsigned 32-bit integers
\end{tabular} \\
uint64 & \begin{tabular}{l} 
Convert categorical array to \\
unsigned 64-bit integers
\end{tabular} \\
uint8 & \begin{tabular}{l} 
Convert categorical array to \\
unsigned 8-bit integers
\end{tabular} \\
union & \begin{tabular}{l} 
Set union for categorical arrays
\end{tabular} \\
unique & \begin{tabular}{l} 
Unique values in categorical \\
array
\end{tabular} \\
vertcat & \begin{tabular}{l} 
Vertical concatenation for \\
categorical arrays
\end{tabular}
\end{tabular}

\section*{Properties Inherited Properties}

Properties in the following table are inherited from categorical.
\begin{tabular}{ll} 
labels & Text labels for levels \\
undeflabel & Text label for undefined levels
\end{tabular}
\begin{tabular}{ll} 
Copy & Value. To learn how this affects your use of the class, see Comparing \\
Semantics & \begin{tabular}{l} 
Handle and Value Classes in the MATLAB Object-Oriented \\
Programming documentation.
\end{tabular} \\
Examples & Create an ordinal array from integer data:
\end{tabular}
quality \(=\) ordinal([1 \(23 ; 321 ; 213],\left\{{ }^{\prime} 1\right.\) low' 'medium' 'high'\})
\% Find elements meeting a criterion
quality >= 'medium'
ismember(quality, \{'low' 'high'\})
```

% Compare two ordinal arrays
quality2 = fliplr(quality)
quality == quality2

```

\section*{References [1] Johnson, N. L., S. Kotz, and A. W. Kemp, Univariate Discrete Distributions, 2nd edition, Wiley, 1992, pp. 124-130.}

\author{
See Also histc | nominal
}
\begin{tabular}{rl} 
Purpose & Construct ordinal categorical array \\
Syntax & \(B=\operatorname{ordinal}(A)\) \\
& \(B=\operatorname{ordinal}(A\), labels \()\) \\
& \(B=\operatorname{ordinal}(A\), labels, levels \()\) \\
& \(B=\operatorname{ordinal}(A, l a b e l s,[]\), edges \()\)
\end{tabular}

Description
\(B=\) ordinal \((A)\) creates an ordinal array \(B\) from the array \(A\). \(A\) can be numeric, logical, character, categorical, or a cell array of strings. ordinal creates the levels of B from the sorted unique values in A, and creates default labels for them.

B = ordinal(A, labels) labels the levels in B using the character array or cell array of strings labels. ordinal assigns labels to levels in B in order according to the sorted unique values in A .
\(B=o r d i n a l(A, l a b e l s, l e v e l s)\) creates an ordinal array with possible levels defined by levels. levels is a vector whose values can be compared to those in A using the equality operator. ordinal assigns labels to each level from the corresponding elements of labels. If A contains any values not present in levels, the levels of the corresponding elements of \(B\) are undefined. Use [ ] for labels to allow ordinal to create default labels.
\(B=\) ordinal(A, labels, [], edges) creates an ordinal array by binning the numeric array \(A\), with bin edges given by the numeric vector edges. The uppermost bin includes values equal to the right-most edge. ordinal assigns labels to each level in B from the corresponding elements of labels. edges must have one more element than labels.

By default, an element of \(B\) is undefined if the corresponding element of A is NaN (when A is numeric), an empty string (when A is character), or undefined (when A is categorical). ordinal treats such elements as "undefined" or "missing" and does not include entries for them among the possible levels for \(B\). To create an explicit level for such elements instead of treating them as undefined, you must use the levels input, and include NaN , the empty string, or an undefined element.

You may include duplicate labels in labels in order to merge multiple values in A into a single level in B.

\section*{Examples}

Create an ordinal array from integer data, and provide explicit labels:
```

quality1 = ordinal([1 2 3; 3 2 1; 2 1 3],...
{'low' 'medium' 'high'})

```

Create an ordinal array from integer data, and provide both explicit labels and an explicit order:
```

quality2 = ordinal([1 2 3; 3 2 1; 2 1 3],...
{'high' 'medium' 'low'},[3 2 1])

```

Create an ordinal array by binning floating point values:
```

size = ordinal(rand(5,2),{'small' 'medium' 'large'},...
[],[0 1/3 2/3 1])

```

Create an ordinal array from the measurements in Fisher's iris data, ignoring decimal lengths:
```

load fisheriris
m = floor(min(meas(:)));
M = floor(max(meas(:)));
labels = num2str((m:M)');
edges = m:M+1;
cms = ordinal(meas,labels,[],edges)
meas(1:5,:)
ans =

5.1000	3.5000	1.4000	0.2000
4.9000	3.0000	1.4000	0.2000

```
\begin{tabular}{cccc}
4.7000 & 3.2000 & 1.3000 & 0.2000 \\
4.6000 & 3.1000 & 1.5000 & 0.2000 \\
5.0000 & 3.6000 & 1.4000 & 0.2000 \\
cms \((1.5,:)\) & & & \\
ans \(=\) & & & \\
5 & 3 & 1 & 0 \\
4 & 3 & 1 & 0 \\
4 & 3 & 1 & 0 \\
4 & 3 & 1 & 0 \\
5 & 3 & 1 & 0
\end{tabular}

Create an age group ordinal array from the data in hospital.mat:
load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','\%d'),\{'s'\});
AgeGroup = ordinal(hospital.Age,labels,[],edges);
hospital.Age(1:5)
ans \(=\)
38
43
38
40
49
AgeGroup(1:5)
ans =
30s
40s
30s
40s
40s

\section*{See Also}
histc | nominal

\section*{CompactTreeBagger.outlierMeasure}
\begin{tabular}{|c|c|}
\hline Purpose & Outlier measure for data \\
\hline Syntax & ```
out = outlierMeasure(B,X)
out = outlierMeasure(B,X,'param1',val1,'param2',val2,...)
``` \\
\hline \multirow[t]{4}{*}{Description} & out = outlierMeasure \((B, X)\) computes outlier measures for predictors \(X\) using trees in the ensemble \(B\). The method computes the outlier measure for a given observation by taking an inverse of the average squared proximity between this observation and other observations. outlierMeasure then normalizes these outlier measures by subtracting the median of their distribution, taking the absolute value of this difference, and dividing by the median absolute deviation. A high value of the outlier measure indicates that this observation is an outlier. \\
\hline & \begin{tabular}{l}
You can supply the proximity matrix directly by using the 'data' parameter. \\
out = outlierMeasure (B, X,'param1', val1,'param2', val2,...) specifies optional parameter name/value pairs:
\end{tabular} \\
\hline & \begin{tabular}{l}
'data' \\
Flag indicating how to treat the X input argument. If set to 'predictors' (default), the method assumes \(X\) is a matrix of predictors and uses it for computation of the proximity matrix. If set to 'proximity', the method treats X as a proximity matrix returned by the proximity method. If you do not supply the proximity matrix, outlierMeasure computes it internally. If you use the proximity method to compute a proximity matrix, supplying it as input to outlierMeasure reduces computing time.
\end{tabular} \\
\hline & \begin{tabular}{l}
'labels' \\
Vector of true class labels. True class labels can be either a numeric vector, character matrix, or cell array of strings. When you supply this parameter, the method performs the outlier calculation for any observations using only other observations from the same class. This parameter must specify one label for each observation (row) in \(X\).
\end{tabular} \\
\hline
\end{tabular}

\title{
CompactTreeBagger.outlierMeasure
}

See Also proximity

\section*{TreeBagger.OutlierMeasure property}

Purpose Measure for determining outliers
Description \(\begin{aligned} & \text { The OutlierMeasure property is a numeric array of size Nobs-by-1, } \\ & \text { where Nobs is the number of observations in the training data, } \\ & \text { containing outlier measures for each observation. }\end{aligned}\)
See Also CompactTreeBagger.outlierMeasure

Parallel coordinates plot
```

parallelcoords(X)
parallelcoords(X,...,'Standardize','on')
parallelcoords(X,...,'Standardize','PCA')
parallelcoords(X,...,'Standardize','PCAStd')
parallelcoords(X,...,'Quantile',alpha)
parallelcoords(X,...,'Group',group)
parallelcoords(X,...,'Labels',labels)
parallelcoords(X,...,PropertyName,PropertyValue,...)
h = parallelcoords(X,...)
parallelcoords(axes,...)

```
parallelcoords (X) creates a parallel coordinates plot of the multivariate data in the \(n\)-by- \(p\) matrix X . Rows of X correspond to observations, columns to variables. A parallel coordinates plot is a tool for visualizing high dimensional data, where each observation is represented by the sequence of its coordinate values plotted against their coordinate indices. parallelcoords treats NaNs in X as missing values and does not plot those coordinate values.
parallelcoords(X, ...,'Standardize', 'on') scales each column of X to have mean 0 and standard deviation 1 before making the plot.
parallelcoords(X, .., 'Standardize', 'PCA') creates a parallel coordinates plot from the principal component scores of \(X\), in order of decreasing eigenvalues. parallelcoords removes rows of \(X\) containing missing values (NaNs) for principal components analysis (PCA) standardization.
parallelcoords(X,...,'Standardize', 'PCAStd') creates a parallel coordinates plot using the standardized principal component scores.
parallelcoords(X, ...,'Quantile', alpha) plots only the median and the alpha and 1-alpha quantiles of \(f(t)\) at each value of \(t\). This is useful if \(X\) contains many observations.
parallelcoords(X,..., 'Group', group) plots the data in different groups with different colors. Groups are defined by group, a numeric

\section*{parallelcoords}
array containing a group index for each observation. group can also be a categorical variable, character matrix, or cell array of strings, containing a group name for each observation.
parallelcoords(X, ..., 'Labels', labels) labels the coordinate tick marks along the horizontal axis using labels, a character array or cell array of strings.
parallelcoords(X, ...,PropertyName,PropertyValue,...) sets properties to the specified property values for all line graphics objects created by parallelcoords.
\(h=\) parallelcoords \((X, \ldots)\) returns a column vector of handles to the line objects created by parallelcoords, one handle per row of \(X\). If you use the 'Quantile' input argument, \(h\) contains one handle for each of the three lines objects created. If you use both the 'Quantile' and the 'Group ' input arguments, h contains three handles for each group.
parallelcoords(axes,...) plots into the axes with handle axes.

\section*{Examples}
```

% Make a grouped plot of the raw data
load fisheriris
labels = {'Sepal Length','Sepal Width',...
'Petal Length','Petal Width'};
parallelcoords(meas,'group',species,'labels',labels);
% Plot only the median and quartiles of each group
parallelcoords(meas,'group',species,'labels',labels,...
'quantile',.25);

```

See Also andrewsplot | glyphplot
How To . "Grouping Variables" on page 2-51

\section*{ProbDistUnivParam.paramci}

\section*{Purpose}

Return parameter confidence intervals of ProbDistUnivParam object
Syntax
CI = paramci(PD)
CI = paramci(PD, Alpha)

CI = paramci(PD) returns CI, a 2 -by-N array containing \(95 \%\) confidence intervals for the parameters of the ProbDistUnivParam object PD. \(N\) is the number of parameters in the distribution. When you create PD by specifying parameters (such as using the ProbDistUnivParam.ProbDistUnivParam constructor or using the fitdist function and specifying a 'binomial' or 'generalized pareto' distribution) rather than by fitting to data, the confidence intervals have a width of 0 because the parameters are viewed as estimates of an unknown parameter.

CI = paramci(PD, Alpha) returns 100*(1 - Alpha)\% confidence intervals. Default Alpha is 0.05 , which specifies \(95 \%\) confidence intervals.

Note If you create PD with a distribution that does not support confidence intervals, then CI contains NaN values.

\section*{Input \\ Arguments}

Output
Arguments

PD
Alpha

An object of the class ProbDistUnivParam.
A value between 0 and 1 that specifies a confidence interval. Default is 0.05 , which specifies \(95 \%\) confidence intervals.

A 2 -by-N array containing 100*(1-Alpha) \(\%\) confidence intervals for the parameters of the ProbDistUnivParam object PD. \(N\) is the number of parameters in the distribution.

\section*{ProbDistUnivParam.paramci}

See Also fitdist

\title{
prob.ToolboxFittableParametricDistribution.paramci
}

\section*{Purpose}

Confidence intervals for probability distribution parameters
ci = paramci(pd)
ci \(=\) paramci(pd,Name, Value)

Input
Arguments
\(\mathrm{ci}=\) paramci(pd) returns the array ci containing the lower and upper boundaries of the \(95 \%\) confidence interval for each parameter in probability distribution pd.
ci = paramci(pd,Name, Value) returns confidence intervals with additional options specified by one or more name-value pair arguments. For example, you can specify a different percentage for the confidence interval, or compute confidence intervals only for selected parameters.

\section*{pd - Probability distribution}
probability distribution object
Probability distribution, specified as a probability distribution object. Create a probability distribution object with specified parameter values using makedist. Alternatively, create a probability distribution object by fitting it to data using fitdist or dfittool.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Alpha', 0.01 specifies a \(99 \%\) confidence interval.

\section*{'Alpha' - Alpha level}
0.05 (default) | scalar value in the range \((0,1)\)

Alpha level for the confidence interval, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range \((0,1)\). The default value 0.05 corresponds to a \(95 \%\) confidence interval.

\section*{prob.ToolboxFittableParametricDistribution.paramci}

\section*{Example: 'Alpha',0.01}

\section*{Data Types}
single | double

\section*{'Parameter' - Parameter list}
vector | cell array of strings
Parameter list for which to compute confidence intervals, specified as the comma-separated pair consisting of 'Parameter' and a vector or a cell array of strings containing the parameter names. By default, paramci computes confidence intervals for all distribution parameters.
Example: 'Parameter', 'mu'

\section*{Data Types \\ char}

\section*{'Type' - Computation method}
```

'exact' | 'Wald' | 'lr'

```

Computation method for the confidence intervals, specified as the comma-separated pair consisting of 'Type' and 'exact', 'Wald', or 'lr'.
'exact ' computes the confidence intervals using an exact method, and is available for the following distributions.
\[
\begin{array}{ll}
\text { Binomial } & \begin{array}{l}
\text { Compute using the Clopper-Pearson method } \\
\text { based on exact probability calculations. This } \\
\text { method does not provide exact coverage } \\
\text { probabilities. }
\end{array} \\
\text { Exponential } & \begin{array}{l}
\text { Compute using a method based on a chi-square } \\
\text { distribution. This method provides exact coverage } \\
\text { for complete and Type } 2 \text { censored samples. }
\end{array}
\end{array}
\]
\begin{tabular}{cl}
Normal & \begin{tabular}{l}
Computation method based on \(t\) and chi-square \\
distributions for uncensored samples provides \\
exact coverage for uncensored samples. For \\
censored samples, paramci uses the Wald method \\
if Type is exact.
\end{tabular} \\
Lognormal & \begin{tabular}{l}
Computation method based on \(t\) and chi-square \\
distributions for uncensored samples provides \\
exact coverage. For censored samples, paramci \\
uses the Wald method if Type is exact.
\end{tabular} \\
Poisson & \begin{tabular}{l}
Computation method based on a chi-square \\
distribution provides exact coverage. For \\
large degrees of freedom, the chi-square is \\
approximated by a normal distribution for \\
numerical efficiency.
\end{tabular} \\
Rayleigh & \begin{tabular}{l}
Computation method based on a chi-square \\
distribution provides exact coverage probabilities.
\end{tabular}
\end{tabular}
'exact' is the default when it is available. Alternatively, you can specify 'Wald' to compute the confidence intervals using the Wald method, or ' lr' to compute the confidence intervals using the likelihood radio method.

\section*{Example: 'Type','Wald'}

\section*{'LogFlag' - Boolean flag for log scale vector}

Boolean flag for the log scale, specified as the comma-separated pair consisting of 'LogFlag' and a vector containing Boolean values corresponding to each distribution parameter. The flag specifies which Wald intervals to compute on a log scale. The default values depend on the distribution.
```

Example: 'LogFlag',[0,1]

```

\section*{Data Types}
logical

\section*{prob.ToolboxFittableParametricDistribution.paramci}

\section*{Output \\ Arguments}

\section*{ci-Confidence interval}
array
Confidence interval, returned as a \(p\)-by- 2 array containing the lower and upper bounds of the (1 - Alpha) \% confidence interval for each distribution parameter. \(p\) is the number of distribution parameters.

\section*{Examples Parameter Confidence Intervals}

Load the sample data. Create a vector containing the first column of students' exam grade data.
```

load examgrades;
x = grades(:,1);

```

Fit a normal distribution object to the data.
```

pd = fitdist(x,'Normal')
pd =
NormalDistribution

```
```

Normal distribution

```
Normal distribution
 mu = 75.0083 [73.4321, 76.5846]
 mu = 75.0083 [73.4321, 76.5846]
 sigma = 8.7202 [7.7391, 9.98843]
```

    sigma = 8.7202 [7.7391, 9.98843]
    ```

Compute the \(95 \%\) confidence interval for the distribution parameters.
ci \(=\) paramci(pd)
ci =
 \(73.4321 \quad 7.7391\)
 \(76.5846 \quad 9.9884\)

\section*{prob.ToolboxFittableParametricDistribution.paramci}

Column 1 of ci contains the lower and upper \(95 \%\) confidence interval boundaries for the mu parameter, and column 2 contains the boundaries for the sigma parameter.

\section*{Change Parameter Confidence Intervals}

Load the sample data. Create a vector containing the first column of students' exam grade data.
```

load examgrades;
x = grades(:,1);

```

Fit a normal distribution object to the data.
```

pd = fitdist(x,'Normal')
pd =

```

NormalDistribution
```

Normal distribution
mu = 75.0083 [73.4321, 76.5846]
sigma = 8.7202 [7.7391, 9.98843]

```

Compute the \(99 \%\) confidence interval for the distribution parameters.
```

ci = paramci(pd,'Alpha',.01)

```
ci =
 \(72.9245 \quad 7.4627\)
 77.092210 .4403

Column 1 of ci contains the lower and upper \(99 \%\) confidence interval boundaries for the mu parameter, and column 2 contains the boundaries for the sigma parameter.

\section*{ProbDistParametric.ParamCov property}
\begin{tabular}{ll}
Purpose & \begin{tabular}{l}
Read-only covariance matrix of parameter estimates of \\
ProbDistParametric object
\end{tabular} \\
Description \(\quad\)\begin{tabular}{l}
ParamCov is a read-only property of the ProbDistParametric class. \\
ParamCov is a covariance matrix containing the parameter estimates of \\
a distribution represented by a ProbDistParametric object. ParamCov \\
has a size of NumParams-by-NumParams.
\end{tabular} \\
Values & \begin{tabular}{l}
This covariance matrix includes estimates for both the specified \\
parameters and parameters that are fit to the data. For specified \\
parameters, the covariance is 0, indicating the parameter is known \\
exactly. Use this information to view and compare the descriptions of \\
parameters supplied to create distributions.
\end{tabular}
\end{tabular}

\section*{ProbDistParametric.ParamDescription property}
\begin{tabular}{ll}
Purpose & \begin{tabular}{l}
Read-only cell array specifying descriptions of parameters of \\
ProbDistParametric object
\end{tabular} \\
Description \(\quad\)\begin{tabular}{l}
ParamDescription is a read-only property of the ProbDistParametric \\
class. ParamDescription is a cell array of strings specifying the \\
descriptions or meanings of the parameters of a distribution represented \\
by a ProbDistParametric object. ParamDescription has a length of \\
NumParams.
\end{tabular} \\
Values & \begin{tabular}{l}
This cell array includes a brief description of the meaning of both \\
the specified parameters and parameters that are fit to the data. \\
The description is the same as the parameter name when no further \\
description information is available. Use this information to view and \\
compare the descriptions of parameters used to create distributions.
\end{tabular}
\end{tabular}

\section*{ProbDistParametric.ParamlsFixed property}
\begin{tabular}{ll}
Purpose & \begin{tabular}{l}
Read-only logical array specifying fixed parameters of \\
ProbDistParametric object
\end{tabular} \\
Description & \begin{tabular}{l}
ParamIsFixed is a read-only property of the ProbDistParametric class. \\
ParamIsFixed is a logical array specifying the fixed parameters of a \\
distribution represented by a ProbDistParametric object. ParamIsFixed \\
has a length of NumParams.
\end{tabular} \\
Values & \begin{tabular}{l}
This array specifies a 1 (true) for fixed parameters, and a 0 (false) \\
for parameters that are estimated from the input data. Use this \\
information to view and compare the fixed parameters used to create \\
distributions.
\end{tabular}
\end{tabular}

\section*{ProbDistParametric.ParamNames property}
\begin{tabular}{ll}
Purpose & \begin{tabular}{l}
Read-only cell array specifying names of parameters of \\
ProbDistParametric object
\end{tabular} \\
Description \(\quad\)\begin{tabular}{l}
ParamNames is a read-only property of the ProbDistParametric class. \\
ParamNames is a cell array of strings specifying the names of the \\
parameters of a distribution represented by a ProbDistParametric \\
object. ParamNames has a length of NumParams.
\end{tabular} \\
Values & \begin{tabular}{l}
This cell array includes the names of both the specified parameters and \\
parameters that are fit to the data. Use this information to view and \\
compare the names of parameters used to create distributions.
\end{tabular}
\end{tabular}

\section*{NaiveBayes.Params property}

\section*{Purpose Parameter estimates}

\section*{Description}

The Params property is an NClasses-by-NDims cell array containing the parameter estimates, excluding the class priors. Params(i,j) contains the parameter estimates for the \(j\) th feature in the ith class. Params (\(i, j\)) is an empty cell if the ith class is empty.

The entry in Params (\(i, j\)) depends on the distribution type used for the \(j\) th feature, as follows:
\begin{tabular}{|c|c|}
\hline 'normal' & A vector of length two. The first element is the mean, and the second element is standard deviation \\
\hline 'kernel' & A ProbDistUnivKernel object \\
\hline 'mvmn' & A vector containing the probability for each possible value of the \(j\) th feature in the ith class. The order of the probabilities is decided by the sorted order of all the unique values of the \(j\) th feature. \\
\hline 'mn' & A scalar representing the probability the \(j\) th token appearing in the ith class, Prob(token j | class i). It is estimated as (1 + the number of occurrence of token \(J\) in class I)/(NDims + the total number of token occurrence in class I). \\
\hline
\end{tabular}

\section*{ProbDistParametric.Params property}
\begin{tabular}{ll}
Purpose & \begin{tabular}{l}
Read-only array specifying values of parameters of ProbDistParametric \\
object
\end{tabular} \\
Description \(\quad\)\begin{tabular}{l}
Params is a read-only property of the ProbDistParametric class. \\
Params is an array of values specifying the values of the parameters of \\
a distribution represented by a ProbDistParametric object. Params \\
has a length of NumParams.
\end{tabular} \\
Values & \begin{tabular}{l}
This array includes the values of both the specified parameters and \\
parameters that are fit to the data. Use this information to view and \\
compare the values of parameters used to create distributions.
\end{tabular}
\end{tabular}

\section*{prob.ParametricTruncatableDistribution}

Superclasses TruncatableDistribution
Purpose Parametric truncatable probability distribution object
Description Create a probability distribution object with specified parameter values using makedist.

Methods
```

mean
std
var

```

\section*{Inherited Methods}
\begin{tabular}{ll}
cdf & \begin{tabular}{l}
Cumulative distribution function \\
of probability distribution object
\end{tabular} \\
icdf & \begin{tabular}{l}
Inverse cumulative distribution \\
function of probability \\
distribution object
\end{tabular} \\
iqr & \begin{tabular}{l}
Interquartile range of probability \\
distribution object
\end{tabular} \\
median & \begin{tabular}{l}
Median of probability distribution \\
object
\end{tabular} \\
pdf & \begin{tabular}{l}
Probability density function of \\
probability distribution object
\end{tabular} \\
random & \begin{tabular}{l}
Generate random numbers from \\
probability distribution object
\end{tabular} \\
truncate & \begin{tabular}{l}
Truncate probability distribution \\
object
\end{tabular}
\end{tabular}

See Also makedist
Concepts - Class Attributes
- Property Attributes

\section*{classregtree.parent}

Purpose Parent node
Syntax
p = parent(t)
p = parent(t, nodes)

Description
\(p=\) parent (\(t\)) returns an \(n\)-element vector \(p\) containing the number of the parent node for each node in the tree \(t\), where \(n\) is the number of nodes. The parent of the root node is 0 .
\(p\) = parent(t, nodes) takes a vector nodes of node numbers and returns the parent nodes for the specified nodes.

Examples Create a classification tree for Fisher's iris data:
```

load fisheriris;

```
t = classregtree(meas,species,...
 'names',\{'SL' 'SW' 'PL' 'PW'\})
t \(=\)
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1. 65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica
view(t)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & - \\
\hline Click to display: & Identity & \(\checkmark\) & Magnification: & 100\% & \(\checkmark\) & Pruning level: & 0 of 4 & \\
\hline
\end{tabular}

```

p = parent(t)
p =
0
1
1
3
3
4
4
6

```

\section*{classregtree.parent}

6

\section*{References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.}

See Also
classregtree | children | numnodes

\section*{Superclasses piecewisedistribution}

Purpose Empirical distributions with Pareto tails

\section*{Construction}
paretotails
Construct Pareto tails object

Methods
lowerparams
Lower Pareto tails parameters
upperparams
Upper Pareto tails parameters

\section*{Inherited Methods}

Methods in the following table are inherited from piecewisedistribution.
\begin{tabular}{|c|c|}
\hline boundary & Piecewise distribution boundaries \\
\hline cdf & Cumulative distribution function for piecewise distribution \\
\hline disp & Display piecewisedistribution object \\
\hline display & Display piecewisedistribution object \\
\hline icdf & Inverse cumulative distribution function for piecewise distribution \\
\hline nsegments & Number of segments \\
\hline pdf & Probability density function for piecewise distribution \\
\hline random & Random numbers from piecewise distribution \\
\hline segment & Segments containing values \\
\hline
\end{tabular}

Properties

\section*{Copy Semantics}

\author{
How To
}
- "Generalized Pareto Distribution" on page B-50

\section*{Purpose \\ Syntax \\ Description}

Construct Pareto tails object
obj = paretotails(x,pl,pu)
obj = paretotails(x,pl,pu,cdffun)
obj = paretotails(\(\mathrm{x}, \mathrm{pl}, \mathrm{pu}\)) creates an object obj defining a distribution consisting of the empirical distribution of \(x\) in the center and Pareto distributions in the tails. \(x\) is a real-valued vector of data values whose extreme observations are fit to generalized Pareto distributions (GPDs). pl and pu identify the lower- and upper-tail cumulative probabilities such that 100*pl and 100*(1-pu) percent of the observations in \(x\) are, respectively, fit to a GPD by maximum likelihood. If pl is 0 , or if there are not at least two distinct observations in the lower tail, then no lower Pareto tail is fit. If pu is 1 , or if there are not at least two distinct observations in the upper tail, then no upper Pareto tail is fit.
obj \(=\) paretotails(x, pl, pu,cdffun) uses cdffun to estimate the cdf of \(x\) between the lower and upper tail probabilities. cdffun may be any of the following:
- 'ecdf' - Uses an interpolated empirical cdf, with data values as the midpoints in the vertical steps in the empirical cdf, and computed by linear interpolation between data values. This is the default.
- 'kernel' - Uses a kernel-smoothing estimate of the cdf.
- @fun - Uses a handle to a function of the form [p,xi] = fun (x) that accepts the input data vector \(x\) and returns a vector \(p\) of cdf values and a vector xi of evaluation points. Values in xi must be sorted and distinct but need not equal the values in \(x\).
cdffun is used to compute the quantiles corresponding to pl and pu by inverse interpolation, and to define the fitted distribution between these quantiles.
The output object obj is a Pareto tails object with methods to evaluate the cdf, inverse cdf, and other functions of the fitted distribution. These methods are well-suited to copula and other Monte Carlo simulations.

The pdf method in the tails is the GPD density, but in the center it is computed as the slope of the interpolated cdf.
The paretotails class is a subclass of the piecewisedistribution class, and many of its methods are derived from that class.

\section*{Examples}

Fit Pareto tails to a \(t\) distribution at cumulative probabilities 0.1 and 0.9:
```

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj);
x = linspace(-5,5);
plot(x,cdf(obj,x),'b-','LineWidth', 2)
hold on
plot(x,tcdf(x,3),'r:','LineWidth',2)
plot(q,p,'bo','LineWidth',2,'MarkerSize',5)
legend('Pareto Tails Object','t Distribution',...
'Location','NW')

```


See Also
cdf | ecdf | gpfit | icdf | ksdensity

\section*{partialcorr}

Purpose
Linear or rank partial correlation coefficients
Syntax
RHO = partialcorr (X)
RHO = partialcorr (X,Z)
RHO = partialcorr(X,Y,Z)
[RHO,PVAL] = partialcorr(...)
[...] = partialcorr(...,param1,val1,param2,val2,...)

\section*{Description}

RHO = partialcorr (X) returns the sample linear partial correlation coefficients between pairs of variables in X , controlling for the remaining variables in X . X is an \(n\)-by- \(p\) matrix, with rows corresponding to observations, and columns corresponding to variables. RHO is a symmetric \(p\)-by-p matrix, where the \((i, j)\)-th entry is the sample linear partial correlation between the \(i\)-th and \(j\)-th columns in X .
RHO = partialcorr (\(X, Z\)) returns the sample linear partial correlation coefficients between pairs of variables in \(X\) controlling for the variables in \(\mathrm{Z} . \mathrm{X}\) is an \(n\)-by- \(p\) matrix, and Z is an \(n\)-by- \(q\) matrix with rows corresponding to observations, and columns corresponding to variables. The output, RHO, is a symmetric \(p\)-by- \(p\) matrix.

RHO = partialcorr (X,Y,Z) returns the sample linear partial correlation coefficients between pairs of variables between \(X\) and Y , controlling for the variables in Z . X is an \(n\)-by- \(p_{1}\) matrix, Y an \(n\)-by- \(p_{2}\) matrix, and \(Z\) is an \(n\)-by- \(q\) matrix, with rows corresponding to observations, and columns corresponding to variables. RHO is a \(p_{1}\)-by- \(p_{2}\) matrix, where the \((i, j)\) th entry is the sample linear partial correlation between the \(i\) th column in X and the \(j\) th column in Y .

If the covariance matrix of \([X, Z]\) is
\[
S=\left(\begin{array}{cc}
S_{11} & S_{12} \\
S_{12}^{T} & S_{22}
\end{array}\right)
\]
then the partial correlation matrix of X, controlling for Z, can be defined formally as a normalized version of the covariance matrix \(S_{x y}=S_{11}\) \(-\left(S_{12} S_{22}{ }^{-1} S_{12}{ }^{T}\right)\)
[RHO,PVAL] = partialcorr(...) also returns PVAL, a matrix of \(p\)-values for testing the hypothesis of no partial correlation against the alternative that there is a nonzero partial correlation. Each element of PVAL is the \(p\) value for the corresponding element of RHO. If PVAL (\(\mathrm{I}, \mathrm{J})\) is small, say less than 0.05 , then the partial correlation, \(\mathrm{RHO}(\mathrm{I}, \mathrm{J})\), is significantly different from zero.
[...] = partialcorr(...,param1,val1,param2,val2,...) specifies additional parameters and their values. Valid parameter/value pars are listed in the following table.
\begin{tabular}{|c|c|}
\hline Parameter & Values \\
\hline 'type' & \begin{tabular}{l}
- 'Pearson' - To compute Pearson (linear) partial correlations. This is the default. \\
- 'Spearman ' - To compute Spearman (rank) partial correlations.
\end{tabular} \\
\hline 'rows ' & \begin{tabular}{l}
- 'all' - To use all rows regardless of missing (NaN) values. This is the default. \\
- 'complete ' - To use only rows with no missing values. \\
- 'pairwise' - To compute RHO (I , J) using rows with no missing values in column I or \(J\).
\end{tabular} \\
\hline \begin{tabular}{l}
'tail' \\
The alternative hypothesis against which to compute \(p\)-values for testing the hypothesis of no partial correlation.
\end{tabular} & \begin{tabular}{l}
- 'both' (the default) - the correlation is not zero. \\
- 'right ' - the correlation is greater than zero. \\
- 'left' - the correlation is less than zero.
\end{tabular} \\
\hline
\end{tabular}

\section*{partialcorr}

A 'pairwise' value for the rows parameter can produce a RHO that is not positive definite. A 'complete' value always produces a positive definite RHO, but when data is missing, the estimates will be based on fewer observations, in general.
partialcorr computes \(p\)-values for linear and rank partial correlations using a Student's \(t\) distribution for a transformation of the correlation. This is exact for linear partial correlation when \(X\) and \(Z\) are normal, but is a large-sample approximation otherwise.

\section*{See Also}
corr | tiedrank | corrcoef

\section*{Purpose}

Principal component analysis of raw data

\section*{Syntax}
```

coeff = pca(X)
coeff = pca(X,Name,Value)
[coeff,score,latent] = pca(___)
[coeff,score,latent,tsquared] = pca(

```
[coeff,score,latent,tsquared,explained,mu] = pca(__)

Description
coeff \(=p c a(X)\) returns the principal component coefficients for the \(n\)-by- \(p\) data matrix X. Rows of X correspond to observations and columns correspond to variables. The coefficient matrix is \(p\)-by- \(p\). Each column of coeff contains coefficients for one principal component, and the columns are in descending order of component variance. By default, pca centers the data and uses the singular value decomposition (SVD) algorithm.
coeff \(=p c a(X\), Name, Value \()\) returns any of the output arguments in the previous syntaxes using additional options for computation and handling of special data types, specified by one or more Name, Value pair arguments.

For example, you can specify the number of principal components pca returns or an algorithm other than SVD to use.
[coeff,score,latent] = pca(__) also returns the principal component scores in score and the principal component variances in latent. You can use any of the input arguments in the previous syntaxes.

Principal component scores are the representations of \(X\) in the principal component space. Rows of score correspond to observations, and columns correspond to components.

The principal component variances are the eigenvalues of the covariance matrix of X .
[coeff,score, latent,tsquared] = pca(__) also returns the Hotelling's T-squared statistic for each observation in X.
[coeff, score, latent,tsquared, explained, mu] = pca(__) also returns explained, the percentage of the total variance explained by each principal component and mu, the estimated mean of each variable in \(X\).

\section*{Input \\ Arguments}

X - Input data
matrix
Input data for which to compute the principal components, specified as an \(n\)-by- \(p\) matrix. Rows of X correspond to observations and columns to variables.

\section*{Data Types \\ single | double}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{Example:}
'Algorithm', 'eig', 'Centered',false,'Rows', 'all', 'NumComponents', 3 specifies that pca uses eigenvalue decomposition algorithm, not center the data, use all of the observations, and return only the first three principal components.

\section*{'Algorithm' - Principal component algorithm}

\section*{'svd' (default) | 'eig' | 'als'}

Principal component algorithm that pca uses to perform the principal component analysis, specified as the comma-separated pair consisting of 'Algorithm' and one of the following.
\begin{tabular}{l|l}
\hline 'svd' & Default. Singular value decomposition (SVD) of X. \\
\hline 'eig' & \begin{tabular}{l}
Eigenvalue decomposition (EIG) of the covariance matrix. \\
The EIG algorithm is faster than SVD when the number \\
of observations, \(n\), exceeds the number of variables, \(p\), \\
but is less accurate because the condition number of the \\
covariance is the square of the condition number of X.
\end{tabular} \\
\hline 'als' & \begin{tabular}{l}
Alternating least squares (ALS) algorithm. This algorithm \\
finds the best rank- \(k\) approximation by factoring X into \\
a \(n\)-by- \(k\) left factor matrix, L, and a \(p\)-by- \(k\) right factor \\
matrix, R, where \(k\) is the number of principal components. \\
The factorization uses an iterative method starting with \\
random initial values.ALS is designed to better handle \\
missing values. It is preferable to pairwise deletion \\
('Row', , 'apirwise ') and deals with missing values \\
without listwise deletion ('Rows ', 'complete '). It can work \\
well for data sets with a small percentage of missing data \\
at random, but might not perform well on sparse data sets.
\end{tabular} \\
\hline
\end{tabular}

Example: 'Algorithm', 'eig'

\section*{Data Types}
char

\section*{'Centered' - Indicator for centering columns}
true (default) | false
Indicator for centering the columns, specified as the comma-separated pair consisting of 'Centered' and one of these logical expressions.
\begin{tabular}{l|l}
\hline true & \begin{tabular}{l}
Default. pca centers \(X\) by subtracting column means before \\
computing singular value decomposition or eigenvalue \\
decomposition. If X contains NaN missing values, nanmean \\
is used to find the mean with any available data. You can \\
reconstruct the centered data using score*coeff \({ }^{\prime}\).
\end{tabular} \\
\hline false & \begin{tabular}{l}
In this case pca does not center the data. You can \\
reconstruct the original data using score*coeff \({ }^{\prime}\).
\end{tabular} \\
\hline
\end{tabular}

\section*{Example: 'Centered',false}

\section*{Data Types}
logical

\section*{'Economy' - Indicator for economy size output \\ true (default) | false}

Indicator for the economy size output when the degrees of freedom, \(d\), is smaller than the number of variables, \(p\), specified as the comma-separated pair consisting of 'Economy ' and one of these logical expressions.
\begin{tabular}{l|l}
\hline true & \begin{tabular}{l}
Default. pca returns only the first \(d\) elements of latent \\
and the corresponding columns of coeff and score. \\
This option can be significantly faster when the number of \\
variables \(p\) is much larger than \(d\).
\end{tabular} \\
\hline false & \begin{tabular}{l}
pca returns all elements of latent. The columns of coeff \\
and score corresponding to zero elements in latent are \\
zeros.
\end{tabular} \\
\hline
\end{tabular}

Note that when \(d<p\), score (: \(\mathrm{d}+1: \mathrm{p}\)) and latent \((\mathrm{d}+1: \mathrm{p})\) are necessarily zero, and the columns of coeff (:, \(\mathrm{d}+1: \mathrm{p}\)) define directions that are orthogonal to \(X\).

\section*{Example: 'Economy',false}

\section*{Data Types}
logical

\section*{'NumComponents' - Number of components requested \\ number of variables (default) | scalar integer}

Number of components requested, specified as the comma-separated pair consisting of 'NumComponents' and a scalar integer \(k\) satisfying \(0<\) \(k \leq p\), where \(p\) is the number of original variables in X . When specified, pca returns the first \(k\) columns of coeff and score.

\footnotetext{
Example: 'NumComponents',3
}

\section*{Data Types \\ single | double \\ 'Rows' - Action to take for NaN values}
'complete' (default) | 'pairwise' | 'all'
Action to take for NaN values in the data matrix X, specified as the comma-separated pair consisting of 'Rows' and one of the following.
\begin{tabular}{ll}
\hline ' complet®Default. Observations with NaN values are removed before \\
calculation. Rows of NaNs are reinserted into score and \\
tsquared at the corresponding locations.
\end{tabular}

Example: 'Rows','pairwise'

\section*{Data Types}
char

\section*{'Weights' - Observation weights}
ones (default) | row vector
Observation weights, specified as the comma-separated pair consisting of 'Weights' and a vector of length \(n\) containing all positive elements.

\author{
Data Types \\ single | double
}

\section*{'VariableWeights' - Variable weights}
row vector | 'variance'
Variable weights, specified as the comma-separated pair consisting of 'VariableWeights ' and one of the following.

Vector of length \(p\) containing all positive elements.
The string 'variance'. The variable weights are the inverse of sample variance. If you also assign weights to observations using 'Weights ', then the variable weights become the inverse of weighted sample variance.

If 'Centered' is set to true at the same time, the data matrix \(X\) is centered and standardized. In this case, pca returns the principal components based on the correlation matrix.

Example: 'VariableWeights', 'variance'
```

Data Types
single | double | char

```

\section*{'Coeff0' - Initial value for coefficients}
matrix of random values (default) | \(p\)-by- \(k\) matrix
Initial value for the coefficient matrix coeff, specified as the comma-separated pair consisting of 'Coeffo' and a \(p\)-by- \(k\) matrix, where \(p\) is the number of variables, and \(k\) is the number of principal components requested.

Note You can use this name-value pair only when 'algorithm' is 'als'.

\section*{Data Types \\ single | double \\ 'Score0' - Initial value for scores}
matrix of random values (default) | \(k\)-by- \(m\) matrix
Initial value for scores matrix score, specified as a comma-separated pair consisting of 'Score 0 ' and an \(n\)-by- \(k\) matrix, where \(n\) is the number of observations and \(k\) is the number of principal components requested.

Note You can use this name-value pair only when 'algorithm' is 'als'.

\section*{Data Types}
single | double

\section*{'Options' - Options for iterations}
structure
Options for the iterations, specified as a comma-separated pair consisting of 'Options' and a structure created by the statset function. pca uses the following fields in the options structure.
\begin{tabular}{l|l}
\hline 'Display' & \begin{tabular}{l}
Level of display output. Choices are 'off ', \\
'final', and 'iter'.
\end{tabular} \\
\hline 'MaxIter' & \begin{tabular}{l}
Maximum number steps allowed. The default is \\
100. Unlike in optimization settings, reaching the \\
MaxIter value is regarded as convergence.
\end{tabular} \\
\hline 'TolFun' & \begin{tabular}{l}
Positive number giving the termination tolerance \\
for the cost function. The default is 1e-6.
\end{tabular} \\
\hline 'TolX' & \begin{tabular}{l}
Positive number giving the convergence threshold \\
for the relative change in the elements of the left \\
and right factor matrices, L and R, in the ALS \\
algorithm. The default is 1e-6.
\end{tabular} \\
\hline
\end{tabular}

Note You can use this name-value pair only when 'algorithm' is 'als'.

\section*{Output} Arguments

\section*{coeff - Principal component coefficients}
matrix
Principal component coefficients, returned as a \(p\)-by-p matrix. Each column of coeff contains coefficients for one principal component. The columns are in the order of descending component variance, latent.

\section*{score - Principal component scores}
matrix
Principal component scores, returned as a matrix. Rows of score correspond to observations, and columns to components.

\section*{latent - Principal component variances}
column vector
Principal component variances, that is the eigenvalues of the covariance matrix of \(X\), returned as a column vector.

\section*{tsquared - Hotelling's T-squared statistic}

\section*{column vector}
"Hotelling's T-Squared Statistic" on page 20-1992, which is the sum of squares of the standardized scores for each observation, returned as a column vector.

\section*{explained - Percentage of total variance explained column vector}

Percentage of the total variance explained by each principal component, returned as a column vector.

\section*{mu - Estimated means}
row vector
Estimated means of the variables in X, returned as a row vector. When 'algorithm' is 'als', this is estimated by ALS algorithm. When 'algorithm' is not 'als', mu is equal to the sample mean of X .

\section*{Examples Principal Components of a Data Set}

Load the sample data set.
load hald

The ingredients data has 13 observations for 4 variables.
Find the principal components for the ingredients data.
```

coeff = pca(ingredients)
coeff =

| -0.0678 | -0.6460 | 0.5673 | 0.5062 |
| ---: | ---: | ---: | ---: |
| -0.6785 | -0.0200 | -0.5440 | 0.4933 |
| 0.0290 | 0.7553 | 0.4036 | 0.5156 |
| 0.7309 | -0.1085 | -0.4684 | 0.4844 |

```

The rows of coeff contain the coefficients for the four ingredient variables, and its columns correspond to four principal components.

\section*{PCA in the Presence of Missing Data}

Find the principal component coefficients when there are missing values in a data set.

Load the sample data set.
load imports-85
Data matrix X has 13 continuous variables in columns 3 to 15 : wheel-base, length, width, height, curb-weight, engine-size, bore, stroke, compression-ratio, horsepower, peak-rpm, city-mpg, and highway-mpg. The variables bore and stroke are missing four values in rows 56 to 59, and the variables horsepower and peak-rpm are missing two values in rows 131 and 132.

Perform principal component analysis.
coeff = pca(X(:,3:15));
By default, pca performs the action specified by the 'Rows ' , 'complete' name-value pair argument. This option removes the observations with NaN values before calculation. Rows of NaNs are reinserted into score and tsquared at the corresponding locations, namely rows 56 to 59 , 131 , and 132.

Use 'pairwise' to perform the principal component analysis.
coeff \(=\operatorname{pca}(X(:, 3: 15)\), 'Rows','pairwise');
In this case, pca computes the \((i, j)\) element of the covariance matrix using the rows with no NaN values in the columns \(i\) or \(j\) of \(X\). Note that the resulting covariance matrix might not be positive definite. This option applies when the algorithm pca uses is eigenvalue decomposition. When you don't specify the algorithm, as in this example, pca sets it to 'eig'. If you require 'svd' as the algorithm, with the 'pairwise' option, then pca returns a warning message, sets the algorithm to 'eig' and continues.

If you use the 'Rows ' , 'all' name-value pair argument, pca terminates because this option assumes there are no missing values in the data set.
coeff \(=\operatorname{pca}\left(X(:, 3: 15),{ }^{\prime}\right.\) Rows', 'all');
```

Error using pca (line 180)

```
Raw data contains NaN missing value while 'Rows' option is set to 'al

\section*{Weighted PCA}

Use the inverse variable variances as weights while performing the principal components analysis.

Load the sample data set.
```

load hald

```

Perform the principal component analysis using the inverse of variances of the ingredients as variable weights.
```

    [wcoeff,~,latent,~,explained] = pca(ingredients,...
    ```
'VariableWeights', 'variance')
```

wcoeff =

```
\begin{tabular}{rrrr}
-2.7998 & 2.9940 & -3.9736 & 1.4180 \\
-8.7743 & -6.4411 & 4.8927 & 9.9863 \\
2.5240 & -3.8749 & -4.0845 & 1.7196 \\
9.1714 & 7.5529 & 3.2710 & 11.3273
\end{tabular}
latent =
 2.2357
 1.5761
 0.1866
 0.0016
explained =
 55.8926
 39.4017
 4.6652
 0.0406

Note that the coefficient matrix, wcoeff, is not orthonormal.
Calculate the orthonormal coefficient matrix.
```

coefforth = inv(diag(std(ingredients)))* wcoeff
coefforth =

-0.4760	0.5090	-0.6755	0.2411
-0.5639	-0.4139	0.3144	0.6418
0.3941	-0.6050	-0.6377	0.2685
0.5479	0.4512	0.1954	0.6767

```

Check orthonormality of the new coefficient matrix, coefforth.
```

coefforth*coefforth'

```
ans =
\begin{tabular}{rrrr}
1.0000 & 0.0000 & -0.0000 & -0.0000 \\
0.0000 & 1.0000 & -0.0000 & -0.0000 \\
-0.0000 & -0.0000 & 1.0000 & 0 \\
-0.0000 & -0.0000 & 0 & 1.0000
\end{tabular}

\section*{PCA Using ALS for Missing Data}

Find the principal components using the alternating least squares (ALS) algorithm when there are missing values in the data.

Load the sample data.
load hald
The ingredients data has 13 observations for 4 variables.
Perform principal component analysis using the ALS algorithm and display the component coefficients.
```

[coeff,score,latent,tsquared,explained] = pca(ingredients);
coeff

```
```

coeff =

-0.0678	-0.6460	0.5673	0.5062
-0.6785	-0.0200	-0.5440	0.4933
0.0290	0.7553	0.4036	0.5156
0.7309	-0.1085	-0.4684	0.4844

```

Introduce missing values randomly.
```

y = ingredients;
rng('default'); % for reproducibility
ix = random('unif',0,1,size(y))<0.30;
y(ix) = NaN
y =

```
\begin{tabular}{rrrr}
7 & 26 & 6 & NaN \\
1 & 29 & 15 & 52 \\
NaN & NaN & 8 & 20 \\
11 & 31 & NaN & 47 \\
7 & 52 & 6 & 33 \\
NaN & 55 & NaN & NaN \\
NaN & 71 & NaN & 6 \\
1 & 31 & NaN & 44 \\
2 & NaN & NaN & 22 \\
21 & 47 & 4 & 26 \\
NaN & 40 & 23 & 34 \\
11 & 66 & 9 & NaN \\
10 & 68 & 8 & 12
\end{tabular}

Approximately 30\% of the data has missing values now, indicated by NaN .

Perform principal component analysis using the ALS algorithm and display the component coefficients.
[coeff1,score1,latent,tsquared,explained,mu1] \(=p c a(y, \ldots\) 'algorithm', 'als');
```

coeff1

```
coeff1 =
\begin{tabular}{rrrr}
-0.0362 & 0.8215 & -0.5252 & 0.2190 \\
-0.6831 & -0.0998 & 0.1828 & 0.6999 \\
0.0169 & 0.5575 & 0.8215 & -0.1185 \\
0.7292 & -0.0657 & 0.1261 & 0.6694
\end{tabular}

Display the estimated mean.
mu1
mu1 =
\[
\begin{array}{llll}
8.9956 & 47.9088 & 9.0451 & 28.5515
\end{array}
\]

Reconstruct the observed data.
```

t = score1*coeff1' + repmat(mu1,13,1)
t =

```
\begin{tabular}{rrrr}
7.0000 & 26.0000 & 6.0000 & 51.5250 \\
1.0000 & 29.0000 & 15.0000 & 52.0000 \\
10.7819 & 53.0230 & 8.0000 & 20.0000 \\
11.0000 & 31.0000 & 13.5500 & 47.0000 \\
7.0000 & 52.0000 & 6.0000 & 33.0000 \\
10.4818 & 55.0000 & 7.8328 & 17.9362 \\
3.0982 & 71.0000 & 11.9491 & 6.0000 \\
1.0000 & 31.0000 & -0.5161 & 44.0000 \\
2.0000 & 53.7914 & 5.7710 & 22.0000 \\
21.0000 & 47.0000 & 4.0000 & 26.0000 \\
21.5809 & 40.0000 & 23.0000 & 34.0000 \\
11.0000 & 66.0000 & 9.0000 & 5.7078 \\
10.0000 & 68.0000 & 8.0000 & 12.0000
\end{tabular}

The ALS algorithm estimates the missing values in the data.

Another way to compare the results is to find the angle between the two spaces spanned by the coefficient vectors. Find the angle between the coefficients found for complete data and data with missing values using ALS.
subspace(coeff, coeff1)
ans \(=\)

\subsection*{2.2925e-16}

This is a small value. It indicates that the results if you use pca with 'Rows', 'complete' name-value pair argument when there is no missing data and if you use pca with 'algorithm', 'als' name-value pair argument when there is missing data are close to each other.

Perform the principal component analysis using 'Rows ', 'complete' name-value pair argument and display the component coefficients.
```

[coeff2,score2,latent,tsquared,explained,mu2] = pca(y,...
'Rows','complete');
coeff2

```
coeff2 \(=\)
\begin{tabular}{rrr}
-0.2054 & 0.8587 & 0.0492 \\
-0.6694 & -0.3720 & 0.5510 \\
0.1474 & -0.3513 & -0.5187 \\
0.6986 & -0.0298 & 0.6518
\end{tabular}

In this case, pca removes the rows with missing values, and \(y\) has only four rows with no missing values. pca returns only three principal components. You cannot use the 'Rows', 'pairwise' option because the covariance matrix is not positive semidefinite and pca returns an error message.

Find the angle between the coefficients found for complete data and data with missing values using listwise deletion (when 'Rows', 'complete').
```

subspace(coeff(:,1:3),coeff2)
ans =
0.3576

```

The angle between the two spaces is substantially larger. This indicates that these two results are differ.

Display the estimated mean.
mu2
mu2 \(=\)
\[
\begin{array}{llll}
7.8889 & 46.9091 & 9.8750 & 29.6000
\end{array}
\]

In this case, the mean is just the sample mean of \(y\).
Reconstruct the observed data.
```

score2*coeff2'

```
ans =
\begin{tabular}{rrrr}
NaN & NaN & NaN & NaN \\
-7.5162 & -18.3545 & 4.0968 & 22.0056 \\
NaN & NaN & NaN & NaN \\
NaN & NaN & NaN & NaN \\
-0.5644 & 5.3213 & -3.3432 & 3.6040 \\
NaN & NaN & NaN & NaN \\
12.8315 & -0.1076 & -6.3333 & -3.7758 \\
NaN & NaN & NaN & NaN \\
NaN & NaN & NaN & NaN \\
1.4680 & 20.6342 & -2.9292 & -18.0043
\end{tabular}

This shows that deleting rows containing NaN values does not work as well as the ALS algorithm. Using ALS is better when the data has too many missing values.

\section*{Principal Component Coefficients, Scores, and Variances}

Find the coefficients, scores, and variances of the principal components.
Load the sample data set.

\section*{load hald}

The ingredients data has 13 observations for 4 variables.
Find the principal component coefficients, scores, and variances of the components for the ingredients data.
```

[coeff,score,latent] = pca(ingredients)
coeff =

-0.0678	-0.6460	0.5673	0.5062
-0.6785	-0.0200	-0.5440	0.4933
0.0290	0.7553	0.4036	0.5156
0.7309	-0.1085	-0.4684	0.4844

```
score =
\begin{tabular}{rrrr}
36.8218 & -6.8709 & -4.5909 & 0.3967 \\
29.6073 & 4.6109 & -2.2476 & -0.3958 \\
-12.9818 & -4.2049 & 0.9022 & -1.1261 \\
23.7147 & -6.6341 & 1.8547 & -0.3786 \\
-0.5532 & -4.4617 & -6.0874 & 0.1424 \\
-10.8125 & -3.6466 & 0.9130 & -0.1350 \\
-32.5882 & 8.9798 & -1.6063 & 0.0818 \\
22.6064 & 10.7259 & 3.2365 & 0.3243 \\
-9.2626 & 8.9854 & -0.0169 & -0.5437 \\
-3.2840 & -14.1573 & 7.0465 & 0.3405
\end{tabular}
\begin{tabular}{rrrr}
9.2200 & 12.3861 & 3.4283 & 0.4352 \\
-25.5849 & -2.7817 & -0.3867 & 0.4468 \\
-26.9032 & -2.9310 & -2.4455 & 0.4116
\end{tabular}
```

latent =

```
517.7969
 67.4964
 12.4054
 0.2372

Each column of score corresponds to one principal component. The vector, latent, stores the variances of the four principal components.

Reconstruct the centered ingredients data.
Xcentered = score*coeff'

Xcentered =
\begin{tabular}{rrrr}
-0.4615 & -22.1538 & -5.7692 & 30.0000 \\
-6.4615 & -19.1538 & 3.2308 & 22.0000 \\
3.5385 & 7.8462 & -3.7692 & -10.0000 \\
3.5385 & -17.1538 & -3.7692 & 17.0000 \\
-0.4615 & 3.8462 & -5.7692 & 3.0000 \\
3.5385 & 6.8462 & -2.7692 & -8.0000 \\
-4.4615 & 22.8462 & 5.2308 & -24.0000 \\
-6.4615 & -17.1538 & 10.2308 & 14.0000 \\
-5.4615 & 5.8462 & 6.2308 & -8.0000 \\
13.5385 & -1.1538 & -7.7692 & -4.0000 \\
-6.4615 & -8.1538 & 11.2308 & 4.0000 \\
3.5385 & 17.8462 & -2.7692 & -18.0000 \\
2.5385 & 19.8462 & -3.7692 & -18.0000
\end{tabular}

The new data in Xcentered is the original ingredients data centered by subtracting the column means from corresponding columns.

\section*{T-Squared Statistic}

Find the Hotelling's T-squared statistic values.
Load the sample data set.
```

load hald

```

The ingredients data has 13 observations for 4 variables.
Perform the principal component analysis and request the T-squared values.
```

[coeff,score,latent,tsquared] = pca(ingredients);
tsquared
tsquared =
5.6803
3.0758
6.0002
2.6198
3.3681
0.5668
3.4818
3.9794
2.6086
7.4818
4.1830
2.2327
2.7216

```

Request only the first two principal components and compute the T -squared values in the reduced space of requested principal components.
```

[coeff,score,latent,tsquared] = pca(ingredients,'NumComponents',2);
tsquared

```
tsquared \(=\)
\[
\begin{aligned}
& 5.6803 \\
& 3.0758 \\
& 6.0002 \\
& 2.6198 \\
& 3.3681 \\
& 0.5668 \\
& 3.4818 \\
& 3.9794 \\
& 2.6086 \\
& 7.4818 \\
& 4.1830 \\
& 2.2327 \\
& 2.7216
\end{aligned}
\]

Note that even when you specify a reduced component space, pca computes the T -squared values in the full space, using all four components.

The T-squared value in the reduced space corresponds to the Mahalanobis distance in the reduced space.
```

tsqreduced = mahal(score,score)
tsqreduced =
3.3179
2.0079
0.5874
1.7382
0.2955
0.4228
3.2457
2.6914
1.3619
2.9903

```
2.4371
1.3788
1.5251

Calculate the T-squared values in the discarded space by taking the difference of the T-squared values in the full space and Mahalanobis distance in the reduced space.
```

tsqdiscarded = tsquared - tsqreduced
tsqdiscarded =
2.3624
1.0679
5.4128
0.8816
3.0726
0.1440
0.2362
1.2880
1.2467
4.4915
1.7459
0.8539
1.1965

```

\section*{Percent Variability Explained by Principal Components}

Find the percent variability explained by the principal components.
Load the sample data set.
load imports-85
Data matrix X has 13 continuous variables in columns 3 to 15 : wheel-base, length, width, height, curb-weight, engine-size, bore, stroke, compression-ratio, horsepower, peak-rpm, city-mpg, and highway-mpg.

Find the percent variability explained by principal components of these variables.
```

[coeff,score,latent,tsquared,explained] = pca(X(:,3:15));
explained
explained =
64.3429
35.4484
0.1550
0.0379
0.0078
0.0048
0 . 0 0 1 3
0.0011
0.0005
0.0002
0.0002
0.0000
0.0000

```

The first two components explain \(99.79 \%\) of all variability.
To skip any of the outputs, you can use ~instead in the corresponding element. For example, if you don't want to get the T-squared values, specify
```

[coeff,score,latent,~,explained] = pca(X(:,3:15));

```

\section*{Definitions Hotelling's \(\mathbf{T}\)-Squared Statistic}

Hotelling's T-squared statistic is a statistical measure of the multivariate distance of each observation from the center of the data set.

Even when you request fewer components than the number of variables, pca uses all principal components to compute the T-squared statistic
(computes it in the full space). If you want the T-squared statistic in the reduced or the discarded space, do one of the following:
- For the T-squared statistic in the reduced space, use mahal(score, score).
- For the T-squared statistic in the discarded space, first compute the T-squared statistic using [coeff, score, latent, tsquared] = pca(X, 'NumComponents ' \(, \mathrm{k}, \ldots\)), compute the T-squared statistic in the reduced space using tsqreduced \(=\) mahal(score, score), and then take the difference: tsquared - tsqreduced.

\section*{Degrees of Freedom}

The degrees of freedom, \(d\), is equal to \(n-1\), if data is centered and \(n\) otherwise, where:
- \(n\) is the number of rows without any NaNs if you use 'Rows', 'complete'.
- \(n\) is the number of rows without any NaNs in the column pair that has the maximum number of rows without NaNs if you use 'Rows', 'pairwise'.

\section*{Variable Weights}

Note that when variable weights are used, the coefficient matrix is not orthonormal. Suppose the variable weights vector you used is called varwei, and the principal component coefficients vector pca returned is wcoeff. You can then calculate the orthonormal coefficients using the transformation diag(sqrt(varwei))*wcoeff.

\section*{References}
[1] Jolliffe, I. T. Principal Component Analysis. 2nd ed., Springer, 2002.
[2] Krzanowski, W. J. Principles of Multivariate Analysis. Oxford University Press, 1988.
[3] Seber, G. A. F. Multivariate Observations. Wiley, 1984.
[4] Jackson, J. E. A. User's Guide to Principal Components. Wiley, 1988.
[5] Roweis, S. "EM Algorithms for PCA and SPCA." In Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems. Vol. 10 (NIPS 1997), Cambridge, MA, USA: MIT Press, 1998, pp. 626-632.
[6] Ilin, A., and T. Raiko. "Practical Approaches to Principal Component Analysis in the Presence of Missing Values." J. Mach. Learn. Res.. Vol. 11, August 2010, pp. 1957-2000.
```

See Also
Related
Examples
Concepts
barttest | biplot | canoncorr | factoran | pcacov | pcares
| rotatefactors | ppca

- "Quality of Life in U.S. Cities" on page 12-80
Concepts
- "Principal Component Analysis (PCA)" on page 12-78

```

\section*{Purpose \\ Principal component analysis on covariance matrix}

\section*{Syntax \\ Description}

COEFF = pcacov(V)
[COEFF,latent] = pcacov(V)
[COEFF,latent,explained] = pcacov(V)

\section*{Examples}
```

load hald
covx = cov(ingredients);
[COEFF,latent,explained] = pcacov(covx)
COEFF =

0.0678	-0.6460	0.5673	-0.5062
0.6785	-0.0200	-0.5440	-0.4933
-0.0290	0.7553	0.4036	-0.5156
-0.7309	-0.1085	-0.4684	-0.4844

latent =
517.7969
67.4964
12.4054

```
0.2372
```

explained =
86.5974
11.2882
2.0747
0.0397

```

References [1] Jackson, J. E. A User's Guide to Principal Components. Hoboken, NJ: John Wiley and Sons, 1991.
[2] Jolliffe, I. T. Principal Component Analysis. 2nd ed., New York: Springer-Verlag, 2002.
[3] Krzanowski, W. J. Principles of Multivariate Analysis: A User’s Perspective. New York: Oxford University Press, 1988.
[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.
See Also barttest | biplot | factoran | pcares | pca | rotatefactors

\section*{Purpose}

Residuals from principal component analysis

\section*{Syntax}
```

residuals = pcares(X,ndim)
[residuals,reconstructed] = pcares(X,ndim)

```
residuals \(=\) pcares \((X\), ndim) returns the residuals obtained by retaining ndim principal components of the n-by-p matrix \(X\). Rows of \(X\) correspond to observations, columns to variables. ndim is a scalar and must be less than or equal to p. residuals is a matrix of the same size as \(X\). Use the data matrix, not the covariance matrix, with this function.
pcares does not normalize the columns of \(X\). To perform the principal components analysis based on standardized variables, that is, based on correlations, use pcares(zscore(X), ndim). You can perform principal components analysis directly on a covariance or correlation matrix, but without constructing residuals, by using pcacov.
[residuals, reconstructed] \(=\) pcares(X, ndim) returns the reconstructed observations; that is, the approximation to \(X\) obtained by retaining its first ndim principal components.

\section*{Examples}

This example shows the drop in the residuals from the first row of the Hald data as the number of component dimensions increases from one to three.
```

load hald
r1 = pcares(ingredients,1);
r2 = pcares(ingredients,2);
r3 = pcares(ingredients,3);
r11 = r1(1,:)
r11 =
2.0350 2.8304 -6.8378 3.0879
r21 = r2(1,:)
r21 =
-2.4037 2.6930 -1.6482 2.3425

```
```

r31 = r3(1,:)
r31 =
0.2008 0.1957 0.2045 0.1921

```
ReferencesSee Alsofactoran | pcacov | pca

\section*{Purpose \\ Syntax \\ Description}

Probabilistic principal component analysis
[coeff,score,pcvar] = ppca(Y,K)
[coeff,score,pcvar] = ppca(Y,K,Name,Value)
[coeff,score,pcvar,mu] = ppca(__)
[coeff,score, pcvar,mu, v, S] = ppca(__)
[coeff,score, pcvar] = ppca(Y,K) returns the principal component coefficients for the \(n\)-by- \(p\) data matrix \(Y\) based on a probabilistic principal component analysis (PPCA). It also returns the principal component scores, which are the representations of \(Y\) in the principal component space, and the principal component variances, which are the eigenvalues of the covariance matrix of \(Y\), in pcvar.

Each column of coeff contains coefficients for one principal component, and the columns are in descending order of component variance. Rows of score correspond to observations, and columns correspond to components. Rows of \(Y\) correspond to observations and columns correspond to variables.

Probabilistic principle component analysis might be preferable to other algorithms that handle missing data, such as the alternating least squares algorithm when any data vector has one or more missing values. It assumes that the values are missing at random through the data set. An expectation-maximization algorithm is used for both complete and missing data.
[coeff,score,pcvar] = ppca(Y,K,Name,Value) returns the principal component coefficients, scores, and variances using additional options for computation and handling of special data types, specified by one or more Name, Value pair arguments.

For example, you can introduce initial values for the residual variance, \(v\), or change the termination criteria.
[coeff, score, pcvar, mu] = ppca(__) also returns the estimated mean of each variable in Y. You can use any of the input arguments in the previous syntaxes.
[coeff, score, pcvar, mu, v, S] = ppca(__) also returns the isotropic residual variance in \(v\) and the final results at convergence in structure \(S\).

\section*{Input Arguments}

\section*{\(\mathbf{Y}\) - Input data}
\(n\)-by- \(p\) matrix
Input data for which to compute the principal components, specified as an \(n\)-by- \(p\) matrix. Rows of \(Y\) correspond to observations and columns correspond to variables.
```

Data Types
single | double

```

\section*{K - Number of principal components}
positive integer value less than rank
Number of principal components to return, specified as an integer value less than the rank of data. The maximum possible rank is \(\min (n, p)\), where \(n\) is the number of observations and \(p\) is the number of variables. However, if the data is correlated, the rank might be smaller than \(\min (n, p)\).
ppca orders the components based on their variance.
If K is \(\min (n, p)\), ppca sets K equal to \(\min (n, p)-1\), and ' WO ' is truncated to \(\min (p, n)-1\) columns if you specify a \(p\)-by- \(p\) W0 matrix.
For example, you can request only the first three components, based on the component variance as follows.

Example: coeff \(=\) ppca(\(\mathrm{Y}, 3\))
Data Types
single | double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'WO', init,'Options',opt specifies that the initial values for 'WO' are in matrix init and ppca uses the options defined by opt.

\section*{'W0' - Initial value of W}
matrix of random values (default) | \(p\)-by- \(k\) matrix
Initial value of \(W\) in the probabilistic principal component analysis algorithm, specified as a comma-separated pair consisting of 'WO' and a \(p\)-by- \(k\) matrix.
Data Types
single | double

\section*{'v0' - Initial value of residual variance}
random number (default) | positive scalar value
Initial value of residual variance, specified as the comma-separated pair consisting of 'v0' and a positive scalar value.

\section*{Data Types}
single | double

\section*{'Options' - Options for iterations}
structure
Options for the iterations, specified as a comma-separated pair 'Options' and a structure created by the statset function. ppca uses the following fields in the options structure.
\begin{tabular}{l|l}
\hline 'Display' & \begin{tabular}{l}
Level of display output. Choices are 'off ', \\
'final', and 'iter'.
\end{tabular} \\
\hline 'MaxIter' & \begin{tabular}{l}
Maximum number of steps allowed. The default is \\
1000. Unlike in optimization settings, reaching the \\
MaxIter value is regarded as convergence.
\end{tabular} \\
\hline 'TolFun' & \begin{tabular}{l}
Positive integer stating the termination tolerance \\
for the cost function. The default is 1e-6.
\end{tabular} \\
\hline 'TolX' & \begin{tabular}{l}
Positive integer stating the convergence threshold \\
for the relative change in the elements of \(W\). The \\
default is 1e-6.
\end{tabular} \\
\hline
\end{tabular}

You can change the values of these fields and specify the new structure in ppca using the 'Options' name-value pair argument.

Example: opt = statset('ppca'); opt.MaxIter = 2000; coeff = ppca(Y,3,'Options',opt);

\section*{Data Types}
struct

\section*{Output Arguments}

\section*{coeff - Principal component coefficients}
\(p\)-by- \(k\) matrix
Principal component coefficients, returned as a \(p\)-by- \(k\) matrix. Each column of coeff contains coefficients for one principal component. The columns are in the order of descending component variance, pcvar.

\section*{score - Principal component scores}
\(n\)-by-k matrix
Principal component scores, returned as an \(n\)-by- \(k\) matrix. Rows of score correspond to observations, and columns correspond to components.

\section*{pcvar - Principal component variances}
column vector

Principal component variances, which are the eigenvalues of the covariance matrix of Y , returned as a column vector.

\section*{mu - Estimated mean}
row vector
Estimated mean of each variable in Y , returned as a row vector.

\section*{v- Isotropic residual variance}
scalar value
Isotropic residual variance, returned as a scalar value.

\section*{S-Final results at convergence}

\section*{structure}

Final results at convergence, returned as a structure containing the following fields.
\begin{tabular}{l|l}
\hline W & \(W\) at convergence. \\
\hline Xexp & \begin{tabular}{l}
Conditional expectation of the estimated latent \\
variable \(x\).
\end{tabular} \\
\hline Recon & \begin{tabular}{l}
Reconstructed observations using \(k\) principle \\
components. This is a low dimension \\
approximation of the input data \(Y\), and is equal \\
to mu + score*coeff \('\).
\end{tabular} \\
\hline v & Residual variance. \\
\hline RMSResid & Root mean square of residuals. \\
\hline NumIter & Number of iteration counts. \\
\hline nloglk & Negative loglikelihood function value. \\
\hline
\end{tabular}

\section*{Examples Perform Probabilistic Principal Component Analysis}

Load the sample data.
load fisheriris

The double matrix meas consists of four types of measurements on the flowers, which, respectively, are the length and width of sepals and petals.

Introduce missing values randomly.
```

y = meas;
rng('default'); % for reproducibility
ix = random('unif',0,1,size(y))<0.20;
y(ix) = NaN;

```

Now, approximately \(20 \%\) of the data is missing, indicated by NaN.
Perform probabilistic principal component analysis and request the component coefficients and variances.
```

[coeff,score,pcvar,mu] = ppca(y,3);

```
coeff
coeff =
\begin{tabular}{rrr}
0.3562 & 0.6709 & -0.5518 \\
-0.0765 & 0.7121 & 0.6332 \\
0.8592 & -0.1596 & 0.0596 \\
0.3592 & -0.1318 & 0.5395
\end{tabular}
pcvar
pcvar =
4.0912
0.2126
0.0617

Perform principal component analysis using the alternating least squares algorithm.
```

[coeff2,score2,pcvar2,mu2] = pca(y,'algorithm','als',...
'NumComponents',3);

```
```

coeff2
coeff2 =

0.3376	0.4955	0.7404
-0.0731	0.8607	-0.4479
0.8657	-0.1169	-0.1231
0.3623	-0.0087	-0.4859

pcvar2
pcvar2 =
4.0734
0.2651
0.1221

```

The coefficients and the variances of the first two principal components are similar.

Another way to compare the results is to find the angle between the two spaces spanned by the coefficient vectors.
```

subspace(coeff,coeff2)

```
ans =
0.0881

The angle between the two spaces is pretty small. This indicates that these two results are close to each other.

\section*{Change the Termination Criteria for Probabilistic Principal Component Analysis}

Load the sample data set.
load imports-85

Data matrix X has 13 continuous variables in columns 3 to 15 : wheel-base, length, width, height, curb-weight, engine-size, bore, stroke, compression-ratio, horsepower, peak-rpm, city-mpg, and highway-mpg. The variables bore and stroke are missing four values in rows 56 to 59, and the variables horsepower and peak-rpm are missing two values in rows 131 and 132.

Perform probabilistic principal component analysis and display the first three principal components.
```

[coeff,score,pcvar] = ppca(X(:,3:15),3);
Warning: Maximum number of iterations 1000 reached'.
> In ppca at 249

```

Change the termination tolerance for the cost function to 0.01 .
```

opt = statset('ppca');
opt.TolFun = 0.01;

```

Perform probabilistic principal component analysis.
[coeff,score,pcvar] = ppca(X(:,3:15),3,'Options',opt);
ppca now terminates before the maximum number of iterations is reached because it meets the tolerance for the cost function.

\section*{Reconstruct Observations}

Load the sample data.
```

load hald
y = ingredients;

```

The ingredients data has 13 observations for 4 variables.
Introduce missing values to the data.
\(y(2: 16: e n d)=N a N ;\)

Every 16th value is NaN. This corresponds to \(7.69 \%\) of the data.
Find the first three principal components of data using PPCA and display the reconstructed observations.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{ans =} \\
\hline 6.8533 & 25.8675 & 5.8388 & 59.8755 \\
\hline 1.0431 & 28.9690 & 14.9652 & 51.9758 \\
\hline 11.5770 & 56.5080 & 8.6352 & 20.5062 \\
\hline 11.0833 & 31.0707 & 8.0920 & 47.0764 \\
\hline 7.0684 & 52.2539 & 6.0753 & 33.0597 \\
\hline 11.0486 & 55.0442 & 9.0534 & 22.0410 \\
\hline 2.8494 & 70.8719 & 16.8338 & 5.8624 \\
\hline 1.0331 & 31.0267 & 19.6906 & 44.0321 \\
\hline 2.0401 & 54.0364 & 18.0440 & 22.0337 \\
\hline 20.7823 & 46.8096 & 3.7603 & 25.8075 \\
\hline 0.9540 & 39.9590 & 22.9495 & 31.1540 \\
\hline 10.8251 & 65.8498 & 8.8072 & 11.8420 \\
\hline 9.9174 & 67.9309 & 7.9087 & 11.9230 \\
\hline
\end{tabular}

You can also reconstruct the observations using the principle components and the estimated mean.
```

t = score*coeff' + repmat(mu,13,1);

```

\section*{Results at Convergence}

Load the sample data.
load hald

Here, ingredients is a real-valued matrix of predictor variables.

Perform the probabilistic principal components analysis and display coefficients.
```

[coeff,score,pcvariance,mu,v,S] = ppca(ingredients,3);
coeff
coeff =

-0.0693	-0.6459	0.5673
-0.6786	-0.0184	-0.5440
0.0308	0.7552	0.4036
0.7306	-0.1102	-0.4684

```

Display the algorithm results at convergence of the PPCA.
S
S =
```

                    W: [4x3 double]
            Xexp: [13x3 double]
            Recon: [13x4 double]
            v: 0.2372
                NumIter: 1000
    RMSResid: 0.2340
nloglk: 149.3388

```

Display the matrix W.
S.W
ans =
\begin{tabular}{rrr}
0.5624 & 2.0279 & 5.4075 \\
4.8320 & -10.3894 & 5.9202 \\
-3.7521 & -3.0555 & -4.1552 \\
-1.5144 & 11.7122 & -7.2564
\end{tabular}

Orthogonalizing W recovers the coefficients.
```

orth(S.W)
ans =

-0.0693	0.6459	0.5673
-0.6786	0.0184	-0.5440
0.0308	-0.7552	0.4036
0.7306	0.1102	-0.4684

```

\section*{Definitions \\ Probabilistic Principal Component Analysis}

Probabilistic principle component analysis (PPCA) is a method to estimate the principal axes when any data vector has one or more missing values.

PPCA is based on an isotropic error model. It seeks to relate a \(p\)-dimensional observation vector \(y\) to a corresponding \(k\)-dimensional vector of latent (or unobserved) variable \(x\), which is normal with mean zero and covariance \(\mathrm{I}(k)\). The relationship is
\[
y^{T}=W * x^{T}+\mu+\varepsilon,
\]
where \(y\) is the row vector of observed variable, \(x\) is the row vector of latent variables, and \(\varepsilon\) is the isotropic error term. \(\varepsilon\) is Gaussian with mean zero and covariance of \(v^{*} \mathrm{I}(k)\), where \(v\) is the residual variance. Here, \(k\) needs to be smaller than the rank for the residual variance to be greater than \(0(v>0)\). Standard principal component analysis, where the residual variance is zero, is the limiting case of PPCA. The observed variables, \(y\), are conditionally independent given the values of the latent variables, \(x\). So, the latent variables explain the correlations between the observation variables and the error explains the variability unique to a particular \(y_{i}\). The \(p\)-by- \(k\) matrix \(W\) relates the latent and observation variables, and the vector \(\mu\) permits the model to have a nonzero mean. PPCA assumes that the values are missing at random through the data set. This means that whether a data value is missing or not does not depend on the latent variable given the observed data values.

Under this model,
\[
y \sim N\left(\mu, W * W^{T}+v^{*} I(k)\right) .
\]

There is no closed-form analytical solution for \(W\) and \(v\), so their estimates are determined by iterative maximization of the corresponding loglikelihood using an expectation-maximization (EM) algorithm. This EM algorithm handles missing values by treating them as additional latent variables. At convergence, the columns of \(W\) spans the subspace, but they are not orthonormal. ppca obtains the orthonormal coefficients, coeff, for the components by orthogonalization of \(W\).

\section*{References}
[1] Tipping, M. E., and C. M. Bishop. Probabilistic Principal Component Analysis. Journal of the Royal Statistical Society. Series B (Statistical Methodology), Vol. 61, No.3, 1999, pp. 611-622.
[2] Roweis, S. "EM Algorithms for PCA and SPCA." In Proceedings of the 1997 Conference on Advances in Neural Information Processing Systems. Vol. 10 (NIPS 1997), Cambridge, MA, USA: MIT Press, 1998, pp. 626-632.
[3] Ilin, A., and T. Raiko. "Practical Approaches to Principal Component Analysis in the Presence of Missing Values." J. Mach. Learn. Res.. Vol. 11, August, 2010, pp. 1957-2000.

\author{
See Also \\ pca | pcacov | pcares | biplot | barttest | canoncorr | factoran | rotatefactors
}

\section*{gmdistribution.PComponents property}

\author{
Purpose Input vector of mixing proportions \\ Description Optional input vector of mixing proportions p , or its default value.
}

Purpose Probability density functions
Syntax \(\quad \begin{aligned} Y & =\operatorname{pdf}(\text { name }, X, A) \\ Y & =\operatorname{pdf}(\text { name }, X, A, B) \\ & Y\end{aligned}\)

\section*{Description}
\(Y=\operatorname{pdf}(\) name \(, X, A)\) computes the probability density function for the one-parameter family of distributions specified by name. Parameter values for the distribution are given in A. Densities are evaluated at the values in X and returned in Y .

If \(X\) and \(A\) are arrays, they must be the same size. If \(X\) is a scalar, it is expanded to a constant matrix the same size as \(A\). If \(A\) is a scalar, it is expanded to a constant matrix the same size as \(X\).
\(Y\) is the common size of \(X\) and \(A\) after any necessary scalar expansion.
\(Y=p d f(\) name \(, X, A, B)\) computes the probability density function for two-parameter families of distributions, where parameter values are given in \(A\) and \(B\).

If \(X, A\), and \(B\) are arrays, they must be the same size. If \(X\) is a scalar, it is expanded to a constant matrix the same size as A and B. If either A or B are scalars, they are expanded to constant matrices the same size as \(X\).
\(Y\) is the common size of \(X, A\), and \(B\) after any necessary scalar expansion.
\(Y=p d f(\) name \(, X, A, B, C)\) computes the probability density function for three-parameter families of distributions, where parameter values are given in \(A, B\), and \(C\).

If \(X, A, B\), and \(C\) are arrays, they must be the same size. If \(X\) is a scalar, it is expanded to a constant matrix the same size as \(A, B\), and \(C\). If any of A, B or C are scalars, they are expanded to constant matrices the same size as \(X\).
\(Y\) is the common size of \(X, A, B\) and \(C\) after any necessary scalar expansion.

Acceptable strings for name are:
\begin{tabular}{|c|c|c|c|c|}
\hline name & Distribution & \begin{tabular}{l}
Input \\
Parameter A
\end{tabular} & Input Parameter B & Input Parameter C \\
\hline 'beta' or 'Beta' & "Beta Distribution" on page B-4 & a & b & - \\
\hline 'bino' or 'Binomial' & "Binomial Distribution" on page B-7 & n : number of trials & p: probability of success for each trial & - \\
\hline 'birnbaumsaunder & s"Birnbaum-Saun Distribution" on page B-10 & & \(\gamma\) & - \\
\hline 'burr' or 'Burr': & "Burr Type XII Distribution" on page B-12 & a: scale parameter & c: shape parameter & k: shape parameter \\
\hline 'chi2' or 'Chisquare' & \begin{tabular}{l}
"Chi-Square \\
Distribution" on page B-25
\end{tabular} & \(v\) : degrees of freedom & - & - \\
\hline 'exp' or 'Exponential' & "Exponential Distribution" on page B-29 & \(\mu\) : mean & - & - \\
\hline 'ev' or 'Extreme Value' & "Extreme Value Distribution" on page B-32 & \(\mu\) : location parameter & \(\sigma\) : scale parameter & - \\
\hline 'f' or 'F' & "F Distribution" on page B-38 & \(v 1\) : numerator degrees of freedom & v2: denominator degrees of freedom & - \\
\hline 'gam' or 'Gamma' & "Gamma Distribution" on page B-40 & a: shape parameter & b: scale parameter & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline name & Distribution & Input Parameter A & Input Parameter B & \begin{tabular}{l}
Input \\
Parameter \\
C
\end{tabular} \\
\hline \[
\begin{aligned}
& \text { 'gev' or } \\
& \text { 'Generalized } \\
& \text { Extreme Value' }
\end{aligned}
\] & "Generalized Extreme Value Distribution" on page B-45 & k: shape parameter & \(\sigma\) : scale parameter & \(\mu\) : location parameter \\
\hline \[
\begin{aligned}
& \text { 'gp' or } \\
& \text { 'Generalized } \\
& \text { Pareto' }
\end{aligned}
\] & \begin{tabular}{l}
"Generalized \\
Pareto \\
Distribution" \\
on page B-50
\end{tabular} & k: tail index (shape) parameter & \(\sigma\) : scale parameter & \(\mu\) : threshold (location) parameter \\
\hline 'geo' or 'Geometric' & "Geometric Distribution" on page B-54 & p : probability parameter & - & - \\
\hline 'hyge' or 'Hypergeometric' & "Hypergeometric Distribution" on page B-56 & M: size of the population & K: number of items with the desired characteristic in the population & n : number of samples drawn \\
\hline 'inversegaussian & '"Inverse Gaussian Distribution" on page B-58 & \(\mu\) & \(\lambda\) & - \\
\hline 'logistic' & "Logistic Distribution" on page B-62 & \(\mu\) & \(\sigma\) & - \\
\hline 'loglogistic' & "Loglogistic Distribution" on page B-63 & \(\mu\) & \(\sigma\) & - \\
\hline \begin{tabular}{l}
'logn' or \\
'Lognormal'
\end{tabular} & "Lognormal Distribution" on page B-64 & \(\mu\) & \(\sigma\) & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline name & Distribution & Input Parameter A & Input Parameter B & Input Parameter C \\
\hline 'nakagami' & "Nakagami Distribution" on page B-83 & \(\mu\) & \(\omega\) & - \\
\hline 'nbin' or 'Negative Binomial & "Negative Binomial Distribution" on page B-85 & \(r\) : number of successes & p : probability of success in a single trial & - \\
\hline 'ncf' or 'Noncentral F' & "Noncentral F Distribution" on page B-91 & \(v 1\) : numerator degrees of freedom & \(v 2\) : denominator degrees of freedom & \(\delta:\) noncentrality parameter \\
\hline 'nct' or 'Noncentral t' & "Noncentral t Distribution" on page B-93 & \(v\) : degrees of freedom & \(\delta\) : noncentrality parameter & - \\
\hline 'ncx2' or 'Noncentral Chi-square' & "Noncentral Chi-Square Distribution" on page B-89 & \(v\) : degrees of freedom & \(\delta\) : noncentrality parameter & - \\
\hline 'norm' or 'Normal' & "Normal Distribution" on page B-96 & \(\mu\) : mean & \(\sigma\) : standard deviation & - \\
\hline \begin{tabular}{l}
'poiss' or \\
'Poisson'
\end{tabular} & "Poisson Distribution" on page B-102 & \(\lambda\) : mean & - & - \\
\hline 'rayl' or 'Rayleigh' & "Rayleigh Distribution" on page B-104 & b: scale parameter & - & - \\
\hline 'rician' & "Rician Distribution" on page B-106 & s : noncentrality parameter & \(\sigma\) : scale parameter & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline name & Distribution & Input Parameter A & Input Parameter B & \begin{tabular}{l}
Input \\
Parameter \\
C
\end{tabular} \\
\hline 't' or 'T' & "Student's t Distribution" on page B-108 & \(v\) : degrees of freedom & - & - \\
\hline 'tlocationscale' & \begin{tabular}{l}
"t \\
Location-Scale \\
Distribution" on page B-110
\end{tabular} & \(\mu\) : location parameter & \(\sigma\) : scale parameter & \(v\) : shape parameter \\
\hline unif' or 'Uniform' & "Uniform Distribution (Continuous)" on page B-112 & a: lower endpoint (minimum) & b: upper endpoint (maximum) & - \\
\hline 'unid' or Discrete Uniform' & "Uniform Distribution (Discrete)" on page B-114 & N : maximum observable value & - & - \\
\hline 'wbl' or 'Weibull' & "Weibull Distribution" on page B-116 & a: scale parameter & b: shape parameter & - \\
\hline
\end{tabular}

Examples Compute the pdf of the normal distribution with mean 0 and standard deviation 1 at inputs \(-2,-1,0,1,2\) :
```

p1 = pdf('Normal',-2:2,0,1)
p1 =
0.0540}00.2420 0.3989 0.2420 0.0540

```

The order of the parameters is the same as for normpdf.
Compute the pdfs of Poisson distributions with rate parameters \(0,1, \ldots\), 4 at inputs \(1,2, \ldots, 5\), respectively:
p2 = pdf('Poisson', \(0: 4,1: 5)\)
```

p2 =
0.3679

```

The order of the parameters is the same as for poisspdf.
See Also
cdf | icdf | mle | random

\section*{gmdistribution.pdf}

Purpose Probability density function for Gaussian mixture distribution

\section*{Syntax \\ y = pdf(obj, X\()\)}

Description
\(y=\operatorname{pdf}(o b j, X)\) returns a vector \(y\) of length \(n\) containing the values of the probability density function (pdf) for the gmdistribution object obj, evaluated at the \(n\)-by- \(d\) data matrix X , where \(n\) is the number of observations and \(d\) is the dimension of the data. obj is an object created by gmdistribution or fit. y(I) is the pdf of observation I.

Examples Create a gmdistribution object defining a two-component mixture of bivariate Gaussian distributions:

MU = [1 2;-3-5];
SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]);
\(p=\operatorname{ones}(1,2) / 2 ;\)
obj = gmdistribution(MU,SIGMA, p);
ezsurf(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])

See Also
gmdistribution | fit | cdf | mvnpdf

\section*{piecewisedistribution.pdf}

Purpose Probability density function for piecewise distribution

\section*{Syntax \(\quad P=\operatorname{pdf}(o b j, x)\)}

Description \(P=\operatorname{pdf}(o b j, X)\) returns an array \(P\) of values of the probability density function for the piecewise distribution object obj, evaluated at the values in the array \(X\).

Note For a Pareto tails object, the pdf is computed using the generalized Pareto distribution in the tails. In the center, the pdf is computed using the slopes of the cdf, which are interpolated between a set of discrete values. Therefore the pdf in the center is piecewise constant. It is noisy for a cdffun specified in paretotails via the 'ecdf ' option, and somewhat smoother for the 'kernel' option, but generally not a good estimate of the underlying density of the original data.

Examples \(\quad\) Fit Pareto tails to a \(t\) distribution at cumulative probabilities 0.1 and 0.9:
```

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj)
p =
0.1000
0.9000
q =
-1.7766
1.8432
pdf(obj,q)
ans =
0.2367
0.1960

```

See Also paretotails | cdf

\section*{ProbDist.pdf}

Purpose
Return probability density function (PDF) for ProbDist object
Syntax \(\quad Y=\operatorname{pdf}(P D, X)\)
Description
\(Y=\operatorname{pdf}(P D, X)\) returns \(Y\), an array containing the probability density function (PDF) for the ProbDist object \(P D\), evaluated at values in \(X\).

\section*{Input \\ Arguments}
\(x\)

Y

\section*{Output Arguments}

\section*{See Also \\ pdf}

An object of the class ProbDistUnivParam or ProbDistUnivKernel.

A numeric array of values where you want to evaluate the PDF.

An array containing the probability density function (PDF) for the ProbDist object PD.

\section*{Purpose}

Syntax \(\quad y=\operatorname{pdf}(p d, x)\)

Input Arguments

\section*{Output} Arguments

\section*{Examples}

Probability density function of probability distribution object
\(y=p d f(p d, x)\) returns the probability density function (pdf) of the continuous probability distribution \(p d\) at the values in \(x\). For discrete distributions, pdf returns the probability mass function.

\author{
pd - Probability distribution \\ probability distribution object
}

Probability distribution, specified as a probability distribution object. Create a probability distribution object with specified parameter values using makedist. Alternatively, for fittable distributions, create a probability distribution object by fitting it to data using fitdist or dfittool.

\section*{\(\mathbf{x}\) - Values at which to calculate pdf array}

Values at which to calculate pdf, specified as an array.

\section*{Data Types}
single | double

\section*{y-Probability density function}
array
Probability density function of pd, evaluated at the values in data vector \(x\), returned as a array. \(y\) has the same dimensions as input \(x\).

Plot the pdf of a Standard Normal Distribution
Create a standard normal distribution object.
```

pd = makedist('Normal')

```

\section*{prob.TruncatableDistribution.pdf}

\section*{NormalDistribution}
```

Normal distribution
mu = 0
sigma = 1

```

Specify the x values and compute the pdf.
\(\mathrm{x}=-3: .1: 3 ;\)
pdf_normal = pdf(pd,x);
Plot the pdf.
plot(x,pdf_normal,'LineWidth', 2)

Plot the pdf of a Weibull Distribution
Create a Weibull probability distribution object.
pd = makedist('Weibull','a',5,'b',2)
pd =
WeibullDistribution

\section*{prob.TruncatableDistribution.pdf}
```

Weibull distribution
A = 5
B = 2

```

Specify the x values and compute the pdf.
```

x = 0:.1:15;
pdf = pdf(pd,x);

```

Plot the pdf.
plot(x,pdf,'LineWidth',2)

See Also
makedist | fitdist | pdf | cdf | icdf | dfittool

Purpose Pairwise distance between pairs of objects
Syntax \(\quad \begin{aligned} D & =\operatorname{pdist}(X) \\ & D=\operatorname{pdist}(X, \text { distance })\end{aligned}\)
Description
\(\mathrm{D}=\mathrm{pdist}(\mathrm{X})\) computes the Euclidean distance between pairs of objects in \(m\)-by- \(n\) data matrix \(X\). Rows of \(X\) correspond to observations, and columns correspond to variables. D is a row vector of length \(m(m-1) / 2\), corresponding to pairs of observations in X. The distances are arranged in the order \((2,1),(3,1), \ldots,(m, 1),(3,2), \ldots,(m, 2), \ldots\), (\(m, m-1\))). D is commonly used as a dissimilarity matrix in clustering or multidimensional scaling.

To save space and computation time, D is formatted as a vector. However, you can convert this vector into a square matrix using the squareform function so that element \(i, j\) in the matrix, where \(i<j\), corresponds to the distance between objects \(i\) and \(j\) in the original data set.
\(\mathrm{D}=\) pdist(X, distance) computes the distance between objects in the data matrix, X , using the method specified by distance, which can be any of the following character strings.
\begin{tabular}{l|l}
\hline Metric & Description \\
\hline 'euclidean' & Euclidean distance (default). \\
\hline 'seuclidean' & \begin{tabular}{l}
Standardized Euclidean distance. Each \\
coordinate difference between rows in X is \\
scaled by dividing by the corresponding \\
element of the standard deviation \\
S=nanstd (X). To specify another value for \\
S, use D=pdist (X, 'seuclidean ' , S).
\end{tabular} \\
\hline 'cityblock' & \begin{tabular}{l}
City block metric.
\end{tabular} \\
\hline 'minkowski' & \begin{tabular}{l}
Minkowski distance. The default exponent is \\
2. To specify a different exponent, use D \(=\) \\
pdist (X, 'minkowski' , P), where P is a scalar
\end{tabular} \\
\hline
\end{tabular} positive value of the exponent.
\(\left.\begin{array}{l|l}\hline \text { Metric } & \text { Description } \\ \hline \text { 'chebychev' } & \begin{array}{l}\text { Chebychev distance (maximum coordinate } \\ \text { difference). }\end{array} \\ \hline \text { 'mahalanobis' } & \begin{array}{l}\text { Mahalanobis distance, using the sample } \\ \text { covariance of X as computed by nancov. To } \\ \text { compute the distance with a different covariance, } \\ \text { use D = pdist (X, 'mahalanobis ' , C), where } \\ \text { the matrix C is symmetric and positive definite. }\end{array} \\ \hline \text { 'cosine' } & \begin{array}{l}\text { One minus the cosine of the included angle } \\ \text { between points (treated as vectors). }\end{array} \\ \hline \text { 'correlation' } & \begin{array}{l}\text { One minus the sample correlation between } \\ \text { points (treated as sequences of values). }\end{array} \\ \hline \text { 'spearman' } & \begin{array}{l}\text { One minus the sample Spearman's rank } \\ \text { correlation between observations (treated as } \\ \text { sequences of values). }\end{array} \\ \hline \text { 'hamming' } & \begin{array}{l}\text { Hamming distance, which is the percentage of } \\ \text { coordinates that differ. }\end{array} \\ \hline \text { 'jaccard' } & \begin{array}{l}\text { One minus the Jaccard coefficient, which is the } \\ \text { percentage of nonzero coordinates that differ. }\end{array} \\ \hline \begin{array}{l}\text { custom distance } \\ \text { function }\end{array} & \begin{array}{l}\text { A distance function specified using @: } \\ \mathrm{D}=\text { pdist (X, @distfun) } \\ \text { A distance function must be of form }\end{array} \\ \hline \text { d2 = distfun (XI, XJ) }\end{array}\right\}\)

\section*{pdist}

The output D is arranged in the order of \(((2,1),(3,1), \ldots\), (\(m, 1\)),(3,2),...(\(m, 2\)),.....(\(m, m-1\))), i.e. the lower left triangle of the full \(m\)-by- \(m\) distance matrix in column order. To get the distance between the \(i\) th and \(j\) th observations \((i<j\)), either use the formula \(D\left((i-1)^{*}(m-i / 2)+j-i\right)\), or use the helper function \(Z=\) squareform \((\mathrm{D})\), which returns an \(m\)-by- \(m\) square symmetric matrix, with the (\(i, j\)) entry equal to distance between observation \(i\) and observation \(j\).

\section*{Metrics}

Given an \(m\)-by- \(n\) data matrix X , which is treated as \(m\) (1-by- \(n\)) row vectors \(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{m}\), the various distances between the vector \(\mathrm{x}_{s}\) and \(\mathrm{x}_{t}\) are defined as follows:
- Euclidean distance
\[
d_{s t}^{2}=\left(x_{s}-x_{t}\right)\left(x_{s}-x_{t}\right)^{\prime}
\]

Notice that the Euclidean distance is a special case of the Minkowski metric, where \(\mathrm{p}=2\).
- Standardized Euclidean distance
\[
d_{s t}^{2}=\left(x_{s}-x_{t}\right) V^{-1}\left(x_{s}-x_{t}\right)^{\prime}
\]
where V is the \(n\)-by- \(n\) diagonal matrix whose \(j\) th diagonal element is \(S(j)^{2}\), where \(S\) is the vector of standard deviations.
- Mahalanobis distance
\[
d_{s t}^{2}=\left(x_{s}-x_{t}\right) C^{-1}\left(x_{s}-x_{t}\right)^{\prime}
\]
where C is the covariance matrix.
- City block metric
\[
d_{s t}=\sum_{j=1}^{n}\left|x_{s j}-x_{t j}\right|
\]

Notice that the city block distance is a special case of the Minkowski metric, where \(\mathrm{p}=1\).
- Minkowski metric
\[
d_{s t}=\sqrt[p]{\sum_{j=1}^{n}\left|x_{s j}-x_{t j}\right|^{p}}
\]

Notice that for the special case of \(p=1\), the Minkowski metric gives the city block metric, for the special case of \(p=2\), the Minkowski metric gives the Euclidean distance, and for the special case of \(p=\infty\), the Minkowski metric gives the Chebychev distance.
- Chebychev distance
\[
d_{s t}=\max _{j}\left\{\left|x_{s j}-x_{t j}\right|\right\}
\]

Notice that the Chebychev distance is a special case of the Minkowski metric, where \(p=\infty\).
- Cosine distance
\[
d_{s t}=1-\frac{x_{s} x_{t}^{\prime}}{\sqrt{\left(x_{s} x_{s}^{\prime}\right)\left(x_{t} x_{t}^{\prime}\right)}}
\]
- Correlation distance
\[
d_{s t}=1-\frac{\left(x_{s}-\bar{x}_{s}\right)\left(x_{t}-\bar{x}_{t}\right)^{\prime}}{\sqrt{\left(x_{s}-\bar{x}_{s}\right)\left(x_{s}-\bar{x}_{s}\right)^{\prime}} \sqrt{\left(x_{t}-\bar{x}_{t}\right)\left(x_{t}-\bar{x}_{t}\right)^{\prime}}}
\]
where
\(\bar{x}_{s}=\frac{1}{n} \sum_{j} x_{s j}\) and \(\bar{x}_{t}=\frac{1}{n} \sum_{j} x_{t j}\)
- Hamming distance
\[
d_{s t}=\left(\#\left(x_{s j} \neq x_{t j}\right) / n\right)
\]
- Jaccard distance
\[
d_{s t}=\frac{\#\left[\left(x_{s j} \neq x_{t j}\right) \cap\left(\left(x_{s j} \neq 0\right) \cup\left(x_{t j} \neq 0\right)\right)\right]}{\#\left[\left(x_{s j} \neq 0\right) \cup\left(x_{t j} \neq 0\right)\right]}
\]
- Spearman distance
\[
d_{s t}=1-\frac{\left(r_{s}-\bar{r}_{s}\right)\left(r_{t}-\bar{r}_{t}\right)^{\prime}}{\sqrt{\left(r_{s}-\bar{r}_{s}\right)\left(r_{s}-\bar{r}_{s}\right)^{\prime}} \sqrt{\left(r_{t}-\bar{r}_{t}\right)\left(r_{t}-\bar{r}_{t}\right)^{\prime}}}
\]
where
- \(r_{s j}\) is the rank of \(x_{s j}\) taken over \(x_{1 j}, x_{2 j}, \ldots x_{m j}\), as computed by tiedrank
- \(r_{s}\) and \(r_{t}\) are the coordinate-wise rank vectors of \(x_{s}\) and \(x_{t}\), i.e., \(r_{s}=\left(r_{s 1}, r_{s 2}, \ldots r_{s n}\right)\)
- \(\quad \bar{r}_{s}=\frac{1}{n} \sum_{j} r_{s j}=\frac{(n+1)}{2}\)
- \(\bar{r}_{t}=\frac{1}{n} \sum_{j} r_{t j}=\frac{(n+1)}{2}\)

Generate random data and find the unweighted Euclidean distance and then find the weighted distance using two different methods:
```

% Compute the ordinary Euclidean distance.
X = randn(100, 5);
D = pdist(X,'euclidean'); % euclidean distance
% Compute the Euclidean distance with each coordinate
% difference scaled by the standard deviation.

```
```

Dstd = pdist(X,'seuclidean');
% Use a function handle to compute a distance that weights
% each coordinate contribution differently.
Wgts = [.1 .3 .3 .2 .1]; % coordinate weights
weuc = @(XI,XJ,W)(sqrt(bsxfun(@minus,XI,XJ).^2 * W'));
Dwgt = pdist(X, @(Xi,Xj) weuc(Xi,Xj,Wgts));

```

\section*{See Also}
cluster | clusterdata | cmdscale | cophenet | dendrogram | inconsistent | linkage | pdist2 | silhouette | squareform

Purpose
Pairwise distance between two sets of observations
Syntax
```

D = pdist2(X,Y)
D = pdist2(X,Y,distance)
D = pdist2(X,Y,'minkowski',P)
D = pdist2(X,Y,'mahalanobis',C)
D = pdist2(X,Y,distance,'Smallest',K)
D = pdist2(X,Y,distance,'Largest',K)
[D,I] = pdist2(X,Y,distance,'Smallest',K)
[D,I] = pdist2(X,Y,distance,'Largest',K)

```

\section*{Description}

D = pdist2 \((X, Y)\) returns a matrix \(D\) containing the Euclidean distances between each pair of observations in the \(m x\)-by- \(n\) data matrix X and \(m y\)-by- \(n\) data matrix Y . Rows of X and Y correspond to observations, columns correspond to variables. D is an \(m x\)-by- \(m y\) matrix, with the \((i, j)\) entry equal to distance between observation \(i\) in X and observation \(j\) in Y . The \((i, j)\) entry will be NaN if observation \(i\) in X or observation \(j\) in Y contain NaNs.
\(\mathrm{D}=\) pdist2(X,Y,distance) computes D using distance. Choices are:
\begin{tabular}{|c|c|}
\hline Metric & Description \\
\hline 'euclidean' & Euclidean distance (default). \\
\hline 'seuclidean' & Standardized Euclidean distance. Each coordinate difference between rows in \(X\) and \(Y\) is scaled by dividing by the corresponding element of the standard deviation computed from X , \(S=\) nanstd \((X)\). To specify another value for \(S\), use \(D=\) PDIST2 (\(\mathrm{X}, \mathrm{Y}\), ' seuclidean ' S). \\
\hline 'cityblock' & City block metric. \\
\hline 'minkowski' & Minkowski distance. The default exponent is 2. To compute the distance with a different exponent, use D = pdist2(X,Y,'minkowski', P), where the exponent \(P\) is a scalar positive value. \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Metric & Description \\
\hline 'chebychev' & \begin{tabular}{l}
Chebychev distance (maximum coordinate \\
difference).
\end{tabular} \\
\hline 'mahalanobis' & \begin{tabular}{l}
Mahalanobis distance, using the sample covariance \\
of X as computed by nancov. To compute the \\
distance with a different covariance, use D \(=\) \\
pdist2 (X, Y, ' mahalanobis ' , C) where the matrix C \\
is symmetric and positive definite.
\end{tabular} \\
\hline 'cosine' & \begin{tabular}{l}
One minus the cosine of the included angle between \\
points (treated as vectors).
\end{tabular} \\
\hline 'correlation ' & \begin{tabular}{l}
One minus the sample correlation between points \\
(treated as sequences of values).
\end{tabular} \\
\hline 'spearman' & \begin{tabular}{l}
One minus the sample Spearman's rank correlation \\
between observations, treated as sequences of \\
values.
\end{tabular} \\
\hline 'hamming' & \begin{tabular}{l}
Hamming distance, the percentage of coordinates \\
that differ.
\end{tabular} \\
\hline 'jaccard' & \begin{tabular}{l}
One minus the Jaccard coefficient, the percentage of \\
nonzero coordinates that differ.
\end{tabular} \\
\hline function & \begin{tabular}{l}
A distance function specified using @: \\
D = pdist2(X,Y, @distfun). \\
A distance function must be of the form
\end{tabular} \\
\hline function D2 = distfun (ZI, ZJ)
\end{tabular}

\section*{Metric \(\quad\) Description}

If your data is not sparse, generally it is faster to use a built-in distance than to use a function handle.
\(\mathrm{D}=\) pdist2(\(\mathrm{X}, \mathrm{Y}\), distance, 'Smallest', K) returns a K-by-my matrix \(D\) containing the \(K\) smallest pairwise distances to observations in \(X\) for each observation in Y. pdist2 sorts the distances in each column of \(D\) in ascending order. \(\mathrm{D}=\) pdist2(X,Y,distance, 'Largest', K) returns the \(K\) largest pairwise distances sorted in descending order. If \(K\) is greater than \(m x\), pdist2 returns an \(m x\)-by- \(m y\) distance matrix. For each observation in Y , pdist2 finds the K smallest or largest distances by computing and comparing the distance values to all the observations in \(X\).
[\(\mathrm{D}, \mathrm{I}]=\) pdist2(X,Y,distance, 'Smallest', K) returns a K -by-my matrix I containing indices of the observations in X corresponding to the K smallest pairwise distances in D . \([\mathrm{D}, \mathrm{I}]=\) pdist2(X,Y, distance, 'Largest', K) returns indices corresponding to the \(K\) largest pairwise distances.

\section*{Metrics}

Given an \(m x\)-by- \(n\) data matrix X , which is treated as \(m x\) (1-by- \(n\)) row vectors \(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{m \mathrm{x}}\), and \(m y\)-by- \(n\) data matrix Y , which is treated as \(m y\) (1-by- \(n\)) row vectors \(\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{m y}\), the various distances between the vector \(\mathrm{x}_{s}\) and \(\mathrm{y}_{t}\) are defined as follows:
- Euclidean distance
\[
d_{s t}^{2}=\left(x_{s}-y_{t}\right)\left(x_{s}-y_{t}\right)^{\prime}
\]

Notice that the Euclidean distance is a special case of the Minkowski metric, where \(\mathrm{p}=2\).
- Standardized Euclidean distance
\[
d_{s t}^{2}=\left(x_{s}-y_{t}\right) V^{-1}\left(x_{s}-y_{t}\right)^{\prime}
\]
where V is the \(n\)-by- \(n\) diagonal matrix whose \(j\) th diagonal element is \(S(j)^{2}\), where \(S\) is the vector of standard deviations.
- Mahalanobis distance
\[
d_{s t}^{2}=\left(x_{s}-y_{t}\right) C^{-1}\left(x_{s}-y_{t}\right)^{\prime}
\]
where C is the covariance matrix.
- City block metric
\[
d_{s t}=\sum_{j=1}^{n}\left|x_{s j}-y_{t j}\right|
\]

Notice that the city block distance is a special case of the Minkowski metric, where \(\mathrm{p}=1\).
- Minkowski metric
\[
d_{s t}=\sqrt[p]{\sum_{j=1}^{n}\left|x_{s j}-y_{t j}\right|^{p}}
\]

Notice that for the special case of \(p=1\), the Minkowski metric gives the City Block metric, for the special case of \(p=2\), the Minkowski metric gives the Euclidean distance, and for the special case of \(p=\infty\), the Minkowski metric gives the Chebychev distance.
- Chebychev distance
\[
d_{s t}=\max _{j}\left\{\left|x_{s j}-y_{t j}\right|\right\}
\]

Notice that the Chebychev distance is a special case of the Minkowski metric, where \(p=\infty\).
- Cosine distance
\[
d_{s t}=\left(1-\frac{x_{s} y_{t}^{\prime}}{\sqrt{\left(x_{s} x_{s}^{\prime}\right)\left(y_{t} y_{t}^{\prime}\right)}}\right)
\]
- Correlation distance
\[
d_{s t}=1-\frac{\left(x_{s}-\bar{x}_{s}\right)\left(y_{t}-\bar{y}_{t}\right)^{\prime}}{\sqrt{\left(x_{s}-\bar{x}_{s}\right)\left(x_{s}-\bar{x}_{s}\right)^{\prime}} \sqrt{\left(y_{t}-\bar{y}_{t}\right)\left(y_{t}-\bar{y}_{t}\right)^{\prime}}}
\]
where
\[
\begin{gathered}
\bar{x}_{s}=\frac{1}{n} \sum_{j} x_{s j} \text { and } \\
\bar{y}_{t}=\frac{1}{n} \sum_{j} y_{t j}
\end{gathered}
\]
- Hamming distance
\[
d_{s t}=\left(\#\left(x_{s j} \neq y_{t j}\right) / n\right)
\]
- Jaccard distance
\[
d_{s t}=\frac{\#\left[\left(x_{s j} \neq y_{t j}\right) \cap\left(\left(x_{s j} \neq 0\right) \cup\left(y_{t j} \neq 0\right)\right)\right]}{\#\left[\left(x_{s j} \neq 0\right) \cup\left(y_{t j} \neq 0\right)\right]}
\]
- Spearman distance
\[
d_{s t}=1-\frac{\left(r_{s}-\bar{r}_{s}\right)\left(r_{t}-\bar{r}_{t}\right)^{\prime}}{\sqrt{\left(r_{s}-\bar{r}_{s}\right)\left(r_{s}-\bar{r}_{s}\right)^{\prime}} \sqrt{\left(r_{t}-\bar{r}_{t}\right)\left(r_{t}-\bar{r}_{t}\right)^{\prime}}}
\]
where
- \(r_{s j}\) is the rank of \(x_{s j}\) taken over \(x_{1 j}, x_{2 j}, \ldots x_{m x, j}\), as computed by tiedrank
- \(r_{t j}\) is the rank of \(y_{t j}\) taken over \(y_{1 j}, y_{2 j}, \ldots y_{m y, j}\), as computed by tiedrank
- \(r_{s}\) and \(r_{t}\) are the coordinate-wise rank vectors of \(x_{s}\) and \(y_{t}\), i.e. \(r_{s}=\) \(\left(r_{s 1}, r_{s 2}, \ldots r_{s n}\right)\) and \(r_{t}=\left(r_{t 1}, r_{t 2}, \ldots r_{t n}\right)\)
- \(\quad \bar{r}_{s}=\frac{1}{n} \sum_{j} r_{s j}=\frac{(n+1)}{2}\)
- \(\bar{r}_{t}=\frac{1}{n} \sum_{j} r_{t j}=\frac{(n+1)}{2}\)

\section*{Examples}

Generate random data and find the unweighted Euclidean distance, then find the weighted distance using two different methods:
```

% Compute the ordinary Euclidean distance
X = randn(100, 5);
Y = randn(25, 5);
D = pdist2(X,Y,'euclidean'); % euclidean distance
% Compute the Euclidean distance with each coordinate
% difference scaled by the standard deviation
Dstd = pdist2(X,Y,'seuclidean');
% Use a function handle to compute a distance that weights
% each coordinate contribution differently.
Wgts = [.1 .3 .3 .2 .1];
weuc = @(XI,XJ,W)(sqrt(bsxfun(@minus,XI,XJ).^2 * W'));
Dwgt = pdist2(X,Y, @(Xi,Xj) weuc(Xi,Xj,Wgts));

```

See Also
pdist | createns | knnsearch | KDTreeSearcher | ExhaustiveSearcher

Purpose Pearson system random numbers
```

Syntax $\quad r=$ pearsrnd(mu, sigma, skew, kurt, m, n)
$r=$ pearsrnd(mu,sigma,skew,kurt)
$r=$ pearsrnd(mu,sigma,skew,kurt,m,n,...)
$r$ = pearsrnd(mu, sigma, skew, kurt, [m, n, ...])
[r,type] = pearsrnd(...)
[r,type,coefs] = pearsrnd(...)

```

\section*{Description}
\(r=\) pearsrnd(mu, sigma, skew, kurt, \(m, n\)) returns an m-by-n matrix of random numbers drawn from the distribution in the Pearson system with mean mu, standard deviation sigma, skewness skew, and kurtosis kurt. The parameters mu, sigma, skew, and kurt must be scalars.

Note Because \(r\) is a random sample, its sample moments, especially the skewness and kurtosis, typically differ somewhat from the specified distribution moments.
pearsrnd uses the definition of kurtosis for which a normal distribution has a kurtosis of 3 . Some definitions of kurtosis subtract 3 , so that a normal distribution has a kurtosis of 0 . The pearsrnd function does not use this convention.

Some combinations of moments are not valid; in particular, the kurtosis must be greater than the square of the skewness plus 1. The kurtosis of the normal distribution is defined to be 3 .
\(r=\) pearsrnd(mu, sigma, skew, kurt) returns a scalar value.
\(r=p e a r s r n d(m u, s i g m a, s k e w, k u r t, m, n, \ldots)\) or \(r=\) pearsrnd(mu, sigma, skew, kurt, [m,n,...]) returns an m-by-n-by-... array.
[\(r\), type] \(=\) pearsrnd (...) returns the type of the specified distribution within the Pearson system. type is a scalar integer from 0
to 7 . Set m and n to 0 to identify the distribution type without generating any random values.

The seven distribution types in the Pearson system correspond to the following distributions:
- 0 - Normal distribution
- 1 - Four-parameter beta distribution
- 2 - Symmetric four-parameter beta distribution
- 3 - Three-parameter gamma distribution
- 4 - Not related to any standard distribution. The density is proportional to:
\[
\left(1+((x-a) / b)^{2}\right)^{-c} \exp (-d \arctan ((x-a) / b))
\]
- 5 - Inverse gamma location-scale distribution
- \(6-F\) location-scale distribution
- 7 - Student's \(t\) location-scale distribution
[r,type,coefs] = pearsrnd(...) returns the coefficients coefs of the quadratic polynomial that defines the distribution via the differential equation
\[
\frac{d}{d x} \log (p(x))=\frac{-(a+x)}{c(0)+c(1) x+c(2) x^{2}} .
\]

\section*{Examples}

Generate random values from the standard normal distribution:
```

r = pearsrnd(0,1,0,3,100,1); % Equivalent to randn(100,1)

```

Determine the distribution type:
```

[r,type] = pearsrnd(0,1,1,4,0,0);
r =

```
 []
type \(=\)
1
References [1] Johnson, N.L., S. Kotz, and N. Balakrishnan (1994) Continuous Univariate Distributions, Volume 1, Wiley-Interscience, Pg 15, Eqn 12.33 .

See Also random | johnsrnd

\section*{Purpose}

\section*{Syntax}
```

```
[X,Y] = perfcurve(labels,scores,posclass)
```

```
[X,Y] = perfcurve(labels,scores,posclass)
[X,Y] = perfcurve(labels,scores,posclass,'Name',value)
[X,Y] = perfcurve(labels,scores,posclass,'Name',value)
[X,Y,T,AUC,OPTROCPT,SUBY,SUBYNAMES] = perfcurve(labels,scores,
[X,Y,T,AUC,OPTROCPT,SUBY,SUBYNAMES] = perfcurve(labels,scores,
 posclass)
 posclass)
[X,Y,T,AUC] = perfcurve(labels,scores,posclass)
```

```
[X,Y,T,AUC] = perfcurve(labels,scores,posclass)
```

```

\section*{Description}

Compute Receiver Operating Characteristic (ROC) curve or other performance curve for classifier output
[\(\mathrm{X}, \mathrm{Y}\)] = perfcurve(labels, scores, posclass) computes a ROC curve for a vector of classifier predictions scores given true class labels, labels. labels can be a numeric vector, logical vector, character matrix, cell array of strings or categorical vector. scores is a numeric vector of scores returned by a classifier for some data. posclass is the positive class label (scalar), either numeric (for numeric labels), logical (for logical labels), or char. The returned values \(X\) and \(Y\) are coordinates for the performance curve and can be visualized with plot (\(\mathrm{X}, \mathrm{Y}\)). For more information on labels, scores, and posclass, see "Input Arguments" on page 20-2045 . For more information on \(X\) and Y, see "Output Arguments" on page 20-2049.
[\(\mathrm{X}, \mathrm{Y}\)] = perfcurve(labels,scores, posclass,'Name', value) specifies one or more optional parameter name/value pairs, with Name in single quotes. See "Input Arguments" on page 20-2045 for a list of inputs, parameter name/value pairs, and respective explanations.

See "Grouping Variables" on page 2-51 for more information on grouping variables.
```

[X,Y,T,AUC,OPTROCPT,SUBY,SUBYNAMES] =
perfcurve(labels,scores,posclass) returns:

```
- An array of thresholds on classifier scores for the computed values of \(X\) and \(Y(T)\).
- The area under curve (AUC) for the computed values of \(X\) and \(Y\).
- The optimal operating point of the ROC curve (OPTROCPT).
- An array of \(Y\) values for negative subclasses (SUBY).

\section*{perfcurve}
- A cell array of negative class names (SUBYNAMES).

For more information on each output, see "Output Arguments" on page 20-2049.
[\(\mathrm{X}, \mathrm{Y}, \mathrm{T}, \mathrm{AUC}]=\) perfcurve(labels,scores, posclass) also returns pointwise confidence bounds for the computed values \(\mathrm{X}, \mathrm{Y}, \mathrm{T}\), and AUC if you supply cell arrays for labels and scores or set NBoot (see "Input Arguments" on page 20-2045) to a positive integer. To compute the confidence bounds, perfcurve uses either vertical averaging (VA) or threshold averaging (TA). The returned values \(Y\) are an \(m\)-by- 3 array in which the 1st element in every row gives the mean value, the 2nd element gives the lower bound and the 3rd element gives the upper bound. The returned AUC is a row-vector with 3 elements following the same convention. For VA, the returned values T are an \(m\)-by- 3 array and X is a column-vector. For TA, the returned values X are an \(m\)-by- 3 matrix and \(T\) is a column-vector.
perfcurve computes confidence bounds using either cross validation or bootstrap. If you supply cell arrays for labels and scores, perfcurve uses cross validation and treats elements in the cell arrays as cross validation folds. labels can be a cell array of numeric vectors, logical vectors, character matrices, cell arrays of strings or categorical vectors. All elements in labels must have the same type. scores is a cell array of numeric vectors. The cell arrays for labels and scores must have the same number of elements, and the number of labels in cell \(k\) must be equal to the number of scores in cell \(k\) for any \(k\) in the range from 1 to the number of elements in scores.

If you set NBoot to a positive integer, perfcurve generates nboot bootstrap replicas to compute pointwise confidence bounds. You cannot supply cell arrays for labels and scores and set NBoot to a positive integer at the same time.
perfcurve returns pointwise confidence bounds. It does not return a simultaneous confidence band for the entire curve.

If you use 'XCrit' or 'YCrit' options described below to set the criterion for \(X\) or \(Y\) to an anonymous function, perfcurve can only compute confidence bounds by bootstrap.
\begin{tabular}{ll}
Input \\
Arguments & labels \\
scores & \begin{tabular}{l}
labels can be a numeric vector, logical vector, \\
character matrix, cell array of strings or \\
categorical vector.
\end{tabular} \\
posclass & \begin{tabular}{l}
scores is a numeric vector of scores returned by a \\
classifier for some data. This vector must have as \\
many elements as labels does.
\end{tabular} \\
\begin{tabular}{l}
posclass is the positive class label (scalar), \\
either numeric (for numeric labels) or char. The \\
specified positive class must be in the array of \\
input labels.
\end{tabular}
\end{tabular}

\section*{Name-Value Pair Arguments}

\section*{Name}
negClass
xCrit

\section*{Value and Description}

List of negative classes. Can be either a numeric array or an array of chars or a cell array of strings. By default, negClass is set to 'all' and all classes found in the input array of labels that are not the positive class are considered negative. If negClass is a subset of the classes found in the input array of labels, instances with labels that do not belong to either positive or negative classes are discarded.

Criterion to compute for X . This criterion must be a monotone function of the positive class score. perfcurve supports the following criteria:
- TP - Number of true positive instances.
- FN - Number of false negative instances.
- FP - Number of false positive instances.
- TN - Number of true negative instances.
- TP+FP - Sum of TP and FP.

\section*{Name}

\section*{Value and Description}
- RPP - Rate of positive predictions. RPP \(=(T P+F P) /(T P+F N+F P+T N)\)
- RNP - Rate of negative predictions. RNP \(=(T N+F N) /(T P+F N+F P+T N)\)
- accu - Accuracy. accu \(=(T P+T N) /(T P+F N+F P+T N)\)
- TPR, sens, reca - True positive rate, sensitivity, recall. TPR, sens, reca \(=\) TP/(TP+FN)
- FNR, miss - False negative rate, miss. FNR, miss=FN / (TP+FN)
- FPR, fall - False positive rate, fallout. FPR,fall=FP/(TN+FP)
- TNR, spec - True negative rate, specificity. TNR, spec=TN/ (TN+FP)
- PPV, prec - Positive predictive value, precision. PPV, prec=TP/(TP+FP)
- NPV - Negative predictive value. NPV=TN/(TN+FN)
- ecost - Expected cost. ecost \(=(T P * \operatorname{COST}(P \mid P)+F N * \operatorname{COST}(N \mid P)+F P *\) \(\operatorname{COST}(P \mid N)+T N * \operatorname{COST}(N \mid N)) /(T P+F N+F P+T N)\)

In addition, you can define an arbitrary criterion by supplying an anonymous function of three arguments, (C, scale, cost), where \(C\) is a 2 -by- 2 confusion matrix, scale is a 2 -by- 1 array of class scales, and cost is a 2 -by- 2 misclassification cost matrix.

Caution Some of these criteria return NaN values at one of the two special thresholds, 'reject all' and 'accept all'.

\section*{Name}
yCrit

XVals

TVals

UseNearest

\section*{Value and Description}

Criterion to compute for Y. perfcurve supports the same criteria as for \(X\). This criterion does not have to be a monotone function of the positive class score.
Values for the X criterion. The default value for XVals is 'all' and perfcurve computes \(X\) and \(Y\) values for all scores. If the value for xVals is not 'all', it must be a numeric array. In this case, perfcurve computes \(X\) and \(Y\) only for the specified \(X V a l s\).

Thresholds for the positive class score. By default, TVals is unset and perfcurve computes \(X\), Y , and T values for all scores. You can set TVals to either 'all' or a numeric array. If TVals is set to 'all' or unset and XVals is unset, perfcurve returns X, Y , and T values for all scores and computes pointwise confidence bounds for \(Y\) and \(X\) using threshold averaging. If TVals is set to a numeric array, perfcurve returns \(X, Y\), and \(T\) values for the specified thresholds and computes pointwise confidence bounds for \(Y\) and \(X\) at these thresholds using threshold averaging. You cannot set XVals and TVals at the same time.
'on' to use nearest values found in the data instead of the specified numeric XVals or TVals and 'off' otherwise. If you specify numeric XVals and set UseNearest to 'on', perfcurve returns nearest unique values \(X\) found in the data, as well as corresponding values of \(Y\) and \(T\). If you specify numeric XVals and set UseNearest to 'off', perfcurve returns these XVals sorted. By default this parameter is set to 'on'. If you compute confidence bounds by cross validation or bootstrap, this parameter is always 'off'.

Name
ProcessNaN

Prior

Cost

Alpha

Weights

\section*{Value and Description}

Specifies how perfcurve processes NaN scores. The default value is 'ignore' and perfcurve removes observations with NaN scores from the data. If you set the parameter to 'addtofalse ', perfcurve adds instances with NaN scores to false classification counts in the respective class. That is, perfcurve always counts instances from the positive class as false negative (FN), and always counts instances from the negative class as false positive (FP).
Either string or array with two elements. It represents prior probabilities for the positive and negative class, respectively. Default is 'empirical', that is, perfcurve derives prior probabilities from class frequencies. If set to 'uniform', perfcurve sets all prior probabilities equal.

A 2-by-2 matrix of misclassification costs [C(P|P) C(N|P); \(C(P \mid N) C(N \mid N)]\) where \(C(I \mid J)\) is the cost of misclassifying class \(J\) as class I. By default set to [0 0.5; 0.5 0].
A numeric value between 0 and 1 . perfcurve returns 100*(1-Alpha) percent pointwise confidence bounds for X, Y, T and AUC. By default set to 0.05 for \(95 \%\) confidence interval.
A numeric vector of nonnegative observation weights. This vector must have as many elements as scores or labels do. If you supply cell arrays for scores and labels and you need to supply weights, you must supply them as a cell array too. In this case, every element in weights must be a numeric vector with as many elements as the corresponding element in scores: numel (weights \(\{1\}\)) \(==\) numel (scores \(\{1\}\)) etc. To compute \(X\), Y and T or to compute confidence bounds by cross validation, perfcurve uses these observation weights instead of observation counts. To compute confidence bounds by bootstrap, perfcurve samples \(N\) out of \(N\) with replacement using these weights as multinomial sampling probabilities.

\section*{Name}

NBoot

BootType

BootArg

\section*{Value and Description}

Number of bootstrap replicas for computation of confidence bounds. Must be a positive integer. By default this parameter is set to zero, and bootstrap confidence bounds are not computed. If you supply cell arrays for labels and scores, this parameter must be set to zero because perfcurve cannot use both cross validation and bootstrap to compute confidence bounds.
Confidence interval type bootci uses to compute confidence bounds. You can specify any type supported by bootci. By default set to 'bca'.

Optional input arguments for bootci used to compute confidence bounds. You can specify all arguments bootci supports. Empty by default.

\section*{Output \(x\) \\ Arguments}
\(Y \quad y\)-coordinates for the performance curve. By default, Y is true positive rate, TPR, (equivalently, recall, or sensitivity). To change this output, use the 'yCrit' input. For accepted criterion, see 'xCrit' in "Input Arguments" on page 20-2045 for more information.

T

AUC The area under curve (AUC) for the computed values of \(X\) and Y. If you set \(x\) Vals to 'all' (the default), perfcurve computes AUC using the returned \(X\) and \(Y\) values. If \(x\) Vals is a numeric array, perfcurve computes AUC using \(X\) and \(Y\) values found from all distinct scores in the interval specified by the smallest and largest elements of xVals. More precisely, perfcurve finds \(X\) values for all distinct thresholds as if XVals were set to 'all', then uses a subset of these (with corresponding \(Y\) values) between min(xVals) and max (xVals) to compute AUC. The function uses trapezoidal approximation to estimate the area. If the first or last value of \(X\) or \(Y\) are NaNs , perfcurve removes them to allow calculation of AUC. This takes care of criteria that produce NaNs for the special 'reject all' or 'accept all' thresholds, for example, positive predictive value (PPV) or negative predictive value (NPV).

OPTROCPT The optimal operating point of the ROC curve as an array of size 1-by- 2 with FPR and TPR values for the optimal ROC operating point. perfcurve computes optrocpt only for the standard ROC curve and sets to NaNs otherwise. To obtain the optimal operating point for the ROC curve, perfcurve first finds the slope, S , using
 of class \(J\) to class \(I\), and \(P=T P+F N\) and \(N=T N+F P\) are the total instance counts in the positive and negative class, respectively. perfcurve then finds the optimal operating point by moving the straight line with slope \(S\) from the upper left corner of the ROC plot (FPR=0, TPR=1) down and to the right until it intersects the ROC curve.
SUBY An array of \(Y\) values for negative subclasses. If you only specify one negative class, SUBY is identical to Y . Otherwise SUBY is a matrix of size \(M\)-by- \(K\), where \(M\) is the number of returned values for \(X\) and \(Y\), and \(K\) is the number of negative classes. perfcurve computes \(Y\) values by summing counts over all negative classes. SUBY gives values of the \(Y\) criterion for each negative class separately. For each negative class, perfcurve places a new column in SUBY and fills it with \(Y\) values for TN and FP counted just for this class.

SUBYNAMES A cell array of negative class names. If you provide an input array, negClass, of negative class names, perfcurve copies it into SUBYNAMES. If you do not provide negClass, perfcurve extracts SUBYNAMES from input labels. The order of SUBYNAMES is the same as the order of columns in \(\operatorname{SUBY}\), that is, \(\operatorname{SUBY}(:, 1)\) is for negative class SUBYNAMES \(\{1\}\) etc.

Examples Plot the ROC curve for classification by logistic regression:
```

load fisheriris
x = meas(51:end,1:2);
% iris data, 2 classes and 2 features
y = (1:100)'>50;
% versicolor=0, virginica=1
b = glmfit(x,y,'binomial');
% logistic regression
p = glmval(b,x,'logit');
% fit probabilities for scores
[X,Y,T,AUC] = perfcurve(species(51:end,:),p,'virginica');
plot(X,Y)
xlabel('False positive rate'); ylabel('True positive rate')
title('ROC for classification by logistic regression')

```


Obtain errors on TPR by vertical averaging
```

[X,Y] = perfcurve(species(51:end,:),p,'virginica',...
'nboot',1000,'xvals','all');
% plot errors

```
\(\operatorname{errorbar}(X, Y(:, 1), Y(:, 2)-Y(:, 1), Y(:, 3)-Y(:, 1)) ;\)

\section*{References}

See Also
How To
bootci | glmfit | mnrfit | classify | NaiveBayes | classregtree
- "Grouping Variables" on page 2-51
- "Performance Curves" on page 14-39
- "Plotting a Classification Performance Curve" on page 15-142

\section*{Purpose Enumeration of permutations}

\section*{Syntax \(\quad P=\operatorname{perms}(v)\)}

Description \(\quad P=\) perms \((v)\), where \(v\) is a row vector of length \(n\), creates a matrix whose rows consist of all possible permutations of the \(n\) elements of \(v\). The matrix P contains \(n!\) rows and \(n\) columns.
perms is only practical when \(n\) is less than about 11 (for \(n=11\), the output takes over 3 gigabytes).

\section*{Examples}
perms([2 46 6])
ans =
\(6 \quad 4 \quad 2\)
\(6 \quad 2 \quad 4\)
\(4 \quad 6 \quad 2\)
\(4 \quad 26\)
246
\(2 \quad 6 \quad 4\)

\section*{See Also}
combnk

\section*{Purpose Permute dimensions of categorical array}
Syntax
B = permute(A,order)

Description
\(B=\) permute \((A\), order \()\) rearranges the dimensions of the categorical array A so that they are in the order specified by the vector order. The array produced has the same values as A but the order of the subscripts needed to access any particular element are rearranged as specified by order. The elements of order must be a rearrangement of the numbers from 1 to \(n\).

See Also circshift | ipermute

\section*{piecewisedistribution}
\begin{tabular}{|c|c|}
\hline Purpose & Piecewise-defined distributions \\
\hline Construction & piecewisedistribution is an abstract class. To construct a piecewisedistribution object, use the subclass constructor, paretotails. \\
\hline \multirow[t]{9}{*}{Methods} & boundary Piecewise distribution boundaries \\
\hline & cdf \(\quad\)\begin{tabular}{l}
Cumulative distribution function \\
for piecewise distribution
\end{tabular} for piecewise distribution \\
\hline & disp Display piecewisedistribution object \\
\hline & display \(\quad\)\begin{tabular}{l}
Display piecewisedistribution \\
object
\end{tabular} \\
\hline & \begin{tabular}{ll}
icdf & Inverse cumulative distribution \\
function for piecewise distribution
\end{tabular} \\
\hline & nsegments Number of segments \\
\hline & \begin{tabular}{l}
pdf \\
Probability density function for piecewise distribution
\end{tabular} \\
\hline & random \(\quad\)\begin{tabular}{l}
Random numbers from piecewise \\
distribution
\end{tabular} \\
\hline & segment Segments containing values \\
\hline Properties & Objects of the piecewisedistribution class have no properties accessible by dot indexing, get methods, or set methods. To obtain information about a piecewisedistribution object, use the appropriate method. \\
\hline \begin{tabular}{l}
Copy \\
Semantics
\end{tabular} & Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes in the MATLAB Object-Oriented Programming documentation. \\
\hline
\end{tabular}

\title{
Purpose Create piecewise distribution object
}
\(\begin{array}{ll}\text { Description } & \begin{array}{l}\text { piecewisedistribution is an abstract class, and you cannot create } \\ \text { instances of it directly. You can create paretotails objects that are } \\ \text { derived from this class. }\end{array}\end{array}\)

\author{
See Also \\ paretotails
}

\section*{prob.PiecewiseLinearDistribution}

Superclasses ParametricTruncatableDistribution
Purpose Piecewise linear probability distribution object
Description prob.PiecewiseLinearDistribution is an object consisting of a model description for a piecewise linear probability distribution. Create a probability distribution object with specified parameters using makedist.

Construction
pd = makedist('PiecewiseLinear') creates a piecewise linear probability distribution object using the default parameter values.
pd = makedist('PiecewiseLinear','x', x, 'Fx', Fx) creates a piecewise linear probability distribution object using the specified values.

\section*{Input Arguments}

\section*{x - Data values}

1 (default) | vector of scalar values
Data values at which the cumulative distribution function (cdf) changes slope, specified as a vector of scalar values.

\author{
Data Types \\ single | double
}

\section*{Fx - cdf value}

1 (default) | vector of scalar values
cdf value at each value in \(X\), specified as a vector of scalar values. \(x\) and \(F x\) must be the same size. The first value in the vector \(F x\) must be 0 , and the last element must be 1 . Fx increases linearly between \(\mathrm{x}(j)\) and \(\mathrm{x}(j+1)\), for all \(j\).

\author{
Data Types \\ single | double
}

\section*{Properties}

\section*{\(\mathbf{x}\)}

Data values at which the cumulative distribution function (cdf) changes slope, stored as a vector of scalar values.
```

Data Types
single | double

```
Fx
cdf value at each value in \(x\), stored as a vector of scalar values.

\section*{Data Types}
single | double

\section*{DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{Data Types \\ char}

\section*{IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated. If IsTruncated equals 1, the distribution is truncated. This property is read-only.

\section*{Data Types}
logical

\section*{NumParameters}

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterDescription}

\section*{prob.PiecewiseLinearDistribution}

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

\section*{Data Types \\ char}

\section*{ParameterNames}

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

\section*{Data Types \\ char \\ ParameterValues}

Values of distribution parameters, stored as a vector. This property is read-only.

\section*{Data Types}
single | double

\section*{Truncation}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

\author{
Data Types \\ single | double
}

\section*{Methods Inherited Methods}
\begin{tabular}{ll}
cdf & \begin{tabular}{l}
Cumulative distribution function \\
of probability distribution object
\end{tabular} \\
icdf & \begin{tabular}{l}
Inverse cumulative distribution \\
function of probability \\
distribution object
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
iqr & \begin{tabular}{l}
Interquartile range of probability \\
distribution object
\end{tabular} \\
median & \begin{tabular}{l}
Median of probability distribution \\
object
\end{tabular} \\
pdf & \begin{tabular}{l}
Probability density function of \\
probability distribution object \\
Generate random numbers from \\
probability distribution object
\end{tabular} \\
truncate & \begin{tabular}{l}
Truncate probability distribution \\
object
\end{tabular} \\
mean & \begin{tabular}{l}
Mean of probability distribution \\
object
\end{tabular} \\
std & \begin{tabular}{l}
Standard deviation of probability \\
distribution object
\end{tabular} \\
var & \begin{tabular}{l}
Variance of probability \\
distribution object
\end{tabular} \\
\hline
\end{tabular}

\section*{Definitions Piecewise Linear Distribution}

The piecewise linear distribution is a nonparametric probability distribution created using a piecewise linear representation of the cumulative distribution function (cdf). The options specified for the piecewise linear distribution specify the form of the cdf. The probability density function (pdf) is a step function.

\section*{Examples Create a Piecewise Linear Distribution Object Using Default Parameters}

Create a piecewise linear distribution object using the default parameter values.
```

pd = makedist('PiecewiseLinear')

```

\section*{prob.PiecewiseLinearDistribution}
```

pd =
PiecewiseLinearDistribution
F(0) = 0
F(1) = 1

```

\section*{Create a Piecewise Linear Distribution Object Using Specified Parameters}

Load the sample data. Visualize the patient weight data using a histogram.
load hospital;
hist(hospital.Weight)

The histogram shows that the data has two modes, one for female patients and one for male patients.

Compute the empirical cumulative distribution function (ecdf) for the data.
[f,x] = ecdf(hospital.Weight);
Construct a piecewise linear approximation to the ecdf and plot both functions.
```

f = f(1:5:end); % keep a less dense grid of points
x = x(1:5:end);
figure;
ecdf(hospital.Weight)
hold on
plot(x,f,'ro','MarkerFace','r') % overlay grid
plot(x,f,'k') % show interpolation

```


Create a piecewise linear probability distribution object using the piecewise approximation of the ecdf.
```

pd = makedist('PiecewiseLinear','x',x,'Fx',f)
pd =

```
 PiecewiseLinearDistribution
\(F(111)=0\)
\(F(118)=0.05\)
\(F(124)=0.13\)
\(F(130)=0.25\)
\(F(135)=0.37\)
\(F(142)=0.5\)
\(F(163)=0.55\)
\(F(171)=0.61\)
\(F(178)=0.7\)
\(F(183)=0.82\)
\(F(189)=0.94\)
\(F(202)=1\)

Generate 100 random numbers from the distribution.
```

rw = random(pd,100,1);

```

Plot the random numbers to visually compare their distribution to the original data.
figure;
hist(rw)

\section*{prob.PiecewiseLinearDistribution}

The random numbers generated from the piecewise linear distribution have the same bimodal distribution as the original data.

See Also makedist
Concepts • "Piecewise Distributions" on page B-101
- Class Attributes
- Property Attributes

\section*{Purpose}

Scatter plot or added variable plot of linear model
Syntax
plot(mdl)
h = plot(mdl)

Input
Arguments

\section*{Output}

Arguments

\section*{Definitions}
plot (mdl) creates a plot of the fitted linear model. The plot type depends on the number of predictor variables.
- If there is just one predictor variable, plot creates a scatter plot of the data along with a fitted curve and confidence bounds.
- If there are multiple predictor variables, plot creates an added variable plot.
- If there are no predictors, plot creates a histogram of the residuals.
\(\mathrm{h}=\mathrm{plot}(\mathrm{mdl})\) returns handles to the lines in the plot.
mdl
Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.

\section*{h}

Vector of handles to lines or patches in the plot.
Added Variable Plot, Adjusted Response
An added variable plot illustrates the incremental effect on the response of specified terms by removing the effects of all other terms. The slope of the fitted line is the coefficient of the linear combination of the specified terms projected onto the best-fitting direction. The adjusted response includes the constant (intercept) terms, and averages out all other terms.

\section*{LinearModel.plot}

\section*{Examples Create an Added Variable Plot}

Create a model of car mileage as a function of weight and model year. Then create a plot to see the significance of the model.

Create a linear model of mileage from the carsmall data.
```

load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);
mdl = LinearModel.fit(ds,'MPG ~ Year + Weight^2');

```

Create an added variable plot.
plot(mdl)

The plot illustrates that the model is significant-a horizontal line does not fit between the confidence bounds.
Alternatives Use plotAdded to select particular predictors for an added variable plot.
See AlsoLinearModel | plotAdded
How To - "Linear Regression" on page 9-11

\section*{LinearModel.plotAdded}
Purpose Added variable plot or leverage plot for linear model
Syntax plotAdded(mdl)
plotAdded(mdl, coef)

h = plotAdded(mdl,...)

h = plotAdded(mdl, coef,Name, Value)

\section*{Description}

\section*{Tips}

\section*{Input}

Arguments
plotAdded (mdl) produces a generalized added variable plot for all terms in mdl except the constant term.
plotAdded(mdl, coef) produces an added variable plot for the coef terms in mdl, after adjusting for all other terms.
\(\mathrm{h}=\mathrm{plotAdded}(\mathrm{mdl}, \ldots)\) returns handles to the lines in the plot.
h = plotAdded(mdl, coef, Name, Value) plots with additional options specified by one or more Name, Value pair arguments.
- For many plots, the Data Cursor tool in the figure window displays the \(x\) and \(y\) values for any data point, along with the observation name or number.

\section*{mdl}

Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.

\section*{coef}

Coefficients in mdl. Represent as:
- String giving a single coefficient name
- Vector of coefficient numbers in the mdl. CoefficientNames property

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can

\section*{LinearModel.plotAdded}
specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Note The plot property name-value pairs apply to the first returned handle h(1).

\section*{'Color'}

Color of the line or marker, a string or ColorSpec specification. For details, see linespec.

\section*{'LineStyle'}

Type of line, a string or lineseriesproperties specification. For details, see linespec.

\section*{'LineWidth'}

Width of the line or edges of filled area, in points, a positive scalar. One point is \(1 / 72\) inch.

Default: 0.5

\section*{'MarkerEdgeColor'}

Color of the marker or edge color for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{'MarkerFaceColor'}

Color of the marker face for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{'MarkerSize'}

Size of the marker in points, a strictly positive scalar. One point is \(1 / 72\) inch.

\section*{LinearModel.plotAdded}
\begin{tabular}{|c|c|}
\hline Output Arguments & h Vector of handles to lines or patches in the plot. \\
\hline \multirow[t]{2}{*}{Definitions} & Added Variable Plot, Adjusted Response \\
\hline & An added variable plot illustrates the incremental effect on the response of specified terms by removing the effects of all other terms. The slope of the fitted line is the coefficient of the linear combination of the specified terms projected onto the best-fitting direction. The adjusted response includes the constant (intercept) terms, and averages out all other terms. \\
\hline \multirow[t]{6}{*}{Examples} & Create an Added Variable Plot \\
\hline & Create a model of car mileage as a function of weight and model year. Then create a plot to see the significance of the model. \\
\hline & Create a linear model of mileage from the carsmall data. \\
\hline & ```
load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);
mdl = LinearModel.fit(ds,'MPG ~ Year + Weight^2');
``` \\
\hline & Create an added variable plot. \\
\hline & plotAdded(mdl) \\
\hline
\end{tabular}


The plot illustrates that the model is significant-a horizontal line does not fit between the confidence bounds.

\section*{Create an Added Variable Plot for Particular Variables}

Create a model of car mileage as a function of weight and model year. Then create a plot to see the effect of the weight terms (Weight and Weight^2).

Create a linear model of mileage from the carsmall data.
```

load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);
mdl = LinearModel.fit(ds,'MPG ~ Year + Weight^2');

```

\section*{LinearModel.plotAdded}

Find the terms in the model corresponding to the Weight and Weight^2.
mdl.CoefficientNames
ans =
(Intercept)' 'Weight' 'Year_76' 'Year_82' 'Weight^2'
The weight terms are 2 and 5 .
Create an added variable plot with the weight terms.
```

coef = [2 5];
plotAdded(mdl,coef)

```


\section*{LinearModel.plotAdded}

The plot illustrates that the weight terms are significant-a horizontal line does not fit between the confidence bounds.
See Also LinearModel | plot
Tułorials • "Plots to Understand Terms Effects" on page 9-34
How To . "Linear Regression" on page 9-11

\section*{LinearModel.plotAdjustedResponse}
\begin{tabular}{|c|c|}
\hline Purpose & Adjusted response plot for linear regression model \\
\hline Syntax & \[
\begin{aligned}
& \text { plotAdjustedResponse(mdl, var) } \\
& h=\text { plotAdjustedResponse(mdl, var) } \\
& h=\text { plotAdjustedResponse(mdl, var, Name, Value) }
\end{aligned}
\] \\
\hline Description & \begin{tabular}{l}
plotAdjustedResponse(mdl, var) gives an adjusted response plot for the variable var in the mdl regression model. \\
\(\mathrm{h}=\) plotAdjustedResponse(mdl, var) returns handles to the lines in the plot. \\
h = plotAdjustedResponse(mdl, var, Name, Value) plots with additional options specified by one or more Name, Value pair arguments.
\end{tabular} \\
\hline Tips & - For many plots, the Data Cursor tool in the figure window displays the \(x\) and \(y\) values for any data point, along with the observation name or number. \\
\hline Input Arguments & \begin{tabular}{l}
mdl \\
Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.
\end{tabular} \\
\hline & \begin{tabular}{l}
var \\
Variable name, or scalar index of variable in mdl. CoefficientNames.
\end{tabular} \\
\hline & \begin{tabular}{l}
Name-Value Pair Arguments \\
Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
\end{tabular} \\
\hline
\end{tabular}

\section*{LinearModel.plotAdjustedResponse}

Note The plot property name-value pairs apply to the first returned handle h(1).

\section*{'Color'}

Color of the line or marker, a string or ColorSpec specification. For details, see linespec.

\section*{'LineStyle'}

Type of line, a string or lineseriesproperties specification. For details, see linespec.

\section*{'LineWidth'}

Width of the line or edges of filled area, in points, a positive scalar. One point is \(1 / 72\) inch.

Default: 0.5

\section*{'MarkerEdgeColor'}

Color of the marker or edge color for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{'MarkerFaceColor'}

Color of the marker face for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{'MarkerSize'}

Size of the marker in points, a strictly positive scalar. One point is \(1 / 72\) inch.

\section*{Output h}

Vector of handles to lines or patches in the plot.

\section*{LinearModel.plotAdjustedResponse}

\section*{Definitions}

\section*{Adjusted Response Plot}

The adjusted response plot shows the fitted response as a function of var, with the other predictors averaged out by averaging the fitted values over the data used in the fit. Adjusted data points are computed by adding the residual to the adjusted fitted value for each observation.

\section*{Examples Plot Adjusted Responses}

Plot the adjusted responses of a fitted linear model.
Load the carsmall data and fit a linear model of the mileage as a function of model year, weight, and weight squared.
```

load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);
mdl = LinearModel.fit(ds,'MPG ~ Year + Weight^2');

```

Plot the effect of 'Weight' averaged over Year values.
plotAdjustedResponse(mdl,'Weight')


Plot the effect of Year averaged over 'Weight' values. Include the h output.
h = plotAdjustedResponse(mdl,'Year');

\section*{LinearModel.plotAdjustedResponse}


Change the adjusted data to black x instead of red o .
set(h(1),'Marker','x','Color','k')


See Also
LinearModel | plotAdded | plotEffects | plotInteraction
How To - "Linear Regression" on page 9-11

\section*{GeneralizedLinearModel.plołDiagnostics}
\begin{tabular}{ll} 
Purpose & Plot diagnostics of generalized linear regression model \\
Syntax & \begin{tabular}{l} 
plotDiagnostics(mdl) \\
plotDiagnostics(mdl, plottype) \\
\(h=\) plotDiagnostics \((\ldots)\) \\
\\
\end{tabular}\(\quad\)\begin{tabular}{l} 
h \(=\) plotDiagnostics(mdl, plottype, Name, Value)
\end{tabular}
\end{tabular}

Description

Tips

Input
Arguments
plotDiagnostics(mdl) plots diagnostics from the mdl linear model using leverage as the plot type.
plotDiagnostics(mdl,plottype) plots diagnostics from the mdl generalized linear model in a plot of type plottype.
\(\mathrm{h}=\) plotDiagnostics(...) returns handles to the lines in the plot.
h = plotDiagnostics(mdl,plottype,Name, Value) plots with additional options specified by one or more Name, Value pair arguments.
- For many plots, the Data Cursor tool in the figure window displays the \(x\) and \(y\) values for any data point, along with the observation name or number.

\section*{mdl}

Generalized linear model, as constructed by GeneralizedLinearModel.fit or GeneralizedLinearModel.stepwise.

\section*{plottype}

String specifying the type of plot:
\begin{tabular}{ll} 
'contour' & \begin{tabular}{l} 
Residual vs. leverage with overlayed \\
Cook's contours
\end{tabular} \\
'cookd ' & Cook's distance \\
'leverage ' & Leverage (diagonal of Hat matrix)
\end{tabular}

\section*{GeneralizedLinearModel.plotDiagnostics}

Default: 'leverage'

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Note The plot property name-value pairs apply to the first returned handle h(1).

\section*{'Color'}

Color of the line or marker, a string or ColorSpec specification. For details, see linespec.

\section*{'LineStyle'}

Type of line, a string or lineseriesproperties specification. For details, see linespec.

\section*{'LineWidth'}

Width of the line or edges of filled area, in points, a positive scalar. One point is \(1 / 72\) inch.

Default: 0.5

\section*{'MarkerEdgeColor'}

Color of the marker or edge color for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{'MarkerFaceColor'}

Color of the marker face for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{GeneralizedLinearModel.plołDiagnostics}

\section*{'MarkerSize'}

Size of the marker in points, a strictly positive scalar. One point is \(1 / 72\) inch.

\section*{Output \\ Arguments \\ h}

\section*{Definitions}

Vector of handles to lines or patches in the plot.

\section*{Hat Matrix}

The hat matrix \(H\) is defined in terms of the data matrix \(X\) and a diagonal weight matrix \(W\) :
\[
H=X\left(X^{T} W X\right)^{-1} X^{T} W^{T}
\]
\(W\) has diagonal elements \(w_{i}\) :
\[
w_{i}=\frac{g^{\prime}\left(\mu_{i}\right)}{\sqrt{V\left(\mu_{i}\right)}}
\]
where
- \(g\) is the link function mapping \(y_{i}\) to \(x_{i} b\).
- \(g^{\prime}\) is the derivative of the link function \(g\).
- \(V\) is the variance function.
- \(\mu_{i}\) is the \(i\) th mean.

The diagonal elements \(H_{i i}\) satisfy
\[
\begin{aligned}
& 0 \leq h_{i i} \leq 1 \\
& \sum_{i=1}^{n} h_{i i}=p,
\end{aligned}
\]

\section*{GeneralizedLinearModel.plotDiagnostics}
where \(n\) is the number of observations (rows of \(X\) ), and \(p\) is the number of coefficients in the regression model.

\section*{Leverage}

The leverage of observation \(i\) is the value of the \(i\) th diagonal term of the hat matrix \(H_{i i}\). Because the sum of the leverage values is \(p\) (the number of coefficients in the regression model), an observation \(i\) can be considered to be an outlier if its leverage substantially exceeds \(p / n\), where \(n\) is the number of observations.

\section*{Cook's Distance}

The Cook's distance \(D_{i}\) of observation \(i\) is
\[
D_{i}=w_{i} \frac{e_{i}^{2}}{p \hat{\varphi}} \frac{h_{i i}}{\left(1-h_{i i}\right)^{2}},
\]
where
- \(\hat{\varphi}\) is the dispersion parameter (estimated or theoretical).
- \(e_{i}\) is the linear predictor residual, \(g\left(y_{i}\right)-x_{i} \hat{\beta}\), where
- \(g\) is the link function.
- \(y_{i}\) is the observed response.
- \(x_{i}\) is the observation.
- \(\hat{\beta}\) is the estimated coefficient vector.
- \(p\) is the number of coefficients in the regression model.
- \(h_{i i}\) is the \(i\) th diagonal element of the Hat Matrix \(H\).

\section*{Examples Diagnostic Plots for Generalized Linear Models}

Create leverage and Cook's distance plots of a fitted generalized linear model.

\section*{GeneralizedLinearModel.plołDiagnostics}

Generate artificial data for the model, Poisson random numbers with two underlying predictors \(X(1)\) and \(X(2)\).
rng('default') \% for reproducibility
rndvars = randn \((100,2)\);
X = [2+rndvars(:,1), rndvars(:,2)];
mu \(=\exp (1+X *[1 ; 2])\);
y = poissrnd(mu);
Create a generalized linear regression model of Poisson data.
```

mdl = GeneralizedLinearModel.fit(X,y,...
'y ~ x1 + x2','distr','poisson');

```

Create a leverage plot.
plotDiagnostics(mdl)

\section*{GeneralizedLinearModel.plołDiagnostics}


Create a contour plot with Cook's distance.
plotDiagnostics(mdl,'contour')

\section*{GeneralizedLinearModel.plotDiagnostics}


\author{
References [1] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear Statistical Models, Fourth Edition. Irwin, Chicago, 1996.
}

\section*{See Also GeneralizedLinearModel I}

Related
Examples "Diagnostic Plots" on page 9-157
Concepts - "Generalized Linear Models" on page 9-143

\section*{LinearModel.plotDiagnostics}
\begin{tabular}{|c|c|}
\hline Purpose & Plot diagnostics of linear regression model \\
\hline Syntax & ```
plotDiagnostics(mdl)
plotDiagnostics(mdl,plottype)
h = plotDiagnostics(...)
h = plotDiagnostics(mdl,plottype,Name,Value)
``` \\
\hline Description & \begin{tabular}{l}
plotDiagnostics(mdl) plots diagnostics from the mdl linear model using scaled delete-1 fitted values. \\
plotDiagnostics(mdl, plottype) plots diagnostics in a plot of type plottype. \\
\(\mathrm{h}=\) plotDiagnostics(...) returns handles to the lines in the plot. \\
h = plotDiagnostics(mdl, plottype, Name, Value) plots with additional options specified by one or more Name, Value pair arguments.
\end{tabular} \\
\hline Tips & - For many plots, the Data Cursor tool in the figure window displays the \(x\) and \(y\) values for any data point, along with the observation name or number. \\
\hline \begin{tabular}{l}
Input \\
Arguments
\end{tabular} & \begin{tabular}{l}
mdl \\
Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.
\end{tabular} \\
\hline & plottype \\
\hline & String specifying the type of plot: \\
\hline & 'contour' Residual vs. leverage with overlayed Cook's contours \\
\hline & 'cookd ' Cook's distance \\
\hline & 'covratio' Delete-1 ratio of determinant of covariance \\
\hline
\end{tabular}

\section*{LinearModel.plotDiagnostics}
\begin{tabular}{ll}
'dfbetas' & Scaled delete-1 coefficient estimates \\
'dffits' & Scaled delete-1 fitted values \\
'leverage' & Leverage \\
's2_i' & Delete-1 variance estimate
\end{tabular}

Delete-1 means compute a new model without the current observation. If the delete-1 calculation differs significantly from the model using all observations, then the observation is influential.

Default: 'leverage'

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Note The plot property name-value pairs apply to the first returned handle h(1).

\section*{'Color'}

Color of the line or marker, a string or ColorSpec specification. For details, see linespec.

\section*{'LineStyle'}

Type of line, a string or lineseriesproperties specification. For details, see linespec.

\section*{'LineWidth'}

Width of the line or edges of filled area, in points, a positive scalar. One point is \(1 / 72\) inch.

\section*{LinearModel.plotDiagnostics}

Default: 0.5

\section*{'MarkerEdgeColor'}

Color of the marker or edge color for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{'MarkerFaceColor'}

Color of the marker face for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{'MarkerSize'}

Size of the marker in points, a strictly positive scalar. One point is \(1 / 72\) inch.

\section*{Output \\ h}

Arguments

\section*{Definitions}

\section*{Hat Matrix}

The hat matrix \(H\) is defined in terms of the data matrix \(X\) :
\[
H=X\left(X^{T} X\right)^{-1} X^{T} .
\]

The diagonal elements \(H_{i i}\) satisfy
\[
\begin{aligned}
& 0 \leq h_{i i} \leq 1 \\
& \sum_{i=1}^{n} h_{i i}=p,
\end{aligned}
\]
where \(n\) is the number of observations (rows of \(X\)), and \(p\) is the number of coefficients in the regression model.

\section*{Leverage}

The leverage of observation \(i\) is the value of the \(i\) th diagonal term of the hat matrix \(H_{i i}\). Because the sum of the leverage values is \(p\) (the

\section*{LinearModel.plotDiagnostics}
number of coefficients in the regression model), an observation \(i\) can be considered to be an outlier if its leverage substantially exceeds \(p / n\), where \(n\) is the number of observations.

\section*{Cook's Distance}

Cook's distance is the scaled change in fitted values. Each element in CooksDistance is the normalized change in the vector of coefficients due to the deletion of an observation. The Cook's distance, \(D_{i}\), of observation \(i\) is
\[
D_{i}=\frac{\sum_{j=1}^{n}\left(\hat{y}_{j}-\hat{y}_{j(i)}\right)^{2}}{p M S E}
\]
where
- \(\hat{y}_{j}\) is the \(j\) th fitted response value.
- \(\hat{y}_{j(i)}\) is the \(j\) th fitted response value, where the fit does not include observation \(i\).
- \(M S E\) is the mean squared error.
- \(p\) is the number of coefficients in the regression model.

Cook's distance is algebraically equivalent to the following expression:
\[
D_{i}=\frac{r_{i}^{2}}{p M S E}\left(\frac{h_{i i}}{\left(1-h_{i i}\right)^{2}}\right)
\]
where \(r_{i}\) is the \(i\) th residual, and \(h_{i i}\) is the \(i\) th leverage value.
CooksDistance is an \(n\)-by- 1 column vector in the Diagnostics dataset array of the LinearModel object.

\section*{LinearModel.plotDiagnostics}

\section*{Examples Leverage Plot of Linear Model}

Plot the leverage values of observations in a fitted model.
Load the carsmall data and fit a linear model of the mileage as a function of model year, weight, and weight squared.
```

load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);
mdl = LinearModel.fit(ds,'MPG ~ Year + Weight^2');

```

Plot the leverage values.
plotDiagnostics(mdl)

\section*{LinearModel.plotDiagnostics}

Plot the Cook's distance.
plotDiagnostics(mdl, 'cookd')

Case order plot of Cook's distance

The two diagnostic plots give different results.

\section*{References [1] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman.} Applied Linear Statistical Models, Fourth Edition. Irwin, Chicago, 1996.

\section*{Alternatives The mdl.Diagnostics property contains the information that plotDiagnostics uses to create plots.}

\section*{See Also}

LinearModel

\footnotetext{
Tutorials
- "Diagnostic Plots" on page 9-23
}

\section*{LinearModel.plotDiagnostics}

\author{
How To \\ - "Linear Regression" on page 9-11
}

\section*{NonLinearModel.plotDiagnostics}
\begin{tabular}{|c|c|}
\hline Purpose & Plot diagnostics of nonlinear regression model \\
\hline Syntax & ```
plotDiagnostics(mdl)
plotDiagnostics(mdl,plottype)
h = plotDiagnostics(...)
h = plotDiagnostics(mdl,plottype,Name,Value)
``` \\
\hline Description & \begin{tabular}{l}
plotDiagnostics(mdl) plots diagnostics from the mdl linear model using leverage as the plot type. \\
plotDiagnostics(mdl, plottype) plots diagnostics in a plot of type plottype. \\
\(\mathrm{h}=\) plotDiagnostics(...) returns handles to the lines in the plot. \\
h = plotDiagnostics(mdl, plottype, Name, Value) plots with additional options specified by one or more Name, Value pair arguments.
\end{tabular} \\
\hline Tips & - For many plots, the Data Cursor tool in the figure window displays the \(x\) and \(y\) values for any data point, along with the observation name or number. \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
Input \\
Arguments
\end{tabular}} & \begin{tabular}{l}
mdl \\
Nonlinear regression model, constructed by NonLinearModel.fit.
\end{tabular} \\
\hline & plottype \\
\hline & String specifying the type of plot: \\
\hline & 'contour \({ }^{\prime}\) Residual vs. leverage with overlayed Cook's contours \\
\hline & 'cookd ' Cook's distance \\
\hline & 'leverage ' Leverage (diagonal of Hat matrix) \\
\hline & Default: 'leverage' \\
\hline
\end{tabular}

\section*{NonLinearModel.plotDiagnostics}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Note The plot property name-value pairs apply to the first returned handle h(1).

\section*{'Color'}

Color of the line or marker, a string or ColorSpec specification. For details, see linespec.

\section*{'LineStyle'}

Type of line, a string or lineseriesproperties specification. For details, see linespec.

\section*{'LineWidth'}

Width of the line or edges of filled area, in points, a positive scalar. One point is \(1 / 72\) inch.

Default: 0.5

\section*{'MarkerEdgeColor'}

Color of the marker or edge color for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{'MarkerFaceColor'}

Color of the marker face for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{'MarkerSize'}

\section*{NonLinearModel.plotDiagnostics}

Size of the marker in points, a strictly positive scalar. One point is \(1 / 72\) inch.

\section*{Output}

Arguments

\section*{Definitions}

\section*{h}

Vector of handles to lines or patches in the plot.

\section*{Hat Matrix}

The hat matrix \(H\) is defined in terms of the data matrix \(X\) and the Jacobian matrix \(J\) :
\[
J_{i, j}=\left.\frac{\partial f}{\partial \beta_{j}}\right|_{x_{i}, \beta}
\]

Here \(f\) is the nonlinear model function, and \(\beta\) is the vector of model coefficients.

The Hat Matrix \(H\) is
\[
H=J\left(J^{T} J\right)^{-1} J^{T}
\]

The diagonal elements \(H_{i i}\) satisfy
\[
\begin{aligned}
& 0 \leq h_{i i} \leq 1 \\
& \sum_{i=1}^{n} h_{i i}=p
\end{aligned}
\]
where \(n\) is the number of observations (rows of \(X\) ), and \(p\) is the number of coefficients in the regression model.

\section*{Leverage}

The leverage of observation \(i\) is the value of the \(i\) th diagonal term of the hat matrix \(H_{i i}\). Because the sum of the leverage values is \(p\) (the number of coefficients in the regression model), an observation \(i\) can be considered to be an outlier if its leverage substantially exceeds \(p / n\), where \(n\) is the number of observations.

\section*{NonLinearModel.plotDiagnostics}

\section*{Cook's Distance}

The Cook's distance \(D_{i}\) of observation \(i\) is
\[
D_{i}=\frac{\sum_{j=1}^{n}\left(\hat{y}_{j}-\hat{y}_{j(i)}\right)^{2}}{p M S E}
\]
where
- \(\hat{y}_{j}\) is the \(j\) th fitted response value.
- \(\hat{y}_{j(i)}\) is the \(j\) th fitted response value, where the fit does not include observation \(i\).
- \(M S E\) is the mean squared error.
- \(p\) is the number of coefficients in the regression model.

Cook's distance is algebraically equivalent to the following expression:
\[
D_{i}=\frac{r_{i}^{2}}{p M S E}\left(\frac{h_{i i}}{\left(1-h_{i i}\right)^{2}}\right),
\]
where \(e_{i}\) is the \(i\) th residual.

\section*{Examples Nonlinear Model Leverage Plot}

Create a leverage plot of a fitted nonlinear model, and find the points with high leverage.

Load the reaction data and fit a model of the reaction rate as a function of reactants.
```

load reaction
mdl = NonLinearModel.fit(reactants,...
rate,@hougen,[1 .05 .02 .1 2]);

```

\section*{NonLinearModel.plotDiagnostics}

Create a leverage plot of the fitted model.
plotDiagnostics(mdl)


To examine the observation with high leverage, activate the Data Cursor and click the observation.


\section*{NonLinearModel.plotDiagnostics}


Alternatively, find the high-leverage observation at the command line.
```

find(mdl.Diagnostics.Leverage > 0.8)

```
ans =
6

\author{
References [1] Neter, J., M. H. Kutner, C. J. Nachtsheim, and W. Wasserman. Applied Linear Statistical Models, Fourth Edition. Irwin, Chicago, 1996.
}

\section*{See Also}

NonLinearModel | plotResiduals |

\section*{NonLinearModel.plotDiagnostics}

\section*{Related \\ Examples}
- "Examine Quality and Adjust the Fitted Model" on page 9-204
- "Nonlinear Regression Workflow" on page 9-212
- "Nonlinear Regression" on page 9-198

\section*{LinearModel.plotEffects}
Purpose Plot main effects of each predictor in linear regression model
SyntaxplotEffects(mdl)h = plotEffects(mdl)
DescriptionplotEffects(mdl) produces an effects plot for the predictors in the mdlregression model. The plot shows the estimated effect on the responsefrom changing each predictor value, averaging out the effects of theother predictors. plotEffects chooses values to produce a relativelylarge effect on the response.
\(\mathrm{h}=\) plotEffects(mdl) returns handles to the lines in the plot.- For many plots, the Data Cursor tool in the figure window displaysthe \(x\) and \(y\) values for any data point, along with the observationname or number.
InputArguments
Output
Arguments
Examples Effects Plot
Plot the effects of two predictors in a fitted linear model.Load the carsmall data and fit a linear model of the mileage as afunction of model year, weight, and weight squared.
```

load carsmall
ds = dataset(MPG,Weight);

```
```

ds.Year = ordinal(Model_Year);
mdl = LinearModel.fit(ds,'MPG ~ Year + Weight^2');
Create an effects plot.
plotEffects(mdl)

```


The width of each horizontal line in the figure shows a confidence interval for the effect on the response of the listed change in each predictor. The estimated effect of changing Year from 70 to 82 is an increase of about 8 , and is between 6 and 10 with \(95 \%\) confidence.

\section*{Alternatives}

Use plotInteraction for an effects plot of the interactions of two specified variables.

\section*{LinearModel.plotEffects}

\author{
See Also LinearModel | plotAdjustedResponse | plotInteraction \\ Tułorials . "Plots to Understand Predictor Effects" on page 9-29 \\ How To • "Linear Regression" on page 9-11
}

\section*{LinearModel.plotInteraction}

\section*{Purpose}

Plot interaction effects of two predictors in linear regression model
plotInteraction(mdl, var1, var2) plotInteraction(mdl, var1, var2, ptype) h = plotInteraction(...)

\section*{Description}

Tips

\section*{Input Arguments}
plotInteraction(mdl, var1, var2) creates a plot of the interaction effects of the predictors var1 and var2 in mdl. The plot shows the estimated effect on the response from changing each predictor value, averaging out the effects of the other predictors. The plot also shows the estimated effect with the other predictor fixed at certain values. plotInteraction chooses values to produce a relatively large effect on the response. The plot lets you examine whether the effect of one predictor depends on the value of the other predictor.
plotInteraction(mdl, var1, var2, ptype) returns a plot of the type specified in ptype.
\(\mathrm{h}=\) plotInteraction(...) returns handles to the lines in the plot.
- For many plots, the Data Cursor tool in the figure window displays the \(x\) and \(y\) values for any data point, along with the observation name or number.

\section*{mdl}

Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.

\section*{var 1}

String naming the variable for plot. plotInteraction chooses values of var1 to create relatively large changes in the response. When you set ptype = 'predictions', the plot shows curves as a function of var2 with various fixed values of var1.

\section*{var2}

String naming the variable for plot. plotInteraction chooses values of var2 to create relatively large changes in the response.

\section*{LinearModel.plotInteraction}

When you set ptype = 'predictions', the plot shows curves as a function of var2 various fixed values of var1.

\section*{ptype}

String naming the plot type.
- 'effects' - The plot shows each effect as a circle, with a horizontal bar showing the confidence interval for the estimated effect. plotInteraction computes the effect values from the adjusted response curve, as shown by the plotAdjustedResponse function.
- 'predictions' - The plot shows the adjusted response curve as a function of var2, with var1 fixed at certain values.

Default: 'effects'

\section*{Output \\ Arguments}

\section*{Examples}
h
Vector of handles to lines or patches in the plot.

\section*{Interaction Plot}

Create a model of car mileage as a function of weight and model year. Then create a plot to see if the predictors have interactions.

Create a linear model of mileage from the carsmall data.
```

load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);
var1 = 'Year';
var2 = 'Weight';
mdl = LinearModel.fit(ds,'MPG ~ Year * Weight^2');

```

Create an interaction plot.
plotInteraction(mdl, var1, var2)


The plot might show an interaction, because the groups of points are not perfectly vertical. But the error bars seem large enough that a vertical line could pass within all of the confidence intervals for each group, possibly indicating no interaction.

\section*{Prediction Curve Interaction Plot}

Create a model of car mileage as a function of weight and model year. Then create an interaction curve plot to see if the predictors have interactions.

Create a linear model of mileage from the carsmall data.
```

load carsmall

```

\section*{LinearModel.plotInteraction}
```

ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);
var1 = 'Year';
var2 = 'Weight';
mdl = LinearModel.fit(ds,'MPG ~ Year * Weight^2');

```

Create an interaction plot with type 'predictions'.
plotInteraction(mdl,var1,var2,'predictions')


The curves are not parallel. This indicates interactions between the predictors. The effect is subtle enough not to definitively indicate a interaction.

\section*{LinearModel.plotInteraction}
Alternatives Use plotEffects for an effects plot showing separate effects for all predictors.
See Also LinearModel | plotAdjustedResponse | plotEffects
Tutorials - "Plots to Understand Predictor Effects" on page 9-29
How To - "Linear Regression" on page 9-11

\section*{GeneralizedLinearModel.plotResiduals}
```

Purpose Plot residuals of generalized linear regression model
Syntax plotResiduals(mdl)
plotResiduals(mdl,plottype)
h = plotResiduals(...)
h = plotResiduals(mdl,plottype,Name,Value)

```

Description

Tips

Input
Arguments
plotResiduals(mdl) gives a histogram plot of the residuals of the mdl nonlinear model.
plotResiduals(mdl, plottype) plots residuals in a plot of type plottype.
\(\mathrm{h}=\) plotResiduals(...) returns handles to the lines in the plot.
\(\mathrm{h}=\) plotResiduals(mdl, plottype, Name, Value) plots with additional options specified by one or more Name, Value pair arguments.
- For many plots, the Data Cursor tool in the figure window displays the \(x\) and \(y\) values for any data point, along with the observation name or number.

\section*{mdl}

Generalized linear model, as constructed by GeneralizedLinearModel.fit or GeneralizedLinearModel.stepwise.

\section*{plottype}

String specifying the type of plot:
\begin{tabular}{ll} 
'caseorder' & Residuals vs. case (row) order \\
'fitted' & Residuals vs. fitted values \\
'histogram' & Histogram \\
'lagged ' & \begin{tabular}{l} 
Residuals vs. lagged residual \((r(t)\) vs. \\
\(r(t-1))\)
\end{tabular}
\end{tabular}

\section*{GeneralizedLinearModel.plotResiduals}
\begin{tabular}{ll} 
'probability' & Normal probability plot \\
'symmetry' & Symmetry plot
\end{tabular}

Default: 'histogram'

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Note The plot property name-value pairs apply to the first returned handle \(\mathrm{h}(1)\).

\section*{'Color'}

Color of the line or marker, a string or ColorSpec specification. For details, see linespec.

\section*{'LineStyle'}

Type of line, a string or lineseriesproperties specification. For details, see linespec.

\section*{'LineWidth'}

Width of the line or edges of filled area, in points, a positive scalar. One point is \(1 / 72\) inch.

Default: 0.5

\section*{'MarkerEdgeColor'}

Color of the marker or edge color for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{GeneralizedLinearModel.plotResiduals}

\section*{'MarkerFaceColor'}

Color of the marker face for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{'MarkerSize'}

Size of the marker in points, a strictly positive scalar. One point is \(1 / 72\) inch.

\section*{'ResidualType'}

String giving type of residual used in the plot.
\begin{tabular}{l|l}
\hline 'Raw' & Observed minus fitted values \\
\hline 'LinearPredictor' & \begin{tabular}{l} 
Residuals on the linear predictor scale, \\
equal to the adjusted response value \\
minus the fitted linear combination of \\
the predictors
\end{tabular} \\
\hline 'Pearson' & Raw residuals divided by RMSE \\
\hline 'Anscombe' & \begin{tabular}{l} 
Residuals defined on transformed data \\
with the transformation chosen to \\
remove skewness
\end{tabular} \\
\hline 'Deviance' & \begin{tabular}{l} 
Residuals based on the contribution of \\
each observation to the deviance
\end{tabular} \\
\hline
\end{tabular}

Default: 'Raw'

\section*{Output \\ Arguments \\ h}

\section*{Definitions}

Vector of handles to lines or patches in the plot.

\section*{Deviance}

Deviance is twice the log likelihood of the model. Because this overall log likelihood is a sum of log likelihoods for each observation, the residual plot of deviance type shows the log likelihood per observation.

\section*{GeneralizedLinearModel.plotResiduals}

\section*{Examples Residual Plots for Generalized Linear Models}

Create residual plots of a fitted generalized linear model.
Generate artificial data for the model, Poisson random numbers with two underlying predictors \(\mathrm{X}(1)\) and \(\mathrm{X}(2)\).
```

rng('default') % for reproducibility
rndvars = randn(100,2);
X = [2+rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

```

Create a generalized linear regression model of Poisson data.
```

mdl = GeneralizedLinearModel.fit(X,y,...
'y ~ x1 + x2','distr','poisson');

```

Create a default residuals plot.
plotResiduals(mdl)

\section*{GeneralizedLinearModel.plotResiduals}

Histogram of residuals


Create a probability plot.
plotResiduals(mdl,'probability')

\section*{GeneralizedLinearModel.plotResiduals}


The residuals do not match a normal distribution in the tails-they are more spread out.

Create a plot of the fitted residuals of Anscombe type.

\section*{GeneralizedLinearModel.plotResiduals}


See Also GeneralizedLinearModel I
Related
- "Residuals - Model Quality for Training Data" on page 9-160
Examples
Concepts - "Generalized Linear Models" on page 9-143
\begin{tabular}{|c|c|}
\hline Purpose & Plot residuals of linear regression model \\
\hline Syntax & ```
plotResiduals(mdl)
plotResiduals(mdl,plottype)
h = plotResiduals(...)
h = plotResiduals(mdl,plottype,Name,Value)
``` \\
\hline Description & \begin{tabular}{l}
plotResiduals(mdl) gives a histogram plot of the residuals of the mdl linear model. \\
plotResiduals(mdl, plottype) plots residuals in a plot of type plottype. \\
\(\mathrm{h}=\) plotResiduals (...) returns handles to the lines in the plot. \\
\(\mathrm{h}=\) plotResiduals(mdl, plottype, Name, Value) plots with additional options specified by one or more Name, Value pair arguments.
\end{tabular} \\
\hline Tips & - For many plots, the Data Cursor tool in the figure window displays the \(x\) and \(y\) values for any data point, along with the observation name or number. \\
\hline Input Arguments & \begin{tabular}{l}
mdl \\
Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.
\end{tabular} \\
\hline & plottype \\
\hline & String specifying the type of plot: \\
\hline & 'caseorder' Residuals vs. case (row) order \\
\hline & 'fitted' Residuals vs. fitted values \\
\hline & 'histogram' Histogram \\
\hline & 'lagged ' \(\begin{aligned} & \text { Residuals vs. lagged residual }(r(t) \text { vs. } \\ & r(t-1))\end{aligned}\) \\
\hline
\end{tabular}

\section*{LinearModel.plotResiduals}
\begin{tabular}{ll}
'probability' & Normal probability plot \\
'symmetry ' & Symmetry plot
\end{tabular}

Default: 'histogram'

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Note The plot property name-value pairs apply to the first returned handle h(1).

\section*{'Color'}

Color of the line or marker, a string or ColorSpec specification. For details, see linespec.

\section*{'LineStyle'}

Type of line, a string or lineseriesproperties specification. For details, see linespec.

\section*{'LineWidth'}

Width of the line or edges of filled area, in points, a positive scalar. One point is \(1 / 72\) inch.

Default: 0.5

\section*{'MarkerEdgeColor'}

Color of the marker or edge color for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{'MarkerFaceColor'}

Color of the marker face for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{'MarkerSize'}

Size of the marker in points, a strictly positive scalar. One point is \(1 / 72\) inch.

\section*{'ResidualType'}

Type of residual used in the plot:
\begin{tabular}{l|l}
\hline 'Raw' & Observed minus fitted values \\
\hline 'Pearson' & Raw residuals divided by RMSE \\
\hline 'Standardized' & \begin{tabular}{l}
Raw residuals divided by their estimated \\
standard deviation
\end{tabular} \\
\hline 'Studentized' & \begin{tabular}{l}
Raw residuals divided by an independent \\
(delete-1) estimate of their standard \\
deviation
\end{tabular} \\
\hline
\end{tabular}

Default: 'Raw'

\section*{Output}

Arguments

\section*{Examples}
h
Vector of handles to lines or patches in the plot.

\section*{Linear Residuals Plot}

Plot the residuals of a fitted linear model.
Load the carsmall data and fit a linear model of the mileage as a function of model year, weight, and weight squared.
```

load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);

```

\section*{LinearModel.plotResiduals}
```

mdl = LinearModel.fit(ds,'MPG ~ Year + Weight^2');

```

Plot the raw residuals.
plotResiduals(mdl)
Histogram of residuals

\section*{Residual Probability Plot}

Create a normal probability plot of the residuals of a fitted linear model.
Load the carsmall data and fit a linear model of the mileage as a function of model year, weight, and weight squared.
```

load carsmall
X = [Weight,Model_Year];
mdl = LinearModel.fit(X,MPG,...

```
```

'y ~ x2 + x1^2','Categorical',2);

```

Create a normal probability plot of the residuals of the fitted model.
```

plotResiduals(mdl,'probability')

```


\section*{Alternatives The mdl.Residuals dataset array contains the information in residual plots.}

\section*{See Also LinearModel | plotDiagnostics}

\section*{Tutorials}
- "Residuals - Model Quality for Training Data" on page 9-24
- "Linear Regression Workflow" on page 9-43

\section*{LinearModel.plotResiduals}
- "Compare large and small stepwise models" on page 9-111
- "Robust Regression versus Standard Least-Squares Fit" on page 9-116

How To . "Linear Regression" on page 9-11

\section*{NonLinearModel.plotResiduals}
\begin{tabular}{|c|c|}
\hline Purpose & Plot residuals of nonlinear regression model \\
\hline Syntax & ```
plotResiduals(mdl)
plotResiduals(mdl,plottype)
h = plotResiduals(...)
h = plotResiduals(mdl,plottype,Name,Value)
``` \\
\hline Description & \begin{tabular}{l}
plotResiduals(mdl) gives a histogram plot of the residuals of the mdl nonlinear model. \\
plotResiduals(mdl, plottype) plots residuals in a plot of type plottype. \\
\(\mathrm{h}=\) plotResiduals(...) returns handles to the lines in the plot. \\
h = plotResiduals(mdl, plottype, Name, Value) plots with additional options specified by one or more Name, Value pair arguments.
\end{tabular} \\
\hline Tips & - For many plots, the Data Cursor tool in the figure window displays the \(x\) and \(y\) values for any data point, along with the observation name or number. \\
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
Input \\
Arguments
\end{tabular}} & \begin{tabular}{l}
mdl \\
Nonlinear regression model, constructed by NonLinearModel.fit.
\end{tabular} \\
\hline & String specifying the type of plot: \\
\hline & 'caseorder' Residuals vs. case (row) order \\
\hline & 'fitted' Residuals vs. fitted values \\
\hline & 'histogram' Histogram \\
\hline & 'lagged' Residuals vs. lagged residual \((r(t)\) vs. \(r(t-1)\) ) \\
\hline & 'probability ' Normal probability plot \\
\hline & 'symmetry' Symmetry plot \\
\hline
\end{tabular}

\section*{NonLinearModel.plotResiduals}

Default: 'histogram'

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Note The plot property name-value pairs apply to the first returned handle h(1).

\section*{'Color'}

Color of the line or marker, a string or ColorSpec specification. For details, see linespec.

\section*{'LineStyle'}

Type of line, a string or lineseriesproperties specification. For details, see linespec.

\section*{'LineWidth'}

Width of the line or edges of filled area, in points, a positive scalar. One point is \(1 / 72\) inch.

Default: 0.5

\section*{'MarkerEdgeColor'}

Color of the marker or edge color for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{'MarkerFaceColor'}

Color of the marker face for filled markers, a string or ColorSpec specification. For details, see linespec.

\section*{NonLinearModel.plotResiduals}

\section*{'MarkerSize'}

Size of the marker in points, a strictly positive scalar. One point is \(1 / 72\) inch.

\section*{'ResidualType'}

Type of residual used in the plot:
\begin{tabular}{l|l}
\hline 'Raw' & Observed minus fitted values \\
\hline 'Pearson' & Raw residuals divided by RMSE \\
\hline 'Standardized' & \begin{tabular}{l} 
Raw residuals divided by their estimated \\
standard deviation
\end{tabular} \\
\hline 'Studentized' & \begin{tabular}{l} 
Raw residuals divided by an independent \\
(delete-1) estimate of their standard \\
deviation
\end{tabular} \\
\hline
\end{tabular}

Default: 'Raw'

\section*{Output \\ Arguments}

\section*{Examples}
h
Vector of handles to lines or patches in the plot.

\section*{Residual Plot}

Plot the residuals of a fitted nonlinear model.
Load the reaction data and fit a model of the reaction rate as a function of reactants.
```

load reaction
mdl = NonLinearModel.fit(reactants,...
rate,@hougen,[1 . 05 .02 .1 2]);

```

Plot the residuals of the fitted model.
plotResiduals(mdl)

\section*{NonLinearModel.plotResiduals}

Histogram of residuals


\section*{Residual Probability Plot}

Create a normal probability plot of the residuals of a fitted nonlinear model.

Load the reaction data and fit a model of the reaction rate as a function of reactants.
```

load reaction
mdl = NonLinearModel.fit(reactants,...
rate,@hougen,[1 . 05 .02 .1 2]);

```

Create a normal probability plot of the residuals of the fitted model. plotResiduals(mdl,'probability')

Normal probability plot of residuals

\begin{tabular}{ll} 
See Also & NonLinearModel | plotDiagnostics | \\
Related & - "Examine Quality and Adjust the Fitted Model" on page 9-204 \\
Examples & - "Nonlinear Regression Workflow" on page 9-212 \\
Concepts & - "Nonlinear Regression" on page 9-198
\end{tabular}

\section*{GeneralizedLinearModel.plotSlice}
\(\left.\begin{array}{ll}\text { Purpose } & \text { Plot of slices through fitted generalized linear regression surface } \\ \text { Syntax } & \begin{array}{l}\text { plotSlice (mdl) } \\ \text { h = plotSlice (mdl) }\end{array} \\ \text { Description } & \begin{array}{l}\text { plotSlice (mdl) creates a new figure containing a series of plots, } \\ \text { each representing a slice through the regression surface predicted by } \\ \text { mdl. For each plot, the surface slice is shown as a function of a single } \\ \text { predictor variable, with the other predictor variables held constant. }\end{array} \\ \text { h = plotSlice (mdl) returns handles to the lines in the plot. }\end{array}\right\}\)

\section*{GeneralizedLinearModel.plotSlice}
```

X = [2+rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

```

Create a generalized linear regression model of Poisson data.
```

mdl = GeneralizedLinearModel.fit(X,y,...
'y ~ x1 + x2','distr','poisson');

```

Create the slice plot.
```

plotSlice(mdl)

```


Drag the x 1 prediction line to the right and view the changes in the prediction and the response curve for the x 2 predictor.

\section*{GeneralizedLinearModel.plotSlice}


\footnotetext{
See Also GeneralizedLinearModel \| predict |
Related Examples
- "Diagnostic Plots" on page 9-157
- "Plots to Understand Predictor Effects and How to Modify a Model" on page 9-163

Concepts • "Generalized Linear Models" on page 9-143
}

\section*{LinearModel.plotSlice}
\begin{tabular}{ll} 
Purpose & Plot of slices through fitted linear regression surface \\
Syntax & \begin{tabular}{l} 
plotSlice \((\mathrm{mdl})\) \\
\(\mathrm{h}=\) plotSlice \((\mathrm{mdl})\)
\end{tabular}
\end{tabular}

Description

Tips

\section*{Input \\ Arguments}

\section*{Output \\ Arguments}

\section*{Examples}
plotSlice (mdl) creates a new figure containing a series of plots, each representing a slice through the regression surface predicted by mdl. For each plot, the surface slice is shown as a function of a single predictor variable, with the other predictor variables held constant.
\(\mathrm{h}=\) plotSlice \((\mathrm{mdl})\) returns handles to the lines in the plot.
- If there are more than eight predictors, plotSlice selects the first five for plotting. Use the Predictors menu to control which predictors are plotted.
- The Bounds menu lets you choose between simultaneous or non-simultaneous bounds, and between bounds on the function or bounds on a new observation.

\section*{mdl}

Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.

\section*{h}

Vector of handles to lines or patches in the plot.

\section*{Slice Plot}

Plot the slices through a fitted linear model.
Load the carsmall data and fit a linear model of the mileage as a function of model year, weight, and weight squared.
```

load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);

```

\section*{LinearModel.plotSlice}
```

mdl = LinearModel.fit(ds,'MPG ~ Year + Weight^2');

```

Create a slice plot.
plotSlice(mdl)


Drag the Weight prediction line to the right and observe the change in the predicted MPG and the response curve for Year.


See Also LinearModel \| predict
Tutorials . "Plots to Understand Predictor Effects" on page 9-29
How To • "Linear Regression" on page 9-11

\section*{NonLinearModel.plotSlice}
\begin{tabular}{|c|c|}
\hline Purpose & Plot of slices through fitted nonlinear regression surface \\
\hline Syntax & \[
\begin{aligned}
& \text { plotSlice(mdl) } \\
& \mathrm{h}=\text { plotSlice(mdl) }
\end{aligned}
\] \\
\hline Description & \begin{tabular}{l}
plotSlice(mdl) creates a new figure containing a series of plots, each representing a slice through the regression surface predicted by mdl . For each plot, the surface slice is shown as a function of a single predictor variable, with the other predictor variables held constant. \\
\(\mathrm{h}=\mathrm{plotSlice}(\mathrm{mdl})\) returns handles to the lines in the plot.
\end{tabular} \\
\hline Tips & \begin{tabular}{l}
- If there are more than eight predictors, plotSlice selects the first five for plotting. Use the Predictors menu to control which predictors are plotted. \\
- The Bounds menu lets you choose between simultaneous or non-simultaneous bounds, and between bounds on the function or bounds on a new observation.
\end{tabular} \\
\hline Input Arguments & mdl


Nonlinear regression model, constructed by NonLinearModel.fit. \\
\hline \begin{tabular}{l}
Output \\
Arguments
\end{tabular} & h Vector of handles to lines or patches in the plot. \\
\hline Examples & Slice Plot \\
\hline & Plot slices of a fitted nonlinear model. \\
\hline & Load the reaction data and fit a model of the reaction rate as a function of reactants. \\
\hline & \begin{tabular}{l}
load reaction \\
mdl = NonLinearModel.fit(reactants,... \\
rate, @hougen,[1 . 05 . 02 . 1 2]);
\end{tabular} \\
\hline
\end{tabular}

\section*{Input}

Arguments

\section*{Output \\ Arguments}

\section*{Examples}

\section*{Slice Plot}

Plot slices of a fitted nonlinear model.
Load the reaction data and fit a model of the reaction rate as a function of reactants.
```

load reaction
mdl = NonLinearModel.fit(reactants,...
rate,@hougen,[1 . 05 .02 .1 2]);

```

Create a slice plot
```

plotSlice(mdl)

```


Drag the X 1 prediction line to the right, and observe the change in the predicted response y and in the predicted response curves to X2 and X3.

\section*{NonLinearModel.plotSlice}


\section*{See Also}

NonLinearModel | predict |
- "Examine Quality and Adjust the Fitted Model" on page 9-204
- "Predict or Simulate Responses to New Data" on page 9-208
- "Nonlinear Regression Workflow" on page 9-212

Concepts - "Nonlinear Regression" on page 9-198

Purpose
Syntax

Description
Partial least-squares regression
```

[XL,YL] = plsregress(X,Y,ncomp)
[XL,YL,XS] = plsregress(X,Y,ncomp)
[XL,YL,XS,YS] = plsregress(X,Y,ncomp)
[XL,YL,XS,YS,BETA] = PLSREGRESS(X,Y,ncomp,...)
[XL,YL,XS,YS,BETA,PCTVAR] = plsregress(X,Y, ncomp)
[XL,YL,XS,YS,BETA,PCTVAR,MSE] = plsregress(X,Y,ncomp)
[XL,YL,XS,YS,BETA,PCTVAR,MSE] = plsregress(...,param1,val1,
param2,val2,...)
[XL,YL,XS,YS,BETA, PCTVAR,MSE,stats] = PLSREGRESS(X,Y,ncomp,
...)

```
\([\mathrm{XL}, \mathrm{YL}]=\mathrm{pl}\) sregress \((\mathrm{X}, \mathrm{Y}, \mathrm{ncomp})\) computes a partial least-squares (PLS) regression of \(Y\) on \(X\), using ncomp PLS components, and returns the predictor and response loadings in XL and YL , respectively. X is an \(n\)-by- \(p\) matrix of predictor variables, with rows corresponding to observations and columns to variables. Y is an \(n\)-by- \(m\) response matrix. XL is a \(p\)-by-ncomp matrix of predictor loadings, where each row contains coefficients that define a linear combination of PLS components that approximate the original predictor variables. YL is an \(m\)-by-ncomp matrix of response loadings, where each row contains coefficients that define a linear combination of PLS components that approximate the original response variables.
\([\mathrm{XL}, \mathrm{YL}, \mathrm{XS}]=\mathrm{plsregress}(\mathrm{X}, \mathrm{Y}, \mathrm{ncomp})\) returns the predictor scores XS , that is, the PLS components that are linear combinations of the variables in X. XS is an \(n\)-by-ncomp orthonormal matrix with rows corresponding to observations and columns to components.
[XL, YL, XS, YS] = plsregress(X,Y, ncomp) returns the response scores YS, that is, the linear combinations of the responses with which the PLS components XS have maximum covariance. YS is an \(n\)-by-ncomp matrix with rows corresponding to observations and columns to components. YS is neither orthogonal nor normalized.
plsregress uses the SIMPLS algorithm, first centering \(X\) and \(Y\) by subtracting off column means to get centered variables XO and YO.

However, it does not rescale the columns. To perform PLS with standardized variables, use zscore to normalize \(X\) and \(Y\).
If ncomp is omitted, its default value is min \((\operatorname{size}(X, 1)-1, \operatorname{size}(X, 2))\).
The relationships between the scores, loadings, and centered variables XO and YO are:
\(X L=(X S \backslash X O)^{\prime}=X O^{\prime *} X S\),
\(Y L=(X S \backslash Y O)^{\prime}=Y O^{\prime *} X S\),
\(X L\) and \(Y L\) are the coefficients from regressing \(X O\) and \(Y O\) on \(X S\), and \(X S * X L '\) and \(X S * Y L '\) are the PLS approximations to \(X 0\) and YO.
plsregress initially computes YS as:
YS = YO*YL = YO*YO'*XS,
By convention, however, plsregress then orthogonalizes each column of YS with respect to preceding columns of XS, so that XS' *YS is lower triangular.
[XL, YL, XS, YS, BETA] = PLSREGRESS(X,Y, ncomp, ...) returns the PLS regression coefficients BETA. BETA is a ( \(p+1\) )-by- \(m\) matrix, containing intercept terms in the first row:
```

Y = [ones(n,1),X]*BETA + Yresiduals,

```

YO = XO*BETA(2:end,:) + Yresiduals. Here Yresiduals is the vector of response residuals.
[XL, YL, XS, YS, BETA, PCTVAR] = plsregress (X, Y, ncomp) returns a 2-by-ncomp matrix PCTVAR containing the percentage of variance explained by the model. The first row of PCTVAR contains the percentage of variance explained in X by each PLS component, and the second row contains the percentage of variance explained in \(Y\).
[ \(\mathrm{XL}, \mathrm{YL}, \mathrm{XS}, \mathrm{YS}, \mathrm{BETA}, \mathrm{PCTVAR}, \mathrm{MSE}\) ] = plsregress ( \(\mathrm{X}, \mathrm{Y}, \mathrm{ncomp}\) ) returns a 2 -by-(ncomp+1) matrix MSE containing estimated mean-squared errors for PLS models with 0 : ncomp components. The first row of MSE contains mean-squared errors for the predictor variables in \(X\), and the second row contains mean-squared errors for the response variable(s) in Y .
\[
\begin{aligned}
& {[\mathrm{XL}, \mathrm{YL}, \mathrm{XS}, \mathrm{YS}, \mathrm{BETA}, \mathrm{PCTVAR}, \mathrm{MSE}]=} \\
& \text { plsregress }(. . ., \text { param1, val1, param2, val2,...) specifies optional } \\
& \text { parameter name/value pairs from the following table to control the } \\
& \text { calculation of MSE. }
\end{aligned}
\]
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline 'cv' & \begin{tabular}{l} 
The method used to compute MSE. \\
- When the value is a positive integer k, plsregress uses k-fold \\
cross-validation. \\
- When the value is an object of the cvpartition class, other forms of \\
cross-validation can be specified. \\
- When the value is 'resubstitution ', plsregress uses \(X\) and \(Y\) both \\
to fit the model and to estimate the mean-squared errors, without \\
cross-validation.
\end{tabular} \\
\hline 'mcreps' & \begin{tabular}{l} 
The default is 'resubstitution'.
\end{tabular} \\
\hline opositive integer indicating the number of Monte-Carlo repetitions for \\
cross-validation. The default value is 1. The value must be 1 if the value of \\
'cv' is 'resubstitution'.
\end{tabular}
[XL, YL, XS , YS , BETA, PCTVAR,MSE, stats] = PLSREGRESS ( \(X, Y\), ncomp, ...) returns a structure stats with the following fields:
- W - A p-by-ncomp matrix of PLS weights so that \(\mathrm{XS}=\mathrm{XO} * \mathrm{~W}\).
- T2 - The \(T^{2}\) statistic for each point in XS.
- Xresiduals - The predictor residuals, that is, XO-XS*XL'.
- Yresiduals - The response residuals, that is, YO-XS*YL'.

\section*{Examples}

Load data on near infrared (NIR) spectral intensities of 60 samples of gasoline at 401 wavelengths, and their octane ratings:
load spectra
X = NIR;
y = octane;
Perform PLS regression with ten components:
\([\mathrm{XL}, \mathrm{yl}, \mathrm{XS}, \mathrm{YS}\), beta, PCTVAR] = plsregress \((\mathrm{X}, \mathrm{y}, 10)\);
Plot the percent of variance explained in the response variable as a function of the number of components:
```

plot(1:10,cumsum(100*PCTVAR(2,:)),'-bo');
xlabel('Number of PLS components');
ylabel('Percent Variance Explained in y');

```


Compute the fitted response and display the residuals:
```

yfit = [ones(size(X,1),1) X]*beta;
residuals = y-yfit;
stem(residuals)
xlabel('Observation');
ylabel('Residual');

```


\section*{References}

See Also
[1] de Jong, S. "SIMPLS: An Alternative Approach to Partial Least Squares Regression." Chemometrics and Intelligent Laboratory Systems. Vol. 18, 1993, pp. 251-263.
[2] Rosipal, R., and N. Kramer. "Overview and Recent Advances in Partial Least Squares." Subspace, Latent Structure and Feature Selection: Statistical and Optimization Perspectives Workshop (SLSFS 2005), Revised Selected Papers (Lecture Notes in Computer Science 3940). Berlin, Germany: Springer-Verlag, 2006, pp. 34-51.

\section*{sobolset.PointOrder property}

\section*{Purpose Point generation method}

Description The PointOrder property contains a string that specifies the order in which the Sobol sequence points are produced. The property value must be one of 'standard' or 'graycode'. When set to 'standard' the points produced match the original Sobol sequence implementation. When set to 'graycode', the sequence is generated using an implementation that uses the Gray code of the index instead of the index itself.

\section*{qrandstream.PointSet property}

Purpose Point set from which stream is drawn
Description
The PointSet property contains a copy of the point set from which the stream is providing points. The point set is specified during construction of a quasi-random stream and cannot subsequently be altered.

\section*{Examples}
```

Q = qrandstream('sobol', 5, 'Skip', 8);
% Create a new stream based on the same sequence as that in Q
Q2 = qrandstream(Q.PointSet);
u1 = qrand(Q, 10)
u2 = qrand(Q2, 10) % contains exactly the same values as u1

```

\section*{Purpose Poisson cumulative distribution function}
\[
\text { Syntax } \quad P=\operatorname{poisscdf}(X, \text { lambda })
\]

Description
\(P=\) poisscdf( \(X\), lambda) computes the Poisson cdf at each of the values in \(X\) using the corresponding mean parameters in lambda. \(X\) and lambda can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in lambda must be positive.

The Poisson cdf is
\[
p=F(x \mid \lambda)=e^{-\lambda} \sum_{i=0}^{\text {floor }(x)} \frac{\lambda^{i}}{i!}
\]

\section*{Examples}

For example, consider a Quality Assurance department that performs random tests of individual hard disks. Their policy is to shut down the manufacturing process if an inspector finds more than four bad sectors on a disk. What is the probability of shutting down the process if the mean number of bad sectors ( \(\Lambda\) ) is two?
```

probability = 1-poisscdf(4,2)
probability =
0.0527

```

About 5\% of the time, a normally functioning manufacturing process produces more than four flaws on a hard disk.

Suppose the average number of flaws ( \(\lambda\) ) increases to four. What is the probability of finding fewer than five flaws on a hard drive?
```

probability = poisscdf(4,4)
probability =
0.6288

```

This means that this faulty manufacturing process continues to operate after this first inspection almost \(63 \%\) of the time.

\author{
See Also \\ cdf | poisspdf | poissinv | poisstat | poissfit | poissrnd \\ How To \\ - "Poisson Distribution" on page B-102
}
\begin{tabular}{ll} 
Purpose & Poisson parameter estimates \\
Syntax & \begin{tabular}{l} 
lambdahat \(=\) poissfit(data) \\
[lambdahat, lambdaci] \(=\) poissfit(data) \\
\\
\end{tabular} [lambdahat, lambdaci] \(=\) poissfit(data, alpha)
\end{tabular}

\section*{Description}
lambdahat = poissfit(data) returns the maximum likelihood estimate (MLE) of the parameter of the Poisson distribution, \(\lambda\), given the data data.
[lambdahat,lambdaci] = poissfit(data) also gives 95\% confidence intervals in lamdaci.
[lambdahat,lambdaci] = poissfit(data,alpha) gives \(100(1-\) alpha) \(\%\) confidence intervals. For example alpha \(=0.001\) yields \(99.9 \%\) confidence intervals.

The sample mean is the MLE of \(\lambda\).
\[
\hat{\lambda}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
\]

\section*{Examples \(\quad r=\operatorname{poissrnd}(5,10,2)\); \\ [l,lci] = poissfit(r) \\ 1 = \\ \(7.4000 \quad 6.3000\) \\ lci = \\ \(5.8000 \quad 4.8000\) \\ \(9.1000 \quad 7.9000\)}

See Also mle | poisspdf | poisscdf | poissinv | poisstat | poissrnd
How To
- "Poisson Distribution" on page B-102

Purpose Poisson inverse cumulative distribution function
Syntax \(\quad X=\operatorname{poissinv}(P, l a m b d a)\)
Description

Examples
If the average number of defects \((\lambda)\) is two, what is the 95 th percentile of the number of defects?
```

poissinv(0.95,2)
ans =
5

```

What is the median number of defects?
```

median_defects = poissinv(0.50,2)
median_defects =
2

```
See Also icdf | poisscdf | poisspdf | poisstat | poissfit | poissrnd
How To . "Poisson Distribution" on page B-102

Superclasses ToolboxFittableParametricDistribution
Purpose Poisson probability distribution object
Description prob.PoissonDistribution is an object consisting of parameters, a model description, and sample data for a Poisson probability distribution.

Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

\section*{Construction}
pd = makedist('Poisson') creates a Poisson probability distribution object using the default parameter values.
pd = makedist('Poisson','lambda',lambda) creates a Poisson distribution object using the specified parameter value.

\section*{Input Arguments}

\section*{lambda-Mean}

1 (default) | nonnegative scalar value
Mean of the Poisson distribution, specified as a nonnegative scalar value.

\section*{Data Types}
single | double

\section*{Properties}

\section*{lambda}

Mean of the Poisson distribution, stored as a nonnegative scalar value.

\section*{Data Types}
single | double

\section*{DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{prob.PoissonDistribution}

\section*{Data Types \\ char \\ InputData}

Data used for distribution fitting, stored as a structure containing the following:
- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.

\section*{Data Types}
single | double

\section*{IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated. If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

\section*{Data Types}
logical

\section*{NumParameters}

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

\section*{Data Types \\ single | double \\ ParameterCovariance}

Covariance matrix of the parameter estimates, stored as a \(p\)-by- \(p\) matrix, where \(p\) is the number of parameters in the distribution. The ( \(\mathrm{i}, \mathrm{j}\) ) element is the covariance between the estimates of the ith parameter and the \(j\) th parameter. The ( \(i, i\) ) element is the
estimated variance of the ith parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the ( \(\mathrm{i}, \mathrm{i}\) ) elements of the covariance matrix are 0 . This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterDescription}

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

\section*{Data Types}
char

\section*{ParameterlsFixed}

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

\section*{Data Types}
logical

\section*{ParameterNames}

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

\section*{Data Types \\ char \\ ParameterValues}

Values of distribution parameters, stored as a vector. This property is read-only.

\author{
Data Types \\ single | double \\ Truncation
}

\section*{prob.PoissonDistribution}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.
```

Data Types
single | double

```

\section*{Methods Inherited Methods}
\begin{tabular}{ll} 
cdf & \begin{tabular}{l} 
Cumulative distribution function \\
of probability distribution object
\end{tabular} \\
icdf & \begin{tabular}{l} 
Inverse cumulative distribution \\
function of probability \\
distribution object
\end{tabular} \\
iqr & \begin{tabular}{l} 
Interquartile range of probability \\
distribution object \\
Median of probability distribution \\
object
\end{tabular} \\
median & \begin{tabular}{l} 
Probability density function of \\
probability distribution object
\end{tabular} \\
pdf & \begin{tabular}{l} 
Generate random numbers from \\
probability distribution object
\end{tabular} \\
random & \begin{tabular}{l} 
Truncate probability distribution \\
object
\end{tabular} \\
truncate & \begin{tabular}{l} 
Mean of probability distribution \\
object
\end{tabular} \\
megloglik & \begin{tabular}{l} 
Negative loglikelihood of \\
probability distribution object
\end{tabular} \\
paramci & \begin{tabular}{l} 
Confidence intervals for \\
probability distribution
\end{tabular} \\
parameters
\end{tabular}
\begin{tabular}{ll} 
proflik & \begin{tabular}{l} 
Profile likelihood function for \\
probability distribution object
\end{tabular} \\
std & \begin{tabular}{l} 
Standard deviation of probability \\
distribution object
\end{tabular} \\
var & \begin{tabular}{l} 
Variance of probability \\
distribution object
\end{tabular}
\end{tabular}

\section*{Definitions Poisson Distribution}

The Poisson distribution is appropriate for applications that involve counting the number of times a random event occurs in a given amount of time, distance, area, etc. If the number of counts follows the Poisson distribution, then the interval between individual counts follows the exponential distribution.

The Poisson distribution uses the following parameters.
\begin{tabular}{l|l|l}
\hline Parameter & Description & Support \\
\hline lambda & Mean & \(\lambda \geq 0\) \\
\hline
\end{tabular}

The probability density function of the Poisson distribution is
\[
f(x \mid \lambda)=\frac{\lambda^{x}}{x!} e^{-\lambda} \quad ; \quad x=0,1,2, \ldots, \infty .
\]

\section*{Examples Create a Poisson Distribution Object Using Default Parameters}

Create a Poisson distribution object using the default parameter values.
```

pd = makedist('Poisson')
pd =

```

PoissonDistribution

\section*{prob.PoissonDistribution}

Poisson distribution
lambda = 1

\section*{Create a Poisson Distribution Object Using Specified Parameters}

Create a Poisson distribution object by specifying the parameter values.
pd = makedist('Poisson','lambda',5)
pd =

PoissonDistribution
Poisson distribution
lambda = 5

Compute the variance of the distribution.
\(\mathrm{v}=\operatorname{var}(\mathrm{pd})\)
\(\mathrm{v}=\)

5

For the Poisson distribution, both the mean and variance are equal to the parameter lambda.

\section*{See Also}
makedist | fitdist | dfittool
Concepts
- "Poisson Distribution" on page B-102
- Class Attributes
- Property Attributes

\section*{Purpose}

\section*{Syntax}

Description

Examples

Poisson probability density function

Y = poisspdf(X,lambda)
\(Y=\) poisspdf( \(X\), lambda) computes the Poisson pdf at each of the values in \(X\) using mean parameters in lambda. \(X\) and lambda can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other input. The parameters in lambda must all be positive.

The Poisson pdf is
\[
y=f(x \mid \lambda)=\frac{\lambda^{x}}{x!} e^{-\lambda} I_{(0,1, \ldots)}(x)
\]
where \(x\) can be any nonnegative integer. The density function is zero unless \(x\) is an integer.

A computer hard disk manufacturer has observed that flaws occur randomly in the manufacturing process at the average rate of two flaws in a 4 GB hard disk and has found this rate to be acceptable. What is the probability that a disk will be manufactured with no defects?

In this problem, \(\lambda=2\) and \(x=0\).
```

p = poisspdf(0,2)
p =
0.1353

```

See Also pdf | poisscdf | poissinv | poisstat | poissfit | poissrnd
How To . "Poisson Distribution" on page B-102

Purpose Poisson random numbers
Syntax \(\quad \begin{aligned} R & =\text { poissrnd (lambda) } \\ R & =\operatorname{poissrnd}(\text { lambda }, m, n, \ldots) \\ R & =\operatorname{poissrnd}(\text { lambda },[m, n, \ldots])\end{aligned}\)

\section*{Description}
\(R=\) poissrnd(lambda) generates random numbers from the Poisson distribution with mean parameter lambda. lambda can be a vector, a matrix, or a multidimensional array. The size of \(R\) is the size of lambda.
\(R=\) poissrnd(lambda, \(m, n, \ldots\) ) or \(R=\)
poissrnd(lambda, \([m, n, \ldots])\) generates an m-by-n-by-... array. The lambda parameter can be a scalar or an array of the same size as R.

\section*{Examples}

Generate a random sample of 10 pseudo-observations from a Poisson distribution with \(\lambda=2\).
```

lambda = 2;

```
random_sample1 = poissrnd(lambda,1,10)
random_sample1 =
    \(\begin{array}{llllllllll}1 & 0 & 1 & 2 & 1 & 3 & 4 & 2 & 0 & 0\end{array}\)
random_sample2 = poissrnd(lambda,[10])
random_sample2 =
    \(\begin{array}{llllllllll} & -1 & 1 & 5 & 0 & 3 & 2 & 2 & 3 & 4\end{array}\)
random_sample3 \(=\) poissrnd(lambda(ones(1,10)))
random_sample3 =
    \(\begin{array}{llllllllll}3 & 2 & 1 & 1 & 0 & 0 & 4 & 0 & 2 & 0\end{array}\)
See Also random | poisspdf | poisscdf | poissinv | poisstat | poissfit
How To . "Poisson Distribution" on page B-102
Purpose Poisson mean and variance
Syntax M = poisstat(lambda)
[M,V] = poisstat(lambda)
Description M = poisstat(lambda) returns the mean of the Poisson distributionusing mean parameters in lambda. The size of \(M\) is the size of lambda.\([M, \mathrm{~V}]=\) poisstat(lambda) also returns the variance V of the Poissondistribution.For the Poisson distribution with parameter \(\lambda\), both the mean andvariance are equal to \(\lambda\).
Examples Find the mean and variance for the Poisson distribution with \(\lambda=2\).

[m,v] = poisstat([1 2; 3 4])

m =

    12

    34

v \(=\)

    12

    34
See Also poisspdf | poisscdf | poissinv | poissfit | poissrnd
How To - "Poisson Distribution" on page B-102

Purpose
Polynomial confidence intervals

\section*{Syntax}
\(Y=\operatorname{polyconf}(p, X)\)
[Y,DELTA] = polyconf( \(p, X, S\) )
[Y,DELTA] = polyconf(p,X,S,param1,val1,param2,val2,...)

\section*{Description}
\(Y=\) polyconf \((p, X)\) evaluates the polynomial \(p\) at the values in \(X . p\) is
a vector of coefficients in descending powers.
[ \(\mathrm{Y}, \mathrm{DELTA}\) ] = polyconf( \(\mathrm{p}, \mathrm{X}, \mathrm{S}\) ) takes outputs p and S from polyfit and generates \(95 \%\) prediction intervals \(Y\) - DELTA for new observations at the values in X .
[Y, DELTA] = polyconf( \(\mathrm{p}, \mathrm{X}, \mathrm{S}\), param1, val1, param2, val2, \(\ldots\) ) specifies optional parameter name/value pairs chosen from the following list.
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline ' alpha' & \begin{tabular}{l} 
A value between 0 and 1 specifying a confidence level \\
of 100*(1-alpha)\%. The default is 0.05.
\end{tabular} \\
\hline 'mu ' & \begin{tabular}{l} 
A two-element vector containing centering and \\
scaling parameters. With this option, polyconf uses \\
(X-mu(1)) /mu (2) in place of X.
\end{tabular} \\
\hline 'predopt' & \begin{tabular}{l} 
Either 'observation' (the default) to compute \\
prediction intervals for new observations at the \\
values in X, or 'curve ' to compute confidence \\
intervals for the fit evaluated at the values in X. See \\
below.
\end{tabular} \\
\hline 'simopt' & \begin{tabular}{l} 
Either 'off' (the default) for nonsimultaneous \\
bounds, or 'on' for simultaneous bounds. See below.
\end{tabular} \\
\hline
\end{tabular}

The 'predopt' and 'simopt ' parameters can be understood in terms of the following functions:
- \(p(x)\) - the unknown mean function estimated by the fit
- \(l(x)\) - the lower confidence bound
- \(u(x)\) - the upper confidence bound

Suppose you make a new observation \(y_{n+1}\) at \(x_{n+1}\), so that
\[
y_{n+1}\left(x_{n+1}\right)=p\left(x_{n+1}\right)+\varepsilon_{n+1}
\]

By default, the interval \(\left[l_{n+1}\left(x_{n+1}\right), u_{n+1}\left(x_{n+1}\right)\right]\) is a \(95 \%\) confidence bound on \(y_{n+1}\left(x_{n+1}\right)\).
The following combinations of the 'predopt' and 'simopt' parameters allow you to specify other bounds.
\begin{tabular}{l|l|l}
\hline 'simopt & 'predopt' & Bounded Quantity \\
\hline 'off' & 'observation' & \(y_{n+1}\left(x_{n+1}\right)\) (default) \\
\hline 'off' & 'curve' & \(p\left(x_{n+1}\right)\) \\
\hline 'on' & 'observation' & \(y_{n+1}(x)\), for all \(x\) \\
\hline 'on' & 'curve' & \(p(x)\), for all \(x\) \\
\hline
\end{tabular}

In general, 'observation' intervals are wider than 'curve' intervals, because of the additional uncertainty of predicting a new response value (the curve plus random errors). Likewise, simultaneous intervals are wider than nonsimultaneous intervals, because of the additional uncertainty of bounding values for all predictors \(x\).


This example uses code from the documentation example function polydemo, and calls the documentation example function polystr to convert the coefficient vector \(p\) into a string for the polynomial expression displayed in the figure title. It combines the functions polyfit, polyval, roots, and polyconf to produce a formatted display of data with a polynomial fit.

Note Statistics Toolbox documentation example files are located in the \help\toolbox\stats \(\backslash\) examples subdirectory of your MATLAB root folder (matlabroot). This subdirectory is not on the MATLAB path at installation. To use the files in this subdirectory, either add the subdirectory to the MATLAB path (addpath) or make the subdirectory your current working folder (cd).

Display simulated data with a quadratic trend, a fitted quadratic polynomial, and \(95 \%\) prediction intervals for new observations:
```

xdata = -5:5;
ydata = x.^2 - 5*x - 3 + 5*randn(size(x));
degree = 2; % Degree of the fit
alpha = 0.05; % Significance level
% Compute the fit and return the structure used by
% POLYCONF.
[p,S] = polyfit(xdata,ydata,degree);
% Compute the real roots and determine the extent of the
% data.
r = roots(p)'; % Roots as a row vector.
real_r = r(imag(r) == 0); % Real roots.
% Assure that the data are row vectors.
xdata = reshape(xdata,1,length(xdata));
ydata = reshape(ydata,1,length(ydata));
% Extent of the data.
mx = min([real_r,xdata]);
Mx = max([real_r,xdata]);
my = min([ydata,0]);
My = max([ydata,0]);

```
```

% Scale factors for plotting.
sx = 0.05*(Mx-mx);
sy = 0.05*(My-my);
% Plot the data, the fit, and the roots.
hdata = plot(xdata,ydata,'md','MarkerSize',5,...
'LineWidth',2);
hold on
xfit = mx-sx:0.01:Mx+sx;
yfit = polyval(p,xfit);
hfit = plot(xfit,yfit,'b-','LineWidth',2);
hroots = plot(real_r,zeros(size(real_r)),...
'bo','MarkerSize',5,...
'LineWidth',2,...
'MarkerFaceColor','b');
grid on
plot(xfit,zeros(size(xfit)),'k-','LineWidth',2)
axis([mx-sx Mx+sx my-sy My+sy])
% Add prediction intervals to the plot.
[Y,DELTA] = polyconf(p,xfit,S,'alpha',alpha);
hconf = plot(xfit,Y+DELTA,'b--');
plot(xfit,Y-DELTA,'b--')
% Display the polynomial fit and the real roots.
approx_p = round(100*p)/100; % Round for display.
htitle = title(['{\bf Fit: }',...
texlabel(polystr(approx_p))]);
set(htitle,'Color','b')
approx_real_r = round(100*real_r)/100; % Round for display.
hxlabel = xlabel(['{\bf Real Roots: }',...
num2str(approx_real_r)]);
set(hxlabel,'Color','b')
% Add a legend.
legend([hdata,hfit,hroots,hconf],...
'Data','Fit','Real Roots of Fit',...

```
'95\% Prediction Intervals')


See Also
polyfit | polyval | polytool

Purpose Interactive polynomial fitting
```

Syntax polytool
polytool(x,y)
polytool(x,y,n)
polytool(x,y,n,alpha)
polytool(x,y,n,alpha, xname, yname)
h = polytool(...)

```

\section*{Description}

\section*{Examples}
polytool
polytool ( \(\mathrm{x}, \mathrm{y}\) ) fits a line to the vectors x and y and displays an interactive plot of the result in a graphical interface. You can use the interface to explore the effects of changing the parameters of the fit and to export fit results to the workspace.
polytool ( \(x, y, n\) ) initially fits a polynomial of degree \(n\). The default is 1 , which produces a linear fit.
polytool(x,y,n,alpha) initially plots 100(1-alpha)\% confidence intervals on the predicted values. The default is 0.05 which results in \(95 \%\) confidence intervals.
polytool( \(x, y, n\), alpha, xname, yname) labels the \(x\) and \(y\) values on the graphical interface using the strings xname and yname. Specify \(n\) and alpha as [] to use their default values.
\(\mathrm{h}=\) polytool(...) outputs a vector of handles, h , to the line objects in the plot. The handles are returned in the degree: data, fit, lower bounds, upper bounds.

\section*{Interactive polynomial fitting}

This example shows how to start an interactive fitting session with polytool.

Generate data from a quadratic curve with added noise.
```

rng('default') % for reproducibility
x = -5:5;

```
```

y = x.^2 - 5*x - 3 + 5*randn(size(x));

```

Fit a quadratic (degree-2) model with 0.90 confidence intervals.
```

n = 2;
alpha = 0.1;
polytool(x,y,n,alpha)

```


See Also polyfit | polyval | polyconf | invpred

Purpose Posterior probabilities of components
\(\begin{array}{ll}\text { Syntax } & P=\text { posterior }(o b j, X) \\ & {[P, n l o g l]=\operatorname{posterior}(o b j, X)}\end{array}\)
Description \(\quad P=\) posterior \((o b j, X)\) returns the posterior probabilities of each of the \(k\) components in the Gaussian mixture distribution defined by obj for each observation in the data matrix X . X is \(n\)-by- \(d\), where \(n\) is the number of observations and \(d\) is the dimension of the data. obj is an object created by gmdistribution or fit. P is \(n\)-by- \(k\), with \(\mathrm{P}(\mathrm{I}, \mathrm{J})\) the probability of component \(J\) given observation I.
posterior treats NaN values as missing data. Rows of X with NaN values are excluded from the computation.
[P, nlogl] = posterior(obj, X) also returns nlogl, the negative log-likelihood of the data.

\section*{Examples}

Generate data from a mixture of two bivariate Gaussian distributions using the mvnrnd function:
```

MU1 = [1 2];
SIGMA1 = [2 0; 0 .5];
MU2 = [-3 -5];
SIGMA2 = [1 0; 0 1];
X = [mvnrnd(MU1,SIGMA1,1000);mvnrnd(MU2,SIGMA2,1000)];
scatter(X(:,1),X(:,2),10,'.')
hold on

```


Fit a two-component Gaussian mixture model:
```

obj = gmdistribution.fit(X,2);
h = ezcontour(@(x,y)pdf(obj,[x y]),[-8 6],[-8 6]);

```

\section*{gmdistribution.posterior}


Compute posterior probabilities of the components:
```

P = posterior(obj,X);
delete(h)
scatter(X(:,1),X(:,2),10,P(:,1),'.')
hb = colorbar;
ylabel(hb,'Component 1 Probability')

```


See Also
gmdistribution | fit | cluster | mahal

\section*{NaiveBayes.posterior}

\section*{Purpose Compute posterior probability of each class for test data}

\author{
Syntax \\ \section*{Description}
}
post = posterior(nb,test)
[post,cpre] = posterior(nb,test)
[post,cpre,logp] = posterior(nb,test)
[...] = posterior(..., 'HandleMissing',val)
post = posterior(nb,test) returns the posterior probability of the observations in test according to the NaiveBayes object nb. test is a \(N\)-by-nb.ndims matrix, where \(N\) is the number of observations in the test data. Rows of test correspond to points, columns of test correspond to features. post is a N -by-nb.nclasses matrix containing the posterior probability of each observation for each class. post (i, \(j\) ) is the posterior probability of point I belonging to class j . Classes are ordered the same as nb.clevels, i.e., column \(j\) of post corresponds to the \(j\) th class in nb.clevels. The posterior probabilities corresponding to any empty classes are NaN.
[post, cpre] = posterior(nb,test) returns cpre, an N-by-1 vector, containing the class to which each row of test has been assigned. cpre has the same type as nb.CLevels.
[post, cpre, logp] = posterior(nb,test) returns logp, an N-by-1 vector containing estimates of the log of the probability density function (PDF). \(\log (i)\) is the \(\log\) of the PDF of point \(i\). The PDF value of point \(i\) is the sum of \(\operatorname{Prob}(\) point \(\mathrm{I} \mid\) class J) * \(\operatorname{Pr}\{\) class J\} taken over all classes.
[...] = posterior(..., 'HandleMissing', val) specifies how posterior treats NaN (missing values). val can be one of the following:
\begin{tabular}{ll} 
'off' \\
(default) & \begin{tabular}{l} 
Observations with NaN in any of the columns are not \\
classified into any class. The corresponding rows in \\
post and logp are NaN. The corresponding rows in \\
cpre are NaN (if obj.clevels is numeric or logical), \\
empty strings (if obj.clevels is char or cell array of \\
strings) or (if obj.clevels is categorical).
\end{tabular} \\
'on' & \begin{tabular}{l} 
For observations having NaN in some (but not all) \\
columns, post and cpre are computed using the \\
columns with non-NaN values. Corresponding logp \\
values are NaN.
\end{tabular}
\end{tabular}

See Also NaiveBayes | fit | predict

\section*{prctile}

\section*{Purpose Percentiles of a data set}
Syntax \(\quad\)\begin{tabular}{rl}
\(Y\) & \(=\operatorname{prctile}(X, p)\) \\
\(Y\) & \(=\operatorname{prctile}(X, p, \operatorname{dim})\)
\end{tabular}

Description

Arguments
\(Y=\operatorname{prctile}(X, p)\) returns percentiles of the values in a data vector or matrix \(X\) for the percentages \(p\) in the interval \([0,100]\).
- If \(X\) is a vector, then \(Y\) is a scalar or a vector with the same length as the number of percentiles required (length \((\mathrm{p})\) ). \(\mathrm{Y}(\mathrm{i})\) contains the \(p(i)\) percentile.
- If \(X\) is a matrix, then \(Y\) is a row vector or a matrix, where the number of rows of \(Y\) is equal to the number of percentiles required (length \((p)\) ). The ith row of \(Y\) contains the \(p(i)\) percentiles of each column of \(X\).
- For multidimensional arrays, prctile operates along the first nonsingleton dimension of \(X\).
\(Y=p r c t i l e(X, p, d i m)\) returns percentiles along dimension dim.

\section*{X - Input data}
vector | array
Input data, specified as a vector or array.
Data Types
double | single
p - Percentages
scalar | vector
Percentages for which to compute percentiles, returned as a scalar or vector of scalars from 0 to 100 .

Example: 25
Example: [25, 50, 75]

\section*{Data Types \\ double | single \\ dim - Dimension \\ 1 (default) | positive integer}

Dimension along which the percentiles of \(X\) are required, specified as a positive integer. For example, for a matrix \(X\), when dim \(=1\), prctile returns the quantile(s) of the columns of \(X\) and when dim \(=2\), quantile returns the quantile(s) of the rows of \(X\). For a multidimensional array \(X\), the length of the dimth dimension of \(Y\) is equal to the length of \(p\).

\section*{Data Types \\ double}

\section*{Output \\ Arguments \\ Y - Percentiles \\ scalar | array}

Percentiles of a data vector or array, specified as a scalar or array for one or more percentage values.
- If \(X\) is a vector, then \(Y\) is a scalar or a vector with the same length as the number of percentiles required (length ( \(p\) )). \(Y(i)\) contains the \(\mathrm{p}(\mathrm{i})\) th percentile.
- If \(X\) is a matrix, then \(Y\) is a vector or a matrix with the length of the dimth dimension equal to the number percentiles required (length \((p)\) ). When dim \(=1\), for example, the ith row of \(Y\) contains the \(p(i)\) th percentiles of columns of \(X\).
- If X is an array of dimension \(d\), then Y is an array with the length of the dimth dimension equal to the number of percentiles required (length(p)).

\section*{Definitions Multidimensional Array}

A multidimensional array is an array with more than two dimensions. For example, if X is a 1-by-3-by-4 array, then X is a 3-D array.

\section*{Nonsingleton Dimension}

A first nonsingleton dimension is the first dimension of an array whose size is not equal to 1 . For example, if X is a 1 -by- 2 -by- 3 -by- 4 array, then the second dimension is the first nonsingleton dimension of X .

\section*{Linear Interpolation}

Linear interpolation uses linear polynomials to find \(y_{i}=\mathrm{f}\left(x_{i}\right)\), the values of the underlying function \(Y=\mathrm{f}(X)\) at the points in the vector or array \(x\). Given the data points \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\), where \(y_{1}=\mathrm{f}\left(x_{1}\right)\) and \(y_{2}=\) \(\mathrm{f}\left(x_{2}\right)\), linear interpolation finds \(y=\mathrm{f}(x)\) for a given \(x\) between \(x_{1}\) and \(x_{2}\) as follows:
\[
y=f(x)=y_{1}+\frac{\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)}\left(y_{2}-y_{1}\right)
\]

Similarly, if the \(100(1.5 / n)\) th percentile is \(y_{1.5 / n}\) and the \(100(2.5 / n)\) th percentile is \(y_{2.5 / n}\), then linear interpolation finds the \(100(2.3 / n)\) th percentile, \(y_{2.3 / n}\) as:
\[
y_{\frac{2.3}{n}}=y_{\frac{1.5}{n}}+\frac{\left(\frac{2.3}{n}-\frac{1.5}{n}\right)}{\left(\frac{2.5}{n}-\frac{1.5}{n}\right)}\left(y_{\frac{2.5}{n}}-y_{\frac{1.5}{n}}\right)
\]

\section*{Algorithms}

For an \(n\)-element vector X , prctile returns percentiles as follows:
1 The sorted values in X are taken as the \(100(0.5 / n)\) th, \(100(1.5 / n)\) th, \(\ldots\), \(100([n-0.5] / n)\) th percentiles. For example:
- For a data vector of five elements such as \(\{6,3,2,10,1\}\), the sorted elements \(\{1,2,3,6,10\}\) respectively correspond to the 10th, 30 th, 50 th, 70th, and 90th percentiles.
- For a data vector of six elements such as \(\{6,3,2,10,8,1\}\), the sorted elements \(\{1,2,3,6,8,10\}\) respectively correspond to the
(50/6)th, (150/6)th, (250/6)th, (350/6)th, (450/6)th, and (550/6)th percentiles.

2 prctile uses linear interpolation to compute percentiles for percentages between \(100(0.5 / n)\) and \(100([n-0.5] / n)\).

3 prctile assigns the minimum or maximum values in \(X\) to the percentiles corresponding to the percentages outside that range.
prctile treats NaNs as missing values and removes them.

\section*{Examples Percentiles of a Data Vector}

Generate a data set of size 10 .
```

rng('default'); % for reproducibility
x = normrnd(5,2,1,10)
x =
6.0753 8.6678 0.4823 6.7243 5.6375 2.3846 4.132

```

Calculate the 42 nd percentile.
\(Y=\operatorname{prctile}(X, 42)\)
\(Y=\)
5.6709

\section*{Percentiles of a Data Matrix}

Calculate the percentiles along the columns and rows of a data matrix for specified percentages.

Generate a 5-by-5 data matrix.
\(X=(1: 5)^{\prime *}(2: 6)\)

X =

\section*{prctile}
\begin{tabular}{rrrrr}
2 & 3 & 4 & 5 & 6 \\
4 & 6 & 8 & 10 & 12 \\
6 & 9 & 12 & 15 & 18 \\
8 & 12 & 16 & 20 & 24 \\
10 & 15 & 20 & 25 & 30
\end{tabular}

Calculate the 25th, 50th, and 75 th percentiles along the columns of X .
```

Y = prctile(X,[25 50 75],1)

```
\(Y=\)
\begin{tabular}{rrrrr}
3.5000 & 5.2500 & 7.0000 & 8.7500 & 10.5000 \\
6.0000 & 9.0000 & 12.0000 & 15.0000 & 18.0000 \\
8.5000 & 12.7500 & 17.0000 & 21.2500 & 25.5000
\end{tabular}

The rows of \(Y\) correspond to the percentiles of columns of \(X\). For example, the 25 th, 50 th , and 75 th percentiles of the third column of \(X\) with elements \((4,8,12,16,20)\) are 7,12 , and 17 , respectively. \(Y=\) prctile ( \(\mathrm{X},\left[\begin{array}{ll}25 & 50 \\ 75\end{array}\right]\) ) returns the same percentile matrix.

Calculate the 25 th, 50 th, and 75 th percentiles along the rows of \(x\).
\(Y=\operatorname{prctile}(X,[255075], 2)\)
\(Y=\)
\begin{tabular}{rrr}
2.7500 & 4.0000 & 5.2500 \\
5.5000 & 8.0000 & 10.5000 \\
8.2500 & 12.0000 & 15.7500 \\
11.0000 & 16.0000 & 21.0000 \\
13.7500 & 20.0000 & 26.2500
\end{tabular}

The rows of \(Y\) correspond to the percentiles of rows of \(X\). For example, the 25 th, 50 th, and 75 th percentiles of the first row of \(X\) with elements \((2,3,4,5,6)\) are \(2.75,4\), and 5.25 , respectively.

\section*{See Also \\ quantile | median | iqr}

\footnotetext{
Concepts
- "Quantiles and Percentiles" on page 3-7
}

\section*{ClassificationKNN.predict}

Purpose Predict \(k\)-nearest neighbor classification
Syntax label = predict(mdl, Xnew)
[label,score] = predict(mdl,Xnew)
[label,score,cost] = predict(mdl,Xnew)

Description

Input
Arguments
mdl
label \(=\) predict(mdl, Xnew) returns a vector of predicted class labels for a matrix Xnew, based on mdl, a ClassificationKNN model.
[label, score] = predict(mdl,Xnew) returns a matrix of scores, indicating the likelihood that a label comes from a particular class.
[label, score, cost] = predict(mdl, Xnew) returns a matrix of costs; label is the vector of minimal costs for each row of cost
\(k\)-nearest neighbor classifier, created by ClassificationKNN.fit.

\section*{Xnew}

Points at which mdl predicts classifications. Each row of Xnew is one point. The number of columns in Xnew must equal the number of predictors in mdl.

\section*{Output \\ label} Arguments

Predicted class labels for the points in Xnew, a vector with length equal to the number of rows of Xnew. The label is the class with minimal expected cost. See "Predicted Class Label" on page 20-2181.

\section*{score}

Numeric matrix of size N -by-K, where N is the number of observations (rows) in Xnew, and \(K\) is the number of classes (in mdl.ClassNames). score ( \(\mathrm{i}, \mathrm{j}\) ) is the posterior probability that row i of Xnew is of class j. See "Posterior Probability" on page 20-2181.

\section*{cost}

\section*{ClassificationKNN.predict}

Matrix of expected costs of size N -by-K, where N is the number of observations (rows) in Xnew, and \(K\) is the number of classes (in mdl. ClassNames). cost ( \(i, j\) ) is the cost of classifying row \(i\) of \(X\) as class j. See "Expected Cost" on page 20-2182.

\section*{Definitions}

\section*{Predicted Class Label}
predict classifies so as to minimize the expected classification cost:
\[
\hat{y}=\underset{y=1, \ldots, K}{\arg \min } \sum_{k=1}^{K} \hat{P}(k \mid x) C(y \mid k),
\]
where
- \(\hat{y}\) is the predicted classification.
- \(K\) is the number of classes.
- \(\hat{P}(k \mid x)\) is the posterior probability of class \(k\) for observation \(x\).
- \(C(y \mid k)\) is the cost of classifying an observation as \(y\) when its true class is \(k\).

\section*{Posterior Probability}

For a vector (single query point) Xnew and model mdl, let:
- \(K\) be the number of nearest neighbors used in prediction, mdl. NumNeighbors
- nbd (mdl, Xnew) be the K nearest neighbors to Xnew in mdl. X
- \(Y(n b d)\) be the classifications of the points in nbd (mdl, Xnew), namely mdl.Y(nbd)
- \(W\) (nbd) be the weights of the points in nbd(mdl, Xnew)
- prior be the priors of the classes in mdl. Y

\section*{ClassificationKNN.predict}

If there is a vector of prior probabilities, then the observation weights \(W\) are normalized by class to sum to the priors. This might involve a calculation for the point Xnew, because weights can depend on the distance from Xnew to the points in mdl. X .

The posterior probability \(p(j \mid \mathrm{Xnew})\) is
\[
p(j \mid \text { Xnew })=\frac{\sum_{i \in \mathrm{nbd}} W(i) 1_{Y(X(i)=j)}}{\sum_{i \in \mathrm{nbd}} W(i)}
\]

Here, \(1_{Y(X(i)=j)}\) means 1 when mdl. \(Y(i)=j\), and 0 otherwise.

\section*{True Misclassification Cost}

There are two costs associated with KNN classification: the true misclassification cost per class, and the expected misclassification cost per observation.
You can set the true misclassification cost per class in the Cost name-value pair when you run ClassificationKNN.fit. Cost(i,j) is the cost of classifying an observation into class \(j\) if its true class is i. By default, \(\operatorname{Cost}(i, j)=1\) if \(i \sim=j\), and \(\operatorname{cost}(i, j)=0\) if \(i=j\). In other words, the cost is 0 for correct classification, and 1 for incorrect classification.

\section*{Expected Cost}

There are two costs associated with KNN classification: the true misclassification cost per class, and the expected misclassification cost per observation. The third output of predict is the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier mdl. Suppose you have K classes. You place the observations into a matrix Xnew with one observation per row. The command
[label,score, cost] = predict(mdl,Xnew)

\section*{ClassificationKNN.predict}
returns, among other outputs, a cost matrix of size Nobs-by-K. Each row of the cost matrix contains the expected (average) cost of classifying the observation into each of the \(K\) classes. cost \((n, k)\) is
\[
\sum_{i=1}^{K} \hat{P}(i \mid X n e w(n)) C(k \mid i)
\]
where
- \(K\) is the number of classes.
- \(\hat{P}(i \mid \operatorname{Xnew}(n))\) is the posterior probability of class \(i\) for observation Xnew(n).
- \(C(k \mid i)\) is the true misclassification cost of classifying an observation as \(k\) when its true class is \(i\).

\section*{Examples KNN Classification Predictions}

Construct a \(k\)-nearest neighbor classifier for the Fisher iris data, where \(k=5\). Evaluate some model predictions on new data.

Load the data.
load fisheriris
X = meas;
\(Y\) = species;

Construct a classifier for 5-nearest neighbors.
```

mdl = ClassificationKNN.fit(X,Y,'NumNeighbors',5);

```

Predict the classifications for flowers with minimum, mean, and maximum characteristics.
```

Xnew = [min(X);mean(X);max(X)];
[label,score,cost] = predict(mdl,Xnew)

```

\section*{ClassificationKNN.predict}
```

label =
setosa'
'versicolor'
virginica'
score =
1 0 0
0}1
0 0
cost =
0}
1 0 1
1 1 0

```

The classifications have binary values for the score and cost matrices, meaning all five nearest neighbors of each of the three points have identical classifications.

\section*{See Also ClassificationknN I}

\section*{Related \\ - "Predict Classification Based on a KNN Classifier" on page 15-27 \\ Examples}

\section*{Concepts \\ - "Classification Using Nearest Neighbors" on page 15-9}

\section*{CompactClassificationDiscriminant.predict}

\section*{Purpose Predict classification}

Syntax label \(=\operatorname{predict}(o b j, x)\)
[label,score] = predict(obj, X)
[label,score,cost] = predict(obj,X)

Description

Input Arguments

\section*{Output Arguments}
label \(=\) predict \((\mathrm{obj}, \mathrm{X})\) returns a vector of predicted class labels for a matrix \(X\), based on obj, a trained full or compact classifier.
[label,score] = predict(obj,X) returns a matrix of scores (posterior probabilities).
[label, score, cost] = predict(obj,X) returns a matrix of costs; label is the vector of minimal costs for each row of cost.

\section*{obi}

Discriminant analysis classifier of class ClassificationDiscriminant or CompactClassificationDiscriminant, typically constructed with ClassificationDiscriminant.fit.

\section*{X}

Matrix where each row represents an observation, and each column represents a predictor. The number of columns in X must equal the number of predictors in obj.

\section*{label}

Vector of class labels of the same type as the response data used in training obj. Each entry of labels corresponds to a predicted class label for the corresponding row of X ; see "Predicted Class Label" on page 20-2187.

\section*{score}

Numeric matrix of size N -by-K, where N is the number of observations (rows) in \(X\), and \(K\) is the number of classes (in

\section*{CompactClassificationDiscriminant.predict}
obj.ClassNames). score ( \(i, j\) ) is the posterior probability that row \(i\) of \(X\) is of class \(j\); see "Posterior Probability" on page 20-2186.

\section*{cost}

Matrix of expected costs of size N-by-K. cost (i,j) is the cost of classifying row i of \(X\) as class j. See "Cost" on page 20-2187.

\section*{Definitions}

\section*{Posterior Probability}

The posterior probability that a point \(z\) belongs to class \(j\) is the product of the prior probability and the multivariate normal density. The density function of the multivariate normal with mean \(\mu_{j}\) and covariance \(\Sigma_{j}\) at a point \(z\) is
\[
P(x \mid k)=\frac{1}{\left(2 \pi\left|\Sigma_{k}\right|\right)^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x-\mu_{k}\right)\right),
\]
where \(\left|\Sigma_{k}\right|\) is the determinant of \(\Sigma_{k}\), and \(\Sigma_{k}^{-1}\) is the inverse matrix.
Let \(P(k)\) represent the prior probability of class \(k\). Then the posterior probability that an observation \(x\) is of class \(k\) is
\[
\hat{P}(k \mid x)=\frac{P(x \mid k) P(k)}{P(x)}
\]
where \(P(x)\) is a normalization constant, the sum over \(k\) of \(P(x \mid k) P(k)\).

\section*{Prior Probability}

The prior probability is one of three choices:
- 'uniform' - The prior probability of class k is one over the total number of classes.
- 'empirical' - The prior probability of class \(k\) is the number of training samples of class \(k\) divided by the total number of training samples.

\section*{CompactClassificationDiscriminant.predict}
- Custom - The prior probability of class k is the kth element of the prior vector. See ClassificationDiscriminant.fit.

After creating a classifier obj, you can set the prior by dot addressing:
```

obj.Prior = v;

```
where \(v\) is a vector of positive elements representing the frequency with which each element occurs. You do not need to retrain the classifier when you set a new prior.

\section*{Cost}

The matrix of expected costs per observation is defined in "Cost" on page 14-8.

\section*{Predicted Class Label}
predict classifies so as to minimize the expected classification cost:
\[
\hat{y}=\underset{y=1, \ldots, K}{\arg \min } \sum_{k=1}^{K} \hat{P}(k \mid x) C(y \mid k),
\]
where
- \(\hat{y}\) is the predicted classification.
- \(K\) is the number of classes.
- \(\hat{P}(k \mid x)\) is the posterior probability of class \(k\) for observation \(x\).
- \(C(y \mid k)\) is the cost of classifying an observation as \(y\) when its true class is \(k\).

\section*{Examples Examine predictions for a few rows in the Fisher iris data:}
```

load fisheriris
obj = ClassificationDiscriminant.fit(meas,species);
X = meas(99:102,:); % take four rows

```

\section*{CompactClassificationDiscriminant.predict}
```

[label score cost] = predict(obj,X)
label =
'versicolor'
'versicolor'
'virginica'
'virginica'
score =
0.0000 1.0000 0.0000
0.0000 0.9999 0.0001
0.0000 0.0000 1.0000
0.0000 0.0011 0.9989
cost =
1.0000 0.0000 1.0000
1.0000 0.0001 0.9999
1.0000 1.0000 0.0000
1.0000 0.9989 0.0011

```

\section*{See Also}

How To

ClassificationDiscriminant | ClassificationDiscriminant.fit | edge | loss | margin
- "Discriminant Analysis" on page 14-3

\section*{CompactClassificationEnsemble.predict}

\section*{Purpose Predict classification}
```

Syntax labels = predict(ens,X)
[labels,score] = predict(ens,X)
[labels,...] = predict(ens,X,Name,Value)

```

\section*{Description}

Input
Arguments
labels \(=\) predict (ens, \(X\) ) returns a vector of predicted class labels for a matrix \(X\), based on ens, a trained full or compact classification ensemble.
[labels, score] = predict(ens, X) also returns scores for all classes.
[labels,...] = predict(ens,X,Name,Value) predicts classifications with additional options specified by one or more Name, Value pair arguments.

\section*{ens}

A classification ensemble created by fitensemble, or a compact classification ensemble created by compact.

\section*{X}

A matrix where each row represents an observation, and each column represents a predictor. The number of columns in X must equal the number of predictors in ens.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'learners'}

Indices of weak learners predict uses for computation of responses, a numeric vector.

\section*{CompactClassificationEnsemble.predict}

Default: \(1: T\), where \(T\) is the number of weak learners in ens

\section*{'UseObsForLearner'}

A logical matrix of size N -by-T, where:
- \(N\) is the number of rows of \(X\).
- T is the number of weak learners in ens.

When UseObsForLearner ( \(\mathrm{i}, \mathrm{j}\) ) is true, learner j is used in predicting the class of row i of \(X\).

Default: \(\operatorname{true}(\mathrm{N}, \mathrm{T})\)

\section*{Output \\ labels}

Arguments

\section*{Definitions}

Vector of classification labels. labels has the same data type as the labels used in training ens.

\section*{score}

A matrix with one row per observation and one column per class. For each observation and each class, the score generated by each tree is the probability of this observation originating from this class computed as the fraction of observations of this class in a tree leaf. predict averages these scores over all trees in the ensemble.

\section*{Score (ensemble)}

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:
- AdaBoostM1 scores range from \(-\infty\) to \(\infty\).
- Bag scores range from 0 to 1 .

\section*{CompactClassificationEnsemble.predict}
```

Examples Train a boosting ensemble for the ionosphere data, and predict the
classification of the mean of the data:
load ionosphere;
ada = fitensemble(X,Y,'AdaBoostM1',100,'tree');
Xbar = mean(X);
[ypredict score] = predict(ada,Xbar)
ypredict =
'g'
score =
-2.9460 2.9460
See Also margin | edge | loss

```

\section*{CompactClassificationTree.predict}
\begin{tabular}{|c|c|}
\hline Purpose & Predict classification \\
\hline \multirow[t]{5}{*}{Syntax} & label = predict(tree, X ) \\
\hline & [label, score] = predict(tree, X) \\
\hline & [label, score, node] = predict(tree, X) \\
\hline & [label, score, node, cnum] = predict(tree, X) \\
\hline & [label,...] = predict(tree, X, Name, Value) \\
\hline
\end{tabular}

Description

Input Arguments
label \(=\) predict(tree, \(X\) ) returns a vector of predicted class labels for a matrix X , based on tree, a trained full or compact classification tree.
[label,score] = predict(tree, X) returns a matrix of scores, indicating the likelihood that a label comes from a particular class.
[label, score, node] = predict(tree, X) returns a vector of predicted node numbers for the classification, based on tree.
[label, score, node, cnum] = predict(tree, X) returns a vector of predicted class number for the classification, based on tree.
[label,...] = predict(tree, X,Name, Value) returns labels with additional options specified by one or more Name, Value pair arguments.

\section*{tree}

A classification tree created by ClassificationTree.fit, or a compact classification tree created by compact.

\section*{X}

A matrix where each row represents an observation, and each column represents a predictor. The number of columns in X must equal the number of predictors in tree.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can

\section*{CompactClassificationTree.predict}
specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

\section*{'subtrees'}

Numeric vector of pruning levels, with 0 representing the full, unpruned tree. To use the subtrees name-value pair, tree must include a pruning sequence as created by the ClassificationTree.fit or prune methods. If subtrees has \(T\) elements, and X has N rows, then labels is an N -by- T matrix. The ith column of labels contains the fitted values produced by the subtrees (I) subtree. Similarly, score is an N-by-K-by-T array, and node and cnum are N -by-T matrices. subtrees must be sorted in ascending order. (To compute fitted values for a tree that is not part of the optimal pruning sequence, first use prune to prune the tree.)

Default: 0

\section*{Output Arguments}

\section*{label}

Vector of class labels of the same type as the response data used in training tree. Each entry of label corresponds to the class with minimal expected cost for the corresponding row of X. See "Predicted Class Label" on page 20-2194.

\section*{score}

Numeric matrix of size N -by-K, where N is the number of observations (rows) in \(X\), and \(K\) is the number of classes (in tree.ClassNames). score ( \(\mathrm{i}, \mathrm{j}\) ) is the posterior probability that row \(i\) of \(X\) is of class \(j\).
node
Numeric vector of node numbers for the predicted classes. Each entry corresponds to the predicted node in tree for the corresponding row of X .

\section*{cnum}

\section*{CompactClassificationTree.predict}

Numeric vector of class numbers corresponding to the predicted labels. Each entry of cnum corresponds to a predicted class number for the corresponding row of \(X\).

\section*{Definitions}

\section*{Predicted Class Label}
predict classifies so as to minimize the expected classification cost:
\[
\hat{y}=\underset{y=1, \ldots, K}{\arg \min } \sum_{k=1}^{K} \hat{P}(k \mid x) C(y \mid k),
\]
where
- \(\hat{y}\) is the predicted classification.
- \(K\) is the number of classes.
- \(\hat{P}(k \mid x)\) is the posterior probability of class \(k\) for observation \(x\).
- \(C(y \mid k)\) is the cost of classifying an observation as \(y\) when its true class is \(k\).

\section*{Score (tree)}

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.

For example, consider classifying a predictor \(X\) as true when \(X<0.15\) or \(X>0.95\), and \(X\) is false otherwise.

Generate 100 random points and classify them:
rng(0,'twister') \% for reproducibility
\(X=\operatorname{rand}(100,1)\);

\section*{CompactClassificationTree.predict}
```

Y = (abs(X - . 55) > .4);
tree = ClassificationTree.fit(X,Y);
view(tree,'mode','graph')

```


2
Prune the tree:
```

tree1 = prune(tree,'level',1);
view(tree1,'mode','graph')

```

\section*{CompactClassificationTree.predict}


The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than . 94 as false. Therefore, the score for observations that are greater than .15 should be about \(.05 / .85=.06\) for true, and about \(.8 / .85=.94\) for false.

3
Compute the prediction scores for the first 10 rows of X :
[~,score] = predict(tree1, X(1:10));
[score X(1:10,:)]
ans =
\begin{tabular}{rrr}
0.9059 & 0.0941 & 0.8147 \\
0.9059 & 0.0941 & 0.9058 \\
0 & 1.0000 & 0.1270 \\
0.9059 & 0.0941 & 0.9134 \\
0.9059 & 0.0941 & 0.6324 \\
0 & 1.0000 & 0.0975 \\
0.9059 & 0.0941 & 0.2785
\end{tabular}

\section*{CompactClassificationTree.predict}
\begin{tabular}{lll}
0.9059 & 0.0941 & 0.5469 \\
0.9059 & 0.0941 & 0.9575 \\
0.9059 & 0.0941 & 0.9649
\end{tabular}

Indeed, every value of \(X\) (the rightmost column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1, while the other values of \(X\) have associated scores of 0.91 and 0.09 . The difference (score 0.09 instead of the expected .06) is due to a statistical fluctuation: there are 8 observations in \(X\) in the range \((.95,1)\) instead of the expected 5 observations.

\section*{True Misclassification Cost}

There are two costs associated with classification: the true misclassification cost per class, and the expected misclassification cost per observation.

You can set the true misclassification cost per class in the Cost name-value pair when you create the classifier using the ClassificationTree.fit method. Cost (i,j) is the cost of classifying an observation into class \(j\) if its true class is \(i\). By default, Cost ( \(i, j\) )=1 if \(i \sim=j\), and Cost ( \(i, j\) ) \(=0\) if \(i=j\). In other words, the cost is 0 for correct classification, and 1 for incorrect classification.

\section*{Expected Cost}

There are two costs associated with classification: the true misclassification cost per class, and the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier. Suppose you have K classes. You place the observations into a matrix Xnew with one observation per row.

The expected cost matrix CE has size Nobs-by-K. Each row of CE contains the expected (average) cost of classifying the observation into each of the \(K\) classes. \(C E(n, k)\) is

\section*{CompactClassificationTree.predict}
\(\sum_{i=1}^{K} \hat{P}(i \mid \operatorname{Xnew}(n)) C(k \mid i)\),
where
- \(K\) is the number of classes.
- \(\hat{P}(i \mid X n e w(n))\) is the posterior probability of class \(i\) for observation Xnew(n).
- \(C(k \mid i)\) is the true misclassification cost of classifying an observation as \(k\) when its true class is \(i\).

\section*{Predictive Measure of Association}

The predictive measure of association between the optimal split on variable \(i\) and a surrogate split on variable \(j\) is:
\[
\lambda_{i, j}=\frac{\min \left(P_{L}, P_{R}\right)-\left(1-P_{L_{i} L_{j}}-P_{R_{i} R_{j}}\right)}{\min \left(P_{L}, P_{R}\right)} .
\]

Here
- \(P_{L}\) and \(P_{R}\) are the node probabilities for the optimal split of node \(i\) into Left and Right nodes respectively.
- \(P_{L_{i} L_{j}}\) is the probability that both (optimal) node \(i\) and (surrogate) node \(j\) send an observation to the Left.
- \(P_{R_{i} R_{j}}\) is the probability that both (optimal) node \(i\) and (surrogate) node \(j\) send an observation to the Right.

Clearly, \(\lambda_{i, j}\) lies from \(-\infty\) to 1 . Variable \(j\) is a worthwhile surrogate split for variable \(i\) if \(\lambda_{i, j}>0\).

\section*{CompactClassificationTree.predict}
```

Examples Examine predictions for a few rows in the Fisher iris data:
load fisheriris
tree = ClassificationTree.fit(meas,species);
X = meas (99:102,:); \% take four rows
[label score node cnum] = predict(tree, X)
label =
'versicolor'
'versicolor'
'virginica'
'virginica'
score =
$\begin{array}{lll}0 & 1.0000 & 0\end{array}$
$0 \quad 1.0000 \quad 0$
$0 \quad 0.0217 \quad 0.9783$
$0 \quad 0.0217 \quad 0.9783$
node $=$
8
8
5
5
cnum =
2
2
3
3

```

Examine predictions from pruned trees for the Fisher iris model:
load fisheriris
tree = ClassificationTree.fit(meas,species); X = meas(99:102,:); \% taking four rows

\section*{CompactClassificationTree.predict}
```

[label score node cnum] = predict(tree,X,'subtrees',[2 3 4])
label =
'versicolor' 'versicolor' 'setosa'
'versicolor' 'versicolor' 'setosa'
'virginica' 'versicolor' 'setosa'
'virginica' 'versicolor' 'setosa'
score(:,:,1) =

0	0.9074	0.0926
0	0.9074	0.0926
0	0.0217	0.9783
0	0.0217	0.9783

score(:,:,2) =
0 0.5000 0.5000
0.5000 0.5000
0 0.5000 0.5000
0.5000 0.5000
score(:,:,3) =
0.3333 0.3333 0.3333
0.3333 0.3333 0.3333
0.3333 0.3333 0.3333
0.3333 0.3333 0.3333
node =
4 3 1
4 3 1
5 3 1
5 3 1
cnum =

2	2	1
2	2	1
3	2	1
3	2	1

```

\section*{CompactClassificationTree.predict}

\section*{Algorithms}

See Also
predict generates predictions by following the branches of tree until it reaches a leaf node or a missing value. If predict reaches a leaf node, it returns the classification of that node.

If predict reaches a node with a missing value for a predictor, its behavior depends on the setting of the Surrogate name-value pair when ClassificationTree.fit constructs tree.
- Surrogate \(=\) 'off' \((\) default \()\) - predict returns the label with the largest number of training samples that reach the node.
- Surrogate = 'on' - predict uses the best surrogate split at the node. If all surrogate split variables with positive predictive measure of association are missing, predict returns the label with the largest number of training samples that reach the node. For a definition, see "Predictive Measure of Association" on page 20-2198.
```

ClassificationTree.fit | compact | prune | loss | edge | margin

```

\section*{CompactRegressionEnsemble.predict}
\[
\begin{array}{ll}
\text { Purpose } & \text { Predict response of ensemble } \\
\text { Syntax } & \begin{array}{l}
\text { Yfit = predict (ens, Xdata) } \\
\text { Yfit = predict (ens, Xdata, Name, Value) }
\end{array} \\
\text { Description } & \begin{array}{l}
\text { Yfit }=\text { predict (ens, Xdata) returns predicted responses to the data } \\
\text { in Xdata, based on the ens regression ensemble model. }
\end{array} \\
& \begin{array}{l}
\text { Yfit = predict (ens, Xdata, Name, Value) predicts with additional } \\
\text { options specified by one or more Name, Value pair arguments. }
\end{array} \\
\text { Input } & \text { ens } \begin{array}{l}
\text { Regression ensemble created by fitensemble, or by the compact } \\
\text { Arguments }
\end{array}
\end{array}
\]

\section*{Xdata}

Numeric array with the same number of columns as the array used for creating ens. Each row of Xdata corresponds to one data point, and each column corresponds to one predictor.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'learners'}

Indices of weak learners in the ensemble ranging from 1 to ens.NTrained. oobEdge uses only these learners for calculating loss.

Default: 1:NTrained

\section*{'UseObsForLearner'}

\section*{CompactRegressionEnsemble.predict}
gical matrix of size N -by-NTrained, where N is the number of observations in ens. \(X\), and NTrained is the number of weak learners. When UseObsForLearner ( \(I, J\) ) is true, predict uses learner \(J\) in predicting observation I.

Default: true(N,NTrained)

\section*{Output Arguments}

Examples Find the predicted mileage for a four-cylinder car, with 200 cubic inch engine displacement, 150 horsepower, weighing 3000 lbs , based on the carsmall data:
```

load carsmall
X = [Cylinders Displacement Horsepower Weight];
rens = fitensemble(X,MPG,'LSBoost',100,'Tree');
Mileage = predict(rens,[4 200 150 3000])
Mileage =
20.4982

```
See Also loss | fitensemble

\section*{CompactRegressionTree.predict}

Purpose Predict response of regression tree
```

Syntax Yfit = predict(tree,Xdata)
[Yfit,node] = predict(tree,Xdata)
[Yfit,node] = predict(tree,Xdata,Name,Value)

```

\section*{Description}

\section*{Input}

Arguments

Yfit \(=\) predict(tree, Xdata) returns predicted responses to the data in Xdata, based on the tree regression tree.
[Yfit, node] = predict(tree,Xdata) returns the predicted node numbers of tree in response to Xdata.
[Yfit, node] = predict(tree,Xdata, Name, Value) predicts response with additional options specified by one or more Name, Value pair arguments.

\section*{tree}

Regression tree created by RegressionTree.fit, or by the compact method.

\section*{Xdata}

Numeric array with the same number of columns as the array used for creating tree. Each row of Xdata corresponds to one data point, and each column corresponds to one predictor.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'subtrees'}

Numeric vector of pruning levels, with 0 representing the full, unpruned tree. To use the subtrees name-value pair, tree must include a pruning sequence as created by the

\section*{CompactRegressionTree.predict}

RegressionTree.fit or prune methods. If subtrees has T elements, and \(X\) has \(N\) rows, then \(Y f i t\) is an \(N\)-by-T matrix. The ith column of Yfit contains the fitted values produced by the subtrees (I) subtree. Similarly, node is an N-by-T matrix. subtrees must be sorted in ascending order. (To compute fitted values for a tree that is not part of the optimal pruning sequence, first use prune to prune the tree.)

Default: 0

\section*{Output Arguments}
Examples

Find the predicted mileage for a car with 200 cubic inch engine
 displacement, 150 horsepower, weighing 3000 lbs , based on the
 carsmall data:
```

load carsmall
X = [Displacement Horsepower Weight];
tree = RegressionTree.fit(X,MPG);
Mileage = predict(tree,[200 150 3000])
Mileage =
21.9375

```See Also

\section*{Yfit}

A numeric column vector with the same number of rows as Xdata. Each row of Yfit gives the predicted response to the

\section*{node}

Numeric vector of node numbers for the predictions. Each entry corresponds to the predicted leaf node in tree for the corresponding row of Xdata.
```

RegressionTree.fit | compact | loss

``` corresponding row of Xdata, based on the tree regression model.

\section*{CompactTreeBagger.predict}

\section*{Purpose Predict response}

Syntax
```

YFIT = predict(B,X)
[YFIT,stdevs] = predict(B,X)
[YFIT,scores] = predict(B,X)
[YFIT,scores,stdevs] = predict(B,X)
Y = predict(B,X,'param1',val1,'param2',val2,...)

```

\section*{Description}

YFIT \(=\) predict \((\mathrm{B}, \mathrm{X})\) computes the predicted response of the trained ensemble B for predictors X. By default, predict takes a democratic (nonweighted) average vote from all trees in the ensemble. In X, rows represent observations and columns represent variables. YFIT is a cell array of strings for classification and a numeric array for regression.

For regression, [YFIT, stdevs] = predict \((B, X)\) also returns standard deviations of the computed responses over the ensemble of the grown trees.

For classification, [YFIT, scores] = predict (B,X) returns scores for all classes. scores is a matrix with one row per observation and one column per class. For each observation and each class, the score generated by each tree is the probability of this observation originating from this class computed as the fraction of observations of this class in a tree leaf. predict averages these scores over all trees in the ensemble.
[YFIT, scores, stdevs] = predict ( \(\mathrm{B}, \mathrm{X}\) ) also returns standard deviations of the computed scores for classification. stdevs is a matrix with one row per observation and one column per class, with standard deviations taken over the ensemble of the grown trees.

Y = predict(B,X,'param1',val1,'param2', val2,...) specifies optional parameter name/value pairs:

\section*{CompactTreeBagger.predict}
\begin{tabular}{ll} 
'trees' & \begin{tabular}{l} 
Array of tree indices to use for computation of \\
responses. Default is 'all'.
\end{tabular} \\
'treeweights' & \begin{tabular}{l} 
Array of NTrees weights for weighting votes from \\
the specified trees.
\end{tabular} \\
'useifort' & \begin{tabular}{l} 
Logical matrix of size Nobs-by-NTrees indicating \\
which trees to use to make predictions for each \\
observation. By default all trees are used for all \\
observations.
\end{tabular}
\end{tabular}

\section*{See Also}
classregtree.eval | TreeBagger.predict

\section*{GeneralizedLinearModel.predict}

\section*{Description}

Tips

Input
Arguments
```

Purpose Predict response of generalized linear regression model
Syntax \quad ypred $=$ predict $(m d l$, Xnew $)$
[ypred,yci] = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew,Name,Value)
Predict response of generalized linear regression model
ypred = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew,Name,Value)

```
ypred \(=\) predict(mdl,Xnew) returns the predicted response of the mdl generalized linear regression model to the points in Xnew.
[ypred,yci] = predict(mdl,Xnew) returns confidence intervals for the true mean responses.
[ypred,yci] = predict(mdl,Xnew,Name,Value) predicts responses with additional options specified by one or more Name, Value pair arguments.
- For predictions with added noise, use random.
- For a syntax that can be easier to use with models created from dataset arrays, try feval.

\section*{mdl}

Generalized linear model, as constructed by GeneralizedLinearModel.fit or GeneralizedLinearModel.stepwise.

\section*{Xnew}

Points at which mdl predicts responses.
- If Xnew is a dataset array, it must contain the predictor names in mdl.
- If Xnew is a numeric matrix, it must have the same number of variables (columns) as was used to create mdl. Furthermore, all variables used in creating mdl must be numeric.

\section*{GeneralizedLinearModel.predict}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'alpha'}

Positive scalar from 0 to 1 . Confidence level of yci is 100(1 - alpha)\%.

Default: 0.05 , meaning a \(95 \%\) confidence interval.

\section*{'BinomialSize'}

Value of the binomial \(n\) parameter for each row in the training data. BinomialSize can be a vector the same length as Xnew, or a scalar that applies to each row. The default value 1 produces ypred values that are predicted proportions. Use BinomialSize only if mdl is fit to a binomial distribution.

Default: 1

\section*{'Offset'}

Value of the offset for each row in Xnew. Offset can be a vector the same length as Xnew, or a scalar that applies to each row. The offset is used as an additional predictor with a coefficient value fixed at 1 . In other words, if \(b\) is the fitted coefficient vector, and link is the link function,
link(ypred) \(=\) Offset + Xnew * b.
Default: zeros(size(Xnew, 1))

\section*{'Simultaneous'}

\section*{GeneralizedLinearModel.predict}

Logical value specifying whether the confidence bounds are for all predictor values simultaneously (true), or hold for each individual predictor value (false). Simultaneous bounds are wider than separate bounds, because it is more stringent to require that the entire curve be within the bounds than to require that the curve at a single predictor value be within the bounds.

For details, see polyconf.
Default: false

\section*{Output ypred \\ Arguments \\ Vector of predicted mean values at Xnew.}

\section*{yci}

Confidence intervals, a two-column matrix with each row providing one interval. The meaning of the confidence interval depends on the settings of the name-value pairs.

\section*{Examples Generalized Linear Model Predictions}

Create a generalized linear model, and predict its response to new data.
Generate artificial data for the model using Poisson random numbers with two underlying predictors \(X(1)\) and \(X(2)\).
```

rng('default') % for reproducibility
rndvars = randn(100,2);
X = [2+rndvars(:,1),rndvars(:,2)];
mu = exp(1 + X*[1;2]);
y = poissrnd(mu);

```

Create a generalized linear regression model of Poisson data.
```

mdl = GeneralizedLinearModel.fit(X,y,...
'y ~ x1 + x2','distr','poisson');

```

Create points for prediction.

\section*{GeneralizedLinearModel.predict}
[Xtest1 Xtest2] = meshgrid(-1:.5:3,-2:.5:2); Xnew = [Xtest1(:),Xtest2(:)];

Predict responses at the new points.
ypred = predict(mdl,Xnew);
Plot the predictions.
surf(Xtest1,Xtest2, reshape(ypred,9,9))


Create confidence intervals on the predictions.
[ypred yci] = predict(mdl,Xnew);

\section*{GeneralizedLinearModel.predict}
Alternatives feval gives the same predictions, but uses separate input arrays foreach predictor, instead of one input array containing all predictors.random predicts with added noise.
See Also GeneralizedLinearModel | random |
Related - "predict" on page 9-168Examples- "Generalized Linear Model Workflow" on page 9-173
Concepts - "Generalized Linear Models" on page 9-143

\section*{Purpose Predict response of linear regression model}
Syntax \(\quad\)\begin{tabular}{ll} 
ypred \(=\) predict \((m d l\), Xnew \()\) \\
& {\([y p r e d\), yci \(]=\operatorname{predict}(m d l\), Xnew \()\)} \\
& {\([y p r e d, y c i]=\operatorname{predict}(m d l\), Xnew, Name, Value \()\)}
\end{tabular}

\section*{Description}

Tips
Input Arguments
ypred \(=\) predict(mdl,Xnew) returns the predicted response of the mdl linear regression model to the points in Xnew.
[ypred,yci] = predict(mdl,Xnew) returns confidence intervals for the true mean responses.
[ypred,yci] = predict(mdl,Xnew,Name, Value) predicts responses with additional options specified by one or more Name, Value pair arguments.
- For predictions with added noise, use random.

\section*{mdl}

Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.

\section*{Xnew}

Points at which mdl predicts responses.
- If Xnew is a dataset array, it must contain the predictor names in mdl.
- If Xnew is a numeric matrix, it must have the same number of variables (columns) as was used to create mdl. Furthermore, all variables used in creating mdl must be numeric.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can

\section*{LinearModel.predict}
specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, Valuen.

\section*{'alpha'}

Positive scalar from 0 to 1 . Confidence level of yci is 100(1 - alpha)\%.

Default: 0.05, meaning a \(95 \%\) confidence interval.

\section*{'Prediction'}

String specifying the type of prediction:
- 'curve' - predict predicts confidence bounds for the fitted mean values.
- 'observation' - predict predicts confidence bounds for the new observations. This results in wider bounds because the error in a new observation is equal to the error in the estimated mean value, plus the variability in the observation from the true mean.

For details, see polyconf.
Default: 'curve'

\section*{'Simultaneous'}

Logical value specifying whether the confidence bounds are for all predictor values simultaneously (true), or hold for each individual predictor value (false). Simultaneous bounds are wider than separate bounds, because it is more stringent to require that the entire curve be within the bounds than to require that the curve at a single predictor value be within the bounds.

For details, see polyconf.
Default: false

\section*{Output ypred}

Vector of predicted mean values at Xnew.

\section*{yci}

Confidence intervals, a two-column matrix with each row providing one interval. The meaning of the confidence interval depends on the settings of the name-value pairs.

\section*{Examples Predict Response to Data}

Create a model of car mileage as a function of weight, and predict the response.

Create a quadratic model of car mileage as a function of weight from the carsmall data.
```

load carsmall
X = Weight;
y = MPG;
mdl = LinearModel.fit(X,y,'quadratic');

```

Create predicted responses to the data.
Xnew = X;
ypred \(=\) predict(mdl,Xnew);

Plot the original responses and the predicted responses to see how they differ.
plot(X,y,'o',Xnew,ypred,'x')
legend('Data','Predictions')


\footnotetext{
Alternatives
feval gives the same predictions, but uses multiple input arrays with one component in each input argument. feval can be simpler to use with a model created from a dataset array ds. feval does not give confidence intervals on its predictions.
random predicts with added noise.

\section*{See Also}
feval | LinearModel | LinearModel.fit | random | LinearModel.stepwise

Tutorials • "predict" on page 9-39
- "Linear Regression Workflow" on page 9-43
}

How To . "Linear Regression" on page 9-11

\section*{NaiveBayes.predict}

\section*{Purpose Predict class label for test data}
```

Syntax

```
Description
(default)
'on ' For observations having NaN in some (but not all) columns, post and predict computes cpre using the columns with non-NaN values. Corresponding logp values are NaN.

See Also NaiveBayes | fit | posterior

\section*{Purpose}

Predict response of nonlinear regression model
Syntax
ypred \(=\) predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew)
[ypred,yci] = predict(mdl,Xnew, Name, Value)

Description

Tips

Input
Arguments
ypred \(=\) predict(mdl, Xnew) returns the predicted response of the mdl nonlinear regression model to the points in Xnew.
[ypred,yci] = predict(mdl,Xnew) returns confidence intervals for the true mean responses.
[ypred,yci] = predict(mdl,Xnew,Name, Value) predicts responses with additional options specified by one or more Name, Value pair arguments.
- For predictions with added noise, use random.
- For a syntax that can be easier to use with models created from dataset arrays, try feval.
mdl
Nonlinear regression model, constructed by NonLinearModel.fit.

\section*{Xnew}

Points at which mdl predicts responses.
- If Xnew is a dataset array, it must contain the predictor names in mdl.
- If Xnew is a numeric matrix, it must have the same number of variables (columns) as was used to create mdl. Furthermore, all variables used in creating mdl must be numeric.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can

\section*{NonLinearModel.predict}
specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, Valuen.

\section*{'alpha'}

Positive scalar from 0 to 1. Confidence level of yci is 100(1 - alpha)\%.

Default: 0.05, meaning a \(95 \%\) confidence interval.

\section*{'Prediction'}

String specifying the type of prediction:
- 'curve' — predict predicts confidence bounds for the fitted mean values.
- 'observation' - predict predicts confidence bounds for the new observations. This results in wider bounds because the error in a new observation is equal to the error in the estimated mean value, plus the variability in the observation from the true mean.

For details, see polyconf.
Default: 'curve'

\section*{'Simultaneous'}

Logical value specifying whether the confidence bounds are for all predictor values simultaneously (true), or hold for each individual predictor value (false). Simultaneous bounds are wider than separate bounds, because it is more stringent to require that the entire curve be within the bounds than to require that the curve at a single predictor value be within the bounds.
For details, see polyconf.
Default: false

\section*{'Weights'}

Vector of real, positive value weights or a function handle.
- If you specify a vector, then it must have the same number of elements as the number of observations (or rows) in Xnew.
- If you specify a function handle, then the function must accept a vector of predicted response values as input, and return a vector of real positive weights as output.

Given weights, W , predict estimates the error variance at observation \(i\) by MSE*(1/W(i)), where MSE is the mean squared error.

Default: No weights

\section*{Output Arguments}

\section*{ypred}

Vector of predicted mean values at Xnew.

\section*{yci}

Confidence intervals, a two-column matrix with each row providing one interval. The meaning of the confidence interval depends on the settings of the name-value pairs.

\section*{Examples}

\section*{Predict Responses}

Create a nonlinear model of car mileage as a function of weight, and predict the response.

Create an exponential model of car mileage as a function of weight from the carsmall data. Scale the weight by a factor of 1000 so all the variables are roughly equal in size.
```

load carsmall
X = Weight;
y = MPG;
modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';

```

\section*{NonLinearModel.predict}
```

betaO = [1 1 1 1];
mdl = NonLinearModel.fit(X,y,modelfun,betaO);

```

Create predicted responses to the data.
Xnew = X;
ypred = predict(mdl,Xnew);
Plot the original responses and the predicted responses to see how they differ.
```

plot(X,y,'o',X,ypred,'x')
legend('Data','Predicted')

```


\section*{Confidence Intervals for Predictions}

Create a nonlinear model of car mileage as a function of weight, and examine confidence intervals of some responses.

Create an exponential model of car mileage as a function of weight from the carsmall data. Scale the weight by a factor of 1000 so all the variables are roughly equal in size.
```

load carsmall
X = Weight;
y = MPG;
modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';
betaO = [1 1 1];
mdl = NonLinearModel.fit(X,y,modelfun,betaO);

```

Create predicted responses to the smallest, mean, and largest data points.
```

Xnew = [min(X);mean(X);max(X)];
[ypred,yci] = predict(mdl,Xnew)
ypred =
34.9469
22.6868
10.0617
yci =
32.5212 37.3726
21.4061 23.9674
7.0148 13.1086

```

\section*{Simultaneous Confidence Intervals for Robust Fit Curve}

Generate sample data from the nonlinear regression model
\[
y=b_{1}+b_{2} \exp \left\{-b_{3} x\right\}+\varepsilon,
\]

\section*{NonLinearModel.predict}
where \(b_{1}, b_{2}\), and \(b_{3}\) are coefficients, and the error term is normally distributed with mean 0 and standard deviation 0.5 .
```

modelfun = a(b,x)(b(1)+b(2)*exp(-b(3)*x));
rng('default') % for reproducibility
b = [1;3;2];
x = exprnd(2,100,1);
y = modelfun(b,x) + normrnd(0,0.5,100,1);

```

Fit the nonlinear model using robust fitting options.
```

opts = statset('nlinfit');
opts.RobustWgtFun = 'bisquare';
bO = [2;2;2];
mdl = NonLinearModel.fit(x,y,modelfun,bo,'Options',opts);

```

Plot the fitted regression model and simultaneous \(95 \%\) confidence bounds.
```

xrange = [min(x):.01:max(x)]';
[ypred,yci] = predict(mdl,xrange,'Simultaneous',true);
figure()
plot(x,y,'ko') % observed data
hold on
plot(xrange,ypred,'k','LineWidth',2)
plot(xrange,yci','r--','LineWidth',1.5)

```


\section*{Confidence Interval Using Observation Weights}

Load sample data.
S = load('reaction');
X = S.reactants;
y = S.rate;
beta0 = S.beta;
Specify a function handle for observation weights, then fit the
Hougen-Watson model to the rate data using the specified observation weights function.
\(\mathrm{a}=1\); \(\mathrm{b}=1\);
weights = @(yhat) 1./((a + b*abs(yhat)).^2);
mdl = NonLinearModel.fit(X,y,@hougen, betaO, 'Weights', weights);

\section*{NonLinearModel.predict}

Compute the \(95 \%\) prediction interval for a new observation with reactant levels [100, 100, 100] using the observation weight function.
```

[ypred,yci] = predict(mdl,[100,100,100],'Prediction','observation',...
'Weights',weights)

```
```

ypred =

```
    1.8149
yci =
    \(1.5264 \quad 2.1033\)

\section*{References}
[1] Lane, T. P. and W. H. DuMouchel. "Simultaneous Confidence Intervals in Multiple Regression." The American Statistician. Vol. 48, No. 4, 1994, pp. 315-321.
[2] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ: Wiley-Interscience, 2003.

\section*{See Also NonLinearModel | random |}
Related
- "Predict or Simulate Responses to New Data" on page 9-208
Examples
- "Nonlinear Regression Workflow" on page 9-212

Concepts - "Nonlinear Regression" on page 9-198

\section*{TreeBagger.predict}
```

Purpose Predict response
Syntax $\quad Y=\operatorname{predict}(B, X)$
[Y, stdevs] $=\operatorname{predict}(\mathrm{B}, \mathrm{X})$
$[Y$, scores $]=\operatorname{predict}(B, X)$
[Y,scores,stdevs] = predict(B,X)
$Y=\operatorname{predict}(B, X, ' p a r a m 1 ', v a l 1, ' \operatorname{param2'}, v a l 2, \ldots)$

```

Description
\(Y=p r e d i c t(B, X)\) computes predicted response of the trained ensemble \(B\) for data \(X\). The output has one prediction for each row of \(X\). The returned \(Y\) is a cell array of strings for classification and a numeric array for regression.

For regression, \([\mathrm{Y}, \mathrm{stdevs}]=\) predict \((\mathrm{B}, \mathrm{X})\) also returns standard deviations of the computed responses over the ensemble of the grown trees.

For classification, [ Y, scores] = predict \((\mathrm{B}, \mathrm{X})\) returns scores for all classes. scores is a matrix with one row per observation and one column per class. For each observation and each class, the score generated by each tree is the probability of this observation originating from this class computed as the fraction of observations of this class in a tree leaf. predict averages these scores over all trees in the ensemble.
[ Y, scores,stdevs] = predict \((\mathrm{B}, \mathrm{X})\) also returns standard deviations of the computed scores for classification. stdevs is a matrix with one row per observation and one column per class, with standard deviations taken over the ensemble of the grown trees.

Y = predict(B,X,'param1',val1,'param2',val2,...) specifies optional parameter name/value pairs:

\section*{TreeBagger.predict}
\begin{tabular}{ll} 
'trees' & \begin{tabular}{l} 
Array of tree indices to use for computation of \\
responses. Default is 'all'.
\end{tabular} \\
'treeweights' & \begin{tabular}{l} 
Array of NTrees weights for weighting votes from \\
the specified trees.
\end{tabular} \\
'useifort' & \begin{tabular}{l} 
Logical matrix of size Nobs-by-NTrees indicating \\
which trees to use to make predictions for each \\
observation. By default all trees are used for all \\
observations.
\end{tabular}
\end{tabular}

\section*{See Also}

CompactTreeBagger.predict

\section*{CompactClassificationEnsemble.predictorImportance}
\begin{tabular}{|c|c|}
\hline Purpose & Estimates of predictor importance \\
\hline Syntax & ```
imp = predictorImportance(ens)
[imp,ma] = predictorImportance(ens)
``` \\
\hline \multirow[t]{2}{*}{Description} & imp = predictorImportance(ens) computes estimates of predictor importance for ens by summing these estimates over all weak learners in the ensemble. imp has one element for each input predictor in the data used to train this ensemble. A high value indicates that this predictor is important for ens. \\
\hline & [imp,ma] = predictorImportance(ens) returns a P-by-P matrix with predictive measures of association for P predictors, when the learners in ens contain surrogate splits. See "Definitions" on page 20-2230. \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Input \\
Arguments
\end{tabular}} & ens \\
\hline & A classification ensemble created by fitensemble, or by the compact method. \\
\hline \multirow[t]{4}{*}{Output Arguments} & imp \\
\hline & A row vector with the same number of elements as the number of predictors (columns) in ens.X. The entries are the estimates of predictor importance, with 0 representing the smallest possible importance. \\
\hline & ma \\
\hline & A P-by-P matrix of predictive measures of association for \(P\) predictors. Element ma(\(\mathrm{I}, \mathrm{J})\) is the predictive measure of association averaged over surrogate splits on predictor \(J\) for which predictor I is the optimal split predictor. predictorImportance averages this predictive measure of association over all trees in the ensemble. \\
\hline
\end{tabular}

\section*{CompactClassificationEnsemble.predictorImportance}

\section*{Definitions}

\section*{Predictor Importance}
predictor Importance computes estimates of predictor importance for ens by summing changes in the risk due to splits on every predictor and dividing the sum by the number of branch nodes. If ens is grown without surrogate splits, this sum is taken over best splits found at each branch node. If ens is grown with surrogate splits, this sum is taken over all splits at each branch node including surrogate splits. imp has one element for each input predictor in the data used to train ens. Predictor importance associated with this split is computed as the difference between the risk for the parent node and the total risk for the two children.

\section*{Impurity and Node Error}

ClassificationTree splits nodes based on either impurity or node error. Impurity means one of several things, depending on your choice of the SplitCriterion name-value pair:
- Gini's Diversity Index (gdi) - The Gini index of a node is
\[
1-\sum_{i} p^{2}(i),
\]
where the sum is over the classes \(i\) at the node, and \(p(i)\) is the observed fraction of classes with class \(i\) that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of node impurity.
- Deviance ('deviance') — With \(p(i)\) defined as for the Gini index, the deviance of a node is
\[
-\sum_{i} p(i) \log p(i)
\]

A pure node has deviance 0 ; otherwise, the deviance is positive.
- Twoing rule ('twoing') — Twoing is not a purity measure of a node, but is a different measure for deciding how to split a node. Let \(L(i)\) denote the fraction of members of class \(i\) in the left child node after a

\section*{CompactClassificationEnsemble.predictorImportance}
split, and \(R(i)\) denote the fraction of members of class \(i\) in the right child node after a split. Choose the split criterion to maximize
\[
P(L) P(R)\left(\sum_{i}|L(i)-R(i)|\right)^{2},
\]
where \(P(L)\) and \(P(R)\) are the fractions of observations that split to the left and right respectively. If the expression is large, the split made each child node purer. Similarly, if the expression is small, the split made each child node similar to each other, and hence similar to the parent node, and so the split did not increase node purity.
- Node error - The node error is the fraction of misclassified classes at a node. If \(j\) is the class with largest number of training samples at a node, the node error is
\[
1-p(j)
\]

\section*{Predictive Measure of Association}

The predictive measure of association between the optimal split on variable \(i\) and a surrogate split on variable \(j\) is:
\[
\lambda_{i, j}=\frac{\min \left(P_{L}, P_{R}\right)-\left(1-P_{L_{i} L_{j}}-P_{R_{i} R_{j}}\right)}{\min \left(P_{L}, P_{R}\right)}
\]

Here
- \(P_{L}\) and \(P_{R}\) are the node probabilities for the optimal split of node \(i\) into Left and Right nodes respectively.
- \(P_{L_{i} L_{j}}\) is the probability that both (optimal) node \(i\) and (surrogate) node \(j\) send an observation to the Left.
- \(P_{R_{j} R_{j}}\) is the probability that both (optimal) node \(i\) and (surrogate) node \(j\) send an observation to the Right.

\section*{CompactClassificationEnsemble.predictorImportance}

Clearly, \(\lambda_{i, j}\) lies from \(-\infty\) to 1 . Variable \(j\) is a worthwhile surrogate split for variable \(i\) if \(\lambda_{i, j}>0\).
Element ma(\(\mathrm{i}, \mathrm{j})\) is the predictive measure of association averaged over surrogate splits on predictor \(j\) for which predictor \(i\) is the optimal split predictor. This average is computed by summing positive values of the predictive measure of association over optimal splits on predictor i and surrogate splits on predictor \(j\) and dividing by the total number of optimal splits on predictor \(i\), including splits for which the predictive measure of association between predictors \(i\) and \(j\) is negative.

\section*{Examples}

Estimate the predictor importance for all variables in the Fisher iris data:
```

load fisheriris
ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');
imp = predictorImportance(ens)
imp =
0.0001 0.0005 0.0384 0.0146

```

The first two predictors are not very important in ens.

Estimate the predictor importance for all variables in the Fisher iris data for an ensemble where the trees contain surrogate splits:
```

load fisheriris
surrtree = ClassificationTree.template('Surrogate','on');
ens2 = fitensemble(meas,species,'AdaBoostM2',100,surrtree);
[imp2,ma] = predictorImportance(ens2)
imp2 =
0.0224 0.0142 0.0525 0.0508
ma =
1.0000 0}00.0001 0.0001
0.0115 1.0000 0.0023 0.0054

```

\section*{CompactClassificationEnsemble.predictorImportance}
\begin{tabular}{llll}
0.2810 & 0.1747 & 1.0000 & 0.5372 \\
0.0789 & 0.0463 & 0.2339 & 1.0000
\end{tabular}

The first two predictors show much more importance than in the previous example.

\author{
See Also \\ predictorImportance
}

\section*{CompactClassificationTree.predictorImportance}
\begin{tabular}{ll}
Purpose & Estimates of predictor importance \\
Syntax & imp = predictorImportance(tree)
\end{tabular}

Description

Input
Arguments

\section*{Output} Arguments

\section*{Definitions}
imp \(=\) predictorImportance(tree) computes estimates of predictor importance for tree by summing changes in the risk due to splits on every predictor and dividing the sum by the number of branch nodes.

\section*{tree}

A classification tree created by ClassificationTree.fit, or by the compact method.
imp
A row vector with the same number of elements as the number of predictors (columns) in tree. X. The entries are the estimates of predictor importance, with 0 representing the smallest possible importance.

\section*{Predictor Importance}
predictorImportance computes estimates of predictor importance for tree by summing changes in the risk due to splits on every predictor and dividing the sum by the number of branch nodes. If tree is grown without surrogate splits, this sum is taken over best splits found at each branch node. If tree is grown with surrogate splits, this sum is taken over all splits at each branch node including surrogate splits. imp has one element for each input predictor in the data used to train tree. Predictor importance associated with this split is computed as the difference between the risk for the parent node and the total risk for the two children.

Estimates of predictor importance do not depend on the order of predictors if you use surrogate splits, but do depend on the order if you do not use surrogate splits.
If you use surrogate splits, predictor Importance computes estimates before the tree is reduced by pruning or merging leaves. If you do not

\section*{CompactClassificationTree.predictorImportance}
use surrogate splits, predictor Importance computes estimates after the tree is reduced by pruning or merging leaves. Therefore, reducing the tree by pruning affects the predictor importance for a tree grown without surrogate splits, and does not affect the predictor importance for a tree grown with surrogate splits.

\section*{Impurity and Node Error}

ClassificationTree splits nodes based on either impurity or node error. Impurity means one of several things, depending on your choice of the SplitCriterion name-value pair:
- Gini's Diversity Index (gdi) - The Gini index of a node is
\[
1-\sum_{i} p^{2}(i)
\]
where the sum is over the classes \(i\) at the node, and \(p(i)\) is the observed fraction of classes with class \(i\) that reach the node. A node with just one class (a pure node) has Gini index 0; otherwise the Gini index is positive. So the Gini index is a measure of node impurity.
- Deviance ('deviance') — With \(p(i)\) defined as for the Gini index, the deviance of a node is
\[
-\sum_{i} p(i) \log p(i)
\]

A pure node has deviance 0 ; otherwise, the deviance is positive.
- Twoing rule ('twoing') - Twoing is not a purity measure of a node, but is a different measure for deciding how to split a node. Let \(L(i)\) denote the fraction of members of class \(i\) in the left child node after a split, and \(R(i)\) denote the fraction of members of class \(i\) in the right child node after a split. Choose the split criterion to maximize
\[
P(L) P(R)\left(\sum_{i}|L(i)-R(i)|\right)^{2},
\]

\section*{CompactClassificationTree.predictorImportance}
where \(P(L)\) and \(P(R)\) are the fractions of observations that split to the left and right respectively. If the expression is large, the split made each child node purer. Similarly, if the expression is small, the split made each child node similar to each other, and hence similar to the parent node, and so the split did not increase node purity.
- Node error - The node error is the fraction of misclassified classes at a node. If \(j\) is the class with largest number of training samples at a node, the node error is
\[
1-p(j) .
\]

\section*{Examples}

Estimate the predictor importance for all variables in the Fisher iris data:
```

load fisheriris
tree = ClassificationTree.fit(meas,species);
imp = predictorImportance(tree)
imp =

```
 \(\begin{array}{llll}0 & 0 & 0.0403 & 0.0303\end{array}\)

The first two elements of imp are zero. Therefore, the first two predictors do not enter into tree calculations for classifying irises.

Estimate the predictor importance for all variables in the Fisher iris data for a tree grown with surrogate splits:
```

tree2 = ClassificationTree.fit(meas,species,...
'Surrogate','on');
imp2 = predictorImportance(tree2)
imp2 =
0.0287 0.0136 0.0560 0.0556

```

In this case, all predictors have some importance. As you expect by comparing to the first example, the first two predictors are less important than the final two.

\section*{CompactClassificationTree.predictorImportance}

Estimates of predictor importance do not depend on the order of predictors if you use surrogate splits, but do depend on the order if you do not use surrogate splits. For example, permute the order of the data columns in the previous example:
```

load fisheriris
meas3 = meas(:,[4 1 3 2]);
tree3 = ClassificationTree.fit(meas3,species);
imp3 = predictorImportance(tree2)
imp3 =
0.0674 0 0.0033 0

```

The estimates of predictor importance are not a permutation of imp from the first example.

Estimate the predictor importance using surrogate splits.
```

tree4 = ClassificationTree.fit(meas3,species,...
'Surrogate','on');
imp4 = predictorImportance(tree4)
imp4 =
0.0556 0.0287 0.0560 0.0136

```
imp4 is a permutation of imp2, demonstrating that estimates of predictor importance do not depend on the order of predictors with surrogate splits.

\section*{See Also}
predictorImportance

\section*{CompactRegressionEnsemble.predictorImportance}
\begin{tabular}{ll}
Purpose & Estimates of predictor importance \\
Syntax & \begin{tabular}{l}
imp = predictorImportance(ens) \\
{\([i m p, m a]=\) predictorImportance(ens) }
\end{tabular} \\
& [imen
\end{tabular}

Description

\section*{Input}

Arguments

\section*{Output Arguments}

\section*{Definitions}

\section*{Predictor Importance}
predictor Importance computes estimates of predictor importance for tree by summing changes in the mean squared error (MSE) due to

\section*{CompactRegressionEnsemble.predictorImportance}
splits on every predictor and dividing the sum by the number of branch nodes. If the tree is grown without surrogate splits, this sum is taken over best splits found at each branch node. If the tree is grown with surrogate splits, this sum is taken over all splits at each branch node including surrogate splits. imp has one element for each input predictor in the data used to train this tree. At each node, MSE is estimated as node error weighted by the node probability. Variable importance associated with this split is computed as the difference between MSE for the parent node and the total MSE for the two children.

\section*{Predictive Measure of Association}

The predictive measure of association between the optimal split on variable \(i\) and a surrogate split on variable \(j\) is:
\[
\lambda_{i, j}=\frac{\min \left(P_{L}, P_{R}\right)-\left(1-P_{L_{i} L_{j}}-P_{R_{i} R_{j}}\right)}{\min \left(P_{L}, P_{R}\right)}
\]

Here
- \(P_{L}\) and \(P_{R}\) are the node probabilities for the optimal split of node \(i\) into Left and Right nodes respectively.
- \(P_{L_{i} L_{j}}\) is the probability that both (optimal) node \(i\) and (surrogate) node \(j\) send an observation to the Left.
- \(P_{R_{i} R_{j}}\) is the probability that both (optimal) node \(i\) and (surrogate) node \(j\) send an observation to the Right.

Clearly, \(\lambda_{i, j}\) lies from \(-\infty\) to 1 . Variable \(j\) is a worthwhile surrogate split for variable \(i\) if \(\lambda_{i, j}>0\).
Element ma(\(\mathrm{i}, \mathrm{j})\) is the predictive measure of association averaged over surrogate splits on predictor j for which predictor \(i\) is the optimal split predictor. This average is computed by summing positive values of the predictive measure of association over optimal splits on predictor i and surrogate splits on predictor \(j\) and dividing by the total number of

\section*{CompactRegressionEnsemble.predictorImportance}
optimal splits on predictor \(i\), including splits for which the predictive measure of association between predictors \(i\) and \(j\) is negative.

\section*{Examples}

Estimate the predictor importance for all numeric variables in the carsmall data:
```

load carsmall
X = [Acceleration Cylinders Displacement ...
Horsepower Model_Year Weight];
ens = fitensemble(X,MPG,'LSBoost',100,'Tree');
imp = predictorImportance(ens)
imp =
0.0082 0

```

The weight (last predictor) has the most impact on mileage (MPG). The second predictor has importance 0 ; this means the number of cylinders has no impact on predictions made with ens.

Estimate the predictor importance for all variables in the carsmall data for an ensemble where the trees contain surrogate splits:
```

load carsmall
surrtree = RegressionTree.template('Surrogate','on');
X = [Acceleration Cylinders Displacement ...
Horsepower Model_Year Weight];
ens2 = fitensemble(X,MPG,'LSBoost',100,surrtree);
[imp2,ma] = predictorImportance(ens2)
imp2 =
0.0725 0.1342
0.1425
0.1397 0.1380
0.1855
ma =

1.0000	0.0414	0.0607	0.0782	0.0102	0.0322
0	1.0000	0	0	0	0
0.0441	0.0704	1.0000	0.0883	0.0175	0.0913
0.0944	0.1166	0.1400	1.0000	0.0390	0.1308

```

\section*{CompactRegressionEnsemble.predictorImportance}
\begin{tabular}{llllll}
0.0121 & 0.0139 & 0.0127 & 0.0127 & 1.0000 & 0.0113 \\
0.0818 & 0.1317 & 0.2072 & 0.1878 & 0.0340 & 1.0000
\end{tabular}

While weight (last predictor) still has the most impact on mileage (MPG), this estimate has the second predictor (number of cylinders) is essentially tied for third most important predictor.

\author{
See Also \\ predictorImportance
}

\section*{CompactRegressionTree.predictorImportance}

Purpose Estimates of predictor importance
Syntax imp = predictorImportance (tree)

Description

\section*{Input \\ Arguments}

\section*{Output Arguments}

\section*{Definitions}

\section*{Predictor Importance}
predictor Importance computes estimates of predictor importance for tree by summing changes in the mean squared error (MSE) due to splits on every predictor and dividing the sum by the number of branch nodes. If the tree is grown without surrogate splits, this sum is taken over best splits found at each branch node. If the tree is grown with surrogate splits, this sum is taken over all splits at each branch node including surrogate splits. imp has one element for each input predictor in the data used to train this tree. At each node, MSE is estimated as node error weighted by the node probability. Variable importance associated with this split is computed as the difference between MSE for the parent node and the total MSE for the two children.
Estimates of predictor importance do not depend on the order of predictors if you use surrogate splits, but do depend on the order if you do not use surrogate splits.

\section*{CompactRegressionTree.predictorImportance}

\section*{Examples}

If you use surrogate splits, predictorImportance computes estimates before the tree is reduced by pruning or merging leaves. If you do not use surrogate splits, predictorImportance computes estimates after the tree is reduced by pruning or merging leaves. Therefore, reducing the tree by pruning affects the predictor importance for a tree grown without surrogate splits, and does not affect the predictor importance for a tree grown with surrogate splits.

Find predictor importance for the carsmall data. Use just the numeric predictors:
```

load carsmall
X = [Acceleration Cylinders Displacement ...
Horsepower Model_Year Weight];
tree = RegressionTree.fit(X,MPG);
imp = predictorImportance(tree)
imp =
0.0315 0 0.1082 0.0686 0.1629 1.2924

```

The weight (last predictor) has the most impact on mileage (MPG). The second predictor has importance 0 ; this means the number of cylinders has no impact on predictions made with tree.

Estimate the predictor importance for all variables in the carsmall data for a tree grown with surrogate splits:
```

load carsmall
X = [Acceleration Cylinders Displacement ...
Horsepower Model_Year Weight];
tree2 = RegressionTree.fit(X,MPG,...
'Surrogate','on');
imp2 = predictorImportance(tree2)
imp2 =
0.5287 1.1977 1.2400 0.7059 1.0677 1.4106

```

\section*{CompactRegressionTree.predictorImportance}

While weight (last predictor) still has the most impact on mileage (MPG), this estimate has the second predictor (number of cylinders) as the third most important predictor.

See Also predictorImportance

\section*{Purpose}

Principal component analysis (PCA) on data

\section*{Syntax}

Description
[COEFF,SCORE] = princomp(X)
[COEFF,SCORE, latent] = princomp(X)
[COEFF,SCORE,latent,tsquare] = princomp(X)
[...] = princomp(X,'econ')
COEFF = princomp (X) performs principal components analysis (PCA)
on the \(n\)-by- \(p\) data matrix X , and returns the principal component coefficients, also known as loadings. Rows of X correspond to observations, columns to variables. COEFF is a \(p\)-by- \(p\) matrix, each column containing coefficients for one principal component. The columns are in order of decreasing component variance.
princomp centers \(X\) by subtracting off column means, but does not rescale the columns of \(X\). To perform principal components analysis with standardized variables, that is, based on correlations, use princomp (zscore(X)). To perform principal components analysis directly on a covariance or correlation matrix, use pcacov.
[COEFF,SCORE] = princomp(X) returns SCORE, the principal component scores; that is, the representation of \(X\) in the principal component space. Rows of SCORE correspond to observations, columns to components.
[COEFF, SCORE, latent] = princomp(X) returns latent, a vector containing the eigenvalues of the covariance matrix of \(X\).
[COEFF,SCORE, latent,tsquare] = princomp(X) returns tsquare, which contains Hotelling's \(\mathrm{T}^{2}\) statistic for each data point.
The scores are the data formed by transforming the original data into the space of the principal components. The values of the vector latent are the variance of the columns of SCORE. Hotelling's \(\mathrm{T}^{2}\) is a measure of the multivariate distance of each observation from the center of the data set.

When \(n<=p, \operatorname{SCORE}(:, n: p)\) and latent \((n: p)\) are necessarily zero, and the columns of \(\operatorname{COEFF}(:, n: p)\) define directions that are orthogonal to X .

\section*{princomp}
[...] = princomp(X,'econ') returns only the elements of latent that are not necessarily zero, and the corresponding columns of COEFF and SCORE, that is, when \(n<=p\), only the first \(n-1\). This can be significantly faster when \(p\) is much larger than \(n\).

\section*{Examples}

Compute principal components for the ingredients data in the Hald data set, and the variance accounted for by each component.
```

load hald;
[pc,score,latent,tsquare] = princomp(ingredients);
pc,latent
pc =
0.0678 -0.6460 0.5673-0.5062
0.6785 -0.0200 -0.5440-0.4933
-0.0290 0.7553 0.4036 -0.5156
-0.7309 -0.1085 -0.4684 -0.4844
latent =
517.7969
67.4964
12.4054
0.2372

```

The following command and plot show that two components account for \(98 \%\) of the variance:
```

cumsum(latent)./sum(latent)
ans =
0.86597
0.97886
0.9996
1
biplot(pc(:,1:2),'Scores',score(:,1:2),'VarLabels',...
{'X1' 'X2' 'X3' 'X4'})

```


For a more detailed example and explanation of this analysis method, see "Principal Component Analysis (PCA)" on page 12-78.

\section*{References}
[1] Jackson, J. E., A User's Guide to Principal Components, John Wiley and Sons, 1991, p. 592.
[2] Jolliffe, I. T., Principal Component Analysis, 2nd edition, Springer, 2002.
[3] Krzanowski, W. J. Principles of Multivariate Analysis: A User's Perspective. New York: Oxford University Press, 1988.
[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

\section*{See Also \\ barttest | biplot | canoncorr | factoran | pca | pcacov | pcares | rotatefactors}

How To
- "Principal Component Analysis (PCA)" on page 12-78

\section*{TreeBagger.Prior property}

\section*{Purpose Prior class probabilities}

Description \(\quad \begin{aligned} & \text { The Prior property is a vector with prior probabilities for classes. This } \\ & \text { property is empty for ensembles of regression trees. }\end{aligned}\)
See Also classregtree

\section*{ProbDist}
\[
\begin{array}{ll}
\text { Purpose } & \text { Object representing probability distribution } \\
\text { Description } & \text { ProbDist is an abstract class representing a } \\
\text { Construction } & \text { ProbDist is an abstract class. You cannot cr }
\end{array}
\]

Methods

\section*{Properties}

DistName

InputData

Support

Return cumulative distribution function (CDF) for ProbDist object
Return probability density function (PDF) for ProbDist object

Generate random number drawn from ProbDist object

Read-only string containing probability distribution name of ProbDist object

Read-only structure containing information about input data to ProbDist object

Read-only structure containing information about support of ProbDist object

Value. To learn how this affects your use of the class, see Copying Objects in the MATLAB Programming Fundamentals documentation.

\author{
See Also \\ fitdist | ProbDistParametric | ProbDistKernel \\ | ProbDistUnivParam | ProbDistUnivKernel \\ | ProbDistUnivParam. ProbDistUnivParam | \\ ProbDistUnivKernel. ProbDistUnivKernel
}

\section*{ProbDistKernel}

\section*{Superclasses ProbDist}

\section*{Purpose Object representing nonparametric probability distribution defined by kernel smoothing}

Description ProbDistKernel is an abstract class defining the properties and methods of a nonparametric distribution defined by a kernel smoothing function.

Construction ProbDistKernel is an abstract class. You cannot create instances of this class directly. You can construct an object in a subclass, ProbDistUnivKernel, either by calling the subclass constructor, ProbDistUnivKernel.ProbDistUnivKernel, or by using the fitdist function.

\section*{Methods}
\begin{tabular}{ll}
cdf & \begin{tabular}{l}
Return cumulative distribution \\
function (CDF) for ProbDist object
\end{tabular} \\
pdf & \begin{tabular}{l}
Return probability density \\
function (PDF) for ProbDist object
\end{tabular} \\
random & \begin{tabular}{l}
Generate random number drawn \\
from ProbDist object
\end{tabular}
\end{tabular}

Note The above methods are inherited from the ProbDist class.

\section*{Properties}

BandWidth

DistName
Read-only value specifying bandwidth of kernel smoothing function for ProbDistKernel object

Read-only string containing probability distribution name of ProbDist object

\section*{ProbDistKernel}
\begin{tabular}{ll}
InputData & \begin{tabular}{l}
Read-only structure containing \\
information about input data to \\
ProbDist object
\end{tabular} \\
Kernel & \begin{tabular}{l}
Read-only string specifying name \\
of kernel smoothing function for
\end{tabular} \\
Support & \begin{tabular}{l}
ProbDistKernel object \\
Read-only structure containing \\
information about support of \\
ProbDist object
\end{tabular}
\end{tabular}

Note Some of the above properties are inherited from the ProbDist class.

Value. To learn how this affects your use of the class, see Copying

See Also fitdist | ProbDist | ProbDistUnivKernel | ProbDistUnivKernel.ProbDistUnivKernel

\section*{ProbDistParametric}

\section*{Superclasses ProbDist}

Purpose Object representing parametric probability distribution
Description ProbDistParametric is an abstract class defining the properties and methods of a parametric probability distribution.

Construction
ProbDistParametric is an abstract class. You cannot create instances of this class directly. You can construct an object in its subclass, ProbDistUnivParam, either by calling the subclass constructor, ProbDistUnivParam. ProbDistUnivParam, or by using the fitdist function.

\section*{Methods}
\begin{tabular}{ll}
cdf & \begin{tabular}{l}
Return cumulative distribution \\
function (CDF) for ProbDist object
\end{tabular} \\
pdf & Return probability density \\
function (PDF) for ProbDist object \\
random & \begin{tabular}{l}
Generate random number drawn \\
from ProbDist object
\end{tabular}
\end{tabular}

Note The above methods are inherited from the ProbDist class.

\section*{Properties}

DistName

InputData
Read-only string containing probability distribution name of ProbDist object

Read-only structure containing information about input data to ProbDist object

\section*{ProbDistParametric}
\begin{tabular}{ll}
NLogL & \begin{tabular}{l}
Read-only value specifying \\
negative log likelihood for input \\
data to ProbDistParametric \\
object
\end{tabular} \\
NumParams & \begin{tabular}{l}
Read-only value specifying \\
number of parameters of \\
ProbDistParametric object
\end{tabular} \\
ParamCov & \begin{tabular}{l}
Read-only covariance matrix \\
of parameter estimates of \\
ProbDistParametric object
\end{tabular} \\
ParamDescription & \begin{tabular}{l}
Read-only cell array specifying \\
descriptions of parameters of \\
ProbDistParametric object
\end{tabular} \\
ParamIsFixed & \begin{tabular}{l}
Read-only logical array \\
specifying fixed parameters \\
of ProbDistParametric object
\end{tabular} \\
ParamNames & \begin{tabular}{l}
Read-only cell array specifying \\
names of parameters of \\
ProbDistParametric object
\end{tabular} \\
Params & \begin{tabular}{l}
Read-only array specifying \\
values of parameters of
\end{tabular} \\
Support & \begin{tabular}{l}
ProbDistParametric object \\
Read-only structure containing \\
information about support of \\
ProbDist object
\end{tabular} \\
\hline
\end{tabular}

Note Some of the above properties are inherited from the ProbDist class.

\section*{Copy Semantics}

Value. To learn how this affects your use of the class, see Copying Objects in the MATLAB Programming Fundamentals documentation.

\section*{ProbDistParametric}

\author{
See Also \\ fitdist | ProbDist | ProbDistUnivParam ProbDistUnivParam.ProbDistUnivParam
}

\section*{ProbDistUnivKernel}

\section*{Superclasses ProbDistKernel}

Purpose
Description
A ProbDistUnivKernel object represents a univariate nonparametric probability distribution defined by kernel smoothing. You create this object using the fitdist function to fit the distribution to data.

\section*{Construction}

Note Some of the above methods are inherited from the ProbDistKernel class.

\section*{ProbDistUnivKernel}
Properties
\begin{tabular}{ll}
BandWidth & \begin{tabular}{l}
Read-only value specifying \\
bandwidth of kernel smoothing \\
function for ProbDistKernel \\
object
\end{tabular} \\
DistName & \begin{tabular}{l}
Read-only string containing \\
probability distribution name of \\
ProbDist object
\end{tabular} \\
InputData & \begin{tabular}{l}
Read-only structure containing \\
information about input data to \\
ProbDist object
\end{tabular} \\
Kernel & \begin{tabular}{l}
Read-only string specifying name \\
of kernel smoothing function for \\
ProbDistKernel object
\end{tabular} \\
NLogL & \begin{tabular}{l}
Read-only value specifying \\
negative log likelihood for input \\
data to ProbDistUnivKernel \\
object
\end{tabular} \\
Support & \begin{tabular}{l}
Read-only structure containing \\
information about support of \\
ProbDist object
\end{tabular}
\end{tabular}
Note Some of the above properties are inherited from the ProbDistKernel class.

\author{
Copy \\ Semantics \\ Value. To learn how this affects your use of the class, see Copying Objects in the MATLAB Programming Fundamentals documentation. \\ References [1] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for Data Analysis. New York: Oxford University Press, 1997.
}

\section*{ProbDistUnivKernel}

See Also
fitdist | ksdensity | ProbDist | ProbDistKernel | ProbDistUnivKernel.ProbDistUnivKernel

\section*{ProbDistUnivKernel}

\section*{Purpose Construct ProbDistUnivKernel object}

Syntax \(\quad P D=\operatorname{ProbDistUnivKernel~}(X)\)
\(P D=\) ProbDistUnivKernel(X, param1, val1, param2, val2, ...)

\section*{Description}

Tip Although you can use this constructor function to create a ProbDistUnivKernel object, using the fitdist function is an easier way to create the ProbDistUnivKernel object.
\(P D=\) ProbDistUnivKernel \((X)\) creates PD, a ProbDistUnivKernel object, which represents a nonparametric probability distribution, based on a normal kernel smoothing function.
\(P D=\) ProbDistUnivKernel(X, param1, val1, param2, val2, \(\ldots\)...) specifies optional parameter name/value pairs, as described in the Parameter/Values table. Parameter and value names are case insensitive.

\section*{Input \(x\) \\ Arguments \\ A column vector of data.}

Note Any NaN values in \(X\) are ignored by the fitting calculations.

\section*{ProbDistUnivKernel}
\begin{tabular}{l|l}
\hline Parameter & Values \\
\hline 'censoring & \begin{tabular}{l}
A Boolean vector the same size as \(X\), containing 1s when \\
the corresponding elements in \(X\) are right-censored \\
observations and 0s when the corresponding elements \\
are exact observations. Default is a vector of 0s.
\end{tabular} \\
\hline 'frequency & \begin{tabular}{l}
Note Any NaN values in this censoring vector are \\
ignored by the fitting calculations.
\end{tabular} \\
\begin{tabular}{l}
A vector the same size as \(X\), containing nonnegative \\
integers specifying the frequencies for the corresponding \\
elements in \(X\). Default is a vector of 1s.
\end{tabular} \\
\hline 'kernel' & \begin{tabular}{l}
Note Any NaN values in this frequency vector are \\
ignored by the fitting calculations. \\
A string specifying the type of kernel smoother to use. \\
Choices are: \\
- 'normal' (default) \\
- 'box' \\
- 'triangle ' \\
- 'epanechnikov'
\end{tabular} \\
\hline
\end{tabular}

\section*{ProbDistUnivKernel}
\begin{tabular}{l|l}
\hline Parameter & Values \\
\hline 'support' & \begin{tabular}{l}
Any of the following to specify the support: \\
- 'unbounded' — Default. If the density can extend \\
over the whole real line. \\
\(-~ ' p o s i t i v e ~ ' ~ — ~ T o ~ r e s t r i c t ~ i t ~ t o ~ p o s i t i v e ~ v a l u e s . ~\) \\
- A two-element vector giving finite lower and upper \\
limits for the support of the density.
\end{tabular} \\
\hline 'width' & \begin{tabular}{l}
A value specifying the bandwidth of the kernel \\
smoothing window. The default is optimal for \\
estimating normal densities, but you may want to \\
choose a smaller value to reveal features such as \\
multiple modes.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Arguments \\ \(P D\)}
\(\begin{array}{ll}\text { References } \quad \text { [1] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for } \\ & \text { Data Analysis. New York: Oxford University Press, } 1997 .\end{array}\)
See Also fitdist \| ksdensity

\section*{ProbDistUnivParam}

\section*{Superclasses ProbDistParametric}

Purpose Object representing univariate parametric probability distribution
Description A ProbDistUnivParam object represents a univariate parametric probability distribution. You create this object by using the constructor (ProbDistUnivParam. ProbDistUnivParam) and supplying parameter values, or by using the fitdist function to fit the distribution to data.

\section*{Construction}

ProbDistUnivParam

\author{
Methods \\ cdf \\ icdf \\ iqr \\ mean \\ median \\ paramci \\ pdf \\ random
}

Construct ProbDistUnivParam object

Return cumulative distribution function (CDF) for ProbDist object

Return inverse cumulative distribution function (ICDF) for ProbDistUnivParam object

Return interquartile range (IQR) for ProbDistUnivParam object
Return mean of ProbDistUnivParam object

Return median of ProbDistUnivParam object

Return parameter confidence intervals of ProbDistUnivParam object

Return probability density function (PDF) for ProbDist object
Generate random number drawn from ProbDist object

\section*{ProbDistUnivParam}
\begin{tabular}{ll}
std & \begin{tabular}{l}
Return standard deviation of \\
ProbDistUnivParam object
\end{tabular} \\
var & Return variance of \\
& ProbDistUnivParam object
\end{tabular}

Note Some of the above methods are inherited from the ProbDistParametric class.

\section*{Properties}
\begin{tabular}{ll}
DistName & \begin{tabular}{l}
Read-only string containing \\
probability distribution name of \\
ProbDist object
\end{tabular} \\
InputData & \begin{tabular}{l}
Read-only structure containing \\
information about input data to \\
ProbDist object
\end{tabular} \\
NLogL & \begin{tabular}{l}
Read-only value specifying \\
negative log likelihood for input \\
data to ProbDistParametric \\
object
\end{tabular} \\
NumParams & \begin{tabular}{l}
Read-only value specifying \\
number of parameters of \\
ProbDistParametric object
\end{tabular} \\
ParamCov & \begin{tabular}{l}
Read-only covariance matrix \\
of parameter estimates of \\
ProbDistParametric object
\end{tabular} \\
ParamDescription & \begin{tabular}{l}
Read-only cell array specifying \\
descriptions of parameters of \\
ProbDistParametric object
\end{tabular} \\
ParamIsFixed & \begin{tabular}{l}
Read-only logical array \\
specifying fixed parameters \\
of ProbDistParametric object
\end{tabular}
\end{tabular}

ParamNames

Params

Support

Read-only cell array specifying names of parameters of ProbDistParametric object

Read-only array specifying values of parameters of ProbDistParametric object

Read-only structure containing information about support of ProbDist object

Note The above properties are inherited from the ProbDistParametric class.

Note Parameter values are also properties. For example, if you create PD, a univariate parametric probability distribution object that represents a normal distribution, then PD.mu and PD.sigma are properties that give the values of the mu and sigma parameters.
\begin{tabular}{ll}
Copy & \begin{tabular}{l}
Value. To learn how this affects your use of the class, see Copying \\
Semantics \\
Objects in the MATLAB Programming Fundamentals documentation.
\end{tabular} \\
References & \begin{tabular}{l}
[1] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous \\
Univariate Distributions. Vol. 1, Hoboken, NJ: Wiley-Interscience, \\
1993.
\end{tabular} \\
See Also & \begin{tabular}{l}
[2] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous \\
Univariate Distributions. Vol. 2, Hoboken, NJ: Wiley-Interscience, \\
1994.
\end{tabular} \\
& \begin{tabular}{l}
fitdist | ProbDist | ProbDistParametric | \\
ProbDistUnivParam.ProbDistUnivParam
\end{tabular}
\end{tabular}

\section*{ProbDistUnivParam}

\author{
How To \\ - Appendix B, "Distribution Reference"
}
\begin{tabular}{ll}
Purpose & Construct ProbDistUnivParam object \\
Syntax & \(P D=\) ProbDistUnivParam(DistName, Params)
\end{tabular}

Description \(\quad P D=\) ProbDistUnivParam(DistName, Params) creates \(P D\), a ProbDistUnivParam object, which represents a probability distribution. This distribution is defined by the parametric distribution specified by DistName, with parameters specified by the numeric vector Params.

Input \(\quad\) DistName \(\quad\) A string specifying a distribution. Choices are:
Arguments
- 'beta'
- 'binomial'
- 'birnbaumsaunders'
- 'exponential'
- 'extreme value' or ev'
- 'gamma'
- 'generalized extreme value' or 'gev'
- 'generalized pareto' or 'gp'
- 'inversegaussian'
- 'logistic'
- 'loglogistic'
- 'lognormal'
- 'nakagami'
- 'negative binomial' or 'nbin'
- 'normal'
- 'poisson'

\section*{ProbDistUnivParam}
- 'rayleigh'
- 'rician'
- 'tlocationscale'
- 'weibull' or 'wbl'
For more information on these parametric
distributions, see Appendix B, "Distribution
\begin{tabular}{l}
Reference".
\end{tabular}
\begin{tabular}{l}
Numeric vector of distribution parameters. \\
The number and type of parameters \\
depends on the distribution you specify with \\
DistName. For information on parameters \\
for each distribution type, see Appendix B, \\
"Distribution Reference".
\end{tabular}

\section*{Output \(\quad P D\) \\ Arguments}

An object in the ProbDistUnivParam class, which is derived from the ProbDist class. It represents a parametric probability distribution.

Examples 1 Create an object representing a normal distribution with a mean of 100 and a standard deviation of 10 .
pd = ProbDistUnivParam('normal',[100 10])
pd \(=\)
normal distribution
mu \(=100\)
sigma \(=10\)

2 Generate a 4-by- 5 matrix of random values from this distribution.
random(pd,4,5)
ans \(=\)
\begin{tabular}{rrrrr}
105.3767 & 103.1877 & 135.7840 & 107.2540 & 98.7586 \\
118.3389 & 86.9231 & 127.6944 & 99.3695 & 114.8970 \\
77.4115 & 95.6641 & 86.5011 & 107.1474 & 114.0903 \\
108.6217 & 103.4262 & 130.3492 & 97.9503 & 114.1719
\end{tabular}

\author{
References [1] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol. 1, Hoboken, NJ: Wiley-Interscience, 1993. \\ [2] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol. 2, Hoboken, NJ: Wiley-Interscience, 1994.
}

\section*{See Also fitdist}

How To - Appendix B, "Distribution Reference"

\section*{probplot}

Purpose Probability plots
```

Syntax probplot(Y)
probplot(distribution,Y)
probplot(Y,cens,freq)
probplot(ax,Y)
probplot(...,'noref')
probplot(ax,PD)
probplot(ax,fun,params)
h = probplot(...)

```

\section*{Description}
probplot \((\mathrm{Y})\) produces a normal probability plot comparing the distribution of the data \(Y\) to the normal distribution. \(Y\) can be a single vector, or a matrix with a separate sample in each column. The plot includes a reference line useful for judging whether the data follow a normal distribution.
probplot uses midpoint probability plotting positions. The \(i^{\text {th }}\) sorted value from a sample of size \(N\) is plotted against the midpoint in the jump of the empirical CDF on the \(y\) axis. With uncensored data, that midpoint is \((i-0.5) / N\). With censored data (see below), the \(y\) value is more complicated to compute.
probplot(distribution, Y) creates a probability plot for the distribution specified by distribution. Acceptable strings for distribution are:
- 'exponential' - Exponential probability plot (nonnegative values)
- 'extreme value' - Extreme value probability plot (all values)
- 'lognormal' - Lognormal probability plot (positive values)
- 'normal' - Normal probability plot (all values)
- 'rayleigh' - Rayleigh probability plot (positive values)
- 'weibull' - Weibull probability plot (positive values)

The \(y\) axis scale is based on the selected distribution. The \(x\) axis has a log scale for the Weibull and lognormal distributions, and a linear scale for the others.

Not all distributions are appropriate for all data sets, and probplot will error when asked to create a plot with a data set that is inappropriate for a specified distribution. Appropriate data ranges for each distribution are given parenthetically in the list above.
probplot(Y,cens,freq) or probplot(distname, \(Y\), cens,freq) requires a vector \(Y\). cens is a vector of the same size as \(Y\) and contains 1 for observations that are right-censored and 0 for observations that are observed exactly. freq is a vector of the same size as Y , containing integer frequencies for the corresponding elements in Y .
probplot (ax, Y) takes a handle ax to an existing probability plot, and adds additional lines for the samples in Y . ax is a handle for a set of axes.
probplot(...,'noref') omits the reference line.
probplot (ax, PD) takes a probability distribution object, PD, and adds a fitted line to the axes specified by ax to represent the probability distribution specified by PD. PD is a ProbDist object of the ProbDistUnivParam class or ProbDistUnivKernel class.
probplot (ax, fun, params) takes a function fun and a set of parameters, params, and adds fitted lines to the axes of an existing probability plot specified by ax. fun is a function handle to a cdf function, specified with @ (for example, @wblcdf). params is the set of parameters required to evaluate fun, and is specified as a cell array or vector. The function must accept a vector of \(X\) values as its first argument, then the optional parameters, and must return a vector of cdf values evaluated at \(X\).
\(\mathrm{h}=\mathrm{probplot}(\ldots)\) returns handles to the plotted lines.

\section*{Examples}

\section*{Example 1}

The following plot assesses two samples, one from a Weibull distribution and one from a Rayleigh distribution, to see if they may have come from a Weibull population.
```

x1 = wblrnd(3,3,100,1);
x2 = raylrnd(3,100,1);
probplot('weibull',[x1 x2])
legend('Weibull Sample','Rayleigh Sample','Location','NW')

```

Probability plot for Weibull distribution

\section*{Example 2}

Consider the following data, with about \(20 \%\) outliers:
```

left_tail = -exprnd(1,10,1);
right_tail = exprnd(5,10,1);
center = randn(80,1);

```
```

data = [left_tail;center;right_tail];

```

Neither a normal distribution nor a \(t\) distribution fits the tails very well:
```

probplot(data);
p = mle(data,'dist','tlo');
t = @(data,mu,sig,df)cdf('tlocationscale',data,mu,sig,df);
h = probplot(gca,t,p);
set(h,'color','r','linestyle','-')
title('{\bf Probability Plot}')
legend('Data','Normal','t','Location','NW')

```

Probability Plot

\section*{probplot}

See Also normplot | ecdf | wblplot
```

Purpose Procrustes analysis
Syntax d = procrustes(X,Y)
[d,Z] = procrustes(X,Y)
[d,Z,transform] = procrustes(X,Y)
[...] = procrustes(...,'scaling',flag)
[...] = procrustes(...,'reflection',flag)

```

Description
\(\mathrm{d}=\) procrustes \((\mathrm{X}, \mathrm{Y})\) determines a linear transformation (translation, reflection, orthogonal rotation, and scaling) of the points in matrix \(Y\) to best conform them to the points in matrix \(X\). The goodness-of-fit criterion is the sum of squared errors. procrustes returns the minimized value of this dissimilarity measure in \(d\). \(d\) is standardized by a measure of the scale of \(X\), given by:
```

sum(sum((X-repmat(mean(X,1),size(X,1),1)).^2,1))

```

That is, the sum of squared elements of a centered version of \(X\). However, if \(X\) comprises repetitions of the same point, the sum of squared errors is not standardized.
\(X\) and \(Y\) must have the same number of points (rows), and procrustes matches \(Y(i)\) to \(X(i)\). Points in \(Y\) can have smaller dimension (number of columns) than those in \(X\). In this case, procrustes adds columns of zeros to \(Y\) as necessary.
\([d, Z]=\) procrustes \((X, Y)\) also returns the transformed \(Y\) values.
[d, \(Z\), transform] = procrustes \((X, Y)\) also returns the transformation that maps \(Y\) to \(Z\). transform is a structure array with fields:
- c - Translation component
- T - Orthogonal rotation and reflection component
- b - Scale component

That is:
```

c = transform.c;
T = transform.T;

```
b = transform.b;
\(Z=b * Y * T+c ;\)
[...] = procrustes(...,'scaling',flag), when flag is false, allows you to compute the transformation without a scale component (that is, with b equal to 1). The default flag is true.
[...] = procrustes(...,'reflection',flag), when flag is false, allows you to compute the transformation without a reflection component (that is, with \(\operatorname{det}(T)\) equal to 1). The default flag is 'best', which computes the best-fitting transformation, whether or not it includes a reflection component. A flag of true forces the transformation to be computed with a reflection component (that is, with \(\operatorname{det}(T)\) equal to -1)

\section*{Examples}

This example creates some random points in two dimensions, then rotates, scales, translates, and adds some noise to those points. It uses procrustes to conform \(Y\) to \(X\), then plots the original \(X\) and \(Y\) with the transformed \(Y\).
```

n = 10;
X = normrnd(0,1,[n 2]);
S = [0.5 -sqrt(3)/2; sqrt(3)/2 0.5];
Y = normrnd(0.5*X*S+2,0.05,n,2);
[d,Z,tr] = procrustes(X,Y);
plot(X(:,1),X(:,2),'rx',...
Y(:,1),Y(:,2),'b.',...
Z(:,1),Z(:,2),'bx');

```


\author{
References [1] Kendall, David G. "A Survey of the Statistical Theory of Shape." Statistical Science. Vol. 4, No. 2, 1989, pp. 87-99. \\ [2] Bookstein, Fred L. Morphometric Tools for Landmark Data. \\ Cambridge, UK: Cambridge University Press, 1991. \\ [3] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley \& Sons, Inc., 1984.
}

\author{
See Also \\ cmdscale | factoran
}

\section*{prob.ToolboxFittableParametricDistribution.proflik}
\begin{tabular}{|c|c|}
\hline Purpose & Profile likelihood function for probability distribution object \\
\hline \multirow[t]{4}{*}{Syntax} & [ll, param] = proflik(pd, pnum) \\
\hline & [ll, param] = proflik(pd, pnum, 'Display',display) \\
\hline & [ll, param] = proflik(pd,pnum,setparam) \\
\hline & \begin{tabular}{l}
[ll, param] = proflik(pd,pnum, setparam,'Display',display) \\
[ll param, other] = proflik()
\end{tabular} \\
\hline
\end{tabular}

Description

Input
Arguments
[ll, param] = proflik(pd,pnum) returns a vector ll of loglikelihood values and a vector param of corresponding parameter values for the parameter in the position indicated by pnum.
[ll,param] = proflik(pd,pnum,'Display',display) returns the loglikelihood values and corresponding parameter values, and plots the profile likelihood overlaid on an approximation of the loglikelihood.
[ll, param] = proflik(pd, pnum, setparam) returns the loglikelihood values and corresponding parameter values as specified by setparam.
[ll, param] = proflik(pd, pnum, setparam,'Display', display) returns the loglikelihood values and corresponding parameter values as specified by setparam, and plots the profile likelihood overlaid on an approximation of the loglikelihood.
[ll, param,other] = proflik(__) also returns a matrix other containing the values of the other parameters that maximize the likelihood, using any of the input arguments from the previous syntaxes.

\author{
pd - Probability distribution
}
probability distribution object
Probability distribution, specified as a probability distribution object. Create a probability distribution object with specified parameter values using makedist. Alternatively, create a probability distribution object by fitting it to data using fitdist or dfittool.

\section*{pnum - Parameter number}
positive integer value

Parameter number for which to compute the profile likelihood, specified as a positive integer value corresponding to the position of the desired parameter in the parameter name vector. For example, a Weibull distribution has a parameter name vector \{'A', 'B'\}, so specify pnum as 2 to compute the profile likelihood for \(B\).

\section*{Data Types}
single | double

\section*{setparam - Parameter value restriction}
scalar value | vector of scalar values
Parameter value restriction, specified as a scalar value or a vector of such values. If you do not specify setparam, proflik chooses the values for output vector param based on the default confidence interval method for the probability distribution pd. If the parameter can take only restricted values, and if the confidence interval violates that restriction, you can use setparam to specify valid values.

\section*{Example: [3, 3.5,4]}

\section*{display - Display toggle}
'off' (default) | 'on'
Display toggle, specified as either 'on' or 'off'. Specify 'on' to display a plot of the profile loglikelihood overlaid on an approximation of the loglikelihood. Specify 'off' to omit the display. The approximation is based on a Taylor series expansion around the estimated parameter value, as a function of the parameter in position pnum or its logarithm. The intersection of the curves with the horizontal dotted line marks the endpoints of \(95 \%\) confidence intervals.

\section*{prob.ToolboxFittableParametricDistribution.proflik}

\section*{Output \\ Arguments}

\section*{Examples}

\section*{II - Loglikelihood values}
vector
Loglikelihood values, returned as a vector. The loglikelihood is the value of the likelihood with the parameter in position pnum set to the values in param, maximized over the remaining parameters.

\section*{param - Parameter values}
vector
Parameter values corresponding to the loglikelihood values in ll, returned as a vector. If you specify parameter values using setparam, then param is equal to setparam.

\section*{other - Other parameter values}
matrix
Other parameter values that maximize the likelihood, returned as a matrix. Each row of other contains the values for all parameters except the parameter in position pnum.

\section*{Profile Likelihood of a Distribution Parameter}

Load the sample data. Create a probability distribution object by fitting a Weibull distribution to the miles per gallon (MPG) data.
```

load carsmall;
pd = fitdist(MPG,'Weibull')
pd =

```
 WeibullDistribution
 Weibull distribution
 \(A=26.5079 \quad[24.8333,28.2954]\)
 \(B=3.27193 \quad[2.79441,3.83104]\)

View the parameter names for the distribution.
pd.ParameterNames
'A' 'B'

For the Weibull distribution, A is in position 1, and B is in position 2.
Compute the profile likelihood for B , which is in position pnum \(=2\).
[ll,param] = proflik(pd,2);
Display the loglikelihood values for the estimated values of B.
```

[ll',param']
ans =

```
\begin{tabular}{ll}
-329.9688 & 2.7132 \\
-329.4312 & 2.7748 \\
-328.9645 & 2.8365 \\
-328.5661 & 2.8981 \\
-328.2340 & 2.9597 \\
-327.9658 & 3.0213 \\
-327.7596 & 3.0830 \\
-327.6135 & 3.1446 \\
-327.5256 & 3.2062 \\
-327.4943 & 3.2678 \\
-327.5178 & 3.3295 \\
-327.5946 & 3.3911 \\
-327.7233 & 3.4527 \\
-327.9023 & 3.5143 \\
-328.1303 & 3.5760 \\
-328.4060 & 3.6376 \\
-328.7281 & 3.6992 \\
-329.0956 & 3.7608 \\
-329.5071 & 3.8224 \\
-329.9617 & 3.8841 \\
-330.4583 & 3.9457
\end{tabular}

\section*{prob.ToolboxFittableParametricDistribution.proflik}

These results show that the profile loglikelihood is maximized between the estimated B values of 3.2678 and 3.3295 , which correspond to loglikelihood values -327.4943 and -327.5178. From the earlier fit, the MLE of \(B\) is 3.27193 , which is in this interval as expected.

\section*{Profile Likelihood With Restricted Parameter Values}

Load the sample data. Create a probability distribution object by fitting a generalized extreme value distribution to the miles per gallon (MPG) data.
```

load carsmall;
pd = fitdist(MPG,'GeneralizedExtremeValue')
pd =

```

GeneralizedExtremeValueDistribution
Generalized Extreme Value distribution
 \(k=-0.207765 \quad[-0.381674,-0.0338564]\)
 sigma \(=7.49674 \quad[6.31755,8.89603]\)
 \(\mathrm{mu}=20.6233 \quad[18.8859,22.3606]\)

View the parameter names for the distribution.
pd.ParameterNames
ans =
'k' 'sigma' 'mu'
For the generalized extreme value distribution, k is in position 1, sigma is in position 2 , and mu is in position 3.

Compute the profile likelihood for mu, which is in position pnum \(=3\). Restrict the computation to parameter values from 20 to 22 , and display the plot.
```

[ll,param,other] = proflik(pd,3,20:.1:22,'display','on');

```


The plot shows the estimated value for the parameter mu that maximizes the loglikelihood.

Display the loglikelihood values for the estimated values of mu, and the values of the other distribution parameters that maximize the corresponding loglikelihood.
[ll', param',other]
ans =

\section*{prob.ToolboxFittableParametricDistribution.proflik}
\begin{tabular}{llll}
-327.5706 & 20.0000 & -0.1803 & 7.4087 \\
-327.4971 & 20.1000 & -0.1846 & 7.4218 \\
-327.4364 & 20.2000 & -0.1890 & 7.4354 \\
-327.3887 & 20.3000 & -0.1934 & 7.4493 \\
-327.3538 & 20.4000 & -0.1978 & 7.4636 \\
-327.3317 & 20.5000 & -0.2023 & 7.4783 \\
-327.3223 & 20.6000 & -0.2067 & 7.4932 \\
-327.3257 & 20.7000 & -0.2112 & 7.5084 \\
-327.3418 & 20.8000 & -0.2156 & 7.5240 \\
-327.3706 & 20.9000 & -0.2201 & 7.5399 \\
-327.4119 & 21.0000 & -0.2245 & 7.5560 \\
-327.4659 & 21.1000 & -0.2289 & 7.5723 \\
-327.5324 & 21.2000 & -0.2333 & 7.5889 \\
-327.6113 & 21.3000 & -0.2378 & 7.6057 \\
-327.7027 & 21.4000 & -0.2422 & 7.6228 \\
-327.8065 & 21.5000 & -0.2465 & 7.6400 \\
-327.9227 & 21.6000 & -0.2509 & 7.6575 \\
-328.0511 & 21.7000 & -0.2553 & 7.6751 \\
-328.1917 & 21.8000 & -0.2596 & 7.6930 \\
-328.3446 & 21.9000 & -0.2639 & 7.7111 \\
-328.5095 & 22.0000 & -0.2682 & 7.7293
\end{tabular}

The first column contains the loglikelihood value that corresponds to the estimate of mu in the second column. The loglikelihood is maximized between the parameter values 20.6000 and 20.7000 , corresponding to loglikelihood values -327.3223 and -327.3257. The third column contains the value of \(k\) that maximizes the corresponding loglikelihood for mu. The fourth column contains the value of sigma that maximizes the corresponding loglikelihood for mu.

See Also makedist | fitdist | dfittool

\section*{CompactTreeBagger.proximity}

\section*{Purpose Proximity matrix for data}

\section*{Syntax \\ prox = proximity (B, X)}

Description
prox \(=\) proximity \((B, X)\) computes a numeric matrix of size Nobs-by-Nobs of proximities for data \(X\), where Nobs is the number of observations (rows) in X. Proximity between any two observations in the input data is defined as a fraction of trees in the ensemble \(B\) for which these two observations land on the same leaf. This is a symmetric matrix with ones on the diagonal and off-diagonal elements ranging from 0 to 1 .

\section*{TreeBagger.Proximity property}

Purpose Proximity matrix for observations
Description
The Proximity property is a numeric matrix of size Nobs-by-Nobs, where Nobs is the number of observations in the training data, containing measures of the proximity between observations. For any two observations, their proximity is defined as the fraction of trees for which these observations land on the same leaf. This is a symmetric matrix with 1 s on the diagonal and off-diagonal elements ranging from 0 to 1 .

See Also CompactTreeBagger.proximity | classregtree.varimportance
\begin{tabular}{|c|c|}
\hline Purpose & Produce sequence of subtrees by pruning \\
\hline Syntax & ```
tree1 = prune(tree)
tree1 = prune(tree,Name,Value)
``` \\
\hline Description & \begin{tabular}{l}
tree1 \(=\) prune(tree) creates a copy of the classification tree tree with its optimal pruning sequence filled in. \\
tree1 = prune(tree, Name, Value) creates a pruned tree with additional options specified by one Name, Value pair argument. You can specify several name-value pair arguments in any order as Name1, Value1, , NameN, ValueN.
\end{tabular} \\
\hline Tips & - tree1 = prune(tree) returns the decision tree tree1 that is the full, unpruned tree, but with optimal pruning information added. This is useful only if you created tree by pruning another tree, or by using the ClassificationTree.fit method with pruning set 'off'. If you plan to prune a tree multiple times along the optimal pruning sequence, it is more efficient to create the optimal pruning sequence first. \\
\hline Input Arguments & tree \({ }^{\text {A classification tree created with ClassificationTree.fit. }}\) \\
\hline & Name-Value Pair Arguments \\
\hline & Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN. \\
\hline & 'alpha' \\
\hline
\end{tabular}

A numeric scalar. prune prunes tree to the specified value of the pruning cost.

\section*{'level'}

\section*{ClassificationTree.prune}

A numeric scalar from 0 (no pruning) to the largest pruning level of this tree max (tree. PruneList). prune returns the tree pruned to this level.

\section*{'nodes'}

A numeric vector with elements from 1 to tree. NumNodes. Any tree branch nodes listed in nodes become leaf nodes in tree1, unless their parent nodes are also pruned.

\section*{Output \\ tree 1 \\ Arguments \\ A classification tree.}

Examples Display a full tree for Fisher's iris data, as well as the next largest tree from the optimal pruning sequence:
```

load fisheriris;
varnames = {'SL' 'SW' 'PL' 'PW'};
t1 = ClassificationTree.fit(meas,species,...
'minparent',5,'predictornames',varnames);
view(t1,'mode','graph');

```

\section*{ClassificationTree.prune}

\[
\begin{aligned}
& \text { t2 }=\text { prune(t1,'level', } 1) \text {; } \\
& \text { view(t2,'mode','graph'); }
\end{aligned}
\]

\section*{ClassificationTree.prune}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{- Classification tree viewer} & E & X \\
\hline \multicolumn{9}{|l|}{File Tools Desktop Tree Window Help s} \\
\hline \multicolumn{9}{|l|}{\(\Rightarrow{ }^{+}{ }^{+} \underbrace{\circ} \mathrm{sin}\)} \\
\hline Click to display: Identity & & - & Magnification: & 100\% & \(\checkmark\) & Pruning level: & 0 of 3 & 1 \\
\hline
\end{tabular}


\author{
See Also \\ ClassificationTree.fit
}

\section*{Purpose Prune tree}
```

Syntax
t2 = prune(t1,'level',level)
t2 = prune(t1,'nodes',nodes)
t2 = prune(t1)

```

\section*{Description}

\section*{Examples}

Display the full tree for Fisher's iris data:
```

load fisheriris;
t1 = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'},...
'splitmin',5)
t1 =
Decision tree for classification
1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2 class = setosa

```

\section*{classregtree.prune}
```

3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
class = virginica
if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
class = virginica
class = versicolor
class = virginica

```
view(t1)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Click to display: |dentity & \(\checkmark\) & Magnification: & 100\% & \(\checkmark\) & Pruning level: & 0 of 4 & - \\
\hline
\end{tabular}


Display the next largest tree from the optimal pruning sequence:
```

t2 = prune(t1,'level',1)
t2 =
Decision tree for classification
1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2 class = setosa
3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
5 class = virginica
6 class = versicolor
7 class = virginica
view(t2)

```

\section*{classregtree.prune}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Click to display: Identity & \(\checkmark\) & Magnification: & 100\% & \(\checkmark\) & Pruning level: & 0 of 3 & - \\
\hline
\end{tabular}


References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree | test | view

\section*{Purpose}

Produce sequence of subtrees by pruning
Syntax

Description

Tips

Input
Arguments
tree1 = prune(tree)
tree1 \(=\) prune(tree, Name, Value) its optimal pruning sequence filled in.
tree1 = prune(tree, Name, Value) creates a pruned tree with additional options specified by one Name, Value pair argument. Name1, Value1, , NameN, ValueN. is more efficient to create the optimal pruning sequence first.

\section*{tree}
tree1 = prune(tree) creates a copy of the regression tree tree with You can specify several name-value pair arguments in any order as
- tree1 = prune(tree) returns the decision tree tree 1 that is the full, unpruned tree, but with optimal pruning information added. This is useful only if you created tree by pruning another tree, or by using the RegressionTree.fit with pruning set 'off'. If you plan to prune a tree multiple times along the optimal pruning sequence, it

A regression tree created with RegressionTree.fit.

\section*{Name-Value Pair Arguments}

Optional comma-separated pair of Name, Value arguments, where Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify only one name-value pair argument.

\section*{'alpha'}

A numeric scalar from 0 (no pruning) to 1 (prune to one node). Prunes to minimize the sum of (alpha times the number of leaf nodes) and a cost (mean squared error).

\section*{'level'}

\section*{RegressionTree.prune}

A numeric scalar from 0 (no pruning) to the largest pruning level of this tree max(tree. PruneList). prune returns the tree pruned to this level.

\section*{'nodes'}

A numeric vector with elements from 1 to tree. NumNodes. Any tree branch nodes listed in nodes become leaf nodes in tree1, unless their parent nodes are also pruned.

\section*{Output Arguments}

Examples
tree 1
A regression tree.
Display a full tree for the carsmall data, as well as the tree pruned to level 10:
load carsmall;
varnames = \{'Weight' 'Horsepower'\};
t1 = RegressionTree.fit([Weight Horsepower],MPG,...
'predictornames', varnames)
view(t1,'mode','graph');

t2 = prune(t1,'level',10);

\section*{RegressionTree.prune}
view(t2,'mode','graph');


\section*{See Also}

RegressionTree.fit

\section*{TreeBagger.Prune property}

Purpose Flag to prune trees
Description \(\quad \begin{aligned} & \text { The Prune property is true if decision trees are pruned and false if they } \\ & \text { are not. Pruning decision trees is not recommended for ensembles. The } \\ & \text { default value is false. }\end{aligned}\)
See Also classregtree.prune

Purpose Pruning levels for decision tree nodes
Syntax \(\quad P=\operatorname{prunelist}(T)\)
P = prunelist( \(\mathrm{T}, \mathrm{J}\) )
Description \(\quad P=\) prunelist \((T)\) returns an \(n\)-element numeric vector with the pruning levels in each node of the tree \(T\), where \(n\) is the number of nodes. When you call prune(T,'level',level), nodes with the pruning levels below level are pruned, and nodes with the pruning levels greater or equal to level are not pruned.
\(P=p r u n e l i s t(T, J)\) takes an array \(J\) of node numbers and returns the pruning levels for the specified nodes.

\author{
See Also
}
classregtree | numnodes

\section*{qrandstream.qrand}

\section*{Purpose Generate quasi-random points from stream}
Syntax
\(x=q \operatorname{rand}(q)\)
\(X=q r a n d(q, n)\)

Description
\(x=q \operatorname{rand}(q)\) returns the next value \(x\) in the quasi-random number stream \(q\) of the qrandstream class. \(x\) is a 1-by- \(d\) vector, where \(d\) is the dimension of the stream. The command sets \(q\). State to the index in the underlying point set of the next value to be returned.
\(\mathrm{X}=\mathrm{qrand}(\mathrm{q}, \mathrm{n})\) returns the next n values X in an n -by- \(d\) matrix.
Objects q of the qrandstream class encapsulate properties of a specified quasi-random number stream. Values of the stream are not generated and stored in memory until \(q\) is accessed using qrand.

\section*{Examples}

Use qrandstream to construct a 3-D Halton stream, based on a point set that skips the first 1000 values and then retains every 101st point:
```

q = qrandstream('halton',3,'Skip',1e3,'Leap',1e2)
q =
Halton quasi-random stream in 3 dimensions
Point set properties:
Skip : 1000
Leap : 100
ScrambleMethod : none
nextIdx = q.State
nextIdx =
1

```

Use qrand to generate two samples of size four:
```

X1 = qrand(q,4)
X1 =

0.0928	0.3475	0.0051
0.6958	0.2035	0.2371
0.3013	0.8496	0.4307

```
```

 0.9087 0.5629 0.6166
 nextIdx = q.State
nextIdx =
5
X2 = qrand(q,4)
X2 =
0.2446 0.0238 0.8102
0.5298 0.7540 0.0438
0.3843 0.5112 0.2758
0.8335 0.2245 0.4694
nextIdx = q.State
nextIdx =
9

```

Use reset to reset the stream, then generate another sample:
```

reset(q)
nextIdx = q.State
nextIdx =
1

```
\(X=\) qrand \((q, 4)\)
\(\mathrm{X}=\)
\begin{tabular}{lll}
0.0928 & 0.3475 & 0.0051 \\
0.6958 & 0.2035 & 0.2371 \\
0.3013 & 0.8496 & 0.4307 \\
0.9087 & 0.5629 & 0.6166
\end{tabular}

See Also qrandstream | reset

\section*{qrandset}

\section*{Purpose Quasi-random point sets}

Description
qrandset is a base class that encapsulates a sequence of multidimensional quasi-random numbers. This base class is abstract and cannot be instantiated directly. Concrete subclasses include sobolset and haltonset.

\section*{Construction \\ qrandset}
disp
end
length
ndims
net
scramble
size
subsref

\section*{Properties}

Dimensions
Leap
ScrambleMethod

Abstract quasi-random point set class

Display qrandset object
Last index in indexing expression for point set

Length of point set
Number of dimensions in matrix
Generate quasi-random point set
Scramble quasi-random point set
Number of dimensions in matrix
Subscripted reference for qrandset

Number of dimensions
Interval between points
Settings that control scrambling
\begin{tabular}{ll} 
Skip & \begin{tabular}{l} 
Number of initial points to omit \\
from sequence
\end{tabular} \\
Type & \begin{tabular}{l} 
Name of sequence on which point \\
set \(P\) is based
\end{tabular}
\end{tabular}

Copy
Semantics

See Also haltonset | sobolset
How To Programming documentation.

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes in the MATLAB Object-Oriented
- "Quasi-Random Point Sets" on page 6-16

\section*{qrandset}

\section*{Purpose Abstract quasi-random point set class}
\(\begin{array}{ll}\text { Description } & \begin{array}{l}\text { qrandset is an abstract class, and you cannot create instances of it } \\ \text { directly. You must use haltonset or sobolset to create a qrandset } \\ \text { object. }\end{array}\end{array}\)
See Also haltonset | sobolset

\section*{Purpose \\ Quasi-random number streams}

\section*{Construction qrandstream}

Construct quasi-random number stream

\section*{Methods}
\begin{tabular}{ll} 
addlistener & Add listener for event \\
delete & Delete handle object \\
disp & Display qrandstream object \\
eq & Test handle equality \\
findobj & \begin{tabular}{l} 
Find objects matching specified \\
conditions
\end{tabular} \\
findprop & \begin{tabular}{l} 
Find property of MATLAB handle \\
object
\end{tabular} \\
ge & \begin{tabular}{l} 
Greater than or equal relation for \\
handles
\end{tabular} \\
gt & \begin{tabular}{l} 
Greater than relation for handles
\end{tabular} \\
isvalid & \begin{tabular}{l} 
Test handle validity
\end{tabular} \\
le & \begin{tabular}{l} 
Less than or equal relation for \\
handles
\end{tabular} \\
lt & \begin{tabular}{l} 
Less than relation for handles \\
ne
\end{tabular} \\
not equal relation for handles \\
qrand & \begin{tabular}{l} 
Notify listeners of event \\
Generate quasi-random points
\end{tabular} \\
from stream
\end{tabular}\(\quad\)\begin{tabular}{l} 
fenerate quasi-random points \\
reset
\end{tabular}

\section*{qrandstream}

\author{
Properties PointSet \\ State \\ Point set from which stream is drawn \\ Current state of the stream \\ \footnotetext{
Copy \\ Handle. To learn how this affects your use of the class, see \\ Semantics \\ Comparing Handle and Value Classes in the MATLAB Object-Oriented Programming documentation.
}
}

\section*{Purpose Construct quasi-random number stream}
```

Syntax $\quad q=$ qrandstream (type, d)
q = qrandstream(type,d,prop1,val1,prop2,val2,...)
q = qrandstream(p)

```

\section*{Description}

\section*{Examples}
\(\mathrm{q}=\mathrm{qrandstream}(\) type, d\()\) constructs a d-dimensional quasi-random number stream \(q\) of the qrandstream class, of type specified by the string type. type is either 'halton' or 'sobol', and q is based on a point set from either the haltonset class or sobolset class, respectively, with default property settings.
q = qrandstream(type,d,prop1,val1,prop2,val2,...) specifies property name/value pairs for the point set on which the stream is based. Applicable properties depend on type.
\(q=q r a n d s t r e a m(p)\) constructs a stream based on the specified point set \(p\). \(p\) must be a point set from either the haltonset class or sobolset class.

Construct a 3-D Halton stream, based on a point set that skips the first 1000 values and then retains every 101st point:
```

q = qrandstream('halton',3,'Skip',1e3,'Leap',1e2)
q =
Halton quasi-random stream in 3 dimensions
Point set properties:
Skip : 1000
Leap : 100
ScrambleMethod : none
nextIdx = q.State
nextIdx =
1

```

Use qrand to generate two samples of size four:
\(X 1=\operatorname{qrand}(q, 4)\)

\section*{qrandstream}
```

X1 =
0.0928 0.3475 0.0051
0.6958 0.2035 0.2371
0.3013 0.8496 0.4307
0.9087 0.5629 0.6166
nextIdx = q.State
nextIdx =
5
X2 = qrand(q,4)
x2 =
0.2446 0.0238 0.8102
0.5298 0.7540 0.0438
0.3843 0.5112 0.2758
0.8335 0.2245 0.4694
nextIdx = q.State
nextIdx =
9

```

Use reset to reset the stream, and then generate another sample:
```

reset(q)
nextIdx = q.State
nextIdx =
1

```
\(X=\) qrand \((q, 4)\)
\(\mathrm{X}=\)
\begin{tabular}{lll}
0.0928 & 0.3475 & 0.0051 \\
0.6958 & 0.2035 & 0.2371 \\
0.3013 & 0.8496 & 0.4307 \\
0.9087 & 0.5629 & 0.6166
\end{tabular}

See Also
haltonset | qrand | reset | sobolset

\section*{Purpose}

Quantile-quantile plot
Syntax
```

qqplot(X)
qqplot(X,Y)
qqplot(X,PD)
qqplot(X,Y,pvec)
h = qqplot(X,Y,pvec)

```

\section*{Description}
qqplot( \(X\) ) displays a quantile-quantile plot of the sample quantiles of \(X\) versus theoretical quantiles from a normal distribution. If the distribution of \(X\) is normal, the plot will be close to linear.
qqplot ( \(\mathrm{X}, \mathrm{Y}\) ) displays a quantile-quantile plot of two samples. If the samples do come from the same distribution, the plot will be linear.
qqplot ( \(X, P D\) ) makes an empirical quantile-quantile plot of the quantiles of the data in the vector \(X\) versus the quantiles of the distribution specified by PD, a ProbDist object of the ProbDistUnivParam class or ProbDistUnivKernel class.

For matrix \(X\) and \(Y\), qqplot displays a separate line for each pair of columns. The plotted quantiles are the quantiles of the smaller data set.

The plot has the sample data displayed with the plot symbol ' + '. Superimposed on the plot is a line joining the first and third quartiles of each distribution (this is a robust linear fit of the order statistics of the two samples). This line is extrapolated out to the ends of the sample to help evaluate the linearity of the data.

Use qqplot ( \(\mathrm{X}, \mathrm{Y}, \mathrm{pvec}\) ) to specify the quantiles in the vector pvec.
\(h=q q p l o t(X, Y, p v e c)\) returns handles to the lines in \(h\).

\section*{Examples}

The following example shows a quantile-quantile plot of two samples from Poisson distributions. The solid line joins the first and third quartiles. The dashed line extrapolates the solid line.
```

x = poissrnd(10,50,1);
y = poissrnd(5,100,1);
qqplot(x,y);

```


How To
- normplot

\section*{Purpose}

Quantiles of a data set

\section*{Syntax}
```

Y = quantile(X,p)
Y = quantile(X,p,dim)
Y = quantile(X,N)
Y = quantile(X,N,dim)

```

Description
\(Y=\) quantile \((X, p)\) returns quantiles of the values in data vector or matrix \(X\) for the cumulative probability or probabilities \(p\) in the interval [0,1].
- If \(X\) is a vector, then \(Y\) is a scalar or a vector having the same length as \(p\).
- If \(X\) is a matrix, then \(Y\) is a row vector or a matrix where the number of rows of \(Y\) is equal to the length of \(p\).
- For multidimensional arrays, quantile operates along the first nonsingleton dimension of \(X\).
\(Y=\) quantile( \(X, p\), dim) returns quantiles along dimension dim.
\(Y=\) quantile \((X, N)\) returns quantiles for \(N\) evenly spaced cumulative probabilities \((1 /(N+1), 2 /(N+1), \ldots, N /(N+1))\) for integer \(N>1\).
- If \(X\) is a vector, then \(Y\) is a scalar or a vector with length \(N\).
- If \(X\) is a matrix, then \(Y\) is a matrix where the number of rows of \(Y\) is equal to N .
- For multidimensional arrays, quantile operates along the first nonsingleton dimension of \(X\).
\(\mathrm{Y}=\) quantile \((\mathrm{X}, \mathrm{N}, \mathrm{dim})\) returns quantiles at the N evenly-spaced cumulative probabilities \((1 /(N+1), 2 /(N+1), \ldots, N /(N+1))\) for integer \(N>1\) along dimension dim.

\section*{quantile}

\section*{Input Arguments}

\section*{X - Input data}
vector | array
Input data, specified as a vector or array.

\author{
Data Types \\ double | single
}

\section*{p-Cumulative probabilities}
scalar | vector
Cumulative probabilities, for which to compute the quantiles, specified as a scalar or vector of scalars from 0 to 1 .

Example: 0.3
Example: [0.25, 0.5, 0.75]
Example: (0:0.25:1)
Data Types
double | single

\section*{N - Number of quantiles}
positive integer
Number of quantiles to compute, specified as a positive integer. quantile returns \(N\) quantiles that divide the data set into evenly distributed \(N+1\) segments.

Data Types
double | single

\section*{dim - Dimension}

1 (default) | positive integer
Dimension along which the quantiles of a matrix \(X\) are required, specified as a positive integer. For example, for a matrix \(X\), when dim \(=1\), quantile returns the quantile(s) of the columns of \(X\) and when \(\operatorname{dim}=2\), quantile returns the quantile(s) of the rows of \(X\). For a multidimensional array \(X\), the length of the dimth dimension of \(Y\) is same as length of \(p\).

\section*{Output Arguments}

\section*{Y - Quantiles}
scalar \| array
Quantiles of a data vector or matrix, returned as a scalar or array for one or multiple values of cumulative probabilities.
- If \(X\) is a vector, then \(Y\) is a scalar or a vector with the same length as the number of quantiles required ( N or length \((\mathrm{p})\) ). \(\mathrm{Y}(\mathrm{i})\) contains the \(p(i)\) quantile.
- If X is a matrix, then Y is a vector or a matrix with the length of dimth dimension equal to the number of quantiles required ( N or length \((p)\) ). When dim \(=1\), for example, the ith row of \(Y\) contains the \(p(i)\) quantiles of columns of \(x\).
- If \(X\) is an array of dimension \(d\), then \(Y\) is an array with the length of dimth dimension equal to the number of quantiles required ( N or length (p)).

\section*{Definitions}

\section*{Multidimensional Array}

A multidimensional array is an array with more than two dimensions. For example, if X is a 1-by-3-by- 4 array, then X is a 3-D array.

\section*{First Nonsingleton Dimension}

A first nonsingleton dimension is the first dimension of an array whose size is not equal to 1 . For example, if X is a 1 -by- 2 -by- 3 -by- 4 array, then the second dimension is the first nonsingleton dimension of X .

\section*{Linear Interpolation}

Linear interpolation uses linear polynomials to find \(y_{i}=\mathrm{f}\left(x_{i}\right)\), the values of the underlying function \(Y=\mathrm{f}(X)\) at the points in the vector or array \(x\). Given the data points \(\left(x_{1}, y_{1}\right)\) and \(\left(x_{2}, y_{2}\right)\), where \(y_{1}=\mathrm{f}\left(x_{1}\right)\) and \(y_{2}=\) \(\mathrm{f}\left(x_{2}\right)\), linear interpolation finds \(y=\mathrm{f}(x)\) for a given \(x\) between \(x_{1}\) and \(x_{2}\) as follows:
\[
y=f(x)=y_{1}+\frac{\left(x-x_{1}\right)}{\left(x_{2}-x_{1}\right)}\left(y_{2}-y_{1}\right)
\]

Similarly, if the \(1.5 / n\) quantile is \(y_{1.5 / n}\) and the \(2.5 / n\) quantile is \(y_{2.5 / n}\), then linear interpolation finds the \(2.3 / n\) quantile \(y_{2.3 / n}\) as
\[
y_{\frac{2.3}{n}}=y_{\frac{1.5}{n}}+\frac{\left(\frac{2.3}{n}-\frac{1.5}{n}\right)}{\left(\frac{2.5}{n}-\frac{1.5}{n}\right)}\left(y_{\frac{2.5}{n}}-y_{\frac{1.5}{n}}\right)
\]

\section*{Algorithms}

For an \(n\)-element vector X , quantile computes quantiles as follows:
1 The sorted values in X are taken as the \((0.5 / n),(1.5 / n), \ldots,([n-0.5] / n)\) quantiles. For example:
- For a data vector of five elements such as \(\{6,3,2,10,1\}\), the sorted elements \(\{1,2,3,6,10\}\) respectively correspond to the \(0.1,0.3,0.5\), 0.7, 0.9 quantiles.
- For a data vector of six elements such as \(\{6,3,2,10,8,1\}\), the sorted elements \(\{1,2,3,6,8,10\}\) respectively correspond to the (0.5/6), (1.5/6), (2.5/6), (3.5/6), (4.5/6), (5.5/6) quantiles.

2 quantile uses Linear interpolation to compute quantiles for probabilities between \((0.5 / n)\) and \(([n-0.5] / n)\).

3 For the quantiles corresponding to the probabilities outside that range, quantile assigns the minimum or maximum values in \(X\).
quantile treats NaNs as missing values and removes them.

\section*{Examples Quantiles for Given Probabilities}

Calculate the quantiles of a data set for specified probabilities.
Generate a data set of size 10 .
rng('default'); \% for reproducibility
\(x=\operatorname{normrnd}(0,1,1,10)\)
\(\mathrm{x}=\)
0.5377
1.8339
\(-2.2588\)
0.8622
0.3188
\(-1.3077\)
0.4336

Calculate the 0.3 quantile.
```

y = quantile(x,0.30)
y =
-0.0574

```

Calculate the quantiles for the cumulative probabilities \(0.025,0.25\), \(0.5,0.75\), and 0.975 .
```

y = quantile(x,[0.025 0.25 0.50 0.75 0.975])
y =
-2.2588 -0.4336 0.4401 1.8339 3.5784

```

\section*{Quantiles of a Matrix for Given Probabilities}

Calculate the quantiles along the columns and rows of a data matrix for specified probabilities.

Generate a 4-by-6 data matrix.
```

rng('default'); % for reproducibility
X = normrnd(0,1,4,6)
X =

0.5377	0.3188	3.5784	0.7254	-0.1241	0.6715
1.8339	-1.3077	2.7694	-0.0631	1.4897	-1.2075
-2.2588	-0.4336	-1.3499	0.7147	1.4090	0.7172
0.8622	0.3426	3.0349	-0.2050	1.4172	1.6302

```

Calculate the 0.3 quantile for each column of \(X(\operatorname{dim}=1)\).
\(y=q u a n t i l e(x, 0.3,1)\)

\section*{quantile}
```

y =
-0.3013 -0.6958 1.5336 -0.1056 0.9491 0.1078

```
quantile returns a row vector \(y\) when calculating one quantile for each column of a matrix. For example, -0.3013 is the 0.3 quantile of the first column of X with elements ( \(0.5377,1.8339,-2.2588,0.8622\) ). \(\mathrm{y}=\) quantile \((X, 0.3)\) returns the same answer because the default value of dim is 1 .

Calculate the 0.3 quantile for each row of \(X(\operatorname{dim}=2)\).
```

y = quantile(x,0.3,2)
y =
0.3844
-0.8642
-1.0750
0.4985

```
quantile returns a column vector y when calculating one quantile for each row of a matrix. For example 0.3844 is the 0.3 quantile of the first row of \(X\) with elements \((0.5377,0.3188,3.5784,0.7254,-0.1241,0.6715)\).

\section*{Quantiles for \(\mathbf{N}\) Evenly Spaced Cumulative Probabilities}

Calculate the quantiles of a data set for a given number of quantiles.
Generate a data set of size 10 .
```

rng('default'); % for reproducibility
x = normrnd(0,1,1,10)
x =
0.5377 1.8339 -2.2588 0.8622 0.3188 -1.3077 -0.4336

```

Calculate four evenly spaced quantiles.
```

y = quantile(x,4)

```
\(\mathrm{y}=\)
\(\begin{array}{llll}-0.8706 & 0.3307 & 0.6999 & 2.3017\end{array}\)

Using \(y=q u a n t i l e(x,[0.2,0.4,0.6,0.8])\) is another way to return the four evenly spaced quantiles.

\section*{Quantiles of a Matrix for Given Number of Quantiles}

Calculate the N evenly spaced quantiles along the columns and rows of a data matrix.

Generate a 6-by-10 data matrix.
```

rng('default'); % for reproducibility
X = unidrnd(10,6,7)
X =

```
\begin{tabular}{rrrrrrr}
9 & 3 & 10 & 8 & 7 & 8 & 7 \\
10 & 6 & 5 & 10 & 8 & 1 & 4 \\
2 & 10 & 9 & 7 & 8 & 3 & 10 \\
10 & 10 & 2 & 1 & 4 & 1 & 1 \\
7 & 2 & 5 & 9 & 7 & 1 & 5 \\
1 & 10 & 10 & 10 & 2 & 9 & 4
\end{tabular}

Calculate three evenly spaced quantiles for each column of \(X(\operatorname{dim}=1)\).
```

y = quantile(X,3,1)
y =

```
\begin{tabular}{rrrrrrr}
2.0000 & 3.0000 & 5.0000 & 7.0000 & 4.0000 & 1.0000 & 4.0000 \\
8.0000 & 8.0000 & 7.0000 & 8.5000 & 7.0000 & 2.0000 & 4.5000 \\
10.0000 & 10.0000 & 10.0000 & 10.0000 & 8.0000 & 8.0000 & 7.0000
\end{tabular}

Each column of matrix y corresponds to the three evenly spaced quantiles of each column of matrix \(X\). For example, the first column of y with elements \((2,8,10)\) has the quantiles for the first column of X

\section*{quantile}
with elements \((9,10,2,10,7,1)\). y = quantile \((X, 3)\) returns the same answer because the default value of dim is 1 .

Calculate three evenly spaced quantiles for each row of \(X(\operatorname{dim}=2)\).
y = quantile( \(\mathrm{X}, 3,2\) )
\(y=\)
\begin{tabular}{rrr}
7.0000 & 8.0000 & 8.7500 \\
4.2500 & 6.0000 & 9.5000 \\
4.0000 & 8.0000 & 9.7500 \\
1.0000 & 2.0000 & 8.5000 \\
2.7500 & 5.0000 & 7.0000 \\
2.5000 & 9.0000 & 10.0000
\end{tabular}

Each row of matrix y corresponds to the three evenly spaced quantiles of each row of matrix \(X\). For example, the first row of \(y\) with elements \((7,8,8.75)\) has the quantiles for the first column of \(X\) with elements \((9,3,10,8,7,8,7)\).

\section*{Median and Quartiles for Even Number of Data Elements}

Find median and quartiles of a vector, x , with even number of elements.
Enter the data.
```

x = [2 5 5 6 10 11 13]
x =
2 5 5 6 10

```

Calculate the median of \(x\).
\(y=q u a n t i l e(x, 0.50)\)
y \(=\)
    8

Calculate the quartiles of \(x\).
```

y = quantile(x,[0.25, 0.5, 0.75])
y =
5 8 11

```

Using \(y\) = quantile \((x, 3)\) is another way to compute the quartiles of \(x\).
These results might be different than the textbook definitions because quantile uses linear interpolation to find the median and quartiles.

\section*{Median and Quartiles for Odd Number of Data Elements}

Find median and quartiles of a vector, x , with odd number of elements.
Enter the data.
```

x = [2 4 4 6 8 10 12 14]

```
x =
\begin{tabular}{lllllll}
2 & 4 & 6 & 8 & 10 & 12 & 14
\end{tabular}

Find the median of x .
```

y = quantile(x,0.50)
y =
8

```

Find the quartiles of \(x\).
```

y = quantile(x,[0.25, 0.5, 0.75])
y =
4.5000 8.0000 11.5000

```

Using \(y\) = quantile \((x, 3)\) is another way to compute the quartiles of \(x\).

These results might be different than the textbook definitions because quantile uses linear interpolation to find the median and quartiles.
```

See Also
iqr | median | prctile
Concepts • "Quantiles and Percentiles" on page 3-7

```
Purpose Generate quasi-random points from stream
Syntax rand

rand (q, n)

rand (q)

rand (q,m,n)

\(\operatorname{rand}(q,[m, n])\)

\(\operatorname{rand}(q, m, n, p, \ldots)\)

\(\operatorname{rand}(q,[m, n, p, \ldots])\)

\section*{Description}

\section*{Examples Generate the first 256 points from a 5-D Sobol sequence:}
```

q = qrandstream('sobol',5);
X = rand(q,256,5);

```

See Also qrandstream | qrand \| rand

Purpose Gamma random numbers with unit scale

\author{
Syntax \\ \section*{Description}
}
\(Y=r a n d g\)
\(Y=\operatorname{randg}(A)\)
\(Y=\operatorname{randg}(A, m)\)
\(Y=\operatorname{randg}(A, m, n, p, \ldots)\)
\(Y=\operatorname{randg}(A,[m, n, p, \ldots])\)
\(Y\) = randg returns a scalar random value chosen from a gamma distribution with unit scale and shape.
\(Y=r a n d g(A)\) returns a matrix of random values chosen from gamma distributions with unit scale. Y is the same size as A , and randg generates each element of \(Y\) using a shape parameter equal to the corresponding element of A .
\(Y=\operatorname{randg}(A, m)\) returns an \(m\)-by- \(m\) matrix of random values chosen from gamma distributions with shape parameters A. A is either an \(m\)-by-m matrix or a scalar. If A is a scalar, randg uses that single shape parameter value to generate all elements of \(Y\).
\(Y=r a n d g(A, m, n, p, \ldots)\) or \(Y=r a n d g(A,[m, n, p, \ldots])\) returns an m-by-n-by-p-by-... array of random values chosen from gamma distributions with shape parameters A. A is either an m-by-n-by-p-by-... array or a scalar.
randg produces pseudo-random numbers using the MATLAB functions rand and randn. The sequence of numbers generated is determined by the settings of the uniform random number generator that underlies rand and randn. Control that shared random number generator using rng. See the rng documentation for more information.

Note To generate gamma random numbers and specify both the scale and shape parameters, you should call gamrnd.

\section*{Examples Example 1}

Generate a 100-by-1 array of values drawn from a gamma distribution with shape parameter 3 .
\(r=\operatorname{randg}(3,100,1) ;\)

\section*{Example 2}

Generate a 100-by-2 array of values drawn from gamma distributions with shape parameters 3 and 2 .
\(A=[\operatorname{ones}(100,1) * 3\), ones \((100,1) * 2] ;\)
\(r=r a n d g(A,[100,2]) ;\)

\section*{Example 3}

To create reproducible output from randg, reset the random number generator used by rand and randn to its default startup settings. This way randg produces the same random numbers as if you restarted MATLAB.
```

rng('default')
randg(3,1,5)
ans =
6.9223 4.3369 1.0505 3.2662 11.3269

```

\section*{Example 4}

Save the settings for the random number generator used by rand and randn, generate 5 values from randg, restore the settings, and repeat those values.
```

s = rng; % Obtain the current state of the random stream
r1 = randg(10,1,5)
r1 =

9.4719	9.0433	15.0774	14.7763	6.3775

```
rng(s); \% Reset the stream to the previous state r2 \(=\operatorname{randg}(10,1,5)\)
r2 =
\[
\begin{array}{lllll}
9.4719 & 9.0433 & 15.0774 & 14.7763 & 6.3775
\end{array}
\]
\(r 2\) contains exactly the same values as \(r 1\).

\section*{Example 5}

Reinitialize the random number generator used by rand and randn with a seed based on the current time. randg returns different values each time you do this. Note that it is usually not necessary to do this more than once per MATLAB session.
```

rng('shuffle');
randg(2,1,5);

```

\section*{References \\ [1] Marsaglia, G., and W. W. Tsang. "A Simple Method for Generating Gamma Variables." ACM Transactions on Mathematical Software. Vol. 26, 2000, pp. 363-372.}

See Also
gamrnd

\section*{Purpose Random numbers}

\section*{Syntax \(\quad Y=\operatorname{random}(\) name,\(A)\)}
\(Y=\) random(name, \(A, B)\)
\(Y=\) random(name, \(A, B, C)\)
Y = random(name, \(A, m, n, \ldots\) )
\(Y=\) random(name, \(A,[m, n, \ldots])\)
\(Y=\) random(name, \(A, B, m, n, \ldots\) )
\(Y=\) random(name, \(A, B,[m, n, \ldots])\)
\(Y=\) random(name, \(A, B, C, m, n, \ldots)\)
\(Y=\operatorname{random}(\) name \(, A, B, C,[m, n, \ldots])\)

\section*{Description}
\(\mathrm{Y}=\) random(name, A\()\) where name is the name of a distribution that takes a single parameter, returns random numbers \(Y\) from the one-parameter family of distributions specified by name. Parameter values for the distribution are given in \(A\).

Y is the same size as A .
\(Y=\) random(name, \(A, B\) ) returns random numbers \(Y\) from a two-parameter family of distributions. Parameter values for the distribution are given in \(A\) and \(B\).

If \(A\) and \(B\) are arrays, they must be the same size. If either \(A\) or \(B\) are scalars, they are expanded to constant matrices of the same size.
\(Y=\) random(name, \(A, B, C)\) returns random numbers \(Y\) from a three-parameter family of distributions. Parameter values for the distribution are given in \(A, B\), and \(C\).

If \(A, B\), and \(C\) are arrays, they must be the same size. If any of \(A, B\), or \(C\) are scalars, they are expanded to constant matrices of the same size.
\(Y=\operatorname{random}(\) name \(, A, m, n, \ldots)\) or \(Y=\) random(name, \(A,[m, n, \ldots])\) returns an \(m\)-by-n-by... matrix of random numbers.

Similarly, \(Y=\) random(name, \(A, B, m, n, \ldots\) ) or \(Y=\) random(name, \(A, B,[m, n, \ldots]\) ) returns an m-by-n-by... matrix of random numbers for distributions that require two parameters. \(\mathrm{Y}=\) random(name, \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{m}, \mathrm{n}, \ldots\) ) or \(\mathrm{Y}=\)
random(name, \(A, B, C,[m, n, \ldots])\) returns an \(m\)-by-n-by... matrix of random numbers for distributions that require three parameters.
If any of \(A, B\), or \(C\) are arrays, then the specified dimensions must match the common dimensions of A, B, and C after any necessary scalar expansion.

The following table denotes the acceptable strings for name, as well as the parameters for that distribution:
\begin{tabular}{l|l|l|l|l}
\hline name & Distribution & \begin{tabular}{l} 
Input \\
Parameter A
\end{tabular} & \begin{tabular}{l} 
Input \\
Parameter B
\end{tabular} & \begin{tabular}{l} 
Input \\
Parameter \\
C
\end{tabular} \\
\hline 'beta' or 'Beta' & \begin{tabular}{l} 
"Beta \\
Distribution" \\
on page B-4
\end{tabular} & a & b & - \\
\hline \begin{tabular}{l} 
'bino' or \\
'Binomial'
\end{tabular} & \begin{tabular}{l} 
"Binomial \\
Distribution" \\
on page B-7
\end{tabular} & \begin{tabular}{l}
\(\mathrm{n}:\) number of \\
trials
\end{tabular} & \begin{tabular}{l} 
p: probability of \\
success for each \\
trial
\end{tabular} & - \\
\hline 'birnbaumsaunder \begin{tabular}{l} 
s"Birnbaum-Saund \\
Distribution" on \\
page B-10
\end{tabular} & \(\gamma\) & - \\
\hline 'burr' or 'Burr' & \begin{tabular}{l} 
"Burr Type XII \\
Distribution" on \\
page B-12
\end{tabular} & \begin{tabular}{l} 
a: scale \\
parameter
\end{tabular} & \begin{tabular}{l}
\(\mathrm{c}:\) shape \\
parameter
\end{tabular} & \begin{tabular}{l}
\(\mathrm{k}:\) shape \\
parameter
\end{tabular} \\
\hline \begin{tabular}{l} 
'chi2' or \\
'Chisquare '
\end{tabular} & \begin{tabular}{l} 
"Chi-Square \\
Distribution" \\
on page B-25
\end{tabular} & \begin{tabular}{l}
\(v:\) degrees of \\
freedom
\end{tabular} & - & - \\
\hline \begin{tabular}{l} 
'exp' or \\
'Exponential'
\end{tabular} & \begin{tabular}{l} 
"Exponential \\
Distribution" on \\
page B-29
\end{tabular} & \(\mu:\) mean & - & - \\
\hline \begin{tabular}{l} 
'ev' or 'Extreme \\
Value'
\end{tabular} & \begin{tabular}{l} 
"Extreme Value \\
Distribution" on \\
page B-32
\end{tabular} & \begin{tabular}{l}
\(\mu:\) location \\
parameter
\end{tabular} & \begin{tabular}{l}
\(\sigma:\) scale \\
parameter
\end{tabular} & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline name & Distribution & \begin{tabular}{l}
Input \\
Parameter A
\end{tabular} & Input Parameter B & Input Parameter C \\
\hline 'f' or 'F' & "F Distribution" on page B-38 & \(v 1\) : numerator degrees of freedom & \(v 2\) : denominator degrees of freedom & - \\
\hline 'gam' or 'Gamma' & "Gamma Distribution" on page B-40 & a: shape parameter & b: scale parameter & - \\
\hline \[
\begin{aligned}
& \hline \text { 'gev' or } \\
& \text { 'Generalized } \\
& \text { Extreme Value' }
\end{aligned}
\] & "Generalized Extreme Value Distribution" on page B-45 & k: shape parameter & \(\sigma\) : scale parameter & \(\mu\) : location parameter \\
\hline \[
\begin{aligned}
& \text { 'gp' or } \\
& \text { 'Generalized } \\
& \text { Pareto' }
\end{aligned}
\] & \begin{tabular}{l}
"Generalized \\
Pareto \\
Distribution" \\
on page B-50
\end{tabular} & k: tail index (shape) parameter & \(\sigma\) : scale parameter & \(\mu\) : threshold (location) parameter \\
\hline 'geo' or 'Geometric' & "Geometric Distribution" on page B-54 & p : probability parameter & - & - \\
\hline 'hyge' or 'Hypergeometric' & "Hypergeometric Distribution" on page B-56 & M: size of the population & K: number of items with the desired characteristic in the population & n : number of samples drawn \\
\hline 'inversegaussian & \begin{tabular}{l}
'"Inverse \\
Gaussian Distribution" on page B-58
\end{tabular} & \(\mu\) & \(\lambda\) & - \\
\hline 'logistic' & "Logistic Distribution" on page B-62 & \(\mu\) & \(\sigma\) & - \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l|l}
\hline name & Distribution & \begin{tabular}{l} 
Input \\
Parameter A
\end{tabular} & \begin{tabular}{l} 
Input \\
Parameter B
\end{tabular} & \begin{tabular}{l} 
Input \\
Parameter \\
C
\end{tabular} \\
\hline 'loglogistic' & \begin{tabular}{l} 
"Loglogistic \\
Distribution" \\
on page B-63
\end{tabular} & \(\mu\) & \(\sigma\) & - \\
\hline \begin{tabular}{l} 
'logn' or \\
'Lognormal'
\end{tabular} & \begin{tabular}{l} 
"Lognormal \\
Distribution" \\
on page B-64
\end{tabular} & \(\mu\) & \(\sigma\) & - \\
\hline 'nakagami' & \begin{tabular}{l} 
"Nakagami \\
Distribution" \\
on page B-83
\end{tabular} & \(\mu\) & \(\omega\) & - \\
\hline \begin{tabular}{l} 
'nbin' or \\
'Negative \\
Binomial'
\end{tabular} & \begin{tabular}{l} 
"Negative \\
Binomial \\
Distribution" \\
on page B-85
\end{tabular} & \begin{tabular}{l} 
r: number of \\
successes
\end{tabular} & \begin{tabular}{l} 
p: probability \\
of success in a \\
single trial
\end{tabular} & - \\
\hline \begin{tabular}{l} 
'ncf' or \\
'Noncentral F'
\end{tabular} & \begin{tabular}{l} 
"Noncentral F \\
Distribution" on \\
page B-91
\end{tabular} & \begin{tabular}{l}
\(v 1:\) numerator \\
degrees of \\
freedom
\end{tabular} & \begin{tabular}{l}
\(v 2:\) denominator \\
degrees of \\
freedom
\end{tabular} & \begin{tabular}{l}
\(\delta:\) \\
noncentrality \\
parameter
\end{tabular} \\
\hline \begin{tabular}{l} 
'nct' or \\
'Noncentral t'
\end{tabular} & \begin{tabular}{l} 
"Noncentral t \\
Distribution" on \\
page B-93
\end{tabular} & \begin{tabular}{l}
\(v:\) degrees of \\
freedom
\end{tabular} & \begin{tabular}{l}
\(\delta:\) noncentrality \\
parameter
\end{tabular} & - \\
\hline \begin{tabular}{l} 
'ncx2' or \\
'Noncentral \\
Chi-square' \\
'Noncentral \\
Chi-Square \\
Distribution" \\
on page B-89
\end{tabular} & \begin{tabular}{l}
\(v:\) degrees of \\
freedom
\end{tabular} & \begin{tabular}{l}
\(\delta:\) noncentrality \\
parameter
\end{tabular} & - \\
\hline \begin{tabular}{l} 
'norm' or \\
'Normal' \\
"Normal \\
Distribution" \\
on page B-96
\end{tabular} & \(\mu:\) mean & \begin{tabular}{l}
\(\sigma:\) standard \\
deviation
\end{tabular} & - \\
\hline \begin{tabular}{l} 
'poiss' or \\
'Poisson' \\
"Poisson \\
Distribution" \\
on page B-102
\end{tabular} & \(\lambda:\) mean & - & - \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l|l}
\hline name & Distribution & \begin{tabular}{l} 
Input \\
Parameter A
\end{tabular} & \begin{tabular}{l} 
Input \\
Parameter B
\end{tabular} & \begin{tabular}{l} 
Input \\
Parameter \\
C
\end{tabular} \\
\hline \begin{tabular}{l} 
'rayl' or \\
'Rayleigh'
\end{tabular} & \begin{tabular}{l} 
"Rayleigh \\
Distribution" \\
on page B-104
\end{tabular} & \begin{tabular}{l} 
b: scale \\
parameter
\end{tabular} & - & - \\
\hline 'rician' & \begin{tabular}{l} 
"Rician \\
Distribution" \\
on page B-106
\end{tabular} & \begin{tabular}{l} 
s: noncentrality \\
parameter
\end{tabular} & \begin{tabular}{l}
\(\sigma:\) scale \\
parameter
\end{tabular} & - \\
\hline 't' or 'T' & \begin{tabular}{l} 
"Student's t \\
Distribution" \\
on page B-108
\end{tabular} & \begin{tabular}{l} 
v: degrees of \\
freedom
\end{tabular} & - & - \\
\hline 'tlocationscale & \begin{tabular}{l} 
"t \\
Location-Scale \\
Distribution" on \\
page B-110
\end{tabular} & \begin{tabular}{l} 
h: location \\
parameter
\end{tabular} & \begin{tabular}{l}
\(\sigma:\) scale \\
parameter
\end{tabular} & \begin{tabular}{l}
\(v:\) shape \\
parameter
\end{tabular} \\
\hline \begin{tabular}{l} 
'unif' or \\
'Uniform'
\end{tabular} & \begin{tabular}{l} 
"Uniform \\
Distribution \\
(Continuous)" \\
on page B-112
\end{tabular} & \begin{tabular}{l} 
a: lower \\
endpoint \\
(minimum)
\end{tabular} & \begin{tabular}{l} 
b: upper \\
endpoint \\
(maximum)
\end{tabular} & - \\
\hline \begin{tabular}{l} 
'unid' or \\
'Discrete \\
Uniform'
\end{tabular} & \begin{tabular}{l} 
"Uniform \\
Distribution \\
(Discrete" on \\
page B-114
\end{tabular} & \begin{tabular}{l} 
N: maximum \\
observable \\
value
\end{tabular} & - & - \\
\hline \begin{tabular}{l} 
'wbl' or \\
'Weibull'
\end{tabular} & \begin{tabular}{l} 
"Weibull \\
Distribution" \\
on page B-116
\end{tabular} & \begin{tabular}{l} 
a: scale \\
parameter
\end{tabular} & \begin{tabular}{l} 
b: shape \\
parameter
\end{tabular} & - \\
\hline
\end{tabular}

Examples
Generate a 2 -by- 4 array of random values from the normal distribution with mean 0 and standard deviation 1 :
```

x1 = random('Normal', 0, 1, 2,4)
x1 =

```
```

1.1650 0.0751 -0.6965 0.0591
0.6268 0.3516 1.6961 1.7971

```

The order of the parameters is the same as for normrnd.
Generate a single random value from Poisson distributions with rate parameters \(1,2, \ldots, 6\), respectively:
```

x2 = random('Poisson',1:6,1,6)
x2 =
0

```
See Also cdf | pdf | icdf | mle

\section*{GeneralizedLinearModel.random}

\section*{Purpose}

Simulate responses for generalized linear regression model
ysim \(=\) random(mdl,Xnew) ysim \(=\) random(mdl,Xnew, Name, Value)

Description

\section*{Input Arguments}
ysim \(=\) random(mdl, Xnew) simulates responses from the mdl generalized linear model to the data in Xnew.
ysim = random(mdl,Xnew,Name,Value) simulates responses with additional options specified by one or more Name, Value pair arguments.

\section*{mdl}

Generalized linear model, as constructed by GeneralizedLinearModel.fit or GeneralizedLinearModel.stepwise.

\section*{Xnew}

Points at which mdl predicts responses.
- If Xnew is a dataset array, it must contain the predictor names in mdl.
- If Xnew is a numeric matrix, it must have the same number of variables (columns) as was used to create mdl. Furthermore, all variables used in creating mdl must be numeric.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'BinomialSize'}

\section*{GeneralizedLinearModel.random}
alue of the binomial \(n\) parameter for each row in the training data. BinomialSize can be a vector the same length as Xnew, or a scalar that applies to each row. The default value 1 produces ysim values that are predicted proportions. Use BinomialSize only if mdl is fit to a binomial distribution.

Default: 1

\section*{'Offset'}

Value of the offset for each row in Xnew. Offset can be a vector the same length as Xnew, or a scalar that applies to each row. The offset is used as an additional predictor with a coefficient value fixed at 1 . In other words, if \(b\) is the fitted coefficient vector, and link is the link function,
```

 link(ysim) = Offset + Xnew * b.
    ```

Default: zeros(size(Xnew,1))

\section*{Output ysim}

Arguments
Vector of simulated values at Xnew. random generates ysim using random values with mean given by the fitted model, and with the distribution used in mdl. The values in ysim are independent conditional on the predictors. For binomial and Poisson fits, random generates ysim with the specified distribution with no adjustment for any estimated dispersion.

\section*{Examples Generalized Linear Model Simulation}

Create a generalized linear model, and simulate its response to new data.

Generate artificial data for the model, Poisson random numbers with one underlying predictors X .
```

rng('default') % reproducible

```

\section*{GeneralizedLinearModel.random}
```

X = rand (20,1);
mu = exp(1 + 2*X);
y = poissrnd(mu);

```

Create a generalized linear regression model of Poisson data.
```

mdl = GeneralizedLinearModel.fit(X,y,...
'y ~ x1','distr','poisson');

```

Create points for prediction.
Xnew = (0:.05:1)';
Simulate responses at the new points.
ysim \(=\) random(mdl,Xnew);
Plot the simulated values along with the original values.
```

plot(X,y,'rx',Xnew,ysim,'bo',...
Xnew,feval(mdl,Xnew),'g-')
legend('Data','Simulated','Fitted Mean',...
'Location','best')

```

\section*{GeneralizedLinearModel.random}


Alternatives For predictions without random noise, use predict or feval.
See Also GeneralizedLinearModel I predict I
Related - "random" on page 9-170
Examples
Concepts - "Generalized Linear Models" on page 9-143

\section*{Purpose Random numbers from Gaussian mixture distribution}
Syntax \(\quad\)\begin{tabular}{ll} 
& \(y=\operatorname{random}(o b j)\) \\
& \(Y=\operatorname{random}(o b j, n)\) \\
& {\([Y, i d x]=\operatorname{random}(o b j, n)\)}
\end{tabular}

Description \(\quad y=\) random(obj) generates a 1 -by- \(d\) vector \(y\) drawn at random from the \(d\)-dimensional Gaussian mixture distribution defined by obj. obj is an object created by gmdistribution or fit.
\(\mathrm{Y}=\) random (obj, n ) generates an n -by- \(d\) matrix Y of \(\mathrm{n} d\)-dimensional random samples.
[ \(\mathrm{Y}, \mathrm{idx}\) ] = random(obj, n ) also returns an n -by-1 vector idx, where \(\operatorname{idx}(\mathrm{I})\) is the index of the component used to generate \(Y(I,:)\).

\section*{Examples}

Create a gmdistribution object defining a two-component mixture of bivariate Gaussian distributions:
```

MU = [1 2;-3 -5];
SIGMA = cat(3,[2 0;0 .5],[1 0;0 1]);
p = ones(1,2)/2;
obj = gmdistribution(MU,SIGMA,P);
ezcontour(@(x,y)pdf(obj,[x y]),[-10 10],[-10 10])
hold on

```

\section*{gmdistribution.random}


Generate 1000 random values:
```

Y = random(obj,1000);
scatter(Y(:,1),Y(:,2),10,'.')

```


\section*{See Also}
gmdistribution | fit | mvnrnd

\section*{LinearModel.random}

\section*{Purpose Simulate responses for linear regression model}

Syntax \(\quad\) ysim \(=\) random \((m d l\), Xnew \()\)

Description

Input
Arguments

\section*{Output Arguments}

\section*{Examples}

\section*{ysim}

Vector of predicted mean values at Xnew, perturbed by random noise. The noise is independent, normally distributed, with mean zero, and variance equal to the estimated error variance of the model.

\section*{Simulate Response Data}

Create a model of car mileage as a function of weight, and simulate the response.

Create a quadratic model of car mileage as a function of weight from the carsmall data.
load carsmall
X = Weight;
```

y = MPG;
mdl = LinearModel.fit(X,y,'quadratic');

```

Create simulated responses to the data.
```

Xnew = X;
ysim = random(mdl,Xnew);

```

Plot the original responses and the simulated responses to see how they differ.
```

plot(X,y,'o',X,ysim,'x')
legend('Data','Simulated')

```


\section*{LinearModel.random}
Alternatives For predictions without random noise, use predict or feval.
See Also feval | LinearModel | predict
Tutorials - "random" on page 9-41
How To - "Linear Regression" on page 9-11

\section*{Input Arguments}

\section*{Purpose}

Simulate responses for nonlinear regression model
Syntax
```

ysim $=$ random(mdl,Xnew)
ysim $=$ random(mdl,Xnew,'Weights', W)
ysim = random(mdl,Xnew,'Weights',W)

```
ysim = random(mdl,Xnew) simulates responses from the mdl nonlinear model to the data in Xnew, adding random noise.
ysim = random(mdl,Xnew, 'Weights', W) simulates responses using the observation weights, W .

\section*{mdl}

Nonlinear regression model, constructed by NonLinearModel.fit.

\section*{Xnew}

Points at which mdl predicts responses.
- If Xnew is a dataset array, it must contain the predictor names in mdl.
- If Xnew is a numeric matrix, it must have the same number of variables (columns) as was used to create mdl. Furthermore, all variables used in creating mdl must be numeric.

\section*{W}

Vector of real, positive value weights or a function handle.
- If you specify a vector, then it must have the same number of elements as the number of observations (or rows) in Xnew.
- If you specify a function handle, the function must accept a vector of predicted response values as input, and returns a vector of real positive weights as output.

Given weights, W, random estimates the error variance at observation i by MSE* (1/W(i)), where MSE is the mean squared error.

\section*{NonLinearModel.random}

Default: No weights

\section*{Output ysim}

Arguments

\section*{Examples}

\section*{Simulate Responses}

Create a nonlinear model of car mileage as a function of weight, and simulate the response.

Create an exponential model of car mileage as a function of weight from the carsmall data. Scale the weight by a factor of 1000 so all the variables are roughly equal in size.
```

load carsmall
X = Weight;
y = MPG;
modelfun = 'y ~ b1 + b2*exp(-b3*x/1000)';
beta0 = [$$
\begin{array}{lll}{1}&{1}&{1}\end{array}
$$];
mdl = NonLinearModel.fit(X,y,modelfun,betaO);

```

Create simulated responses to the data.
```

Xnew = X;
ysim = random(mdl,Xnew);

```

Plot the original responses and the simulated responses to see how they differ.
```

plot(X,y,'o',X,ysim,'x')
legend('Data','Simulated')

```

Alternatives For predictions without added noise, use predict.
See Also feval | NonLinearModel | predict |
Related - "Predict or Simulate Responses to New Data" on page 9-208 Examples
Concepts - "Nonlinear Regression" on page 9-198

\section*{piecewisedistribution.random}

Purpose Random numbers from piecewise distribution
```

Syntax r = random(obj)
R = random(obj,n)
R = random(obj,m,n)
R = random(obj,[m,n])
R = random(obj,m,n,p,···...
R = random(obj,[m,n,p,···..])

```

Description \(r=\) random \((o b j)\) generates a pseudo-random number \(r\) drawn from the piecewise distribution object obj.
\(\mathrm{R}=\) random(obj, n ) generates an \(n\)-by- \(n\) matrix of pseudo-random numbers R.
\(R=\operatorname{random}(o b j, m, n)\) or \(R=\operatorname{random}(o b j,[m, n])\) generates an \(m\)-by- \(n\) matrix of pseudo-random numbers \(R\).
\(R=\operatorname{random}(o b j, m, n, p, \ldots)\) or \(R=\operatorname{random}(o b j,[m, n, p, \ldots])\) generates an \(m\)-by- \(n\)-by- \(p\)-by-... array of pseudo-random numbers R .

\section*{Examples \(\quad\) Fit Pareto tails to a \(t\) distribution at cumulative probabilities 0.1 and} 0.9:
```

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
r = random(obj)
r=
0.8285

```

\section*{See Also paretotails | cdf | icdf}

\section*{Purpose}

Generate random number drawn from ProbDist object
Syntax
\(Y=\operatorname{random}(P D)\)
\(Y=\operatorname{random}(P D, N)\)
\(Y=\operatorname{random}(P D, N, M, \ldots)\)
\(Y=\operatorname{random}(P D)\) generates a random number drawn from the distribution specified by \(P D\), a ProbDist object.
\(Y=\operatorname{random}(P D, N)\) generates an \(N\)-by- \(N\) array of random numbers drawn from the distribution specified by \(P D\), a ProbDist object.
\(Y=\operatorname{random}(P D, N, M, \ldots)\) generates an \(N\)-by- \(M\)-by ... array of random numbers drawn from the distribution specified by \(P D\), a ProbDist object.

\section*{Input \\ Arguments}

\section*{Output \\ Arguments}

See Also

An object of the class ProbDistUnivParam or ProbDistUnivKernel.

A positive integer.
A positive integer.

A random number drawn from the distribution specified by \(P D\).

\section*{prob.TruncatableDistribution.random}

Purpose Generate random numbers from probability distribution object
Syntax \(\quad\)\begin{tabular}{rl}
\(r\) & \(=\operatorname{random}(p d)\) \\
\(r\) & \(=\operatorname{random}(p d, s z 1, \ldots, s z N)\) \\
\(r\) & \(=\operatorname{random}(p d,[s z 1, \ldots, s z N])\)
\end{tabular}

Description

Input
Arguments
\(r=\operatorname{random}(p d)\) generates a random number \(r\) from the probability distribution pd.
\(r=r a n d o m(p d, s z 1, \ldots, s z N)\) generates a sz1-by-...-by-szN array of random numbers from the probability distribution pd .
\(r=r a n d o m(p d,[s z 1, \ldots, s z N])\) generates a sz1-by-...-by-szN array of random numbers from the probability distribution pd .

\author{
pd - Probability distribution
}
probability distribution object
Probability distribution, specified as a probability distribution object. Create a probability distribution object with specified parameter values using makedist. Alternatively, for fittable distributions, create a probability distribution object by fitting it to data using fitdist or dfittool.

\section*{sz \(1, \ldots, s z N\) - Size of each dimension}
two or more integer values | vector of integer values
Size of each dimension, specified as two or more integer values, or a vector of such values. For example, specifying 5,3,2 or [ \(5,3,2\) ] generates a 5 -by-3-by- 2 array of random numbers from the probability distribution pd.

\author{
Data Types \\ single | double
}

\title{
prob.TruncatableDistribution.random
}

\section*{Output \\ Arguments}

\section*{r-Random number}
scalar value | array of values
Random number generated from the probability distribution, returned as a scalar value or an array of scalar values with the dimensions specified by sz1, ...,szN.

\section*{Examples Generate One Random Number}

Create a standard normal probability distribution object.
```

pd = makedist('Normal')
pd =

```

NormalDistribution

Normal distribution
mu = 0
sigma = 1
Generate one random number from the distribution.
```

r = random(pd)

```
\(r=\)
0.5377

\section*{Generate Multiple Random Numbers}

Create a Weibull probability distribution object using the default parameter values.
```

pd = makedist('Weibull')
pd =

```

WeibullDistribution
```

Weibull distribution
A = 1
B = 1

```

Generate random numbers from distribution and visualize with a histogram.
```

r = random(pd,10000,1);
hist(r,100)

```


\section*{Generate a Multidimensional Array of Random Numbers}

Create a standard normal probability distribution object.
```

pd = makedist('Normal')
pd =
NormalDistribution
Normal distribution
mu = 0
sigma = 1

```

Generate a 2-by-3-by-2 array of random numbers from the distribution.
```

r = random(pd,[2,3,2])

```
random_make_array(:,:,1) =
\begin{tabular}{rrr}
-1.0689 & -2.9443 & 0.3252 \\
-0.8095 & 1.4384 & -0.7549
\end{tabular}
```

random_make_array(:,:,2) =
1.3703 -0.1022 0.3192
-1.7115 -0.2414 0.3129

```
See Also makedist | fitdist | dfittool

\section*{randsample}

Purpose Random sample
```

Syntax y = randsample(n,k)
y = randsample(population,k)
y = randsample(n,k,replacement)
y = randsample(population, k,replacement)
y = randsample(n,k,true,w)
y = randsample(population,k,true,w)
y = randsample(s,...)

```

\section*{Description}

\section*{Examples}

Draw a single value from the integers 1 through 10:
```

n = 10;
x = randsample(n,1);

```

Draw a single value from the population 1 through \(n\), where \(n>1\) :
y = randsample(1:n,1);

Note If population is a numeric vector containing only nonnegative integer values, and population can have length 1, use
```

y = population(randsample(length(population),k))

```
instead of \(y=\) randsample(population, \(k\) ).

Generate a random sequence of the characters A, C, G, and T, with replacement, according to the specified probabilities.
```

R = randsample('ACGT',48,true,[0.15 0.35 0.35 0.15])

```

See Also rand | randperm | RandStream

\section*{randtool}

Purpose Interactive random number generation

\section*{Syntax randtool}

Description randtool opens the Random Number Generation Tool.
The Random Number Generation Tool is a graphical user interface that generates random samples from specified probability distributions and displays the samples as histograms. Use the tool to explore the effects of changing parameters and sample size on the distributions.


\section*{randtool}

Start by selecting a distribution, then enter the desired sample size.
You can also
- Use the controls at the bottom of the window to set parameter values for the distribution and to change their upper and lower bounds.
- Draw another sample from the same distribution, with the same size and parameters.
- Export the current sample to your workspace. A dialog box enables you to provide a name for the sample.

\section*{See Also}
disttool | dfittool
Purpose Range of values
Syntax range (X) ..... y = range(X, dim)
Description
ExamplesThe range of a large sample of standard normal random numbers isapproximately six. This is the motivation for the process capabilityindices \(C_{\mathrm{p}}\) and \(C_{\mathrm{pk}}\) in statistical quality control applications.
```

rv = normrnd(0,1,1000,5);
near6 = range(rv)
near6 =
6.1451 6.4986 6.2909 5.8894 7.0002

```
See Also std \| iqr \| mad

Purpose Find all neighbors within specified distance
```

Syntax idx = rangesearch(X,Y,r)
[idx,D]= rangesearch(X,Y,r)
[idx,D]= rangesearch(X,Y,r,Name,Value)

```

\section*{Description}

Tips

Input
Arguments
idx \(=\) rangesearch \((X, Y, r)\) finds all the \(X\) points that are within distance \(r\) of the \(Y\) points. Rows of \(X\) and \(Y\) correspond to observations, and columns correspond to variables.
[idx, D]= rangesearch ( \(\mathrm{X}, \mathrm{Y}, \mathrm{r}\) ) returns the distances between each row of \(Y\) and the rows of \(X\) that are \(r\) or less distant.
[idx, D]= rangesearch ( \(X, Y, r\), Name, Value) finds nearby points with additional options specified by one or more Name, Value pair arguments.
- For a fixed positive integer K, knnsearch finds K points in X that are nearest each \(Y\) point. In contrast, for a fixed positive real value \(r\), rangesearch finds all the \(X\) points that are within a distance \(r\) of each \(Y\) point.

\section*{X}
\(m x\)-by- \(n\) numeric matrix, where each row represents one \(n\)-dimensional point. The number of columns \(n\) must equal as the number of columns in Y .

\section*{Y}
\(m y\)-by- \(n\) numeric matrix, where each row represents one \(n\)-dimensional point. The number of columns \(n\) must equal as the number of columns in \(X\).
r
Search radius, a scalar. rangesearch finds all \(X\) points (rows) that are within distance \(r\) of each \(Y\) point. The meaning of distance depends on the Distance name-value pair.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'BucketSize'}

Maximum number of data points in the leaf node of the \(k d\)-tree. This argument is only meaningful when \(k d\)-tree is used for finding nearest neighbors.

Default: 50

\section*{'Cov'}

Positive definite matrix indicating the covariance matrix when computing the Mahalanobis distance. This argument is only valid when the Distance name-value pair is 'mahalanobis'.

Default: nancov (X)

\section*{'Distance'}

String or function handle specifying the distance metric.
\begin{tabular}{l|l}
\hline Value & Description \\
\hline 'euclidean' & Euclidean distance. \\
\hline 'seuclidean' & \begin{tabular}{l} 
Standardized Euclidean distance. Each \\
coordinate difference between X and a query \\
point is scaled, meaning divided by a scale \\
value S. The default value of S is the standard \\
deviation computed from X, S=nanstd (X). To \\
specify another value for S, use the Scale \\
name-value pair.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Value & Description \\
\hline 'mahalanobis' & \begin{tabular}{l} 
Mahalanobis distance, computed using a \\
positive definite covariance matrix C. The \\
default value of C is the sample covariance \\
matrix of X, as computed by nancov (X). To \\
specify a different value for C, use the 'Cov' \\
name-value pair.
\end{tabular} \\
\hline 'cityblock' & City block distance. \\
\hline 'minkowski' & \begin{tabular}{l} 
Minkowski distance. The default exponent is \\
2. To specify a different exponent, use the 'P' \\
name-value pair.
\end{tabular} \\
\hline 'chebychev' & \begin{tabular}{l} 
Chebychev distance (maximum coordinate \\
difference).
\end{tabular} \\
\hline 'cosine' & \begin{tabular}{l} 
One minus the cosine of the included angle \\
between observations (treated as vectors).
\end{tabular} \\
\hline 'correlation' & \begin{tabular}{l} 
One minus the sample linear correlation \\
between observations (treated as sequences \\
of values).
\end{tabular} \\
\hline 'hamming' & \begin{tabular}{l} 
Hamming distance, percentage of coordinates \\
that differ.
\end{tabular} \\
\hline 'jaccard ' & \begin{tabular}{l} 
One minus the Jaccard coefficient, the \\
percentage of nonzero coordinates that differ.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Value & Description \\
\hline 'spearman' & One minus the sample Spearman's rank correlation between observations (treated as sequences of values). \\
\hline @distfun & \begin{tabular}{l}
Distance function handle. distfun has the form \\
function D2 = DISTFUN(ZI,ZJ) \\
where \\
- ZI is a 1 -by- N vector containing one row of X or Y . \\
- ZJ is an M2-by-N matrix containing multiple rows of X or Y . \\
- D2 is an M2-by-1 vector of distances, D2 (k) is the distance between the observations ZI and \(Z J(J,:)\).
\end{tabular} \\
\hline
\end{tabular}

For definitions, see "Distance Metrics" on page 15-9.
Default: 'euclidean'

\section*{'NSMethod'}

Nearest neighbors search method.
\begin{tabular}{l|l}
\hline Value & Meaning \\
\hline 'kdtree' & \begin{tabular}{l} 
Creates and uses a kd-tree to find nearest \\
neighbors. 'kdtree' is only valid when the \\
distance metric is one of:
\end{tabular} \\
& - 'chebyshev' \\
- 'cityblock' \\
& - 'euclidean' \\
& - 'minkowski'
\end{tabular}

Default: 'kdtree' when the number of columns of X is not greater than \(10, \mathrm{X}\) is not sparse, and the distance metric is one of the valid 'kdtree' metrics. Otherwise, the default is 'exhaustive'.

\section*{'P'}

Positive scalar indicating the exponent of Minkowski distance.
This argument is only valid when the Distance name-value pair is 'minkowski'.

\section*{Default: 2}

\section*{'Scale'}

Vector \(S\) containing nonnegative values, with length equal to the number of columns in \(X\). Each coordinate difference between \(X\) and a query point is scaled by the corresponding element of \(S\). This argument is only valid when the Distance name-value pair is 'seuclidean'.

Default: nanstd(X)

\section*{Output \\ idx}

Arguments

\section*{Definitions}

Examples
\(m y\)-by- 1 cell array, where \(m y\) is the number of rows in Y . idx\{I\} contains the indices of points (rows) in X whose distances to \(\mathrm{Y}(\mathrm{I},:\) ) are not greater than \(r\). The entries in idx \(\{I\}\) are in ascending order of distance.

\section*{D}
\(m y\)-by- 1 cell array, where \(m y\) is the number of rows in Y . D\{I \} contains the distance values between \(Y(I,:)\) and the corresponding points in idx\{I\}.

\section*{Distance Metrics}

For definitions, see "Distance Metrics" on page 15-9.

Find the \(X\) points that are within a Euclidean distance 1.5 of each \(Y\) point. Both \(X\) and \(Y\) are samples of 5-D normally distributed variables.
```

rng('default') % for reproducibility
X = randn(100,5);
Y = randn(10,5);
[idx, dist] = rangesearch(X,Y,1.5)
idx =
[1x7 double]
[1x2 double]
[1\times11 double]
[1x2 double]
[1\times12 double]
[1x9 double]
[89]
[1x0 double]
[1x0 double]
[1x0 double]
dist =

```
\begin{tabular}{ll}
{\([1 \times 7\)} & double \(]\) \\
{\([1 \times 2\)} & double \(]\) \\
{\([1 \times 11\)} & double \(]\) \\
{\([1 \times 2\)} & double \(]\) \\
{\([1 \times 12\)} & double \(]\) \\
{\([1 \times 9\)} & double \(]\) \\
{\([\)} & \(1.1739]\) \\
{\([1 \times 0\)} & double \(]\) \\
{\([1 \times 0\)} & double \(]\) \\
{\([1 \times 0\)} & double \(]\)
\end{tabular}

In this case, the last three \(Y\) points are more than 1.5 distant from any \(X\) point. \(X(89,:)\) is 1.1739 distant from \(Y(7,:)\), and there is no other \(X\) point that is within distance 1.5 of \(Y(7,:)\). There are 12 points in \(X\) within distance 1.5 of \(Y(5,:)\).

\footnotetext{
Algorithms
For an overview of the \(k\) d-tree algorithm, see " \(k\)-Nearest Neighbor Search Using a \(k\) d-Tree" on page 15-14.

The exhaustive search algorithm finds the distance of each point in \(X\) to each point in \(Y\).

Alternatives

\section*{See Also createns | ExhaustiveSearcher | KDTreeSearcher | knnsearch | pdist2}

How To \(\quad\) " \(k\)-Nearest Neighbor Search and Radius Search" on page 15-12
}

\section*{Purpose}

Syntax
idx = rangesearch(NS, \(\mathrm{Y}, \mathrm{r}\) )
[idx, D]= rangesearch(NS,Y,r)
[idx, D] = rangesearch(NS, Y, r, Name, Value)

Find all neighbors within specified distance using ExhaustiveSearcher object

\section*{Tips}

Input
Arguments
idx \(=\) rangesearch(NS, \(Y, r\) ) finds all points in NS. \(X\) that are within distance \(r\) of the \(Y\) points. Rows of NS. \(X\) and \(Y\) correspond to observations, and columns correspond to variables.
[idx, D]= rangesearch(NS, Y, r) returns the distances between each row of \(Y\) and the rows of NS. \(X\) that are \(r\) or less distant.
[idx, D]= rangesearch(NS, Y, r, Name, Value) finds nearby points with additional options specified by one or more Name, Value pair arguments.
- For a fixed positive integer K, knnsearch finds the K points in NS.X that are nearest each \(Y\) point. In contrast, for a fixed positive real value \(r\), rangesearch finds all the points in NS. \(X\) that are within a distance \(r\) of each \(Y\) point.

NS
ExhaustiveSearcher object, constructed using ExhaustiveSearcher or createns.

Y
\(m y\)-by- \(n\) numeric matrix, where each row represents one \(n\)-dimensional point. The number of columns \(n\) must equal the number of columns in NS. X.
r

Search radius, a scalar. rangesearch finds all NS.X points (rows) that are within distance \(r\) of each \(Y\) point. The meaning of distance depends on the Distance name-value pair.

\section*{ExhaustiveSearcher.rangesearch}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'Cov'}

Positive definite matrix indicating the covariance matrix when computing the Mahalanobis distance. This argument is only valid when the Distance name-value pair is 'mahalanobis'.

Default: nancov (X)

\section*{'Distance'}

String or function handle specifying the distance metric.
\begin{tabular}{l|l}
\hline Value & Description \\
\hline 'euclidean' & Euclidean distance. \\
\hline 'seuclidean' & \begin{tabular}{l} 
Standardized Euclidean distance. Each \\
coordinate difference between X and a \\
query point is scaled, meaning divided by \\
a scale value S. The default value of S is \\
the standard deviation computed from X, \\
S=nanstd (X). To specify another value for \\
S, use the Scale name-value pair.
\end{tabular} \\
\hline 'mahalanobis' & \begin{tabular}{l} 
Mahalanobis distance, computed using a \\
positive definite covariance matrix C. The \\
default value of C is the sample covariance \\
matrix of X, as computed by nancov (X). \\
To specify a different value for C, use the \\
'Cov' name-value pair.
\end{tabular} \\
\hline 'cityblock' & City block distance. \\
\hline
\end{tabular}
\(\left.\left.\begin{array}{l|l}\hline \text { Value } & \text { Description } \\ \hline \text { 'minkowski' } & \begin{array}{l}\text { Minkowski distance. The default exponent } \\ \text { is 2. To specify a different exponent, use } \\ \text { the 'P' name-value pair. }\end{array} \\ \hline \text { 'chebychev' } & \begin{array}{l}\text { Chebychev distance (maximum coordinate } \\ \text { difference). }\end{array} \\ \hline \text { 'cosine' } & \begin{array}{l}\text { One minus the cosine of the included angle } \\ \text { between observations (treated as vectors). }\end{array} \\ \hline \text { 'correlation' } & \begin{array}{l}\text { One minus the sample linear correlation } \\ \text { between observations (treated as } \\ \text { sequences of values). }\end{array} \\ \hline \text { 'hamming' } & \begin{array}{l}\text { Hamming distance, percentage of } \\ \text { coordinates that differ. }\end{array} \\ \hline \text { 'jaccard' } & \begin{array}{l}\text { One minus the Jaccard coefficient, the } \\ \text { percentage of nonzero coordinates that } \\ \text { differ. }\end{array} \\ \hline \text { 'spearman' } & \begin{array}{l}\text { One minus the sample Spearman's rank } \\ \text { correlation between observations (treated } \\ \text { as sequences of values). }\end{array} \\ \hline \text { @distfun } & \begin{array}{l}\text { Distance function handle. distfun has } \\ \text { the form }\end{array} \\ \text { function D2 = DISTFUN(ZI , ZJ) }\end{array}\right\} \begin{array}{l}\text { I. } \\ \text { where } \\ \text { - ZI is a 1-by-N vector containing one row } \\ \text { of X or Y. } \\ \text { - ZJ is an M2-by-N matrix containing } \\ \text { multiple rows of X or Y. }\end{array}\right\}\)

\section*{ExhaustiveSearcher.rangesearch}
\begin{tabular}{l|l} 
Value & Description \\
\hline & - D2 is an M2-by-1 vector of distances, \\
& D2 (k) is the distance between the \\
observations ZI and \(\mathrm{ZJ}(J,:)\). \\
\hline
\end{tabular}

For definitions, see "Distance Metrics" on page 15-9.
Default: 'euclidean'

\section*{'P'}

Positive scalar indicating the exponent of Minkowski distance. This argument is only valid when the Distance name-value pair is 'minkowski'.

\section*{Default: 2}

\section*{'Scale'}

Vector \(S\) containing nonnegative values, with length equal to the number of columns in \(X\). Each coordinate difference between X and a query point is scaled by the corresponding element of \(S\). This argument is only valid when the Distance name-value pair is 'seuclidean'.

Default: nanstd (X)
```

Output idx
Arguments
my-by-1 cell array, where my is the number of rows in Y. idx{I }
contains the indices of points (rows) in NS.X whose distances
to Y(I,:) are not greater than r. The entries in idx{I} are in
ascending order of distance.

```

\section*{D}

\section*{ExhaustiveSearcher.rangesearch}
\(m y\)-by- 1 cell array, where \(m y\) is the number of rows in Y . \(D\{I\}\) contains the distance values between \(Y(I,:)\) and the corresponding points in idx\{I \(\}\).

\section*{Definitions Distance Metrics}

For definitions, see "Distance Metrics" on page 15-9.
Examples Create \(X\) and \(Y\) as samples of 5-D normally distributed variables. Create an ExhaustiveSearcher object NS from X. Find the points in NS.X that are within a Euclidean distance 1.5 of each point in \(Y\).
```

rng('default') % for reproducibility
X = randn(100,5);
Y = randn(10,5);
NS = ExhaustiveSearcher(X);
[idx, dist] = rangesearch(NS,Y,1.5)
idx =
[1x7 double]
[1x2 double]
[1x11 double]
[1x2 double]
[1\times12 double]
[1x9 double]
[[89]
[1x0 double]
[1x0 double]
[1x0 double]
dist =
[1x7 double]
[1x2 double]
[1\times11 double]
[1x2 double]
[1\times12 double]
[1x9 double]

```

\section*{ExhaustiveSearcher.rangesearch}
```

[1.1739]
[1x0 double]
[1x0 double]
[1x0 double]

```

In this case, the last three points in \(Y\) are more than 1.5 distant from any point in NS.X. NS. \(X(89,:)\) is 1.1739 distant from \(Y(7,:)\), and there is no other point in NS. \(X\) that is within distance 1.5 of \(Y(7,:)\). There are 12 points in NS. \(X\) within distance 1.5 of \(Y(5,:)\).

\section*{Algorithms The exhaustive search algorithm finds the distance of each point in X to each point in Y .}

\title{
Alternatives rangesearch is the ExhaustiveSearcher method for distance search. It is equivalent to the rangesearch function with the NSMethod name-value pair set to 'exhaustive'. \\ rangesearch is the KDTreeSearcher method for distance search. It is equivalent to the rangesearch function with the NSMethod name-value pair set to 'kdtree'.
}

\author{
See Also \\ createns | ExhaustiveSearcher | knnsearch | pdist2 | rangesearch
}

\section*{Purpose}

\author{
Syntax
}

\section*{Description}

\section*{Tips}

Input
Arguments

Find all neighbors within specified distance using KDTreeSearcher object
idx = rangesearch(NS, \(Y, r\) )
[idx, D]= rangesearch(NS, Y, r)
[idx, D] = rangesearch(NS, Y, r,Name, Value)
\(i d x=\) rangesearch(NS, \(Y, r\) ) finds all points in NS. \(X\) that are within distance \(r\) of the \(Y\) points. Rows of NS. \(X\) and \(Y\) correspond to observations, and columns correspond to variables.
[idx, D]= rangesearch(NS,Y,r) returns the distances between each row of \(Y\) and the rows of NS. \(X\) that are \(r\) or less distant.
[idx, D] = rangesearch(NS, Y, r, Name, Value) finds nearby points with additional options specified by one or more Name, Value pair arguments.
- For a fixed positive integer K, knnsearch finds the K points in NS.X that are nearest each \(Y\) point. In contrast, for a fixed positive real value \(r\), rangesearch finds all the points in NS. \(X\) that are within a distance \(r\) of each \(Y\) point.

NS
KDTreeSearcher object, constructed using KDTreeSearcher or createns.

Y
\(m y\)-by- \(n\) numeric matrix, where each row represents one \(n\)-dimensional point. The number of columns \(n\) must equal the number of columns in NS. X.
r

Search radius, a scalar. rangesearch finds all NS.X points (rows) that are within distance \(r\) of each \(Y\) point. The meaning of distance depends on the Distance name-value pair.

\section*{KDTreeSearcher.rangesearch}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'Distance'}

String or function handle specifying the distance metric.
\begin{tabular}{l|l}
\hline Value & Description \\
\hline 'euclidean' & Euclidean distance. \\
\hline 'cityblock' & City block distance. \\
\hline 'minkowski' & \begin{tabular}{l} 
Minkowski distance. The default exponent \\
is 2. To specify a different exponent, use \\
the 'P' name-value pair.
\end{tabular} \\
\hline 'chebychev' & \begin{tabular}{l} 
Chebychev distance (maximum coordinate \\
difference).
\end{tabular} \\
\hline
\end{tabular}

For definitions, see "Distance Metrics" on page 15-9.
Default: NS.Distance

\section*{'P'}

Positive scalar indicating the exponent of Minkowski distance. This argument is only valid when the Distance name-value pair is 'minkowski'.

Default: 2

\section*{Output idx}

Arguments
\(m y\)-by- 1 cell array, where \(m y\) is the number of rows in Y . idx \(\{\mathrm{I}\}\) contains the indices of points (rows) in NS. X whose distances
to \(Y(I,:)\) are not greater than \(r\). The entries in idx\{I\} are in ascending order of distance.

\section*{D}
\(m y\)-by- 1 cell array, where \(m y\) is the number of rows in Y . \(\mathrm{D}\{\mathrm{I}\}\) contains the distance values between \(\mathrm{Y}(\mathrm{I},:\) ) and the corresponding points in idx\{I\}.

\section*{Definitions \\ Distance Metrics}

For definitions, see "Distance Metrics" on page 15-9.
Examples Create \(X\) and \(Y\) as samples of 5-D normally distributed variables. Create a KDTreeSearcher object NS from X. Find the points in NS.X that are within a Euclidean distance 1.5 of each point in Y .
```

rng('default') % for reproducibility
X = randn(100,5);
Y = randn(10,5);
NS = KDTreeSearcher(X);
[idx, dist] = rangesearch(NS,Y,1.5)
idx =
[1x7 double]
[1x2 double]
[1\times11 double]
[1x2 double]
[1\times12 double]
[1x9 double]
[[89]
[1x0 double]
[1x0 double]
[1x0 double]
dist =
[1x7 double]
[1x2 double]

```

\section*{KDTreeSearcher.rangesearch}
\(\begin{array}{l}{[1 \times 11} \\ {[1 \times 2} \\ \text { double }] \\ {[1 \times 12} \\ \text { double }] \\ {[1 \times 9}\end{array}\) double \(]\)

In this case, the last three points in \(Y\) are more than 1.5 distant from any point in NS.X. NS. \(\mathrm{X}(89,:)\) is 1.1739 distant from \(Y(7,:)\), and there is no other point in NS. \(X\) that is within distance 1.5 of \(Y(7,:)\). There are 12 points in NS. \(X\) within distance 1.5 of \(Y(5,:)\).

\section*{Algorithms For an overview of the \(k\) d-tree algorithm, see " \(k\)-Nearest Neighbor Search Using a \(k\) d-Tree" on page 15-14.}

\footnotetext{
Alternatives rangesearch is the KDTreeSearcher method for distance search. It is equivalent to the rangesearch function with the NSMethod name-value pair set to 'kdtree'.
rangesearch is the ExhaustiveSearcher method for distance search. It is equivalent to the rangesearch function with the NSMethod name-value pair set to 'exhaustive'.

See Also createns | KDTreeSearcher | knnsearch | pdist2 | rangesearch
}

\section*{Purpose Wilcoxon rank sum test}

\section*{Syntax}
```

p = ranksum(x,y)
[p,h] = ranksum(x,y)
[p,h,stats] = ranksum(x,y)
[___] = ranksum(x,y,Name,Value)

```

Description

\section*{Input Arguments}
\(\mathrm{p}=\) ranksum ( \(\mathrm{x}, \mathrm{y}\) ) returns the \(p\)-value of a two-sided Wilcoxon rank sum test. ranksum tests the null hypothesis that data in \(x\) and \(y\) are samples from continuous distributions with equal medians, against the alternative that they are not. The test assumes that the two samples are independent. \(x\) and \(y\) can have different lengths.

This test is equivalent to a Mann-Whitney U-test.
\([p, h]=\operatorname{ranksum}(x, y)\) also returns a logical value indicating the test decision. The result \(\mathrm{h}=1\) indicates a rejection of the null hypothesis, and \(h=0\) indicates a failure to reject the null hypothesis at the \(5 \%\) significance level.
[p,h,stats] = ranksum( \(x, y\) ) also returns the structure stats with information about the test statistic.
[ __ ] = ranksum( \(x, y\), Name, Value) returns any of the output arguments in the previous syntaxes, for a rank sum test with additional options specified by one or more Name,Value pair arguments.

\section*{x-Sample data}
vector
Sample data, specified as a vector.
Data Types
single | double

\section*{\(y\)-Sample data}
vector
Sample data, specified as a vector. The length of \(y\) does not have to be the same as the length of \(x\).

\section*{Data Types \\ single | double}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'alpha', 0.01,'method','approximate','tail','right' specifies a right-tailed rank sum test with \(1 \%\) significance level, which returns the approximate p -value.

\section*{'alpha' - Significance level}
0.05 (default) | scalar value in the range 0 to 1

Significance level of the decision of a hypothesis test, specified as the comma-separated pair consisting of 'alpha' and a scalar value in the range 0 to 1 . The significance level of h is 100 * alpha\%.

Example: 'alpha', 0.01
```

Data Types
double | single

```

\section*{'method' - Computation method of the p-value}
'exact' | 'approximate'
Computation method of the \(p\)-value, p , specified as the comma-separated pair consisting of 'method' and one of the following:
\begin{tabular}{l|l}
\hline 'exact' & Exact computation of the \(p\)-value, p. \\
\hline 'approximate & 'Normal approximation while computing the \(p\)-value, p. \\
\hline
\end{tabular}

When 'method ' is unspecified, the default is:
- 'exact' if \(\min \left(n_{x}, n_{y}\right)<10\) and \(n_{x}+n_{y}<20\)
- 'approximate' otherwise
\(n_{x}\) and \(n_{y}\) are the sizes of the samples in x and y , respectively.
Example: 'method','exact'

\section*{Data Types}
char
```

'tail' - Type of test

```
'both' (default) | 'right' | 'left'
Type of test, specified as the comma-separated pair consisting of 'tail' and one of the following:
\begin{tabular}{l|l}
\hline 'both' & \begin{tabular}{l} 
Two-sided hypothesis test, where the alternative \\
hypothesis states that \(x\) and \(y\) have different medians. \\
Default test type if 'tail' is not specified.
\end{tabular} \\
\hline 'right' & \begin{tabular}{l} 
Right-tailed hypothesis test, where the alternative \\
hypothesis states that the median of \(x\) is greater than the \\
median of y.
\end{tabular} \\
\hline 'left' & \begin{tabular}{l} 
Left-tailed hypothesis test, where the alternative \\
hypothesis states that the median of \(x\) is less than the \\
median of y.
\end{tabular} \\
\hline
\end{tabular}

Example: 'tail','left'

\section*{Data Types \\ char}

\section*{Output \\ Arguments}

\section*{\(\mathbf{p}\) - \(\boldsymbol{p}\)-value of the test}
nonnegative scalar
\(p\)-value of the test, returned as a positive scalar from 0 to \(1 . \mathrm{p}\) is the probability of observing a test statistic as or more extreme than
the observed value under the null hypothesis. ranksum computes the two-sided \(p\)-value by doubling the most significant one-sided value.

\section*{h-Result of the hypothesis test}

1 | 0
Result of the hypothesis test, returned as a logical value.
- If \(\mathrm{h}=1\), this indicates rejection of the null hypothesis at the 100 * alpha\% significance level.
- If \(\mathrm{h}=0\), this indicates a failure to reject the null hypothesis at the 100 * alpha\% significance level.

\section*{stats - Test statistics}

\section*{structure}

Test statistics, returned as a structure. The test statistics stored in stats are:
- ranksum : Value of the rank sum test statistic
- zval: Value of the z-statistic (computed when 'method' is 'approximate')

\section*{Examples Test for Equal Median of Two Populations}

Test the hypothesis of equal medians for two independent unequal-sized samples.

Generate sample data.
```

rng('default') % for reproducibility
x = unifrnd(0,1,10,1);
y = unifrnd(0.25,1.25,15,1);

```

These samples come from populations with identical distributions except for a shift of 0.25 in the location.

Test the equality of medians of \(x\) and \(y\).
```

p = ranksum(x,y)
p =
0.0375

```

The \(p\)-value of 0.0375 indicates that ranksum rejects the null hypothesis of equal medians at the default \(5 \%\) significance level.

\section*{Statistics of the Test for Two Population Medians}

Obtain the statistics of the test for the equality of two population medians.

Load the sample data.
```

load mileage

```

Test if the mileage per gallon is the same for the first and second type of cars.
```

[p,h,stats] = ranksum(mileage(:,1),mileage(:,2))
p =
0.0043
h =
1
stats =
ranksum: 21.5000

```

Both the \(p\)-value, 0.043 , and \(\mathrm{h}=1\) indicate the rejection of the null hypothesis of equal medians at the default \(5 \%\) significance level. Because the sample sizes are small (six each), ranksum calculates the \(p\)-value using the exact method. The structure stats includes only the value of the rank sum test statistic.

\section*{Increase in the Median}

Test the hypothesis of an increase in the population median.

Navigate to a folder containing sample data.
```

cd(matlabroot)
cd('help/toolbox/stats/examples')

```

Load the sample data.
load weather

The weather data shows the daily high temperatures taken in the same month in two consecutive years.

Perform a left-sided test to assess the increase in the median at the \(1 \%\) significance level.
```

[p,h,stats] = ranksum(year1,year2,'alpha',0.01,...
'tail','left')
p =
0.1271
h =
0
stats =
zval: -1.1403
ranksum: 837.5000

```

Both the \(p\)-value of 0.1271 and \(\mathrm{h}=0\) indicate that there is not enough evidence to reject the null hypothesis and conclude that there is a positive shift in the median of observed high temperatures in the same month from year 1 to year 2 at the \(1 \%\) significance level. Notice that
ranksum uses the approximate method to calculate the \(p\)-value due to the large sample sizes.

Use the exact method to calculate the \(p\)-value.
```

[p,h,stats] = ranksum(year1,year2,'alpha',0.01,...
'tail','left','method','exact')
p =

```
    0.1273
\(\mathrm{h}=\)
    0
stats =
ranksum: 837.5000
The results of the approximate and exact methods are consistent with each other.

\section*{Definitions Wilcoxon Rank Sum Test}

The Wilcoxon rank sum test is a nonparametric test for two populations when samples are independent. If \(X\) and \(Y\) are independent samples with different sample sizes, the test statistic which ranksum returns is the rank sum of the first sample.

The Wilcoxon rank sum test is equivalent to the Mann-Whitney U-test. The Mann-Whitney U-test is a nonparametric test for equality of population medians of two independent samples \(X\) and \(Y\).
The Mann-Whitney U-test statistic, \(U\), is the number of times a \(y\) precedes an \(x\) in an ordered arrangement of the elements in the two
independent samples \(X\) and \(Y\). It is related to the Wilcoxon rank sum statistic in the following way: If \(\mathbf{X}\) is a sample of size \(n_{X}\), then
\[
U=W-\frac{n_{X}\left(n_{X}+1\right)}{2} .
\]

\section*{z-Statistic}

For large samples, ranksum uses a \(z\)-statistic to compute the approximate \(p\)-value of the test.

If \(X\) and \(Y\) are two independent samples of size \(n_{X}\) and \(n_{Y}\), where \(n_{X}<\) \(n_{Y}\) the \(z\)-statistic is
\[
z=\frac{W-E(W)}{\sqrt{V(W)}}=\frac{W-\left[\frac{n_{X} n_{Y}+n_{X}\left(n_{X}+1\right)}{2}\right]-0.5 * \operatorname{sign}(W-E(W))}{\sqrt{\frac{n_{X} n_{Y}\left(n_{X}+n_{Y}+1\right)-\operatorname{tiescor}}{12}}},
\]
with continuity correction and tie adjustment. Here tiescor is given by
\[
\text { tiescor }=\frac{2 * \text { tieadj }}{\left(n_{X}+n_{Y}\right)\left(n_{X}+n_{Y}-1\right)},
\]
where ranksum uses [ranks, tieadj] = tiedrank \((x, y)\) to obtain tie adjustments. The standard normal distribution gives the \(p\)-value for this \(z\)-statistic.

\section*{Algorithms}
ranksum treats NaNs in x and y as missing values and ignores them. For a two-sided test of medians with unequal sample sizes, the test statistic that ranksum returns is the rank sum of the first sample.

\section*{References}
[1] Gibbons, J. D., and S. Chakraborti. Nonparametric Statistical Inference, 5th Ed., Boca Raton, FL: Chapman \& Hall/CRC Press, Taylor \& Francis Group, 2011.
[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods. Hoboken, NJ: John Wiley \& Sons, Inc., 1999.

See Also kruskalwallis | signrank | signtest | ttest2

Purpose Rayleigh cumulative distribution function

\section*{Syntax \(\quad P=\operatorname{raylcdf}(X, B)\)}

Description
\(P=\operatorname{raylcdf}(X, B)\) computes the Rayleigh cdf at each of the values in \(X\) using the corresponding scale parameter, \(B . X\) and \(B\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input for \(X\) or \(B\) is expanded to a constant array with the same dimensions as the other input.

The Rayleigh cdf is
\[
y=F(x \mid b)=\int_{0}^{x} \frac{t}{b^{2}} e^{\left(\frac{-t^{2}}{2 b^{2}}\right)} d t
\]

\section*{Examples}
```

x = 0:0.1:3;
p = raylcdf(x,1);
plot(x,p)

```


\section*{References}

See Also
How To
[1] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. Hoboken, NJ: Wiley-Interscience, 2000. pp. 134-136.
```

cdf | raylpdf | raylinv | raylstat | raylfit | raylrnd

```
- "Rayleigh Distribution" on page B-104

\section*{Superclasses ToolboxFittableParametricDistribution}

Purpose Rayleigh probability distribution object
Description prob.RayleighDistribution is an object consisting of parameters, a model description, and sample data for a normal probability distribution.

Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

\section*{Construction}
pd = makedist('Rayleigh') creates a Rayleigh probability distribution object using the default parameter values.
pd = makedist('Rayleigh', 'b', b) creates a Rayleigh probability distribution object using the specified parameter value.

\section*{Input Arguments}

\section*{b-Defining parameter}

1 (default) | positive scalar value
Defining parameter for the Rayleigh distribution, specified as a positive scalar value.

\section*{Data Types}
single | double

\section*{Properties}
b
Defining parameter for the Rayleigh distribution, stored as a positive scalar value.

\section*{Data Types}
single | double

\section*{DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{prob.RayleighDistribution}

\section*{Data Types \\ char \\ InputData}

Data used for distribution fitting, stored as a structure containing the following:
- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.

\section*{Data Types}
single | double

\section*{IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated. If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

\section*{Data Types}
logical

\section*{NumParameters}

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

\section*{Data Types \\ single | double \\ ParameterCovariance}

Covariance matrix of the parameter estimates, stored as a \(p\)-by- \(p\) matrix, where \(p\) is the number of parameters in the distribution. The ( \(\mathrm{i}, \mathrm{j}\) ) element is the covariance between the estimates of the ith parameter and the \(j\) th parameter. The ( \(i, i\) ) element is the
estimated variance of the ith parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterDescription}

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

\section*{Data Types}
char

\section*{ParameterlsFixed}

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1, the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

\section*{Data Types}
logical

\section*{ParameterNames}

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

\section*{Data Types \\ char \\ ParameterValues}

Values of distribution parameters, stored as a vector. This property is read-only.

\author{
Data Types \\ single | double \\ Truncation
}

\section*{prob.RayleighDistribution}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

\author{
Data Types \\ single | double
}

\section*{Methods Inherited Methods}
\begin{tabular}{ll} 
cdf & \begin{tabular}{l} 
Cumulative distribution function \\
of probability distribution object \\
inverse cumulative distribution
\end{tabular} \\
icdf & \begin{tabular}{l} 
function of probability \\
distribution object
\end{tabular} \\
iqr & \begin{tabular}{l} 
Interquartile range of probability \\
distribution object \\
Median of probability distribution \\
object
\end{tabular} \\
median & \begin{tabular}{l} 
Probability density function of \\
probability distribution object
\end{tabular} \\
pdf & \begin{tabular}{l} 
Generate random numbers from \\
probability distribution object
\end{tabular} \\
random & \begin{tabular}{l} 
Truncate probability distribution \\
object
\end{tabular} \\
truncate & \begin{tabular}{l} 
Mean of probability distribution \\
object
\end{tabular} \\
mean & \begin{tabular}{l} 
Negative loglikelihood of \\
probability distribution object
\end{tabular} \\
negloglik & \begin{tabular}{l} 
Confidence intervals for \\
probability distribution
\end{tabular} \\
paramci & \begin{tabular}{l} 
parameters
\end{tabular} \\
\hline
\end{tabular}
proflik
std
var

Profile likelihood function for probability distribution object
Standard deviation of probability distribution object

Variance of probability distribution object

\section*{Definitions Rayleigh Distribution}

The Rayleigh distribution is a special case of the Weibull distribution. It is often used in communication theory to model scattered signals that reach a receiver by multiple paths.

The Rayleigh distribution uses the following parameter.
\begin{tabular}{l|l|l}
\hline Parameter & Description & Support \\
\hline b & Defining parameter & \(b>0\) \\
\hline
\end{tabular}

The probability density function (pdf) is
\[
f(x \mid b)=\frac{x}{b^{2}} \exp \left\{\frac{-x^{2}}{2 b^{2}}\right\} \quad ; \quad x \geq 0
\]

\section*{Examples Create a Rayleigh Distribution Object Using Default Parameters}

Create a Rayleigh distribution object using the default parameter values.
```

pd = makedist('Rayleigh')
pd =

```

RayleighDistribution

\section*{prob.RayleighDistribution}
```

Rayleigh distribution
B = 1

```

\section*{Create a Rayleigh Distribution Object Using Specified Parameters}

Create a Rayleigh distribution object by specifying the parameter values.
```

pd = makedist('Rayleigh','b',3)
pd =

```
    RayleighDistribution
    Rayleigh distribution
        \(B=3\)

Compute the mean of the distribution.
```

m = mean(pd)

```
m =
3.7599
\begin{tabular}{ll} 
See Also & makedist | fitdist | dfittool \\
Concepts & - "Rayleigh Distribution" on page B-104 \\
& - Class Attributes \\
& - Property Attributes
\end{tabular}
Purpose Rayleigh parameter estimates
Syntax raylfit(data,alpha)

[phat,pci] = raylfit(data,alpha)
Description raylfit(data, alpha) returns the maximum likelihood estimates of theparameter of the Rayleigh distribution given the data in the vector data.[phat,pci] = raylfit(data,alpha) returns the maximum likelihoodestimate and 100(1-alpha)\% confidence interval given the data. Thedefault value of the optional parameter alpha is 0.05 , corresponding to\(95 \%\) confidence intervals.
See Also mle | raylpdf | raylcdf | raylinv | raylstat | raylrnd
How To - "Rayleigh Distribution" on page B-104

Purpose Rayleigh inverse cumulative distribution function
\[
\text { Syntax } \quad X=\operatorname{raylinv}(P, B)
\]

Description \(\quad X=\operatorname{raylinv}(P, B)\) returns the inverse of the Rayleigh cumulative distribution function using the corresponding scale parameter, B at the corresponding probabilities in P. P and B can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input for P or B is expanded to a constant array with the same dimensions as the other input.
Examples \(\quad\)\begin{tabular}{rl}
\(x\) & \(=\operatorname{raylinv}(0.9,1)\) \\
& \(x=\) \\
& 2.1460
\end{tabular}

See Also raylcdf | raylpdf | raylrnd | raylstat
How To
- icdf
- "Rayleigh Distribution" on page B-104

\section*{Purpose}

Rayleigh probability density function

\section*{Syntax \\ Y = raylpdf(X,B)}
\(Y=\operatorname{raylpdf}(X, B)\) computes the Rayleigh pdf at each of the values in \(X\) using the corresponding scale parameter, \(B . X\) and \(B\) can be vectors, matrices, or multidimensional arrays that all have the same size, which is also the size of Y . A scalar input for X or B is expanded to a constant array with the same dimensions as the other input.

The Rayleigh pdf is
\[
y=f(x \mid b)=\frac{x}{b^{2}} e^{\left(\frac{-x^{2}}{2 b^{2}}\right)}
\]

\section*{Examples}
```

x = 0:0.1:3;
p = raylpdf(x,1);
plot(x,p)

```


See Also
pdf | raylcdf | raylinv | raylstat | raylfit | raylrnd
How To . "Rayleigh Distribution" on page B-104

\section*{raylrnd}

Purpose Rayleigh random numbers
Syntax
\(R\) = raylrnd(B)
\(R\) = raylrnd( \(B, v\) )
\(R\) = raylrnd( \(B, m, n\) )

\section*{Description}

\section*{Examples}

How To

See Also random | raylpdf | raylcdf | raylinv | raylstat | raylfit
\(R=\) raylrnd( \(B\) ) returns a matrix of random numbers chosen from the Rayleigh distribution with scale parameter, B. B can be a vector, a matrix, or a multidimensional array. The size of \(R\) is the size of \(B\).
\(R=\) raylrnd( \(B, v\) ) returns a matrix of random numbers chosen from the Rayleigh distribution with parameter \(B\), where \(v\) is a row vector. If \(v\) is a 1 -by- 2 vector, \(R\) is a matrix with \(v(1)\) rows and \(v(2)\) columns. If \(v\) is 1-by- \(\mathrm{n}, \mathrm{R}\) is an n -dimensional array.
\(R=\operatorname{raylrnd}(B, m, n)\) returns a matrix of random numbers chosen from the Rayleigh distribution with parameter \(B\), where scalars \(m\) and \(n\) are the row and column dimensions of R .
```

r = raylrnd(1:5)
r =
1.7986

```
random | raylpdf | raylcdf | raylinv | raylstat | raylfit
- "Rayleigh Distribution" on page B-104

\section*{Purpose}

Rayleigh mean and variance

\section*{Syntax}

Description
\([M, V]=\operatorname{raylstat}(B)\)
\([M, V]=\) raylstat \((B)\) returns the mean of and variance for the Rayleigh distribution with scale parameter B.

The mean of the Rayleigh distribution with parameter \(b\) is \(b \sqrt{\pi / 2}\) and the variance is
\[
\frac{4-\pi}{2} b^{2}
\]
```

Examples
[mn, v] = raylstat(1)
mn =
1.2533
v =
0.4292

```

See Also
raylpdf | raylcdf | raylinv | raylfit | raylrnd
How To . "Rayleigh Distribution" on page B-104

Purpose Residual case order plot

\section*{Syntax \\ rcoplot(r,rint)}

Description
rcoplot( \(r\), rint) displays an errorbar plot of the confidence intervals on the residuals from a regression. The residuals appear in the plot in case order. Inputs \(r\) and rint are outputs from the regress function.

Examples The following plots residuals and prediction intervals from a regression of a linearly additive model to the data in moore. mat:
```

load moore
X = [ones(size(moore,1),1) moore(:,1:5)];
y = moore(:,6);
alpha = 0.05;
[betahat,Ibeta,res,Ires,stats] = regress(y,X,alpha);
rcoplot(res,Ires)

```


The interval around the first residual, shown in red, does not contain zero. This indicates that the residual is larger than expected in \(95 \%\) of new observations, and suggests the data point is an outlier.

See Also regress

\section*{Purpose Add reference curve to plot}
```

Syntax refcurve(p)
refcurve
hcurve = refcurve(...)

```

\section*{Description}
refcurve ( \(p\) ) adds a polynomial reference curve with coefficients \(p\) to the current axes. If \(p\) is a vector with \(n+1\) elements, the curve is:
\(y=p(1) * x^{\wedge} n+p(2) * x^{\wedge}(n-1)+\ldots+p(n) * x+p(n+1)\)
refcurve with no input arguments adds a line along the \(x\) axis.
hcurve \(=\) refcurve(...) returns the handle hcurve to the curve.

\section*{Examples}

\section*{Example 1}

Plot data from a population with a polynomial trend and use refcurve to add both the population and fitted mean functions:
```

p = [1 -2 -1 0];
t = 0:0.1:3;
y = polyval(p,t) + 0.5*randn(size(t));
plot(t,y,'ro')
h = refcurve(p);
set(h,'Color','r')
q = polyfit(t,y,3);
refcurve(q)
legend('Data','Population Mean','Fitted Mean',...
'Location','NW')

```


\section*{Example 2}

Plot trajectories of a batted baseball, with and without air resistance.
Relevant physical constants are:
\begin{tabular}{ll}
\(M=0.145 ;\) & \%Mass (kg) \\
\(R=0.0366 ;\) & \%Radius (m) \\
\(A=p i * R^{\wedge} 2 ;\) & \% Area (m^2) \\
rho = 1.2; & \%Density of air (kg/m^3) \\
\(C=0.5 ;\) & \%Drag coefficient
\end{tabular}
```

D = rho*C*A/2;
% Drag proportional to the square of the speed
g = 9.8; %Acceleration due to gravity (m/s^2)

```

First, simulate the trajectory with drag proportional to the square of the speed, assuming constant acceleration in each time interval:
```

dt = 1e-2; % Simulation time interval (s)
rO = [0 1]; % Initial position (m)
sO = 50; % Initial speed (m/s)
alpha0 = 35; % Initial angle (deg)
v0=s0*[cosd(alphaO) sind(alpha0)]; % Initial velocity (m/s)
r = ro;
v = v0;
trajectory = r0;
while r(2) > 0
a = [0 -g]-(D/M)*norm(v)*v;
v = v + a*dt;
r = r + v*dt + (1/2)*a*(dt^2);
trajectory = [trajectory;r];
end

```

Second, use refcurve to add the drag-free parabolic trajectory (found analytically) to a plot of trajectory:
```

plot(trajectory(:,1),trajectory(:,2),'m','LineWidth',2)
xlim([0,250])
h = refcurve([-g/(2*v0(1)^2),...
(g*r0(1)/v0(1)^2)+(v0(2)/v0(1)),...
(-g*r0(1)^2/(2*v0(1)^2))-(v0(2)*r0(1)/v0(1))+r0(2)]);
set(h,'Color','c','LineWidth',2)
axis equal
ylim([0,50])
grid on
xlabel('Distance (m)')
ylabel('Height (m)')
title('{\bf Baseball Trajectories}')

```

\section*{legend('With Drag','Without Drag')}

Baseball Trajectories


See Also refline | lsline | gline | polyfit

\section*{Purpose Add reference line to plot}

\section*{Syntax \\ Description}
refline (m, b)
refline(coeffs)
refline
hline = refline(...)
refline( \(m, b\) ) adds a reference line with slope \(m\) and intercept \(b\) to the current axes.
refline(coeffs), where coeffs is a two-element coefficient vector, adds the line
\[
y=\operatorname{coeffs}(1) * x+\operatorname{coeffs}(2)
\]
to the figure.
refline with no input arguments is equivalent to lsline.
hline \(=\) refline(...) returns the handle hline to the line.

\section*{Examples}

Add a reference line at the mean of a data scatter and its least-squares line:
\(x=1: 10 ;\)
\(y=x+r a n d n(1,10) ;\)
scatter(x,y,25,'b','*')
lsline
mu = mean(y);
hline = refline([0 mu]);
set(hline, 'Color', 'r')


\section*{See Also}
refcurve | lsline | gline

\section*{Purpose \\ Multiple linear regression}

Syntax
```

b = regress(y,X)
[b,bint] = regress(y,X)
[b,bint,r] = regress(y,X)
[b,bint,r,rint] = regress(y,X)
[b,bint,r,rint,stats] = regress(y,X)
[...] = regress(y,x,alpha)

```

\section*{Description}
\(\mathrm{b}=\) regress \((\mathrm{y}, \mathrm{X})\) returns a \(p\)-by- 1 vector b of coefficient estimates for a multilinear regression of the responses in y on the predictors in \(\mathrm{X} . \mathrm{X}\) is an \(n\)-by- \(p\) matrix of \(p\) predictors at each of \(n\) observations. y is an \(n\)-by- 1 vector of observed responses.
regress treats NaNs in X or y as missing values, and ignores them.
If the columns of \(X\) are linearly dependent, regress obtains a basic solution by setting the maximum number of elements of \(b\) to zero.
[b, bint] \(=\) regress \((y, X)\) returns a \(p\)-by- 2 matrix bint of \(95 \%\) confidence intervals for the coefficient estimates. The first column of bint contains lower confidence bounds for each of the \(p\) coefficient estimates; the second column contains upper confidence bounds.

If the columns of \(X\) are linearly dependent, regress returns zeros in elements of bint corresponding to the zero elements of \(b\).
[ \(b\), bint, \(r\) ] \(=\) regress \((y, X)\) returns an \(n\)-by- 1 vector \(r\) of residuals.
[b,bint,r,rint] = regress \((y, X)\) returns an \(n\)-by- 2 matrix rint of intervals that can be used to diagnose outliers. If the interval rint (i, : ) for observation \(i\) does not contain zero, the corresponding residual is larger than expected in \(95 \%\) of new observations, suggesting an outlier.

In a linear model, observed values of y are random variables, and so are their residuals. Residuals have normal distributions with zero mean but with different variances at different values of the predictors. To put residuals on a comparable scale, they are "Studentized," that is, they are divided by an estimate of their standard deviation that is independent of their value. Studentized residuals have \(t\) distributions with known
degrees of freedom. The intervals returned in rint are shifts of the \(95 \%\) confidence intervals of these \(t\) distributions, centered at the residuals.
[b,bint, r, rint, stats] = regress \((y, X)\) returns a 1-by-4 vector stats that contains, in order, the \(R^{2}\) statistic, the \(F\) statistic and its \(p\) value, and an estimate of the error variance.

Note When computing statistics, X should include a column of 1 s so that the model contains a constant term. The \(F\) statistic and its \(p\) value are computed under this assumption, and they are not correct for models without a constant.

The \(F\) statistic is the test statistic of the F-test on the regression model, for a significant linear regression relationship between the response variable and the predictor variables.

The \(R^{2}\) statistic can be negative for models without a constant, indicating that the model is not appropriate for the data.
[...] = regress(y, X, alpha) uses a 100*(1-alpha)\% confidence level to compute bint and rint.

\section*{Examples}

Load data on cars; identify weight and horsepower as predictors, mileage as the response:
```

load carsmall
x1 = Weight;
x2 = Horsepower; % Contains NaN data
y = MPG;

```

Compute regression coefficients for a linear model with an interaction term:
```

X = [ones(size(x1)) x1 x2 x1.*x2];
b = regress(y,X) % Removes NaN data
b =

```
\[
\begin{array}{r}
60.7104 \\
-0.0102 \\
-0.1882 \\
0.0000
\end{array}
\]

Plot the data and the model:
```

scatter3(x1,x2,y,'filled')
hold on
x1fit = min(x1):100:max(x1);
x2fit = min(x2):10:max(x2);
[X1FIT,X2FIT] = meshgrid(x1fit,x2fit);
YFIT = b(1) + b(2)*X1FIT + b(3)*X2FIT + b(4)*X1FIT.*X2FIT;
mesh(X1FIT,X2FIT,YFIT)
xlabel('Weight')
ylabel('Horsepower')
zlabel('MPG')
view(50,10)

```


Weight
Horsepower

References

See Also

Related
Examples
Related
Examples

\section*{Concepts}
[1] Chatterjee, S., and A. S. Hadi. "Influential Observations, High Leverage Points, and Outliers in Linear Regression." Statistical Science. Vol. 1, 1986, pp. 379-416.

LinearModel | LinearModel.fit | LinearModel.stepwise | mvregress | rcoplot
- "Interpret Linear Regression Results" on page 9-63
- "Linear Regression Workflow" on page 9-43
- "Linear Regression Output and Diagnostic Statistics" on page 9-71

\section*{RegressionBaggedEnsemble}

Superclasses RegressionEnsemble
Purpose Regression ensemble grown by resampling
Description RegressionBaggedEnsemble combines a set of trained weak learner models and data on which these learners were trained. It can predict ensemble response for new data by aggregating predictions from its weak learners.

\section*{Construction \\ ens =}
fitensemble(X,Y,'bag', nlearn, learners,'type', 'regression') creates a bagged regression ensemble. For more information on the syntax, see the fitensemble function reference page.

\section*{Properties}

\section*{CategoricalPredictors}

List of categorical predictors. CategoricalPredictors is a numeric vector with indices from 1 to \(p\), where \(p\) is the number of columns of \(X\).

\section*{CombineWeights}

A string describing how the ensemble combines learner predictions.

\section*{FitInfo}

A numeric array of fit information. The FitInfoDescription property describes the content of this array.

\section*{FitInfoDescription}

String describing the meaning of the FitInfo array.

\section*{FResample}

A numeric scalar between 0 and 1. FResample is the fraction of training data fitensemble resampled at random for every weak learner when constructing the ensemble.

\section*{LearnerNames}

Cell array of strings with names of the weak learners in the ensemble. The name of each learner appears just once. For example, if you have an ensemble of 100 trees, LearnerNames is \{'Tree'\}.

\section*{Method}

A string with the name of the algorithm fitensemble used for training the ensemble.

\section*{ModelParams}

Parameters used in training ens.

\section*{NObservations}

Numeric scalar containing the number of observations in the training data.

\section*{NTrained}

Number of trained learners in the ensemble, a positive scalar.

\section*{PredictorNames}

A cell array of names for the predictor variables, in the order in which they appear in \(X\).

\section*{ReasonForTermination}

A string describing the reason fitensemble stopped adding weak learners to the ensemble.

\section*{Regularization}

A structure containing the result of the regularize method. Use Regularization with shrink to lower resubstitution error and shrink the ensemble.

\section*{Replace}

Boolean flag indicating if training data for weak learners in this ensemble were sampled with replacement. Replace is true for sampling with replacement, false otherwise.

\section*{RegressionBaggedEnsemble}

\section*{ResponseName}

A string with the name of the response variable Y .

\section*{ResponseTransform}

Function handle for transforming scores, or string representing a built-in transformation function. ' none' means no transformation; equivalently, 'none' means @(x)x.

Add or change a ResponseTransform function by dot addressing:
ens.ResponseTransform = @function

\section*{Trained}

The trained learners, a cell array of compact regression models.

\section*{TrainedWeights}

A numeric vector of weights the ensemble assigns to its learners. The ensemble computes predicted response by aggregating weighted predictions from its learners.

\section*{UseObsForLearner}

A logical matrix of size \(N\)-by-NTrained, where \(N\) is the number of rows (observations) in the training data X , and NTrained is the number of trained weak learners. UseObsForLearner (I, J) is true if observation I was used for training learner \(J\), and is false otherwise.

\section*{W}

The scaled weights, a vector with length n , the number of rows in \(X\). The sum of the elements of \(W\) is 1 .

\section*{X}

The matrix of predictor values that trained the ensemble. Each column of \(X\) represents one variable, and each row represents one observation.

\section*{Y}

The numeric column vector with the same number of rows as \(X\) that trained the ensemble. Each entry in \(Y\) is the response to the data in the corresponding row of X .

\section*{Methods}
\begin{tabular}{ll} 
oobLoss \\
oobPredict & \begin{tabular}{l} 
Out-of-bag regression error \\
Predict out-of-bag response of \\
ensemble
\end{tabular} \\
Inherited Methods & \\
compact & \begin{tabular}{l} 
Create compact regression \\
ensemble \\
Cross validate ensemble
\end{tabular} \\
crossval & \begin{tabular}{l} 
Cross validate shrinking \\
(pruning) ensemble
\end{tabular} \\
cvshrink & \begin{tabular}{l} 
Find weights to minimize \\
resubstitution error plus penalty \\
term
\end{tabular} \\
regularize & \begin{tabular}{l} 
Regression error by resubstitution
\end{tabular} \\
resubLoss & \begin{tabular}{l} 
Predict response of ensemble by \\
resubstitution
\end{tabular} \\
resubPredict & \begin{tabular}{l} 
Resume training ensemble
\end{tabular} \\
resume & \begin{tabular}{l} 
Prune ensemble
\end{tabular} \\
shrink & \begin{tabular}{l} 
Regression error \\
Predict response of ensemble
\end{tabular} \\
loss & \begin{tabular}{l} 
Estimates of predictor importance
\end{tabular} \\
predict & \begin{tabular}{l} 
Remove members of compact \\
regression ensemble
\end{tabular} \\
removeLearners &
\end{tabular}

\section*{RegressionBaggedEnsemble}

Copy
Semantics
Examples

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

Create a bagged regression ensemble to predict the mileage of cars in the carsmall data set based on their engine displacement, horsepower, and weight:
```

load carsmall
X = [Displacement Horsepower Weight];
ens = fitensemble(X,MPG,'bag',100,'Tree',...
'type','regression')
ens =
classreg.learning.regr.RegressionBaggedEnsemble:
PredictorNames: {'x1' 'x2' 'x3'}
CategoricalPredictors: []
ResponseName: 'Y'
ResponseTransform: 'none'
NObservations: 94
NTrained: 100
Method: 'Bag'
LearnerNames: {'Tree'}
ReasonForTermination: [1x77 char]
FitInfo: []
FitInfoDescription: 'None'
Regularization: []
FResample: 1
Replace: 1
UseObsForLearner: [94x100 logical]

```

Predict the mileage of a car whose characteristics are the average of those of the first 10 cars:
```

car10 = mean(X(1:10,:));
predict(ens,car10)

```
14.6569

\author{
See Also \\ RegressionEnsemble | fitensemble
}

\section*{RegressionEnsemble}

Superclasses CompactRegressionEnsemble

\section*{Purpose Ensemble regression}

Description RegressionEnsemble combines a set of trained weak learner models and data on which these learners were trained. It can predict ensemble response for new data by aggregating predictions from its weak learners.

\section*{Construction}
ens \(=\) fitensemble( \(X, Y\), method, nlearn,learners) returns an ensemble model that can predict responses to data. The ensemble consists of models listed in learners. For more information on the syntax, see the fitensemble function reference page.
ens = fitensemble(X,Y,method, nlearn,learners, Name, Value) returns an ensemble model with additional options specified by one or more Name, Value pair arguments. For more information on the syntax, see the fitensemble function reference page.

\section*{Properties}

\section*{CategoricalPredictors}

List of categorical predictors. CategoricalPredictors is a numeric vector with indices from 1 to \(p\), where \(p\) is the number of columns of X .

\section*{CombineWeights}

A string describing how the ensemble combines learner predictions.

\section*{FitInfo}

A numeric array of fit information. The FitInfoDescription property describes the content of this array.

\section*{FitInfoDescription}

String describing the meaning of the FitInfo array.

\section*{LearnerNames}

Cell array of strings with names of the weak learners in the ensemble. The name of each learner appears just once. For example, if you have an ensemble of 100 trees, LearnerNames is \{'Tree'\}.

\section*{Method}

A string with the name of the algorithm fitensemble used for training the ensemble.

\section*{ModelParams}

Parameters used in training ens.

\section*{NObservations}

Numeric scalar containing the number of observations in the training data.

\section*{NTrained}

Number of trained learners in the ensemble, a positive scalar.

\section*{PredictorNames}

A cell array of names for the predictor variables, in the order in which they appear in \(X\).

\section*{ReasonForTermination}

A string describing the reason fitensemble stopped adding weak learners to the ensemble.

\section*{Regularization}

A structure containing the result of the regularize method. Use Regularization with shrink to lower resubstitution error and shrink the ensemble.

\section*{ResponseName}

A string with the name of the response variable Y .

\section*{ResponseTransform}

\section*{RegressionEnsemble}

Function handle for transforming scores, or string representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x.

Add or change a ResponseTransform function by dot addressing:
ens.ResponseTransform = @function

\section*{Trained}

The trained learners, a cell array of compact regression models.

\section*{TrainedWeights}

A numeric vector of weights the ensemble assigns to its learners. The ensemble computes predicted response by aggregating weighted predictions from its learners.

\section*{w}

The scaled weights, a vector with length n , the number of rows in \(X\). The sum of the elements of \(W\) is 1 .

\section*{X}

The matrix of predictor values that trained the ensemble. Each column of \(X\) represents one variable, and each row represents one observation.

\section*{Y}

The numeric column vector with the same number of rows as \(X\) that trained the ensemble. Each entry in \(Y\) is the response to the data in the corresponding row of \(X\).

\section*{Methods}
\begin{tabular}{ll} 
compact & \begin{tabular}{l} 
Create compact regression \\
ensemble
\end{tabular} \\
crossval & Cross validate ensemble \\
cvshrink & \begin{tabular}{l} 
Cross validate shrinking \\
(pruning) ensemble
\end{tabular}
\end{tabular}

\section*{RegressionEnsemble}
\begin{tabular}{ll} 
regularize & \begin{tabular}{l} 
Find weights to minimize \\
resubstitution error plus penalty \\
term
\end{tabular} \\
resubLoss & Regression error by resubstitution \\
resubPredict & \begin{tabular}{l} 
Predict response of ensemble by \\
resubstitution
\end{tabular} \\
resume & \begin{tabular}{l} 
Resume training ensemble
\end{tabular} \\
shrink & Prune ensemble
\end{tabular}

\section*{Inherited Methods}

\section*{loss}
predict
predictorImportance
removeLearners

Find weights to minimize
resubstitution error plus penalty
term
Regression error by resubstitution
Predict response of ensemble by resubstitution

Prune ensemble

Regression error
Predict response of ensemble
Estimates of predictor importance
Remove members of compact regression ensemble

\section*{Copy Semantics}

\section*{Examples}

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

Create a boosted regression ensemble to predict the mileage of cars in the carsmall data set based on their weights and numbers of cylinders:
```

load carsmall
learner = RegressionTree.template('MinParent',20);
ens = fitensemble([Weight, Cylinders],MPG,...
'LSBoost',100,learner,'PredictorNames',{'W','C'},...
'categoricalpredictors',2)
ens =
classreg.learning.regr.RegressionEnsemble:
PredictorNames: {'W' 'C'}
CategoricalPredictors: 2

```

\section*{RegressionEnsemble}
```

 ResponseName: 'Response'
 ResponseTransform: 'none'
 NObservations: 94
 NTrained: 100
 Method: 'LSBoost'
 LearnerNames: {'Tree'}
 ReasonForTermination: [1x77 char]
FitInfo: [100x1 double]
FitInfoDescription: [2x83 char]
Regularization: []

```

Predict the mileage of 4,000-pound cars with 4,6 , and 8 cylinders:
```

mileage4K = predict(ens,[4000 4; 4000 6; 4000 8])

```
mileage4K =
    20.0294
    19.4206
    15.5000

See Also ClassificationEnsemble | fitensemble | CompactRegressionEnsemble

\section*{RegressionPartitionedEnsemble}

\section*{Superclasses RegressionPartitionedModel}

Purpose Cross-validated regression ensemble
Description RegressionPartitionedEnsemble is a set of regression ensembles trained on cross-validated folds. Estimate the quality of classification by cross validation using one or more "kfold" methods: kfoldfun, kfoldLoss, or kfoldPredict. Every "kfold" method uses models trained on in-fold observations to predict response for out-of-fold observations. For example, suppose you cross validate using five folds. In this case, every training fold contains roughly \(4 / 5\) of the data and every test fold contains roughly \(1 / 5\) of the data. The first model stored in Trained \(\{1\}\) was trained on \(X\) and \(Y\) with the first \(1 / 5\) excluded, the second model stored in Trained \(\{2\}\) was trained on \(X\) and \(Y\) with the second \(1 / 5\) excluded, and so on. When you call kfoldPredict, it computes predictions for the first \(1 / 5\) of the data using the first model, for the second \(1 / 5\) of data using the second model and so on. In short, response for every observation is computed by kfoldPredict using the model trained without this observation.

\section*{Construction}
cvens = crossval(ens) creates a cross-validated ensemble from ens, a regression ensemble. For syntax details, see the crossval method reference page.
cvens = fitensemble(X,Y,method, nlearn,learners, name, value) creates a cross-validated ensemble when name is one of 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. For syntax details, see the fitensemble function reference page.

\section*{Input Arguments}

\section*{ens}

A regression ensemble constructed with fitensemble.

\section*{RegressionPartitionedEnsemble}

\section*{Properties CategoricalPredictors}

List of categorical predictors. CategoricalPredictors is a numeric vector with indices from 1 to \(p\), where \(p\) is the number of columns of X .

\section*{CrossValidatedModel}

Name of the cross-validated model, a string.

\section*{Kfold}

Number of folds used in a cross-validated tree, a positive integer.

\section*{ModelParams}

Object holding parameters of tree.

\section*{NObservations}

Numeric scalar containing the number of observations in the training data.

\section*{NTrainedPerFold}

Vector of Kfold elements. Each entry contains the number of trained learners in this cross-validation fold.

\section*{Partition}

The partition of class cvpartition used in creating the cross-validated ensemble.

\section*{PredictorNames}

A cell array of names for the predictor variables, in the order in which they appear in X .

\section*{ResponseName}

Name of the response variable Y , a string.

\section*{ResponseTransform}

Function handle for transforming scores, or string representing a built-in transformation function. 'none' means no transformation; equivalently, 'none' means @(x)x.

Add or change a ResponseTransform function by dot addressing: ens.ResponseTransform = @function

\section*{Trainable}

Cell array of ensembles trained on cross-validation folds. Every ensemble is full, meaning it contains its training data and weights.

\section*{Trained}

Cell array of compact ensembles trained on cross-validation folds.

\section*{W}

The scaled weights, a vector with length n , the number of rows in \(X\).

\section*{X}

A matrix of predictor values. Each column of \(X\) represents one variable, and each row represents one observation.

\section*{Y}

A numeric column vector with the same number of rows as \(X\). Each entry in \(Y\) is the response to the data in the corresponding row of \(X\).

\section*{Methods}
\begin{tabular}{ll} 
kfoldLoss & \begin{tabular}{l} 
Cross-validation loss of \\
partitioned regression ensemble
\end{tabular} \\
resume & Resume training ensemble
\end{tabular}

\section*{Inherited Methods}
\begin{tabular}{ll} 
kfoldfun & Cross validate function \\
kfoldLoss & \begin{tabular}{l} 
Cross-validation loss of \\
partitioned regression model
\end{tabular} \\
kfoldPredict & \begin{tabular}{l} 
Predict response for observations \\
not used for training.
\end{tabular}
\end{tabular}

\section*{RegressionPartitionedEnsemble}
CopySemanticsValue. To learn how value classes affect copy operations, see CopyingObjects in the MATLAB documentation.
Examples Construct a partitioned regression ensemble, and examine the cross-validation losses for the folds:
load carsmall
XX = [Cylinders Displacement Horsepower Weight];
YY = MPG;
rens = fitensemble(XX,YY,'LSBoost',100,'Tree');
cvrens = crossval(rens);
L = kfoldLoss(cvrens,'mode','individual')
L =
42.4468
12.3158
65.9432
39.0019
30.5908
16.6225
17.3071
46.17698.056112.9689
See Also ClassificationPartitionedEnsemble | RegressionPartitionedModel | RegressionEnsemble

\section*{RegressionPartitionedModel}

\section*{Purpose \\ Cross-validated regression model}

Description

\section*{Construction}
cvmodel \(=\) crossval(tree) creates a cross-validated classification model from a regression tree. For syntax details, see the crossval method reference page.
cvmodel = RegressionTree.fit(X,Y, name, value) creates a cross-validated model when name is one of 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'. For syntax details, see the RegressionTree.fit function reference page.

\section*{Input Arguments}

\section*{tree}

A regression tree constructed with RegressionTree.fit.

\section*{Properties}

\section*{CategoricalPredictors}

List of categorical predictors. CategoricalPredictors is a numeric vector with indices from 1 to \(p\), where \(p\) is the number of columns of \(X\).

\section*{RegressionPartitionedModel}

\section*{CrossValidaredModel}

Name of the cross-validated model, a string.

\section*{Kfold}

Number of folds used in a cross-validated tree, a positive integer.

\section*{ModelParams}

Object holding parameters of tree.

\section*{Partition}

The partition of class cvpartition used in the cross-validated model.

\section*{PredictorNames}

A cell array of names for the predictor variables, in the order in which they appear in X .

\section*{ResponseName}

Name of the response variable Y , a string.

\section*{ResponseTransform}

Function handle for transforming the raw response values (mean squared error). The function handle should accept a matrix of response values and return a matrix of the same size. The default string 'none' means @(x)x, or no transformation.

Add or change a ResponseTransform function by dot addressing:
ctree.ResponseTransform = @function

\section*{Trained}

The trained learners, a cell array of compact regression models.

\section*{W}

The scaled weights, a vector with length n , the number of rows in \(X\).

\section*{RegressionPartitionedModel}

\section*{X}

A matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

\section*{Y}

A numeric column vector with the same number of rows as \(X\). Each entry in Y is the response to the data in the corresponding row of X .

\section*{Methods}
\begin{tabular}{ll} 
kfoldfun & Cross validate function \\
kfoldLoss & \begin{tabular}{l} 
Cross-validation loss of \\
partitioned regression model
\end{tabular} \\
kfoldPredict & \begin{tabular}{l} 
Predict response for observations \\
not used for training.
\end{tabular}
\end{tabular}

\section*{Copy Semantics \\ Value. To learn how value classes affect copy operations, see Copying}

\section*{Examples}

Evaluate the cross-validation error of the carsmall data using Horsepower and Weight as predictor variables for mileage (MPG):
load carsmall
X = [Horsepower Weight];
tree = RegressionTree.fit(X,MPG);
cvtree = crossval(tree);
L = kfoldLoss(cvtree)
L =
26.4414

See Also \(\quad \begin{aligned} & \text { RegressionPartitionedEnsemble | } \\ & \text { ClassificationPartitionedModel }\end{aligned}\)

\section*{RegressionTree}

\section*{Superclasses CompactRegressionTree}

\section*{Purpose Regression tree}

Description A decision tree with binary splits for regression. An object of class RegressionTree can predict responses for new data with the predict method. The object contains the data used for training, so can compute resubstitution predictions.

Construction
tree \(=\) RegressionTree.fit \((X, Y)\) returns a regression tree based on the input variables (also known as predictors, features, or attributes) \(X\) and output (response) \(Y\). tree is a binary tree where each branching node is split based on the values of a column of \(X\).
tree \(=\) RegressionTree.fit(X,Y,Name, Value) fits a tree with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{X}

A matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

RegressionTree.fit considers NaN values in X as missing values. RegressionTree.fit does not use observations with all missing values for X the fit. RegressionTree.fit uses observations with some missing values for \(X\) to find splits on variables for which these observations have valid values.

\section*{Y}

A numeric column vector with the same number of rows as \(X\). Each entry in \(Y\) is the response to the data in the corresponding row of \(X\).

RegressionTree.fit considers NaN values in \(Y\) to be missing values. RegressionTree.fit does not use observations with missing values for Y in the fit.

\section*{RegressionTree}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{CategoricalPredictors}

List of categorical predictors. Pass CategoricalPredictors as one of:
- A numeric vector with indices from 1 to \(p\), where \(p\) is the number of columns of \(X\).
- A logical vector of length \(p\), where a true entry means that the corresponding column of X is a categorical variable.
- 'all', meaning all predictors are categorical.
- A cell array of strings, where each element in the array is the name of a predictor variable. The names must match entries in the PredictorNames property.
- A character matrix, where each row of the matrix is a name of a predictor variable. Pad the names with extra blanks so each row of the character matrix has the same length.

\section*{Default: []}

\section*{crossval}

Flag to grow a cross-validated decision tree. Possible value are 'on' or 'off'.

If 'on', RegressionTree.fit grows a cross-validated decision tree with 10 folds. You can override this cross-validation setting using one of the 'kfold', 'holdout', 'leaveout', or 'cvpartition' name-value pair arguments. Note that you can only use one of these four options ('kfold', 'holdout',

\section*{RegressionTree}
'leaveout', or 'cvpartition') at a time when creating a cross-validated tree.

Alternatively, cross-validate tree later using the crossval method.

Default: 'off'

\section*{cvpartition}

Partition created with cvpartition to use in cross-validated tree.
Note that if you use 'cvpartition', you cannot use any of the 'kfold', 'holdout', or 'leaveout' name-value pair arguments.

\section*{holdout}

Holdout validation tests the specified fraction of the data, and uses the rest of the data for training. Specify a numeric scalar from 0 to 1 .

Note that if you use 'holdout', you cannot use any of the 'cvpartition', 'kfold', or 'leaveout' name-value pair arguments.

\section*{kfold}

Number of folds to use in a cross-validated tree, a positive integer.
Note that if you use 'kfold', you cannot use any of the 'cvpartition', 'holdout', or 'leaveout' name-value pair arguments.

Default: 10

\section*{leaveout}

Use leave-one-out cross validation by setting to 'on'.
Note that if you use 'leaveout', you cannot use any of the 'cvpartition', 'holdout', or 'kfold' name-value pair arguments.

\section*{MergeLeaves}

When 'on', RegressionTree merges leaves that originate from the same parent node, and that give a sum of risk values greater or equal to the risk associated with the parent node. When 'off', RegressionTree does not merge leaves.

Default: 'on'

\section*{MinLeaf}

Each leaf has at least MinLeaf observations per tree leaf. If you supply both MinParent and MinLeaf, RegressionTree uses the setting that gives larger leaves: MinParent=max (MinParent,2*MinLeaf).

Default: 1

\section*{MinParent}

Each branch node in the tree has at least MinParent observations. If you supply both MinParent and MinLeaf, RegressionTree uses the setting that gives larger leaves: MinParent=max (MinParent, 2*MinLeaf).

Default: 10

\section*{NVarToSample}

Number of predictors to select at random for each split. Can be a positive integer or 'all', which means use all available predictors.

Default: 'all'

\section*{PredictorNames}

A cell array of names for the predictor variables, in the order in which they appear in \(X\).

\section*{RegressionTree}

Default: \{'x1','x2',...\}

\section*{Prune}

When 'on', RegressionTree computes the full tree and the optimal sequence of pruned subtrees. When 'off' RegressionTree computes the full tree without pruning.

Default: 'on'

\section*{PruneCriterion}

String with the pruning criterion, always 'error'.
Default: 'error'

\section*{QEToler}

Defines tolerance on quadratic error per node for regression trees. Splitting nodes stops when quadratic error per node drops below QEToler*QED, where QED is the quadratic error for the entire data computed before the decision tree is grown.

Default: 1e-6

\section*{ResponseName}

Name of the response variable Y , a string.
Default: ' \(Y\) '

\section*{ResponseTransform}

Function handle for transforming the raw response values. The function handle should accept a matrix of response values and return a matrix of the same size. The default string ' none ' means \(@(x) x\), or no transformation.

Add or change a ResponseTransform function by dot addressing:
tree.ResponseTransform = @function
Default: 'none'

\section*{SplitCriterion}

Criterion for choosing a split, always the string 'MSE ', meaning mean squared error.

Default: 'MSE'

\section*{Surrogate}

String describing whether to find surrogate decision splits at each branch node. Specify as 'on', 'off', 'all', or a positive scalar value.
- When 'on', RegressionTree.fit finds at most 10 surrogate splits at each branch node.
- When set to a positive integer value, RegressionTree.fit finds at most the specified number of surrogate splits at each branch node.
- When set to 'all', RegressionTree.fit finds all surrogate splits at each branch node. The 'all' setting can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values. The setting also enables you to compute measures of predictive association between predictors.

Default: 'off'

\section*{Weights}

Vector of observation weights. The length of weights is the number of rows in \(X\).

Default: ones(size(X,1),1)

\section*{RegressionTree}

\section*{Properties}

\section*{CategoricalPredictors}

List of categorical predictors, a numeric vector with indices from 1 to \(p\), where \(p\) is the number of columns of \(X\).

\section*{CatSplit}

An \(n\)-by- 2 cell array, where n is the number of categorical splits in tree. Each row in CatSplit gives left and right values for a categorical split. For each branch node with categorical split j based on a categorical predictor variable \(z\), the left child is chosen if \(z\) is in CatSplit \((j, 1)\) and the right child is chosen if \(z\) is in CatSplit ( \(\mathrm{j}, 2\) ). The splits are in the same order as nodes of the tree. Nodes for these splits can be found by running cuttype and selecting 'categorical' cuts from top to bottom.

\section*{Children}

An \(n\)-by- 2 array containing the numbers of the child nodes for each node in tree, where \(n\) is the number of nodes. Leaf nodes have child node 0 .

\section*{CutCategories}

An \(n\)-by- 2 cell array of the categories used at branches in tree, where \(n\) is the number of nodes. For each branch node \(i\) based on a categorical predictor variable x , the left child is chosen if x is among the categories listed in CutCategories \{i, 1\}, and the right child is chosen if \(x\) is among those listed in CutCategories \(\{i, 2\}\). Both columns of CutCategories are empty for branch nodes based on continuous predictors and for leaf nodes.

CutVar contains the cut points for 'continuous ' cuts, and CutCategories contains the set of categories.

\section*{CutPoint}

An \(n\)-element vector of the values used as cut points in tree, where \(n\) is the number of nodes. For each branch node i based on a continuous predictor variable \(x\), the left child is chosen if \(x<\) CutPoint (i) and the right child is chosen if \(x>=\) CutPoint(i).

CutPoint is NaN for branch nodes based on categorical predictors and for leaf nodes.

\section*{CutType}

An \(n\)-element cell array indicating the type of cut at each node in tree, where \(n\) is the number of nodes. For each node i, CutType\{i\} is:
- 'continuous' - If the cut is defined in the form \(\mathrm{x}<\mathrm{v}\) for a variable x and cut point v .
- 'categorical' - If the cut is defined by whether a variable \(x\) takes a value in a set of categories.
- ' ' - If i is a leaf node.

CutVar contains the cut points for 'continuous ' cuts, and CutCategories contains the set of categories.

\section*{CutVar}

An \(n\)-element cell array of the names of the variables used for branching in each node in tree, where \(n\) is the number of nodes. These variables are sometimes known as cut variables. For leaf nodes, CutVar contains an empty string.

CutVar contains the cut points for 'continuous' cuts, and CutCategories contains the set of categories.

\section*{IsBranch}

An \(n\)-element logical vector ib that is true for each branch node and false for each leaf node of tree.

\section*{ModelParams}

Object holding parameters of tree.

\section*{NObservations}

\section*{RegressionTree}

Number of observations in the training data, a numeric scalar. NObservations can be less than the number of rows of input data \(X\) when there are missing values in \(X\) or response \(Y\).

\section*{NodeErr}

An \(n\)-element vector e of the errors of the nodes in tree, where \(n\) is the number of nodes. \(e(i)\) is the misclassification probability for node i.

\section*{NodeMean}

An \(n\)-element numeric array with mean values in each node of tree, where \(n\) is the number of nodes in the tree. Every element in NodeMean is the average of the true \(Y\) values over all observations in the node.

\section*{NodeProb}

An \(n\)-element vector p of the probabilities of the nodes in tree, where \(n\) is the number of nodes. The probability of a node is computed as the proportion of observations from the original data that satisfy the conditions for the node. This proportion is adjusted for any prior probabilities assigned to each class.

\section*{NodeRisk}

An \(n\)-element vector of the risk of the nodes in the tree, where \(n\) is the number of nodes. The risk for each node is the node error weighted by the node probability.

\section*{NodeSize}

An \(n\)-element vector sizes of the sizes of the nodes in tree, where \(n\) is the number of nodes. The size of a node is defined as the number of observations from the data used to create the tree that satisfy the conditions for the node.

\section*{NumNodes}

The number of nodes n in tree.

\section*{Parent}

\section*{RegressionTree}

An \(n\)-element vector \(p\) containing the number of the parent node for each node in tree, where \(n\) is the number of nodes. The parent of the root node is 0 .

\section*{PredictorNames}

A cell array of names for the predictor variables, in the order in which they appear in X.

\section*{PruneAlpha}

Numeric vector with one element per pruning level. If the pruning level ranges from 0 to \(M\), then PruneAlpha has \(M+1\) elements sorted in ascending order. PruneAlpha(1) is for pruning level 0 (no pruning), PruneAlpha(2) is for pruning level 1, and so on.

\section*{PruneList}

An \(n\)-element numeric vector with the pruning levels in each node of tree, where \(n\) is the number of nodes. The pruning levels range from 0 (no pruning) to \(M\), where \(M\) is the distance between the deepest leaf and the root node.

\section*{ResponseName}

Name of the response variable Y , a string.

\section*{ResponseTransform}

Function handle for transforming the raw response values (mean squared error). The function handle should accept a matrix of response values and return a matrix of the same size. The default string 'none' means @(x)x, or no transformation.

Add or change a ResponseTransform function by dot addressing:
tree. ResponseTransform = @function

\section*{SurrCutCategories}

An \(n\)-element cell array of the categories used for surrogate splits in tree, where \(n\) is the number of nodes in tree. For each node k, SurrCutCategories \(\{k\}\) is a cell array. The

\section*{RegressionTree}
length of SurrCutCategories \(\{\mathrm{k}\}\) is equal to the number of surrogate predictors found at this node. Every element of SurrCutCategories \(\{\mathrm{k}\}\) is either an empty string for a continuous surrogate predictor, or is a two-element cell array with categories for a categorical surrogate predictor. The first element of this two-element cell array lists categories assigned to the left child by this surrogate split, and the second element of this two-element cell array lists categories assigned to the right child by this surrogate split. The order of the surrogate split variables at each node is matched to the order of variables in SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutCategories contains an empty cell.

\section*{SurrCutFlip}

An \(n\)-element cell array of the numeric cut assignments used for surrogate splits in tree, where \(n\) is the number of nodes in tree. For each node k, SurrCutFlip \(\{\mathrm{k}\}\) is a numeric vector. The length of SurrCutFlip\{k\} is equal to the number of surrogate predictors found at this node. Every element of SurrCutFlip\{k\} is either zero for a categorical surrogate predictor, or a numeric cut assignment for a continuous surrogate predictor. The numeric cut assignment can be either -1 or +1 . For every surrogate split with a numeric cut \(C\) based on a continuous predictor variable \(Z\), the left child is chosen if \(Z<C\) and the cut assignment for this surrogate split is +1 , or if \(Z \geq C\) and the cut assignment for this surrogate split is -1 . Similarly, the right child is chosen if \(Z \geq C\) and the cut assignment for this surrogate split is +1 , or if \(Z<C\) and the cut assignment for this surrogate split is -1 . The order of the surrogate split variables at each node is matched to the order of variables in SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutFlip contains an empty array.

\section*{SurrCutPoint}

An \(n\)-element cell array of the numeric values used for surrogate splits in tree, where \(n\) is the number of nodes in tree. For each node \(k\), SurrCutPoint \(\{k\}\) is a numeric vector. The length of

\section*{RegressionTree}

SurrCutPoint \(\{\mathrm{k}\}\) is equal to the number of surrogate predictors found at this node. Every element of SurrCutPoint \(\{k\}\) is either NaN for a categorical surrogate predictor, or a numeric cut for a continuous surrogate predictor. For every surrogate split with a numeric cut \(C\) based on a continuous predictor variable \(Z\), the left child is chosen if \(Z<C\) and SurrCutFlip for this surrogate split is -1 . Similarly, the right child is chosen if \(Z \geq C\) and SurrCutFlip for this surrogate split is +1 , or if \(Z<C\) and SurrCutFlip for this surrogate split is -1 . The order of the surrogate split variables at each node is matched to the order of variables returned by SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutPoint contains an empty cell.

\section*{SurrCutType}

An \(n\)-element cell array indicating types of surrogate splits at each node in tree, where \(n\) is the number of nodes in tree. For each node k, SurrCutType \(\{\mathrm{k}\}\) is a cell array with the types of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The order of the surrogate split variables at each node is matched to the order of variables in SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutType contains an empty cell. A surrogate split type can be either 'continuous' if the cut is defined in the form \(\mathrm{Z}<\mathrm{V}\) for a variable Z and cut point V or 'categorical' if the cut is defined by whether \(Z\) takes a value in a set of categories.

\section*{SurrCutVar}

An \(n\)-element cell array of the names of the variables used for surrogate splits in each node in tree, where \(n\) is the number of nodes in tree. Every element of SurrCutVar is a cell array with the names of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only

\section*{RegressionTree}
variables with the positive predictive measure are included. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrCutVar contains an empty cell.

\section*{SurrVarAssoc}

An \(n\)-element cell array of the predictive measures of association for surrogate splits in tree, where \(n\) is the number of nodes in tree. For each node k, SurrVarAssoc \(\{k\}\) is a numeric vector. The length of SurrVarAssoc \(\{k\}\) is equal to the number of surrogate predictors found at this node. Every element of SurrVarAssoc \{k\} gives the predictive measure of association between the optimal split and this surrogate split. The order of the surrogate split variables at each node is the order of variables in SurrCutVar. The optimal-split variable at this node does not appear. For nonbranch (leaf) nodes, SurrVarAssoc contains an empty cell.

\section*{W}

The scaled weights, a vector with length n , the number of rows in \(X\).

\section*{X}

A matrix of predictor values. Each column of \(X\) represents one variable, and each row represents one observation.

\section*{Y}

A numeric column vector with the same number of rows as X. Each entry in Y is the response to the data in the corresponding row of X .

\section*{Methods}
\begin{tabular}{ll} 
compact & Compact regression tree \\
crossval & Cross-validated decision tree \\
cvloss & \begin{tabular}{l} 
Regression error by cross \\
validation
\end{tabular} \\
fit & Binary decision tree for regression
\end{tabular}
prune
resubLoss
resubPredict
template
Inherited Methods
\begin{tabular}{ll} 
loss & Regression error \\
meanSurrVarAssoc & \begin{tabular}{l} 
Mean predictive measure of \\
association for surrogate splits in \\
decision tree
\end{tabular} \\
predict & \begin{tabular}{l} 
Predict response of regression \\
tree
\end{tabular} \\
predictorImportance & \begin{tabular}{l} 
Estimates of predictor importance \\
view
\end{tabular} \\
& View tree
\end{tabular}

Copy
Semantics
Examples

Produce sequence of subtrees by pruning

Regression error by resubstitution
Predict resubstitution response of tree

Create regression template

Mean predictive measure of association for surrogate splits in decision tree

Predict response of regression tree

Estimates of predictor importance View tree

Value. To learn how value classes affect copy operations, see Copying Objects in the MATLAB documentation.

Load the data in carsmall.mat, and make a regression tree to predict the mileage of cars based on their weights and numbers of cylinders:

\section*{RegressionTree}
```

load carsmall
tree = RegressionTree.fit([Weight, Cylinders],MPG,...
'categoricalpredictors',2,'MinParent',20,...
'PredictorNames',{'W','C'})
tree =
RegressionTree
PredictorNames: {'W' 'C'}
ResponseName: 'Y'
ResponseTransform: 'none'
CategoricalPredictors: 2
NObservations: 94

```
Properties, MethodsPredict the mileage of 4,000 -pound cars with 4,6 , and 8 cylinders:

                    mileage4K = predict(tree,[4000 4; 4000 6; 4000 8])

                    mileage4K =

            19.2778

            19.2778

            14.3889
See Also ClassificationTree | RegressionEnsemble | RegressionTree.fit | CompactRegressionTree | predict
Tutorials - "Classification Trees and Regression Trees" on page 15-30
```

Purpose Regression diagnostics
Syntax regstats(y,x,model)
stats = regstats(...)
stats = regstats(y,X,model,whichstats)

```

\section*{Description}
regstats ( \(y, x\), model) performs a multilinear regression of the responses in y on the predictors in X . X is an \(n\)-by- \(p\) matrix of \(p\) predictors at each of \(n\) observations. y is an \(n\)-by- 1 vector of observed responses.

Note By default, regstats adds a first column of 1s to \(X\), corresponding to a constant term in the model. Do not enter a column of 1s directly into X .

The optional input model controls the regression model. By default, regstats uses a linear additive model with a constant term. model can be any one of the following strings:
- 'linear' - Constant and linear terms (the default)
- 'interaction' - Constant, linear, and interaction terms
- 'quadratic' - Constant, linear, interaction, and squared terms
- 'purequadratic' - Constant, linear, and squared terms

Alternatively, model can be a matrix of model terms accepted by the x2fx function. See x2fx for a description of this matrix and for a description of the order in which terms appear. You can use this matrix to specify other models including ones without a constant term.

With this syntax, the function displays a graphical user interface (GUI) with a list of diagnostic statistics, as shown in the following figure.


When you select check boxes corresponding to the statistics you want to compute and click OK, regstats returns the selected statistics to the MATLAB workspace. The names of the workspace variables are displayed on the right-hand side of the interface. You can change the name of the workspace variable to any valid MATLAB variable name.
stats \(=\) regstats(...) creates the structure stats, whose fields contain all of the diagnostic statistics for the regression. This syntax does not open the GUI. The fields of stats are listed in the following table.
\begin{tabular}{l|l}
\hline Field & Description \\
\hline\(Q\) & \(Q\) from the \(Q R\) decomposition of the design matrix \\
\hline R & \(R\) from the \(Q R\) decomposition of the design matrix \\
\hline beta & Regression coefficients \\
\hline covb & Covariance of regression coefficients \\
\hline yhat & Fitted values of the response data \\
\hline\(r\) & Residuals \\
\hline mse & Mean squared error \\
\hline rsquare & \(R^{2}\) statistic \\
\hline adjrsquare & Adjusted \(R^{2}\) statistic \\
\hline leverage & Leverage \\
\hline hatmat & Hat matrix \\
\hline s2_i & Delete-1 variance \\
\hline beta_i & Delete-1 coefficients \\
\hline standres & Standardized residuals \\
\hline studres & Studentized residuals \\
\hline dfbetas & Scaled change in regression coefficients \\
\hline dffit & Change in fitted values \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Field & Description \\
\hline dffits & Scaled change in fitted values \\
\hline covratio & Change in covariance \\
\hline cookd & Cook's distance \\
\hline tstat & \(t\) statistics and \(p\)-values for coefficients \\
\hline fstat & \(F\) statistic and \(p\)-value \\
\hline dwstat & Durbin-Watson statistic and \(p\)-value \\
\hline
\end{tabular}

Note that the fields names of stats correspond to the names of the variables returned to the MATLAB workspace when you use the GUI. For example, stats.beta corresponds to the variable beta that is returned when you select Coefficients in the GUI and click OK.
stats \(=\) regstats \((y, X\), model, whichstats) returns only the statistics that you specify in whichstats. whichstats can be a single string such as 'leverage' or a cell array of strings such as \{'leverage' 'standres' 'studres'\}. Set whichstats to 'all' to return all of the statistics.

Note The \(F\) statistic is computed under the assumption that the model contains a constant term. It is not correct for models without a constant. The \(R^{2}\) statistic can be negative for models without a constant, which indicates that the model is not appropriate for the data.

Examples Open the regstats GUI using data from hald.mat:
```

load hald
regstats(heat,ingredients,'linear');

```

Select Fitted Values and Residuals in the GUI:


Click OK to export the fitted values and residuals to the MATLAB workspace in variables named yhat and \(r\), respectively.

You can create the same variables using the stats output, without opening the GUI:
```

whichstats = {'yhat','r'};
stats = regstats(heat,ingredients,'linear',whichstats);
yhat = stats.yhat;
r = stats.r;

```

\section*{References}

See Also

\section*{Related Examples}

\section*{Concepts}
[1] Belsley, D. A., E. Kuh, and R. E. Welsch. Regression Diagnostics. Hoboken, NJ: John Wiley \& Sons, Inc., 1980.
[2] Chatterjee, S., and A. S. Hadi. "Influential Observations, High Leverage Points, and Outliers in Linear Regression." Statistical Science. Vol. 1, 1986, pp. 379-416.
[3] Cook, R. D., and S. Weisberg. Residuals and Influence in Regression. New York: Chapman \& Hall/CRC Press, 1983.
[4] Goodall, C. R. "Computation Using the QR Decomposition." Handbook in Statistics. Vol. 9, Amsterdam: Elsevier/North-Holland, 1993.

LinearModel | LinearModel.fit | LinearModel.stepwise |
- "Interpret Linear Regression Results" on page 9-63
- "Linear Regression Workflow" on page 9-43
- "Linear Regression Output and Diagnostic Statistics" on page 9-71

\section*{RegressionEnsemble.regularize}

Purpose
Find weights to minimize resubstitution error plus penalty term

\section*{Syntax}

Description

Input
Arguments
ens1 = regularize(ens)
ens1 = regularize(ens,Name, Value)
ens1 = regularize(ens) finds optimal weights for learners in ens by lasso regularization. regularize returns a regression ensemble identical to ens, but with a populated Regularization property.
ens1 = regularize(ens, Name, Value) computes optimal weights with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, , NameN, ValueN.

\section*{ens}

A regression ensemble, created by fitensemble.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'lambda'}

Vector of nonnegative regularization parameter values for lasso. For the default setting of lambda, regularize calculates the smallest value lambda_max for which all optimal weights for learners are 0 . The default value of lambda is a vector including 0 and nine exponentially-spaced numbers from lambda_max/1000 to lambda_max.

Default: [0
logspace(log10(lambda_max/1000), log10(lambda_max),9)]

\section*{'npass'}

\section*{RegressionEnsemble.regularize}

Maximal number of passes for lasso optimization, a positive integer.

Default: 10

\section*{'reltol'}

Relative tolerance on the regularized loss for lasso, a numeric positive scalar.

Default: 1e-3

\section*{'verbose'}

Verbosity level, either 0 or 1 . When set to 1, regularize displays more information as it runs.

Default: 0

\section*{Output Arguments}

\section*{ens 1}

A regression ensemble. Usually you set ens1 to the same name as ens.

\section*{Lasso}

The lasso algorithm finds an optimal set of learner weights \(\alpha_{t}\) that minimize
\[
\sum_{n=1}^{N} w_{n} g\left(\left(\sum_{t=1}^{T} \alpha_{t} h_{t}\left(x_{n}\right)\right), y_{n}\right)+\lambda \sum_{t=1}^{T}\left|\alpha_{t}\right| .
\]

Here
- \(\lambda \geq 0\) is a parameter you provide, called the lasso parameter.
- \(h_{t}\) is a weak learner in the ensemble trained on \(N\) observations with predictors \(x_{n}\), responses \(y_{n}\), and weights \(w_{n}\).

\section*{RegressionEnsemble.regularize}
- \(g(f, y)=(f-y)^{2}\) is the squared error.

\section*{Examples}

Regularize an ensemble of bagged trees:
```

X = rand(2000,20);
Y = repmat(-1,2000,1);
Y(sum(X(:,1:5),2)>2.5) = 1;
bag = fitensemble(X,Y,'Bag',300,'Tree',...
'type','regression');
bag = regularize(bag,'lambda',[0.001 0.1],'verbose',1);
regularize reports on its progress.

```

To see the resulting regularization structure:
```

bag.Regularization
ans =
Method: 'Lasso'
TrainedWeights: [300x2 double]
Lambda: [1.0000e-003 0.1000]
ResubstitutionMSE: [0.0616 0.0812]
CombineWeights: @classreg.learning.combiner.WeightedSum

```

See how many learners in the regularized ensemble have positive weights (so would be included in a shrunken ensemble):
```

sum(bag.Regularization.TrainedWeights > 0)
ans =
116 91

```

To shrink the ensemble using the weights from Lambda \(=0.1\) :
cmp = shrink(bag,'weightcolumn',2)
cmp \(=\)
classreg.learning.regr.CompactRegressionEnsemble:
    PredictorNames: \{1x20 cell\}

\title{
RegressionEnsemble.regularize
}

\author{
CategoricalPredictors: [] \\ ResponseName: ' \(Y\) ' \\ ResponseTransform: 'none' NTrained: 91
}

There are 91 members in the regularized ensemble, which is less than \(1 / 3\) of the original 300.

\section*{See Also}
shrink | cvshrink | lasso
Tutorials . "Ensemble Regularization" on page 15-102

\section*{gmdistribution.RegV property}

Purpose Value of 'Regularize' parameter
Description The value of the parameter 'Regularize '.

Note This property applies only to gmdistribution objects constructed with fit.

\section*{Purpose \\ Importance of attributes (predictors) using ReliefF algorithm}

\section*{Syntax}

\section*{Description}

Name-Value
Pair
Arguments
```

[RANKED,WEIGHT] = relieff(X,Y,K)
[RANKED,WEIGHT] = relieff(X,Y,K,'PARAM1',val1,'PARAM2',val2,
...)

```
[RANKED, WEIGHT] = relieff \((X, Y, K)\) computes ranks and weights of attributes (predictors) for input data matrix \(X\) and response vector \(Y\) using the ReliefF algorithm for classification or RReliefF for regression with K nearest neighbors. For classification, relieff uses K nearest neighbors per class. RANKED are indices of columns in X ordered by attribute importance, meaning RANKED (1) is the index of the most important predictor. WEIGHT are attribute weights ranging from -1 to 1 with large positive weights assigned to important attributes.

If \(Y\) is numeric, relieff by default performs RReliefF analysis for regression. If \(Y\) is categorical, logical, a character array, or a cell array of strings, relieff by default performs ReliefF analysis for classification.

Attribute ranks and weights computed by relieff usually depend on K. If you set K to 1 , the estimates computed by relieff can be unreliable for noisy data. If you set K to a value comparable with the number of observations (rows) in X, relieff can fail to find important attributes. You can start with \(K=10\) and investigate the stability and reliability of relieff ranks and weights for various values of \(K\).
[RANKED, WEIGHT] =
relieff(X,Y,K,'PARAM1',val1,'PARAM2',val2,...) specifies optional parameter name/value pairs.

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{method}

Either 'regression' (default if \(Y\) is numeric) or 'classification' (default if \(Y\) is not numeric).

\section*{prior}

Prior probabilities for each class, specified as a string ('empirical' or 'uniform') or as a vector (one value for each distinct group name) or as a structure \(S\) with two fields:
- S.group containing the group names as a categorical variable, character array, or cell array of strings
- S.prob containing a vector of corresponding probabilities

If the input value is 'empirical' (default), class probabilities are determined from class frequencies in Y. If the input value is 'uniform', all class probabilities are set equal.

\section*{updates}

Number of observations to select at random for computing the weight of every attribute. By default all observations are used.

\section*{categoricalx}
'on' or 'off', 'off' by default. If 'on', treat all predictors in X as categorical. If 'off', treat all predictors in \(X\) as numerical. You cannot mix numerical and categorical predictors.

\section*{sigma}

Distance scaling factor. For observation \(i\), influence on the attribute weight from its nearest neighbor \(j\) is multiplied by \(\exp \left((-\operatorname{rank}(i, j) / \text { sigma })^{\wedge} 2\right)\), where \(\operatorname{rank}(i, j)\) is the position of \(j\) in the list of nearest neighbors of \(i\) sorted by distance in the ascending order. Default is Inf (all nearest neighbors have the same influence) for classification and 50 for regression.

\section*{Examples Identify important predictors in the ionosphere dataset: \\ load ionosphere;}
[ranked,weights] = relieff( \(\mathrm{X}, \mathrm{Y}, 10\) ) ; bar(weights(ranked));
xlabel('Predictor rank');
ylabel('Predictor importance weight');


Examine the Fisher iris data to find the important predictors:
```

load fisheriris
[ranked,weight] = relieff(meas,species,10)
ranked =

```
```

 4 3 1 2
 weight =
0.1399 0.1226 0.3590 0.3754

```

The fourth predictor is the most important, and the second predictor is the least important.

\author{
References [1] Kononenko, I., Simec, E., \& Robnik-Sikonja, M. (1997). Overcoming the myopia of inductive learning algorithms with RELIEFF. Retrieved from CiteSeerX: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4740 \\ [2] Robnik-Sikonja, M., \& Kononenko, I. (1997). An adaptation of Relief for attribute estimation in regression. Retrieved from CiteSeerX: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.8381
}
[3] Robnik-Sikonja, M., \& Kononenko, I. (2003). Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning , 53, 23-69.

\section*{See Also knnsearch | pdist2}

\section*{CompactClassificationEnsemble.removeLearners}
\begin{tabular}{|c|c|}
\hline Purpose & Remove members of compact classification ensemble \\
\hline Syntax & cens1 = removeLearners(cens,idx) \\
\hline Description & cens1 = removeLearners(cens,idx) creates a compact classification ensemble identical to cens only without the ensemble members in the idx vector. \\
\hline Tips & \begin{tabular}{l}
- Typically, set cens1 equal to cens to retain just one ensemble. \\
- Removing learners reduces the memory used by the ensemble and speeds up its predictions.
\end{tabular} \\
\hline \multirow[t]{4}{*}{Input Arguments} & cens \(\quad\) Compact classification ensemble, constructed with compact. \\
\hline & idx \\
\hline & Vector of positive integers with entries from 1 to cens.NTrained, where cens. NTrained is the number of members in cens. cens1 contains all members of cens except those with indices in idx. \\
\hline & Typically, you set idx = j:cens.NTrained for some positive integer j . \\
\hline Output & cens 1 \\
\hline Arguments & Compact classification ensemble, identical to cens except cens 1 does not contain those members of cens with indices in idx. \\
\hline \multirow[t]{4}{*}{Examples} & Remove Learners from an Ensemble \\
\hline & Create a compact classification ensemble. Compact it further by removing members of the ensemble. \\
\hline & Create a compact classification ensemble for the ionosphere data. \\
\hline & ```
load ionosphere
ens = fitensemble(X,Y,'AdaBoostM1',100,'Tree');
``` \\
\hline
\end{tabular}

\section*{CompactClassificationEnsemble.removeLearners}
```

cens = compact(ens);

```

Remove the last 50 members of the ensemble.
idx = cens.NTrained-49:cens.NTrained; cens1 = removeLearners(cens,idx);

\section*{See Also CompactClassificationEnsemble I}

Related - "Classification with Imbalanced Data" on page 15-76
Examples

\section*{CompactRegressionEnsemble.removeLearners}
Purpose Remove members of compact regression ensemble
Syntax cens1 = removeLearners(cens,idx)
Description
Tipscens1 = removeLearners (cens,idx) creates a compact regressionensemble identical to cens only without the ensemble members in the\(i d x\) vector.
- Typically, set cens1 equal to cens to retain just one ensemble.- Removing learners reduces the memory used by the ensemble andspeeds up its predictions.
Input censArgumentsCompact regression ensemble, constructed with compact.
idxVector of positive integers with entries from 1 to cens.NTrained,where cens.NTrained is the number of members in cens. cens 1contains the members of cens except those with indices in idx.
Typically, you set idx = j:cens.NTrained for some positive integer j .

\section*{Output Arguments}

\section*{cens 1}
Compact regression ensemble, identical to cens except cens1 does not contain members of cens with indices in idx.

\section*{Examples Remove Learners from an Ensemble}
Create a compact regression ensemble. Compact it further by removing members of the ensemble.
Create a compact regression ensemble for the carsmall data.
```

load carsmall
X = [Weight Cylinders];

```

\section*{CompactRegressionEnsemble.removeLearners}
```

ens = fitensemble(X,MPG,'LSBoost',100,'Tree','categorical',2);
cens = compact(ens);

```

Remove the last 50 members of the ensemble.
idx = cens.NTrained-49:cens.NTrained; cens1 = removeLearners(cens,idx);

\section*{See Also CompactRegressionEnsemble I}

\section*{GeneralizedLinearModel.removeTerms}

\section*{Purpose}

Remove terms from generalized linear model

\section*{Syntax}

Description

\section*{Input \\ Arguments}

\section*{Output}

Arguments
mdll
Generalized linear model, the same as mdl but without the terms given in terms. You can set mdl1 equal to mdl to overwrite mdl.

\section*{GeneralizedLinearModel.removeTerms}

\section*{Definitions}

\section*{Examples}

\section*{Wilkinson Notation}

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.
\begin{tabular}{l|l}
\hline Wilkinson Notation & Factors in Standard Notation \\
\hline 1 & Constant (intercept) term \\
\hline\(A^{\wedge} k\), where \(k\) is a positive integer & \(A, A^{2}, \ldots, A^{k}\) \\
\hline\(A+B\) & \(A, B\) \\
\hline\(A * B\) & \(A, B, A * B\) \\
\hline\(A: B\) & \(A * B\) only \\
\hline\(-B\) & Do not include \(B\) \\
\hline\(A * B+C\) & \(A, B, C, A * B\) \\
\hline\(A+B+C+A: B\) & \(A, B, C, A * B\) \\
\hline\(A * B * C-A: B: C\) & \(A, B, C, A * B, A * C, B * C\) \\
\hline\(A *(B+C)\) & \(A, B, C, A * B, A * C\) \\
\hline
\end{tabular}

Statistics Toolbox notation always includes a constant term unless you explicitly remove the term using - 1 .
For details, see Wilkinson and Rogers [1].

\section*{Remove a Term from a Generalized Linear Regression Model}

This example makes a model using two predictors, then removes one.
Generate artificial data for the model, Poisson random numbers with two underlying predictors \(\mathrm{X}(1)\) and \(\mathrm{X}(2)\).
rng('default') \% for reproducibility rndvars = randn(100,2);
X = [2+rndvars(:,1), rndvars(: 2)];
mu \(=\exp \left(1+X^{*}[1 ; 2]\right)\);
```

y = poissrnd(mu);
Create a generalized linear regression model of Poisson data.
mdl = GeneralizedLinearModel.fit(X,y,...
'y ~ x1 + x2','distr','poisson')
mdl =
Generalized Linear regression model:
log(y) ~ 1 + x1 + x2
Distribution = Poisson
Estimated Coefficients:

	Estimate	SE	tStat	PValue
(Intercept)	1.0405	0.022122	47.034	0
x1	0.9968	0.003362	296.49	0
x2	1.987	0.0063433	313.24	0

100 observations, }97\mathrm{ error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 2.95e+05, p-value = 0
Remove the second predictor from the model.

```
```

mdl1 = removeTerms(mdl,'x2')

```
mdl1 = removeTerms(mdl,'x2')
mdl1 =
mdl1 =
Generalized Linear regression model:
 log(y) ~ 1 + x1
 Distribution = Poisson
Estimated Coefficients:
 Estimate SE tStat pValue
```


## GeneralizedLinearModel.removeTerms

```
\begin{tabular}{lrrrr}
(Intercept) & 2.7784 & 0.014043 & 197.85 & 0 \\
x 1 & 1.1732 & 0.0033653 & 348.6 & 0
\end{tabular}
100 observations, 98 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.25e+05, p-value = 0
```


## References [1] Wilkinson, G. N., and C. E. Rogers. Symbolic description of factorial models for analysis of variance. J. Royal Statistics Society 22, pp. 392-399, 1973.

Alternatives	step adds or removes terms from a model using a greedy one-step   algorithm.
See Also	addTerms \| GeneralizedLinearModel I step I   GeneralizedLinearModel.stepwise \|
Related	- "Plots to Understand Predictor Effects and How to Modify a Model"   Examples   on page 9-163   - "Generalized Linear Model Workflow" on page 9-173
Concepts	- "Generalized Linear Models" on page 9-143

Purpose
Syntax
Description

Input
Arguments

## Output <br> Arguments

Remove terms from linear model
mdl1 $=$ removeTerms(mdl,terms)
mdl1 = removeTerms(mdl, terms) returns a linear model the same as mdl but with terms removed.
mdl
Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.

## terms

Terms to remove from the mdl regression model. Specify as either a:

- Text string representing one or more terms to remove. For details, see "Wilkinson Notation" on page 20-2462.
- Row or rows in the terms matrix (see modelspec in LinearModel.fit). For example, if there are three variables $\mathrm{A}, \mathrm{B}$, and C :
[0 0 0] represents a constant term or intercept
[0 100$]$ represents $B$; equivalently, $A^{\wedge} 0$ * $B^{\wedge 1}$ * $C^{\wedge} 0$
$\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]$ represents $A^{*} C$
[2 0 0] represents A^2
$\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]$ represents $B^{*}\left(C^{\wedge} 2\right)$
mdll
Linear model, the same as mdl but with terms removed. You can set mdl1 equal to mdl to overwrite mdl.


## LinearModel.removeTerms

## Definitions

## Examples

## Wilkinson Notation

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.

Wilkinson Notation	Factors in Standard Notation
1	Constant (intercept) term
$A^{\wedge} k$, where $k$ is a positive integer	$A, A^{2}, \ldots, A^{k}$
$A+B$	$A, B$
$A * B$	$A, B, A * B$
$A: B$	$A * B$ only
$-B$	Do not include B
$A * B+C$	$A, B, C, A * B$
$A+B+C+A: B$	$A, B, C, A * B$
$A * B * C-A: B: C$	$A, B, C, A * B, A * C, B * C$
$A *(B+C)$	$A, B, C, A * B, A * C$

Statistics Toolbox notation always includes a constant term unless you explicitly remove the term using -1 .

For details, see Wilkinson and Rogers [1].

## Remove Terms from Model

Construct a default linear model of the Hald data. Remove terms with high $p$-values.

Load the data.
load hald
$\mathrm{X}=$ ingredients; \% predictor variables
y = heat; \% response

Fit a default linear model to the data.

```
mdl = LinearModel.fit(X,y)
mdl =
Linear regression model:
 y ~ 1 + x1 + x2 + x3 + x4
Estimated Coefficients:
\begin{tabular}{lrrrr}
& Estimate & \multicolumn{1}{l}{ SE } & tStat & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 62.405 & 70.071 & 0.8906 & 0.39913 \\
x1 & 1.5511 & 0.74477 & 2.0827 & 0.070822 \\
x2 & 0.51017 & 0.72379 & 0.70486 & 0.5009 \\
x3 & 0.10191 & 0.75471 & 0.13503 & 0.89592 \\
x4 & -0.14406 & 0.70905 & -0.20317 & 0.84407
\end{tabular}
```

Number of observations: 13, Error degrees of freedom: 8 Root Mean Squared Error: 2.45
R-squared: 0.982, Adjusted R-Squared 0.974
F-statistic vs. constant model: 111, p-value $=4.76 e-07$
Remove the x 3 and x 4 terms because their $p$-values are so high.

```
terms = 'x3 + x4'; % terms to remove
mdl1 = removeTerms(mdl, terms)
mdl1 =
Linear regression model:
 y ~ 1 + x1 + x2
Estimated Coefficients:
\begin{tabular}{lcrll}
& Estimate & \multicolumn{1}{l}{ SE } & tStat & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 52.577 & 2.2862 & 22.998 & \(5.4566 \mathrm{e}-10\) \\
x1 & 1.4683 & 0.1213 & 12.105 & \(2.6922 \mathrm{e}-07\) \\
x2 & 0.66225 & 0.045855 & 14.442 & \(5.029 \mathrm{e}-08\)
\end{tabular}
```


## LinearModel.removeTerms

```
Number of observations: 13, Error degrees of freedom: 10
Root Mean Squared Error: 2.41
R-squared: 0.979, Adjusted R-Squared 0.974
F-statistic vs. constant model: 230, p-value = 4.41e-09
```

The new model has the same adjusted $R$-Squared value (0.974) as the previous model, meaning it is about as good a fit. All the terms in the new model have extremely low $p$-values.

## References [1] Wilkinson, G. N., and C. E. Rogers. Symbolic description of factorial models for analysis of variance. J. Royal Statistics Society 22, pp. 392-399, 1973.

Alternatives	Use LinearModel.stepwise to select a model from a starting   continuing until no single step is beneficial.   Use addTerms to add particular terms.		
	Use step to optimally improve the model by adding or removing		
See Also	addTerms \| LinearModel	step	LinearModel.stepwise
Tutorials	. "Change Models" on page 9-36		
How To	- "Linear Regression" on page 9-11		

Use LinearModel.stepwise to select a model from a starting model, continuing until no single step is beneficial.

Use addTerms to add particular terms.
Use step to optimally improve the model by adding or removing terms.

See Also

addTerms | LinearModel | step | LinearModel.stepwise
Tutorials - "Change Models" on page 9-36
How To . "Linear Regression" on page 9-11

## Purpose Reorder levels

Syntax
$B$ = reorderlevels(A, newlevels)

Description $\quad B=$ reorderlevels(A, newlevels) reorders the levels of the categorical array A. newlevels is a cell array of strings or a $2-\mathrm{D}$ character matrix that specifies the new order. newlevels must be a reordering of getlabels(A).
The order of the levels of an ordinal array has significance for relational operators, minimum and maximum, and for sorting.

Examples Reorder hockey standings:

```
standings = ordinal(1:3,{'Leafs','Canadiens','Bruins'});
getlabels(standings)
ans =
 'Leafs' 'Canadiens' 'Bruins'
standings = reorderlevels(standings,...
 {'Canadiens','Leafs','Bruins'});
getlabels(standings)
ans =
 'Canadiens' 'Leafs' 'Bruins'
```

See Also addlevels | droplevels | getlabels | islevel | mergelevels

## cvpartition.repartition

Purpose Repartition data for cross-validation
Syntax $\quad$ cnew $=$ repartition(c)
Description cnew = repartition(c) constructs an object cnew of the cvpartition class defining a random partition of the same type as $c$, where $c$ is also an object of the cvpartition class.
Repartitioning is useful for Monte-Carlo repetitions of cross-validation analyses. repartition is called by crossval when the 'mcreps' parameter is specified.

## Examples <br> Partition and repartition 100 observations for 3 -fold cross-validation:

c = cvpartition(100,'kfold',3)
c =
K-fold cross validation partition
N: 100
NumTestSets: 3
TrainSize: $67 \quad 66 \quad 67$
TestSize: $33 \quad 3433$
cnew = repartition(c)
cnew $=$
K-fold cross validation partition
N: 100
NumTestSets: 3
TrainSize: $67 \quad 66 \quad 67$
TestSize: 333433
Check for equality of the test data in the first fold:

```
isequal(test(c,1),test(cnew,1))
ans =
 0
```

See Also cvpartition

## dataset.replacedata

Purpose	Replace dataset variables
Syntax	$B=\operatorname{replacedata}(A, X)$
	$B=$ replacedata $(A, X$, vars $)$
	$B=$ replacedata $(A, f u n)$
	$B=\operatorname{replacedata}(A, f u n$, vars $)$

Description

Examples
$B=$ replacedata $(A, X)$ creates a dataset array $B$ with the same variables as the dataset array $A$, but with the data for those variables replaced by the data in the array $X$. replacedata creates each variable in B using one or more columns from $X$, in order. $X$ must have as many columns as the total number of columns in all of the variables in $A$, and as many rows as A has observations.
$B=$ replacedata( $A, X$, vars $)$ creates a dataset array $B$ with the same variables as the dataset array $A$, but with the data for the variables specified in vars replaced by the data in the array $X$. The remaining variables in $B$ are copies of the corresponding variables in $A$. vars is a positive integer, a vector of positive integers, a variable name, a cell array containing one or more variable names, or a logical vector. Each variable in $B$ has as many columns as the corresponding variable in $A$. $X$ must have as many columns as the total number of columns in all the variables specified in vars.
$B=$ replacedata( $A, f u n$ ) or $B=r e p l a c e d a t a(A, f u n, v a r s)$ creates a dataset array B by applying the function fun to the values in A's variables. replacedata first horizontally concatenates A's variables into a single array, then applies the function fun. The specified variables in A must have types and sizes compatible with the concatenation. fun is a function handle that accepts a single input array and returns an array with the same number of rows and columns as the input.

```
data = dataset({rand(3,3),'Var1','Var2','Var3'})
% Use ZSCORE to normalize each variable in a dataset array
% separately, by explicitly extracting and transforming the
% data, and then replacing it.
```


## dataset.replacedata

```
X = double(data);
X = zscore(X);
data = replacedata(data,X)
% Equivalently, provide a handle to ZSCORE.
data = replacedata(data,@zscore)
% Use ZSCORE to normalize each observation in a dataset
% array separately by creating an anonymous function.
data = replacedata(data,@(x) zscore(x,[],2))
```


## See Also <br> dataset

## dataset.replaceWithMissing

## Purpose

Insert missing data indicators into a dataset array
Syntax ds2 = replaceWithMissing(ds, Name, Value)

Input
Arguments
ds2 = replaceWithMissing(ds,Name, Value) replaces specified values in a dataset array with standard missing data indicators using options specified by one or more Name, Value pair arguments. Use replaceWithMissing to specify:

- Which numeric missing value indicators to replace with NaN.
- Which string missing value indicators to replace with an empty string.
- Which categorical levels to replace with <undefined>.


## ds

dataset array.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'NumericValues'

Vector of numeric values that replaceWithMissing replaces with NaN .

## 'CategoricalLevels'

String or cell array of strings naming the categorical levels that replaceWithMissing replaces with <undefined>.

## 'Strings'

## dataset.replaceWithMissing

or cell array of strings containing the strings that replaceWithMissing replaces with the empty string, ' '.

## 'DataVars'

Specified set of variables in ds for which replaceWithMissing replaces values. You can specify a positive integer or vector of positive integers indicating the variable column numbers, a variable name or a cell array of variables names, or a logical vector indicating which variables to replace missing values in.

Default: All variables in ds.

## Output Arguments

## Examples

## Replace Nonstandard Missing Value Indicators

Replace nonstandard missing value indicators with standard missing value indicators.

Replace numeric missing values coded 99 with NaN, and string missing values coded '.' with the empty string.

```
ds = replaceWithMissing(ds,'NumericValues',99,'Strings','.');
```


## See Also

dataset | ismissing |

> Related • "Clean Messy and Missing Data" on page 2-117 Examples

Concepts - "Dataset Arrays" on page 2-135

## Purpose Replicate and tile categorical array

Syntax
$B=\operatorname{repmat}(A, m, n)$
B = repmat(A,[m n p ...])

Description $\quad B=\operatorname{repmat}(A, m, n)$ creates a large array $B$ consisting of an $m$-by- $n$ tiling of copies of the categorical array $A$. The size of $B$ is $[\operatorname{size}(A, 1) * M$ $\operatorname{size}(A, 2) * N, \operatorname{size}(A, 3), \ldots]$. repmat $(A, n)$ creates an $n$-by-n tiling.
$B=\operatorname{repmat}(A,[m \mathrm{n} \mathrm{p} . .]$.$) tiles the categorical array A$ to produce a multidimensional array $B$ composed of copies of $A$. The size of $B$ is [size(A,1)*M, size(A,2)*N, size(A,3)*P, ...].

See Also<br>ndims | size

## qrandstream.reset

Purpose Reset state

## Syntax reset(q)

Description reset (q) resets the state of the quasi-random number stream $q$ of the qrandstream class back to its initial state, 1. Subsequent points drawn from the stream will be the same as those drawn from a new stream. The command is equivalent to q.State $=1$.

Examples Use qrandstream to construct a 3-D Halton stream, based on a point set that skips the first 1000 values and then retains every 101st point:
q = qrandstream('halton',3,'Skip',1e3,'Leap',1e2)
$q=$
Halton quasi-random stream in 3 dimensions
Point set properties:
Skip : 1000
Leap : 100
ScrambleMethod : none
nextIdx = q.State
nextIdx =
1

Use qrand to generate two samples of size four:

```
X1 = qrand(q,4)
X1 =
 0.0928 0.3475 0.0051
 0.6958 0.2035 0.2371
 0.3013 0.8496 0.4307
 0.9087 0.5629 0.6166
nextIdx = q.State
nextIdx =
 5
X2 = qrand(q,4)
```

```
X2 =
 0.2446 0.0238 0.8102
 0.5298 0.7540 0.0438
 0.3843 0.5112 0.2758
 0.8335 0.2245 0.4694
nextIdx = q.State
nextIdx =
 9
```

Use reset to reset the stream, then generate another sample:

```
reset(q)
nextIdx = q.State
nextIdx =
 1
```

$X=\operatorname{qrand}(q, 4)$
$X=$
$0.0928 \quad 0.3475 \quad 0.0051$
$0.6958 \quad 0.2035 \quad 0.2371$
$0.3013 \quad 0.8496 \quad 0.4307$
$0.9087 \quad 0.5629 \quad 0.6166$

See Also
qrandstream | qrand

Purpose Resize categorical array


## Description

$B=r e s h a p e(A, M, N)$ returns an m-by-n categorical matrix whose elements are taken columnwise from the categorical array A. An error results if A does not have $m * n$ elements.
$B=\operatorname{reshape}(A, m, n, p, \ldots)$ or reshape (A,[m n p ...]) returns an array with the same elements as $A$ but reshaped to have the size $m$-by-n-by-p-by-... . m*n*p*... must be the same as numel(A).
$B=\operatorname{reshape}(A, \ldots,[], \ldots)$ calculates the length of the dimension represented by [], such that the product of the dimensions equals numel (A). numel (A) must be evenly divisible by the product of the known dimensions. You can use only one occurrence of [].

In general, reshape (A, siz) returns an array with the same elements as A but reshaped to the size siz. prod(siz) must be the same as numel(A).

## See Also <br> shiftdim | squeeze

## ClassificationDiscriminant.resubEdge

Purpose Classification edge by resubstitution

```
Syntax edge = resubEdge(obj)
```

Description edge $=$ resubEdge $(\mathrm{obj})$ returns the classification edge obtained by obj on its training data.

## Input <br> Arguments

## Output <br> Arguments

## Definitions

obi
Discriminant analysis classifier, produced using ClassificationDiscriminant.fit.
edge
Classification edge obtained by resubstituting the training data into the calculation of edge.

## Edge

The edge is the weighted mean value of the classification margin. The weights are the class probabilities in obj. Prior. If you supply weights in the weights name-value pair, those weights are normalized to sum to the prior probabilities in the respective classes, and are then used to compute the weighted average.

## Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix obj. $x$. A high value of margin indicates a more reliable prediction than a low value.

## Score (discriminant analysis)

For discriminant analysis, the score of a classification is the posterior probability of the classification. For the definition of posterior probability in discriminant analysis, see "Posterior Probability" on page 14-7.

## ClassificationDiscriminant.resubEdge

Examples | Estimate the quality of a discriminant analysis classifier for the Fisher |
| :--- |
| iris data by resubstitution: |
| load fisheriris |
| obj $=$ ClassificationDiscriminant.fit(meas, species); |
| redge $=$ resubEdge (obj) |

redge $=$

0.9454 $\quad$| See Also |
| :--- |
| How To |

## ClassificationEnsemble.resubEdge

## Purpose Classification edge by resubstitution

Syntax

Description

Input
Arguments
edge = resubEdge(ens)
edge = resubEdge(ens,Name, Value)
edge $=$ resubEdge(ens) returns the classification edge obtained by ens on its training data.
edge = resubEdge(ens,Name, Value) calculates edge with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, ,NameN, ValueN.

## ens

A classification ensemble created with fitensemble.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

## 'learners'

Indices of weak learners in the ensemble ranging from 1 to NTrained. resubEdge uses only these learners for calculating edge.

Default: 1:NTrained

## 'mode'

String representing the meaning of the output edge:

- 'ensemble' - edge is a scalar value, the loss for the entire ensemble.


## ClassificationEnsemble.resubEdge

- 'individual' - edge is a vector with one element per trained learner.
- 'cumulative' - edge is a vector in which element $J$ is obtained by using learners $1: J$ from the input list of learners.

Default: 'ensemble'

## Output Arguments

## Definitions

## edge

Classification edge obtained by ens by resubstituting the training data into the calculation of edge. Classification edge is classification margin averaged over the entire data. edge can be a scalar or vector, depending on the setting of the mode name-value pair.

## Edge

The edge is the weighted mean value of the classification margin. The weights are the class probabilities in ens. Prior.

## Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix ens. $x$.

## Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

- AdaBoostM1 scores range from $-\infty$ to $\infty$.
- Bag scores range from 0 to 1 .


## ClassificationEnsemble.resubEdge

```
Examples Find the resubstitution edge for an ensemble that classifies the Fisher iris data:
```

```
load fisheriris
```

load fisheriris
ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');
ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');
edge = resubEdge(ens)
edge = resubEdge(ens)
edge =
edge =
3.2486

```
 3.2486
```

```
See Also
resubMargin | resubLoss | resubPredict | resubEdge
```


## ClassificationKNN.resubEdge

Purpose Edge of $k$-nearest neighbor classifier by resubstitution
Syntax $\quad E=$ resubEdge $(m d l)$
Description
$E=r e s u b E d g e(m d l)$ returns the classification edge for mdl with the data used to train mdl (see "Edge" on page 20-2480).

Input
Arguments
mdl
$k$-nearest neighbor classifier, created by ClassificationKNN.fit.
Output
Arguments

## Definitions

## Edge

The edge is the mean value of the classification margin.

## Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes.

Margin is a column vector with the same number of rows as in the training data.

## Score

The score of a classification is the posterior probability of the classification. The posterior probability is the number of neighbors that have that classification, divided by the number of neighbors. For a more detailed definition that includes weights and prior probabilities, see "Posterior Probability" on page 20-2181.

## Examples Resubstitution Edge Calculation

Construct a $k$-nearest neighbor classifier for the Fisher iris data, where $k=5$.

## ClassificationKNN.resubEdge

Load the data.
load fisheriris
X = meas;
$Y=$ species;
Construct a classifier for 5-nearest neighbors.

```
mdl = ClassificationKNN.fit(X,Y,'NumNeighbors',5);
```

Examine the resubstitution edge of the classifier.
$E=r e s u b E d g e(m d l)$
E =
0.9253
See Also
ClassificationKNN | resubLoss | resubMargin | resubPredict |
Related - "Examine the Quality of a KNN Classifier" on page 15-26 Examples
Concepts

- "Classification Using Nearest Neighbors" on page 15-9


## ClassificationTree.resubEdge

Purpose Classification edge by resubstitution
Syntax edge = resubEdge (tree)

Description

Input
Arguments
tree
A classification tree created by ClassificationTree.fit.
Output
Arguments

## Definitions

## edge

Classification edge obtained by resubstituting the training data into the calculation of edge.

## Edge

The edge is the weighted mean value of the classification margin. The weights are the class probabilities in tree. Prior.

## Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix $X$.

## Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.
For example, consider classifying a predictor $X$ as true when $X<0.15$ or $X>0.95$, and $X$ is false otherwise.

## ClassificationTree.resubEdge

Generate 100 random points and classify them:

```
rng(0,'twister') % for reproducibility
X = rand(100,1);
Y = (abs(X - . 55) > .4);
tree = ClassificationTree.fit(X,Y);
view(tree,'mode','graph')
```



2
Prune the tree:
tree1 = prune(tree,'level',1);
view(tree1,'mode','graph')

## ClassificationTree.resubEdge



The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than . 94 as false. Therefore, the score for observations that are greater than .15 should be about $.05 / .85=.06$ for true, and about $.8 / .85=.94$ for false.

3
Compute the prediction scores for the first 10 rows of X :
[~,score] = predict(tree1, X(1:10));
[score X(1:10,:)]
ans $=$

0.9059	0.0941	0.8147
0.9059	0.0941	0.9058
0	1.0000	0.1270
0.9059	0.0941	0.9134
0.9059	0.0941	0.6324
0	1.0000	0.0975
0.9059	0.0941	0.2785

## ClassificationTree.resubEdge

0.9059	0.0941	0.5469
0.9059	0.0941	0.9575
0.9059	0.0941	0.9649

Indeed, every value of $X$ (the rightmost column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1 , while the other values of $X$ have associated scores of 0.91 and 0.09 . The difference (score 0.09 instead of the expected .06) is due to a statistical fluctuation: there are 8 observations in $X$ in the range ( $.95,1$ ) instead of the expected 5 observations.

```
Examples Estimate the quality of a classification tree for the Fisher iris data by
resubstitution:
```

```
load fisheriris
```

load fisheriris
tree = ClassificationTree.fit(meas,species);
tree = ClassificationTree.fit(meas,species);
redge = resubEdge(tree)
redge = resubEdge(tree)
redge =
redge =
0.9384

```
 0.9384
```

```
See Also edge | resubMargin | resubLoss | resubPredict
```


## ClassificationDiscriminant.resubLoss

## Purpose Classification error by resubstitution

```
Syntax
L = resubLoss(obj)
L = resubLoss(obj,Name,Value)
```

Description

Input
Arguments
$\mathrm{L}=$ resubLoss $(\mathrm{obj})$ returns the resubstitution loss, meaning the loss computed for the data that ClassificationDiscriminant.fit used to create obj.
L = resubLoss(obj,Name, Value) returns loss statistics with additional options specified by one or more Name, Value pair arguments.
obj
Discriminant analysis classifier, produced using ClassificationDiscriminant.fit.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'lossfun'

Function handle or string representing a loss function. Built-in loss functions are:

- 'binodeviance' - See "Loss Functions" on page 20-2487.
- 'classiferror' - Fraction of misclassified observations. See "Loss Functions" on page 20-2487.
- 'exponential' - See "Loss Functions" on page 20-2487.
- 'mincost' - Smallest misclassification cost as given by the obj.Cost matrix.


## ClassificationDiscriminant.resubLoss

You can write your own loss function using the syntax described in "Loss Functions" on page 20-2487.

Default: 'mincost'

## Output <br> Arguments <br> L

Classification error, a scalar. The meaning of the error depends on the values in weights and lossfun. See "Classification Error" on page 20-2487.

## Classification Error

The default classification error is the fraction of the training data $X$ that obj misclassifies.

Weighted classification error is the sum of weight $i$ times the Boolean value that is 1 when obj misclassifies the $i$ th row of X , divided by the sum of the weights.

## Loss Functions

The built-in loss functions are:

- 'binodeviance' - For binary classification, assume the classes $y_{n}$ are -1 and 1 . With weight vector $w$ normalized to have sum 1 , and predictions of row $n$ of data $X$ as $f\left(X_{n}\right)$, the binomial deviance is

$$
\sum w_{n} \log \left(1+\exp \left(-2 y_{n} f\left(X_{n}\right)\right)\right) .
$$

- 'exponential' - With the same definitions as for 'binodeviance', the exponential loss is

$$
\sum w_{n} \exp \left(-y_{n} f\left(X_{n}\right)\right)
$$

- 'classiferror' - Predict the label with the largest posterior probability. The loss is then the fraction of misclassified observations.


## ClassificationDiscriminant.resubLoss

- 'mincost' - Predict the label with the smallest expected misclassification cost, with expectation taken over the posterior probability, and cost as given by the Cost property of the classifier (a matrix). The loss is then the true misclassification cost averaged over the observations.

To write your own loss function, create a function file in this form:
function loss $=$ lossfun(C, S, W, COST)

- $N$ is the number of rows of $X$.
- $K$ is the number of classes in the classifier, represented in the ClassNames property.
- C is an N-by-K logical matrix, with one true per row for the true class. The index for each class is its position in the ClassNames property.
- $S$ is an N -by-K numeric matrix. S is a matrix of posterior probabilities for classes with one row per observation, similar to the posterior output from predict.
- $W$ is a numeric vector with $N$ elements, the observation weights. If you pass W, the elements are normalized to sum to the prior probabilities in the respective classes.
- COST is a K-by-K numeric matrix of misclassification costs. For example, you can use COST = ones (K) - eye (K), which means a cost of 0 for correct classification, and 1 for misclassification.
- The output loss should be a scalar.

Pass the function handle @lossfun as the value of the lossfun name-value pair.

## Posterior Probability

The posterior probability that a point $z$ belongs to class $j$ is the product of the prior probability and the multivariate normal density. The density function of the multivariate normal with mean $\mu_{j}$ and covariance $\Sigma_{j}$ at a point $z$ is

## ClassificationDiscriminant.resubLoss

$$
P(x \mid k)=\frac{1}{\left(2 \pi\left|\Sigma_{k}\right|\right)^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{k}\right)^{T} \Sigma_{k}^{-1}\left(x-\mu_{k}\right)\right)
$$

where $\left|\Sigma_{k}\right|$ is the determinant of $\Sigma_{k}$, and $\Sigma_{k}^{-1}$ is the inverse matrix.
Let $P(k)$ represent the prior probability of class $k$. Then the posterior probability that an observation $x$ is of class $k$ is

$$
\hat{P}(k \mid x)=\frac{P(x \mid k) P(k)}{P(x)}
$$

where $P(x)$ is a normalization constant, the sum over $k$ of $P(x \mid k) P(k)$.

## Prior Probability

The prior probability is one of three choices:

- 'uniform' - The prior probability of class $k$ is one over the total number of classes.
- 'empirical' - The prior probability of class $k$ is the number of training samples of class $k$ divided by the total number of training samples.
- Custom - The prior probability of class k is the kth element of the prior vector. See ClassificationDiscriminant.fit.

After creating a classifier obj, you can set the prior by dot addressing:

```
obj.Prior = v;
```

where $v$ is a vector of positive elements representing the frequency with which each element occurs. You do not need to retrain the classifier when you set a new prior.

## Cost

The matrix of expected costs per observation is defined in "Cost" on page 14-8.

## ClassificationDiscriminant.resubLoss

$\begin{array}{ll}\text { Examples } & \begin{array}{l}\text { Compute the resubstituted classification error for the Fisher iris data: } \\ \text { load fisheriris } \\ \text { obj }=\text { ClassificationDiscriminant.fit(meas, species); } \\ L=\text { resubLoss }(o b j)\end{array} \\ L= \\ \text { See Also } & \text { ClassificationDiscriminant | loss } \\ \text { How To } & \text { - "Discriminant Analysis" on page 14-3 }\end{array}$

## ClassificationEnsemble.resubLoss

## Purpose

Classification error by resubstitution
Syntax
L = resubLoss(ens)
L = resubLoss(ens,Name, Value)
$\mathrm{L}=$ resubLoss(ens) returns the resubstitution loss, meaning the loss computed for the data that fitensemble used to create ens.
L = resubLoss(ens,Name, Value) calculates loss with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, ,NameN, ValueN.

## Input Arguments

## ens

A classification ensemble created with fitensemble.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

## 'learners'

Indices of weak learners in the ensemble ranging from 1 to NTrained. resubLoss uses only these learners for calculating loss.

Default: 1:NTrained

## 'lossfun'

Function handle or string representing a loss function. Built-in loss functions:

- 'binodeviance' - See "Loss Functions" on page 20-2492
- 'classiferror' - Fraction of misclassified data


## ClassificationEnsemble.resubLoss

- 'exponential' - See "Loss Functions" on page 20-2492

You can write your own loss function in the syntax described in "Loss Functions" on page 20-2492.

Default: 'classiferror'

## 'mode'

String representing the meaning of the output L:

- 'ensemble' - L is a scalar value, the loss for the entire ensemble.
- 'individual' - L is a vector with one element per trained learner.
- 'cumulative' - $L$ is a vector in which element $J$ is obtained by using learners $1: J$ from the input list of learners.

Default: 'ensemble'

## Output

Arguments

## Definitions

## Classification Error

The default classification error is the fraction of the training data $X$ that ens misclassifies.

Weighted classification error is the sum of weight $i$ times the Boolean value that is 1 when tree misclassifies the $i$ th row of x , divided by the sum of the weights.

## Loss Functions

The built-in loss functions are:

## ClassificationEnsemble.resubLoss

- 'binodeviance' - For binary classification, assume the classes $y_{n}$ are -1 and 1 . With weight vector $w$ normalized to have sum 1 , and predictions of row $n$ of data $X$ as $f\left(X_{n}\right)$, the binomial deviance is

$$
\sum w_{n} \log \left(1+\exp \left(-2 y_{n} f\left(X_{n}\right)\right)\right)
$$

- 'classiferror' - Fraction of misclassified data, weighted by $w$.
- 'exponential' - With the same definitions as for 'binodeviance', the exponential loss is

$$
\sum w_{n} \exp \left(-y_{n} f\left(X_{n}\right)\right)
$$

To write your own loss function, create a function file of the form

```
function loss = lossfun(C,S,W,COST)
```

- $N$ is the number of rows of ens. $X$.
- $K$ is the number of classes in ens, represented in ens.ClassNames.
- C is an N-by-K logical matrix, with one true per row for the true class. The index for each class is its position in tree.ClassNames.
- $S$ is an $N$-by-K numeric matrix. $S$ is a matrix of posterior probabilities for classes with one row per observation, similar to the score output from predict.
- W is a numeric vector with $N$ elements, the observation weights.
- COST is a K-by-K numeric matrix of misclassification costs. The default 'classiferror' gives a cost of 0 for correct classification, and 1 for misclassification.
- The output loss should be a scalar.

Pass the function handle @lossfun as the value of the lossfun name-value pair.

## ClassificationEnsemble.resubLoss

```
Examples Compute the resubstitution loss for a classification ensemble for the Fisher iris data:
load fisheriris
ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');
loss = resubLoss(ens)
loss =
 0.0333
```

See Also resubEdge | resubMargin | resubPredict | resubLoss

## ClassificationKNN.resubLoss

## Purpose

Loss of $k$-nearest neighbor classifier by resubstitution

## Syntax

## Input Arguments

L = resubLoss(mdl)
L = resubLoss(mdl,Name,Value)

## Description

$\mathrm{L}=$ resubLoss $(\mathrm{mdl})$ returns the resubstitution loss, meaning the loss computed for the data that ClassificationKNN. fit used to create mdl.

L = resubLoss(mdl,Name, Value) returns loss statistics with additional options specified by one or more Name, Value pair arguments.

## mdl

$k$-nearest neighbor classifier, created by ClassificationKNN.fit.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

## 'lossfun'

Function handle or string representing a loss function. Built-in loss functions are:

- 'binodeviance' - See "Loss Functions" on page 20-2496.
- 'classiferror' - Fraction of misclassified observations. See "Loss Functions" on page 20-2496.
- 'exponential ' - See "Loss Functions" on page 20-2496.
- 'mincost' - Smallest misclassification cost as given by the mdl. Cost matrix.


## ClassificationKNN.resubLoss

You can write your own loss function using the syntax described in "Loss Functions" on page 20-2496.

Default: 'mincost'

## Output

Arguments

## Definitions

## Classification Error

The default classification error is the fraction of data $X$ that mdl misclassifies, where Y represents the true classifications.

The weighted classification error is the sum of weight $i$ times the Boolean value that is 1 when mdl misclassifies the $i$ th row of $X$, divided by the sum of the weights.

## Loss Functions

The built-in loss functions are:

- 'binodeviance' - For binary classification, assume the classes $y_{n}$ are -1 and 1 . With weight vector $w$ normalized to have sum 1, and predictions of row $n$ of data $X$ as $f\left(X_{n}\right)$, the binomial deviance is

$$
\sum w_{n} \log \left(1+\exp \left(-2 y_{n} f\left(X_{n}\right)\right)\right)
$$

- 'exponential' - With the same definitions as for 'binodeviance ', the exponential loss is

$$
\sum w_{n} \exp \left(-y_{n} f\left(X_{n}\right)\right) .
$$

- 'classiferror' - Predict the label with the largest posterior probability. The loss is then the fraction of misclassified observations.


## ClassificationKNN.resubLoss

- 'mincost' - Predict the label with the smallest expected misclassification cost, with expectation taken over the posterior probability, and cost as given by the cost property of the classifier (a matrix). The loss is then the true misclassification cost averaged over the observations.

To write your own loss function, create a function file in this form:

```
function loss = lossfun(C,S,W,COST)
```

- $N$ is the number of rows of $X$.
- K is the number of classes in the classifier, represented in the ClassNames property.
- C is an N-by-K logical matrix, with one true per row for the true class. The index for each class is its position in the ClassNames property.
- $S$ is an N-by-K numeric matrix. $S$ is a matrix of posterior probabilities for classes with one row per observation, similar to the posterior output from predict.
- $W$ is a numeric vector with $N$ elements, the observation weights. If you pass W, the elements are normalized to sum to the prior probabilities in the respective classes.
- COST is a K-by-K numeric matrix of misclassification costs. For example, you can use COST = ones (K) - eye (K), which means a cost of 0 for correct classification, and 1 for misclassification.
- The output loss should be a scalar.

Pass the function handle @lossfun as the value of the lossfun name-value pair.

## True Misclassification Cost

There are two costs associated with KNN classification: the true misclassification cost per class, and the expected misclassification cost per observation.

## ClassificationKNN.resubLoss

You can set the true misclassification cost per class in the Cost name-value pair when you run ClassificationKNN.fit. Cost(i,j) is the cost of classifying an observation into class $j$ if its true class is $i$. By default, $\operatorname{Cost}(i, j)=1$ if $i \sim=j$, and $\operatorname{Cost}(i, j)=0$ if $i=j$. In other words, the cost is 0 for correct classification, and 1 for incorrect classification.

## Expected Cost

There are two costs associated with KNN classification: the true misclassification cost per class, and the expected misclassification cost per observation. The third output of predict is the expected misclassification cost per observation.

Suppose you have Nobs observations that you want to classify with a trained classifier mdl. Suppose you have K classes. You place the observations into a matrix Xnew with one observation per row. The command
[label,score, cost] = predict(mdl,Xnew)
returns, among other outputs, a cost matrix of size Nobs-by-K. Each row of the cost matrix contains the expected (average) cost of classifying the observation into each of the $K$ classes. cost $(n, k)$ is

$$
\sum_{i=1}^{K} \hat{P}(i \mid X n e w(n)) C(k \mid i)
$$

where

- $K$ is the number of classes.
- $\hat{P}(i \mid \operatorname{Xnew}(n))$ is the posterior probability of class $i$ for observation Xnew ( $n$ ).
- $C(k \mid i)$ is the true misclassification cost of classifying an observation as $k$ when its true class is $i$.


## ClassificationKNN.resubLoss

Examples Loss CalculationConstruct a $k$-nearest neighbor classifier for the Fisher iris data, where$k=5$.
Load the data.
load fisheririsConstruct a classifier for 5-nearest neighbors.

```
mdl = ClassificationKNN.fit(meas,species,'NumNeighbors',5);
```

Examine the resubstitution loss of the classifier.

```
L = resubLoss(mdl)
```

$\mathrm{L}=$
0.0333
The classifier predicts incorrect classifications for $1 / 30$ of its training data.
See Also ClassificationKNN | resubEdge | resubMargin | resubPredict |
Related
Examples- "Examine the Quality of a KNN Classifier" on page 15-26

- "Predict Classification Based on a KNN Classifier" on page 15-27- "Modify a KNN Classifier" on page 15-27
Concepts


## ClassificationTree.resubLoss

Purpose
Classification error by resubstitution
Syntax

```
L = resubLoss(tree)
L = resubLoss(tree,Name,Value)
L = resubLoss(tree,'subtrees',subtreevector)
[L,se] = resubLoss(tree,'subtrees',subtreevector)
[L,se,NLeaf] = resubLoss(tree,'subtrees',subtreevector)
[L,se,NLeaf,bestlevel] = resubLoss(tree,'subtrees',
 subtreevector)
[L,...] =
resubLoss(tree,'subtrees',subtreevector,Name,Value)
```

Description
$\mathrm{L}=$ resubLoss(tree) returns the resubstitution loss, meaning the loss computed for the data that ClassificationTree.fit used to create tree.
$\mathrm{L}=$ resubLoss(tree, Name, Value) returns the loss with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, , NameN, ValueN.

L = resubLoss(tree,'subtrees', subtreevector) returns a vector of classification errors for the trees in the pruning sequence subtreevector.
[L,se] = resubLoss(tree,'subtrees', subtreevector) returns the vector of standard errors of the classification errors.
[L,se,NLeaf] = resubLoss(tree,'subtrees',subtreevector) returns the vector of numbers of leaf nodes in the trees of the pruning sequence.
[L,se,NLeaf,bestlevel] = resubLoss(tree, 'subtrees', subtreevector) returns the best pruning level as defined in the treesize name-value pair. By default, bestlevel is the pruning level that gives loss within one standard deviation of minimal loss.

```
[L,...] =
resubLoss(tree,'subtrees',subtreevector,Name,Value) returns
```


## ClassificationTree.resubLoss



## ClassificationTree.resubLoss

A vector with integer values from 0 (full unpruned tree) to the maximal pruning level max(tree. PruneList).

Default: 0

## 'treesize'

One of the following strings:

- 'se' - loss returns the highest pruning level with loss within one standard deviation of the minimum ( $L+s e$, where $L$ and se relate to the smallest value in subtrees).
- 'min' - loss returns the element of subtrees with smallest loss, usually the smallest element of subtrees.


## Output Arguments <br> L

Classification error, a vector the length of subtrees. The meaning of the error depends on the values in weights and lossfun; see "Classification Error" on page 20-2503.

## se

Standard error of loss, a vector the length of subtrees.

## NLeaf

Number of leaves (terminal nodes) in the pruned subtrees, a vector the length of subtrees.

## bestlevel

A scalar whose value depends on treesize:

- treesize = 'se' - loss returns the highest pruning level with loss within one standard deviation of the minimum ( $L+s e$, where $L$ and se relate to the smallest value in subtrees).
- treesize $=$ 'min' - loss returns the element of subtrees with smallest loss, usually the smallest element of subtrees.


## ClassificationTree.resubLoss

## Definitions Classification Error

The default classification error is the fraction of the training data $X$ that tree misclassifies.

Weighted classification error is the sum of weight $i$ times the Boolean value that is 1 when tree misclassifies the $i$ th row of X , divided by the sum of the weights.

## Loss Functions

The built-in loss functions are:

- 'binodeviance' - For binary classification, assume the classes $y_{n}$ are -1 and 1 . With weight vector $w$ normalized to have sum 1 , and predictions of row $n$ of data $X$ as $f\left(X_{n}\right)$, the binomial deviance is

$$
\sum w_{n} \log \left(1+\exp \left(-2 y_{n} f\left(X_{n}\right)\right)\right) .
$$

- 'exponential' - With the same definitions as for 'binodeviance', the exponential loss is

$$
\sum w_{n} \exp \left(-y_{n} f\left(X_{n}\right)\right)
$$

- 'classiferror' - Predict the label with the largest posterior probability. The loss is then the fraction of misclassified observations.
- 'mincost' - Predict the label with the smallest expected misclassification cost, with expectation taken over the posterior probability, and cost as given by the Cost property of the classifier (a matrix). The loss is then the true misclassification cost averaged over the observations.

To write your own loss function, create a function file in this form:

```
function loss = lossfun(C,S,W,COST)
```

- N is the number of rows of X .


## ClassificationTree.resubLoss

- K is the number of classes in the classifier, represented in the ClassNames property.
- C is an N-by-K logical matrix, with one true per row for the true class. The index for each class is its position in the ClassNames property.
- $S$ is an $N$-by-K numeric matrix. $S$ is a matrix of posterior probabilities for classes with one row per observation, similar to the posterior output from predict.
- $W$ is a numeric vector with $N$ elements, the observation weights. If you pass W, the elements are normalized to sum to the prior probabilities in the respective classes.
- COST is a K-by-K numeric matrix of misclassification costs. For example, you can use COST $=$ ones $(K)$ - eye (K), which means a cost of 0 for correct classification, and 1 for misclassification.
- The output loss should be a scalar.

Pass the function handle @lossfun as the value of the lossfun name-value pair.

## True Misclassification Cost

There are two costs associated with classification: the true misclassification cost per class, and the expected misclassification cost per observation.
You can set the true misclassification cost per class in the Cost name-value pair when you create the classifier using the ClassificationTree.fit method. Cost( $i, j$ ) is the cost of classifying an observation into class $j$ if its true class is $i$. By default, $\operatorname{Cost}(i, j)=1$ if $i \sim=j$, and $\operatorname{Cost}(i, j)=0$ if $i=j$. In other words, the cost is 0 for correct classification, and 1 for incorrect classification.

## Expected Misclassification Cost

There are two costs associated with classification: the true misclassification cost per class, and the expected misclassification cost per observation.

## ClassificationTree.resubLoss

Suppose you have Nobs observations that you want to classify with a trained classifier. Suppose you have K classes. You place the observations into a matrix Xnew with one observation per row.

The expected cost matrix CE has size Nobs-by-K. Each row of CE contains the expected (average) cost of classifying the observation into each of the $K$ classes. $C E(n, k)$ is

$$
\sum_{i=1}^{K} \hat{P}(i \mid X n e w(n)) C(k \mid i)
$$

where

- $K$ is the number of classes.
- $\hat{P}(i \mid \operatorname{Xnew}(n))$ is the posterior probability of class $i$ for observation Xnew(n).
- $C(k \mid i)$ is the true misclassification cost of classifying an observation as $k$ when its true class is $i$.

Examples Compute the resubstituted classification error for the ionosphere data:

```
load ionosphere
tree = ClassificationTree.fit(X,Y);
L = resubLoss(tree)
L =
 0.0114
```

See Also
loss | resubEdge | resubMargin | resubPredict

## RegressionEnsemble.resubLoss

Purpose Regression error by resubstitution
Syntax L = resubLoss(ens)
L = resubLoss(ens,Name,Value)
Description$\mathrm{L}=$ resubLoss(ens) returns the resubstitution loss, meaning themean squared error computed for the data that fitensemble used tocreate ens.L = resubLoss(ens,Name, Value) calculates loss with additionaloptions specified by one or more Name, Value pair arguments. Youcan specify several name-value pair arguments in any order asName1, Value1, ,NameN, ValueN.
Input ..... ens
ArgumentsA regression ensemble created with fitensemble.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

## 'learners'

Indices of weak learners in the ensemble ranging from 1 to NTrained. resubLoss uses only these learners for calculating loss.
Default: 1:NTrained

## 'lossfun'

Function handle for loss function, or the string 'mse', meaning mean squared error. If you pass a function handle fun, resubLoss calls it as
FUN(Y,Yfit,w)
where $\mathrm{Y}, \mathrm{Yfit}$, and W are numeric vectors of the same length. Y is the observed response, Yfit is the predicted response, and $W$ is the observation weights.

Default: 'mse'

## 'mode'

String representing the meaning of the output L:

- 'ensemble' - L is a scalar value, the loss for the entire ensemble.
- 'individual' - L is a vector with one element per trained learner.
- 'cumulative' - $L$ is a vector in which element $J$ is obtained by using learners $1: J$ from the input list of learners.

Default: 'ensemble'

## Output

Arguments

## Examples

L
Loss, by default the mean squared error. L can be a vector, and can mean different things, depending on the name-value pair settings.

Find the resubstitution predictions of mileage from the carsmall data based on horsepower and weight, and look at their mean square difference from the training data.

```
load carsmall
X = [Horsepower Weight];
ens = fitensemble(X,MPG,'LSBoost',100,'Tree');
MSE = resubLoss(ens)
MSE =
 6.4336
```

See Also

## RegressionTree.resubLoss

Purpose
Regression error by resubstitution
Syntax

```
L = resubLoss(tree)
L = resubLoss(tree,Name,Value)
L = resubLoss(tree,'subtrees',subtreevector)
[L,se] = resubLoss(tree,'subtrees',subtreevector)
[L,se,NLeaf] = resubLoss(tree,'subtrees',subtreevector)
[L,se,NLeaf,bestlevel] = resubLoss(tree,'subtrees',
 subtreevector)
[L,...] =
resubLoss(tree,'subtrees',subtreevector,Name,Value)
```

Description
$\mathrm{L}=$ resubLoss(tree) returns the resubstitution loss, meaning the loss computed for the data that RegressionTree.fit used to create tree.
$\mathrm{L}=$ resubLoss(tree, Name, Value) returns the loss with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, ,NameN, ValueN.

L = resubLoss(tree,'subtrees', subtreevector) returns a vector of mean squared errors for the trees in the pruning sequence subtreevector.
[L,se] = resubLoss(tree,'subtrees',subtreevector) returns the vector of standard errors of the classification errors.
[L,se,NLeaf] = resubLoss(tree,'subtrees',subtreevector) returns the vector of numbers of leaf nodes in the trees of the pruning sequence.
[L,se,NLeaf,bestlevel] = resubLoss(tree,'subtrees', subtreevector) returns the best pruning level as defined in the treesize name-value pair. By default, bestlevel is the pruning level that gives loss within one standard deviation of minimal loss.

```
[L,...] =
resubLoss(tree,'subtrees',subtreevector,Name,Value) returns
loss statistics with additional options specified by one or more
```


## RegressionTree.resubLoss

Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, , NameN, ValueN.

## Input <br> tree

Arguments
A regression tree constructed by RegressionTree.fit.

## Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

## 'lossfun'

Function handle, or the string 'mse' meaning mean squared error.

You can write your own loss function in the syntax described in "Loss Functions" on page 20-2510.

Default: 'mse'
Name, Value arguments associated with pruning subtrees:

## 'subtrees'

A vector with integer values from 0 (full unpruned tree) to the maximal pruning level max(tree. PruneList).

Default: 0

## 'treesize'

One of the following strings:

## RegressionTree.resubLoss

- 'se' - loss returns the highest pruning level with loss within one standard deviation of the minimum ( $L+$ se, where $L$ and se relate to the smallest value in subtrees).
- 'min' - loss returns the element of subtrees with smallest loss, usually the smallest element of subtrees.


## Output Arguments

## Definitions

L
Mean squared error, a vector the length of subtrees. The meaning of the error depends on the values in weights and lossfun.
se
Standard error of loss, a vector the length of subtrees.

## NLeaf

Number of leaves (terminal nodes) in the pruned subtrees, a vector the length of subtrees.

## bestlevel

A scalar whose value depends on treesize:

- treesize = 'se' - loss returns the highest pruning level with loss within one standard deviation of the minimum ( $\mathrm{L}+\mathrm{se}$, where $L$ and se relate to the smallest value in subtrees).
- treesize $=$ 'min' - loss returns the element of subtrees with smallest loss, usually the smallest element of subtrees.


## Loss Functions

The built-in loss function is 'mse', meaning mean squared error.
To write your own loss function, create a function file of the form
function loss = lossfun(Y,Yfit, W)

- $N$ is the number of rows of tree. $X$.
- Y is an N -element vector representing the observed response.


## RegressionTree.resubLoss

- Yfit is an N -element vector representing the predicted responses.
- $W$ is an $N$-element vector representing the observation weights.
- The output loss should be a scalar.

Pass the function handle @lossfun as the value of the lossfun name-value pair.

Examples Find the mean square error of a model of the carsmall data:

```
load carsmall
X = [Displacement Horsepower Weight];
tree = RegressionTree.fit(X,MPG);
resubLoss(tree)
ans =
 4 . 8 9 5 2
```

See Also ..... resubPredict | loss

## ClassificationDiscriminant.resubMargin

Purpose	Classification margins by resubstitution
Syntax	M = resubMargin(obj)
Description	M = resubMargin(obj) returns resubstitution classification margins for obj.
Input Arguments	obi   Discriminant analysis classifier, produced using ClassificationDiscriminant.fit.
Output Arguments	M   Numeric column-vector of length size(obj. $\mathrm{X}, 1$ ) containing the classification margins.
Definitions	Margin
	The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix obj.x. A high value of margin indicates a more reliable prediction than a low value.
	Score (discriminant analysis)
	For discriminant analysis, the score of a classification is the posterior probability of the classification. For the definition of posterior probability in discriminant analysis, see "Posterior Probability" on page 14-7.
Examples	Find the margins for a classification tree for the Fisher iris data by resubstitution. Examine several entries:
	```load fisheriris obj = ClassificationDiscriminant.fit(meas,species); M = resubMargin(obj); M(1:25:end)```

ClassificationDiscriminant.resubMargin

$$
\begin{aligned}
& \text { ans }= \\
& 1.0000 \\
& 1.0000 \\
& 0.9998 \\
& 0.9998 \\
& 1.0000 \\
& 0.9946
\end{aligned}
$$

See Also ClassificationDiscriminant | margin

How To . "Discriminant Analysis" on page 14-3

ClassificationEnsemble.resubMargin

Purpose	Classification margins by resubstitution
Syntax	```margin = resubMargin(ens) margin = resubMargin(ens,Name,Value)```
Description	margin = resubMargin(ens) returns the classification margin obtained by ens on its training data.
	margin $=$ resubMargin(ens, Name, Value) calculates margins with additional options specified by one or more Name, Value pair arguments.
Input Arguments	ens A classification ensemble created with fitensemble.
	Name-Value Pair Arguments
	Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
	'learners'
	Indices of weak learners in the ensemble ranging from 1 to NTrained. resubMargin uses only these learners for calculating margin.
	Default: 1:NTrained
Output Arguments	margin
	A numeric column-vector of length size(ens.X,1) containing the classification margins.

ClassificationEnsemble.resubMargin

Definitions Margin

The classification margin is the difference between the classification score for the true class and maximal classification score for the false classes. Margin is a column vector with the same number of rows as in the matrix ens. x .

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

- AdaBoostM1 scores range from $-\infty$ to ∞.
- Bag scores range from 0 to 1 .

Examples Find the resubstitution margins for an ensemble that classifies the Fisher iris data:

```
load fisheriris
ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');
margin = resubMargin(ens);
[min(margin) mean(margin) max(margin)]
ans =
    -0.5674 3.2486 4.6245
```

See Also
resubEdge | resubLoss | resubPredict | resubMargin

ClassificationKNN.resubMargin

```
Purpose Margin of \(k\)-nearest neighbor classifier by resubstitution
Syntax \(\quad m=\) resubMargin(mdl)
```

Description $m=$ resubMargin(mdl) returns the classification margins of the data
used to train mdl. For the definition, see "Margin" on page 20-2516.
Input mdl
Arguments
k-nearest neighbor classifier, created by ClassificationKNN.fit.

Output
Arguments

Definitions

Examples Resubstitution Margin Calculation

Construct a k-nearest neighbor classifier for the Fisher iris data, where $k=5$.

Load the data.

ClassificationKNN.resubMargin

```
load fisheriris
X = meas;
Y = species;
Construct a classifier for 5-nearest neighbors.
```

```
mdl = ClassificationKNN.fit(X,Y,'NumNeighbors',5);
```

```
mdl = ClassificationKNN.fit(X,Y,'NumNeighbors',5);
```

Examine some statistics of the resubstitution margin of the classifier.
m = resubMargin(mdl);
$[\max (m) \min (m)$ mean(m)]
ans $=$

```
    1.0000 -0.6000 0.9253
```

The mean margin is over 0.9 , indicating fairly high classification accuracy for resubstitution. For more reliable assessment of model accuracy, consider cross validation, such as kfoldLoss.

See Also
 ClassificationKNN | resubEdge | resubLoss | resubPredict |

Related Examples

- "Examine the Quality of a KNN Classifier" on page 15-26

Concepts

- "Classification Using Nearest Neighbors" on page 15-9

ClassificationTree.resubMargin

Purpose Classification margins by resubstitution
Syntax $\quad M=$ resubMargin(tree)
Description

Input
Arguments
Output
Arguments

Definitions

Margin

Classification margin is the difference between classification score for the true class and maximal classification score for the false classes. A high value of margin indicates a more reliable prediction than a low value.

Score (tree)

For trees, the score of a classification of a leaf node is the posterior probability of the classification at that node. The posterior probability of the classification at a node is the number of training sequences that lead to that node with the classification, divided by the number of training sequences that lead to that node.
For example, consider classifying a predictor X as true when $X<0.15$ or $X>0.95$, and X is false otherwise.

1

Generate 100 random points and classify them:
rng(0,'twister') \% for reproducibility
$X=\operatorname{rand}(100,1)$;

ClassificationTree.resubMargin

```
Y = (abs(X - . 55) > .4);
tree = ClassificationTree.fit(X,Y);
view(tree,'mode','graph')
```

| Click to display: Identity | Magnification: 100% | Pruning level: 0 of 2 |
| :--- | :--- | :--- | :--- | :--- |

2
Prune the tree:

```
tree1 = prune(tree,'level',1);
view(tree1,'mode','graph')
```


ClassificationTree.resubMargin

The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations from .15 to .94 as false. However, it incorrectly classifies observations that are greater than . 94 as false. Therefore, the score for observations that are greater than .15 should be about $.05 / .85=.06$ for true, and about $.8 / .85=.94$ for false.

3
Compute the prediction scores for the first 10 rows of X :
[~,score] = predict(tree1,X(1:10));
[score X(1:10,:)]
ans $=$

0.9059	0.0941	0.8147
0.9059	0.0941	0.9058
0	1.0000	0.1270
0.9059	0.0941	0.9134
0.9059	0.0941	0.6324
0	1.0000	0.0975
0.9059	0.0941	0.2785

ClassificationTree.resubMargin

0.9059	0.0941	0.5469
0.9059	0.0941	0.9575
0.9059	0.0941	0.9649

Indeed, every value of X (the rightmost column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1, while the other values of X have associated scores of 0.91 and 0.09 . The difference (score 0.09 instead of the expected .06) is due to a statistical fluctuation: there are 8 observations in X in the range $(.95,1)$ instead of the expected 5 observations.

Examples

Find the margins for a classification tree for the Fisher iris data by resubstitution. Examine several entries:

```
load fisheriris
tree = ClassificationTree.fit(meas,species);
M = resubMargin(tree);
M(1:25:end)
ans =
    1.0000
    1.0000
    1.0000
    1.0000
    0.9565
    0.9565
```

See Also margin | resubLoss | resubPredict | resubEdge

ClassificationDiscriminant.resubPredict

Purpose	Predict resubstitution response of classifier
Syntax	```label = resubPredict(obj) [label,posterior] = resubPredict(obj) [label,posterior,cost] = resubPredict(obj)```
Description	label = resubPredict(obj) returns the labels obj predicts for the data obj. X. label is the predictions of obj on the data that ClassificationDiscriminant.fit used to create obj.
	[label, posterior] = resubPredict(obj) returns the posterior class probabilities for the predictions.
	[label, posterior, cost] = resubPredict(obj) returns the predicted misclassification costs per class for the resubstituted data.
Input Arguments	obi
	Discriminant analysis classifier, produced using ClassificationDiscriminant.fit.
Output Arguments	label
	Response obj predicts for the training data. label is the same data type as the training response data obj. Y. The predicted class labels are those with minimal expected misclassification cost; see "How the predict Method Classifies" on page 14-6.
	posterior
	N-by-K matrix of posterior probabilities for classes obj predicts, where N is the number of observations and K is the number of classes.
	cost
	N-by-K matrix of predicted misclassification costs. Each cost is the average misclassification cost with respect to the posterior probability.

ClassificationDiscriminant.resubPredict

Definitions Posterior Probabilityposterior (i,k) is the posterior probability of class k for observationi. For the mathematical definition, see "Posterior Probability" on page14-7.
Examples Find the total number of misclassifications of the Fisher iris data for a discriminant analysis classifier:

```
load fisheriris
obj = ClassificationDiscriminant.fit(meas,species);
Ypredict = resubPredict(obj); % the predictions
Ysame = strcmp(Ypredict,species); % true when ==
sum(~Ysame) % how many are different?
ans =
    3
```


See Also
 ClassificationDiscriminant | predict

How To - "Discriminant Analysis" on page 14-3

ClassificationEnsemble.resubPredict

Purpose Predict ensemble response by resubstitution
Syntax label = resubPredict(ens)

[label,score] = resubPredict(ens)

[label,score] = resubPredict(ens,Name,Value)
Description
InputArguments
label = resubPredict(ens) returns the labels ens predicts for the data ens.x. label is the predictions of ens on the data that fitensemble used to create ens.
[label,score] = resubPredict(ens) also returns scores for all classes.
[label,score] = resubPredict(ens,Name,Value) finds resubstitution predictions with additional options specified by one or more Name, Value pair arguments.
ens
A classification ensemble created with fitensemble.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'learners'

Indices of weak learners in the ensemble ranging from 1 to NTrained. oobLoss uses only these learners for calculating loss.

Default: 1:NTrained

ClassificationEnsemble.resubPredict

Output Arguments

Definitions

Examples

label

The response ens predicts for the training data. label is the same data type as the training response data ens. Y, and has the same number of entries as the number of rows in ens.X.

score

An N-by- K matrix, where N is the number of rows in ens. X , and K is the number of classes in ens. High score value indicates that an observation likely comes from this class.

Score (ensemble)

For ensembles, a classification score represents the confidence of a classification into a class. The higher the score, the higher the confidence.

Different ensemble algorithms have different definitions for their scores. Furthermore, the range of scores depends on ensemble type. For example:

- AdaBoostM1 scores range from $-\infty$ to ∞.
- Bag scores range from 0 to 1 .

Find the total number of misclassifications of the Fisher iris data for a classification ensemble:

```
load fisheriris
ens = fitensemble(meas,species,'AdaBoostM2',100,'Tree');
Ypredict = resubPredict(ens); % the predictions
Ysame = strcmp(Ypredict,species); % true when ==
sum(~Ysame) % how many are different?
ans =
    5
```

See Also resubEdge | resubMargin | resubLoss | resubPredict

ClassificationKNN.resubPredict

Purpose Predict resubstitution response of k-nearest neighbor classifier

Syntax

Description

Input
Arguments

Output
 Arguments

label = resubPredict(mdl)
[label,score] = resubPredict(mdl)
[label, score, cost] = resubPredict(mdl)
label = resubPredict(mdl) returns the labels mdl predicts for the data mdl. x . label is the predictions of mdl on the data that ClassificationKNN.fit used to create mdl.
[label,score] = resubPredict(mdl) returns the posterior class probabilities for the predictions.
[label,score,cost] = resubPredict(mdl) returns the misclassification costs.
mdl
k-nearest neighbor classifier, created by ClassificationKNN.fit.

label

Predicted class labels for the points in the training data X, a vector with length equal to the number of rows in the training data X. The label is the class with minimal expected cost (see "Expected Cost" on page 20-2527).

score

Numeric matrix of size N -by-K, where N is the number of observations (rows) in the training data X, and K is the number of classes (in mdl.ClassNames). score (i, j) is the posterior probability that row i of X is of class j. See "Posterior Probability" on page 20-2527.

cost

Matrix of expected costs of size N -by-K, where N is the number of observations (rows) in the training data X, and K is the number of

ClassificationKNN.resubPredict

classes (in mdl.ClassNames). cost(i, j) is the cost of classifying row i of X as class j. See "Expected Cost" on page 20-2527.

Definitions

Posterior Probability

For a vector (single query point) X and model mdl, let

- K be the number of nearest neighbors used in prediction, mdl.NumNeighbors
- $n b d(m d l, X)$ be the K nearest neighbors to X in $m d l$. X
- $Y(n b d)$ be the classifications of the points in $n b d(m d l, X)$, namely mdl.Y(nbd)
- W(nbd) be the weights of the points in nbd(mdl, X)
- prior be the priors of the classes in mdl. Y

If there is a vector of prior probabilities, then the observation weights W are normalized by class to sum to the priors. This might involve a calculation for the point X, because weights can depend on the distance from X to the points in mdl. X.

The posterior probability $p(j \mid X)$ is

$$
p(j \mid \mathrm{X})=\frac{\sum_{i \in \mathrm{nbd}} W(i) 1_{Y(X(i)=j)}}{\sum_{i \in \mathrm{nbd}} W(i)}
$$

Here $1_{Y(X(i)=j)}$ means 1 when mdl. $Y(i)=j$, and 0 otherwise.

Expected Cost

There are two costs associated with KNN classification: the true misclassification cost per class, and the expected misclassification cost per observation. The third output of predict is the expected misclassification cost per observation.

ClassificationKNN.resubPredict

Suppose you have Nobs observations that you want to classify with a trained classifier mdl. Suppose you have K classes. You place the observations into a matrix X with one observation per row. The command
[label,score, cost] = predict(mdl,X)
returns, among other outputs, a cost matrix of size Nobs-by-K. Each row of the cost matrix contains the expected (average) cost of classifying the observation into each of the K classes. cost (n, k) is

$$
\sum_{i=1}^{K} \hat{P}(i \mid X(n)) C(k \mid i)
$$

where

- K is the number of classes.
- $\hat{P}(i \mid X(n))$ is the posterior probability of class i for observation $X(n)$.
- $C(k \mid i)$ is the true misclassification cost of classifying an observation as k when its true class is i.

True Misclassification Cost

There are two costs associated with KNN classification: the true misclassification cost per class, and the expected misclassification cost per observation.

You can set the true misclassification cost per class in the Cost name-value pair when you run ClassificationKNN.fit. Cost(i, j) is the cost of classifying an observation into class j if its true class is i. By default, $\operatorname{Cost}(i, j)=1$ if $i \sim=j$, and $\operatorname{Cost}(i, j)=0$ if $i=j$. In other words, the cost is 0 for correct classification, and 1 for incorrect classification.

Examples Resubstitution Prediction

Examine the quality of a classifier by its resubstitution predictions.

ClassificationKNN.resubPredict

Load the data.
load fisheriris
X = meas;
Y = species;

Construct a classifier for 5-nearest neighbors.
mdl = ClassificationKNN.fit(X,Y,'NumNeighbors',5);
Generate the resubstitution predictions.

```
label = resubPredict(mdl);
```

Calculate the number of differences between the predictions label and the original data Y .

```
mydiff = not(strcmp(Y,label)); % mydiff(i) = 1 means they differ
sum(mydiff) % number of differences
ans =
5
```

See Also
ClassificationKNN | predict | resubEdge | resubLoss | resubMargin |

ClassificationTree.resubPredict

Purpose	Predict resubstitution response of tree
Syntax	
	label $=$ resubPredict(tree)
	$[$ label, posterior $]=$ resubPredict(tree)
	$[$ label, posterior, node $]=$ resubPredict(tree)
	$[$ label, posterior, node, cnum $]=$ resubPredict(tree)
	$[$ label,...] $=$ resubPredict(tree, Name,Value)

Description

Input

Arguments
label $=$ resubPredict(tree) returns the labels tree predicts for the data tree. X . label is the predictions of tree on the data that ClassificationTree.fit used to create tree.
[label,posterior] = resubPredict(tree) returns the posterior class probabilities for the predictions.
[label, posterior, node] = resubPredict(tree) returns the node numbers of tree for the resubstituted data.
[label, posterior, node, cnum] = resubPredict(tree) returns the predicted class numbers for the predictions.
[label,...] = resubPredict(tree,Name,Value) returns resubstitution predictions with additional options specified by one or more Name, Value pair arguments.

tree

A classification tree constructed by ClassificationTree.fit.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'subtrees'

ClassificationTree.resubPredict

A vector with integer values from 0 (full unpruned tree) to the maximal pruning level max(tree. PruneList). subtrees must be in ascending order.

Default: 0

Output
 label

 ArgumentsThe response tree predicts for the training data. label is the same data type as the training response data tree.Y.

If the subtrees name-value argument contains $m>1$ entries, label has m columns, each of which represents the predictions of the corresponding subtree. Otherwise, label is a vector.

posterior

Matrix or array of posterior probabilities for classes tree predicts.
If the subtrees name-value argument is a scalar or is missing, posterior is an n-by-k matrix, where n is the number of rows in the training data tree. x , and k is the number of classes.
If subtrees contains $m>1$ entries, posterior is an n-by- k-by- m array, where the matrix for each m gives posterior probabilities for the corresponding subtree.

node

The node numbers of tree where each data row resolves.
If the subtrees name-value argument is a scalar or is missing, node is a numeric column vector with n rows, the same number of rows as tree. X .

If subtrees contains $m>1$ entries, node is a n-by-m matrix. Each column represents the node predictions of the corresponding subtree.

cnum

The class numbers that tree predicts for the resubstituted data.

ClassificationTree.resubPredict

If the subtrees name-value argument is a scalar or is missing, cnum is a numeric column vector with n rows, the same number of rows as tree. X.

If subtrees contains $m>1$ entries, cnum is a n-by-m matrix. Each column represents the class predictions of the corresponding subtree.

Definitions Posterior Probability

The posterior probability of the classification at a node is the number of training sequences that lead to that node with this classification, divided by the number of training sequences that lead to that node.

For example, consider classifying a predictor X as true when $X<0.15$ or $X>0.95$, and X is false otherwise.

1
Generate 100 random points and classify them:

```
rng(0,'twister') % for reproducibility
X = rand(100,1);
Y = (abs(X - .55) > .4);
tree = ClassificationTree.fit(X,Y);
view(tree,'mode','graph')
```


ClassificationTree.resubPredict

2
Prune the tree:

```
tree1 = prune(tree,'level',1);
view(tree1,'mode','graph')
```


ClassificationTree.resubPredict

The pruned tree correctly classifies observations that are less than 0.15 as true. It also correctly classifies observations between .15 and .94 as false. However, it incorrectly classifies observations that are greater than .94 as false. Therefore the score for observations that are greater than .15 should be about $.05 / .85=.06$ for true, and about $.8 / .85=.94$ for false.

3
Compute the prediction scores for the first 10 rows of X :
[~,score] = predict(tree1, X(1:10));
[score X(1:10,:)]
ans $=$

0.9405	0.0595	0.6555
0.9405	0.0595	0.1712
0.9405	0.0595	0.7060
0	1.0000	0.0318
0.9405	0.0595	0.2769
0	1.0000	0.0462

ClassificationTree.resubPredict

0	1.0000	0.0971
0.9405	0.0595	0.8235
0.9405	0.0595	0.6948
0.9405	0.0595	0.3171

Indeed, every value of X (the rightmost column) that is less than 0.15 has associated scores (the left and center columns) of 0 and 1 , while the other values of X have associated scores of 0.94 and 0.06 .

```
Examples
Find the total number of misclassifications of the Fisher iris data for a classification tree:
load fisheriris
tree = ClassificationTree.fit(meas,species);
Ypredict = resubPredict(tree); % the predictions
Ysame = strcmp(Ypredict,species); % true when ==
sum(~Ysame) % how many are different?
ans =
    3
```

See Also resubEdge | resubMargin | resubLoss | predict

RegressionEnsemble.resubPredict

Purpose	Predict response of ensemble by resubstitution
Syntax	```Yfit = resubPredict(ens) Yfit = resubPredict(ens,Name,Value)```
Description	Yfit = resubPredict(ens) returns the response ens predicts for the data ens.X. Yfit is the predictions of ens on the data that fitensemble used to create ens. Yfit = resubPredict(ens,Name, Value) predicts responses with additional options specified by one or more Name, Value pair arguments.
Input Arguments	ens ${ }^{\text {A regression ensemble created with fitensemble. }}$
	Name-Value Pair Arguments
	Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
	'learners'
	Indices of weak learners in the ensemble ranging from 1 to NTrained. oobLoss uses only these learners for calculating loss.
	Default: 1:NTrained
Output Arguments	Yfit A vector of predicted responses to the training data, with ens. x elements.

Examples
Find the resubstitution predictions of mileage from the carsmall data based on horsepower and weight, and look at their mean square difference from the training data.

```
load carsmall
X = [Horsepower Weight];
ens = fitensemble(X,MPG,'LSBoost',100,'Tree');
Yfit = resubPredict(ens);
MSE = mean((Yfit - ens.Y).^2)
MSE =
    6.4336
```

This is the same as the result of resubLoss:
resubLoss(ens)
ans $=$
6.4336

See Also

resubLoss | resubPredict | predict

RegressionTree.resubPredict

Purpose Predict resubstitution response of tree
Syntax
Yfit = resubPredict(tree)
[Yfit, node] = resubPredict(tree)
[Yfit, node] = resubPredict(tree,Name,Value)

Description

Input

Arguments

Yfit $=$ resubPredict(tree) returns the responses tree predicts for the data tree.X. Yfit is the predictions of tree on the data that RegressionTree.fit used to create tree.
[Yfit, node] = resubPredict(tree) returns the node numbers of tree for the resubstituted data.
[Yfit, node] = resubPredict(tree,Name, Value) predicts with additional options specified by one or more Name, Value pair arguments.

tree

A regression tree constructed by RegressionTree.fit.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'subtrees'

A vector with integer values from 0 (full unpruned tree) to the maximal pruning level max (tree. PruneList). subtrees must be in ascending order.

Default: 0

Output Yfit

Arguments

The response tree predicts for the training data.

RegressionTree.resubPredict

If the subtrees name-value argument is a scalar or is missing, label is the same data type as the training response data tree.Y.

If subtrees contains $m>1$ entries, label has m columns, each of which represents the predictions of the corresponding subtree.

node

The tree node numbers where tree sends each data row.
If the subtrees name-value argument is a scalar or is missing, node is a numeric column vector with n rows, the same number of rows as tree. X .

If subtrees contains $m>1$ entries, node is a n-by-m matrix. Each column represents the node predictions of the corresponding subtree.

Examples Find the mean square error of a model of the carsmall data:

```
load carsmall
X = [Displacement Horsepower Weight];
tree = RegressionTree.fit(X,MPG);
Yfit = resubPredict(tree);
mean((Yfit - tree.Y).^2)
ans =
    4.8952
```

You can get the same answer using resubLoss:
resubLoss(tree)
ans $=$
4.8952

See Also resubloss | predict

ClassificationEnsemble.resume

Purpose Resume training ensemble
Syntax
ens1 = resume(ens, nlearn)
ens1 = resume(ens, nlearn, Name, Value)
ens1 = resume(ens, nlearn) trains ens for nlearn more cycles. resume uses the same training options fitensemble used to create ens.

Note You cannot resume training when ens is a Subspace ensemble created with 'AllPredictorCombinations' number of learners.
ens1 = resume(ens, nlearn, Name, Value) trains ens with additional options specified by one or more Name, Value pair arguments.

Input

Arguments
ens
A classification ensemble, created with fitensemble.

nlearn

A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

'nprint'

Printout frequency, a positive integer scalar or 'off' (no printouts). Returns to the command line the number of weak learners trained so far. Useful when you train ensembles with many learners on large data sets.

ClassificationEnsemble.resume

Default: 'off

Output

Arguments

Examples

ens 1

The classification ensemble ens, augmented with additional training.

Train a classification ensemble for 10 cycles. Examine the resubstitution error. Then train for 10 more cycles and examine the new resubstitution error.

```
load ionosphere
ens = fitensemble(X,Y,'GentleBoost',10,'Tree');
L = resubLoss(ens)
L =
    0.0484
ens1 = resume(ens,10);
L = resubLoss(ens1)
L =
    0.0256
```

The new ensemble has much less resubstitution error than the original.
See Also

ClassificationPartitionedEnsemble.resume

Purpose Resume training learners on cross-validation folds

Syntax

Description

Input
Arguments
ens1 = resume(ens,nlearn)
ens1 = resume(ens,nlearn, Name, Value)
ens1 = resume (ens, nlearn) trains ens in every fold for nlearn more cycles. resume uses the same training options fitensemble used to create ens.
ens1 = resume(ens, nlearn, Name, Value) trains ens with additional options specified by one or more Name, Value pair arguments.

ens

A cross-validated classification ensemble. ens is the result of either:

- The fitensemble function with a cross-validation name-value pair. The names are 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'.
- The crossval method applied to a classification ensemble.

nlearn

A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'nprint'

Printout frequency, a positive integer scalar or 'off' (no printouts). Returns to the command line the number of weak

ClassificationPartitionedEnsemble.resume

learners trained so far. Useful when you train ensembles with many learners on large data sets.

Default: 'off'

Output
 ens 1

Arguments

Examples
Train a partitioned classification ensemble for 10 cycles. Examine the error. Then train for 10 more cycles and examine the new error.
load ionosphere
cvens = fitensemble(X,Y,'GentleBoost',10,'Tree',...
'crossval', 'on');
L = kfoldLoss(cvens)
$\mathrm{L}=$
0.0883
cvens = resume(cvens,10);
L = kfoldLoss(cvens)

L =
0.0769

The ensemble has less cross-validation error after training for ten more cycles.

See Also
kfoldPredict | kfoldEdge | kfoldMargin | kfoldLoss

RegressionEnsemble.resume

Purpose Resume training ensemble
Syntax
ens1 = resume(ens,nlearn)
ens1 = resume(ens, nlearn, Name, Value)

Description

Input
Arguments
ens1 = resume(ens, nlearn) trains ens for nlearn more cycles. resume uses the same training options fitensemble used to create ens.
ens1 = resume(ens, nlearn, Name, Value) trains ens with additional options specified by one or more Name, Value pair arguments.

ens

A regression ensemble, created with fitensemble.

nlearn

A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'nprint'

Printout frequency, a positive integer scalar or 'off ' (no printouts). Returns to the command line the number of weak learners trained so far. Useful when you train ensembles with many learners on large data sets.

Default: 'off'

RegressionEnsemble.resume

```
Output ens1
Arguments
```


Examples Train a regression ensemble for 50 cycles. Examine the resubstitution

``` error. Then train for 50 more cycles and examine the new resubstitution error.
```

```
load carsmall
```

load carsmall
X = [Displacement Horsepower Weight];
X = [Displacement Horsepower Weight];
ens = fitensemble(X,MPG,'LSBoost',50,'Tree');
ens = fitensemble(X,MPG,'LSBoost',50,'Tree');
L = resubLoss(ens)
L = resubLoss(ens)
L =
L =
6.2681
6.2681
ens = resume(ens,50);
ens = resume(ens,50);
L = resubLoss(ens)
L = resubLoss(ens)
L =
L =
4.3904

```
    4.3904
```

The new ensemble has much less resubstitution error than the original.

See Also
 fitensemble

RegressionPartitionedEnsemble.resume

Purpose Resume training ensemble
Syntax
ens1 = resume(ens, nlearn)
ens1 = resume(ens, nlearn, Name, Value)

Description

Input

Arguments
ens1 = resume (ens, nlearn) trains ens in every fold for nlearn more cycles. resume uses the same training options fitensemble used to create ens.
ens1 = resume(ens, nlearn, Name, Value) trains ens with additional options specified by one or more Name, Value pair arguments.

ens

A cross-validated regression ensemble. ens is the result of either:

- The fitensemble function with a cross-validation name-value pair. The names are 'crossval', 'kfold', 'holdout', 'leaveout', or 'cvpartition'.
- The crossval method applied to a regression ensemble.

nlearn

A positive integer, the number of cycles for additional training of ens.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

'nprint'

Printout frequency, a positive integer scalar or 'off' (no printouts). Returns to the command line the number of weak

RegressionPartitionedEnsemble.resume

learners trained so far. Useful when you train ensembles with many learners on large data sets.

Default: 'off'

Output

Arguments

Examples Train a regression ensemble for 50 cycles, and cross validate it. Examine the cross-validation error. Then train for 50 more cycles and examine the new cross-validation error.

```
load carsmall
X = [Displacement Horsepower Weight];
ens = fitensemble(X,MPG,'LSBoost',50,'Tree');
cvens = crossval(ens);
L = kfoldLoss(cvens)
L =
    25.6573
cvens = resume(cvens,50);
L = kfoldLoss(cvens)
L =
    26.7563
```

The additional training did not improve the cross-validation error.

[^11]
prob.RicianDistribution

Superclasses ToolboxFittableParametricDistribution
Purpose Rician probability distribution object
Description prob.RicianDistribution is an object consisting of parameters, a model description, and sample data for a Rician probability distribution.
Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

Construction

pd = makedist('Rician') creates a Rician probability distribution object using the default parameter values.
pd = makedist('Rician','s',s,'sigma', sigma) creates a Rician probability distribution object using the specified parameter values.

Input Arguments

s - Noncentrality parameter

1 (default) | nonnegative scalar value
Noncentrality parameter for the Rician distribution, specified as a nonnegative scalar value.

Data Types
 single | double

sigma-scale parameter
1 (default) | positive scalar value
Scale parameter for the Rician distribution, specified as a positive scalar value.

Data Types
single | double

Properties

s

Noncentrality parameter of the Rician distribution, stored as a nonnegative scalar value.

Data Types

single | double

sigma

Scale parameter for the Rician distribution, stored as a positive scalar value.

Data Types

single | double

DistributionName

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

Data Types

char

InputData

Data used for distribution fitting, stored as a structure containing the following:

- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.
Data Types
single | double

IsTruncated

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated. If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

Data Types

logical

prob.RicianDistribution

NumParameters

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

Data Types
single | double

ParameterCovariance

Covariance matrix of the parameter estimates, stored as a p-by- p matrix, where p is the number of parameters in the distribution. The (i, j) element is the covariance between the estimates of the i ith parameter and the j th parameter. The (i, i) element is the estimated variance of the ith parameter. If parameter i is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

Data Types

single | double

ParameterDescription

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

Data Types
 char

ParameterlsFixed

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

Data Types

logical
ParameterNames

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

Data Types

char

ParameterValues

Values of distribution parameters, stored as a vector. This property is read-only.

Data Types

single | double

Truncation

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

```
Data Types
single | double
```


Methods Inherited Methods

cdf	Cumulative distribution function of probability distribution object
icdf	Inverse cumulative distribution function of probability distribution object
iqr	Interquartile range of probability distribution object
median	Median of probability distribution object
pdf	Probability density function of probability distribution object

prob.RicianDistribution

random	Generate random numbers from probability distribution object Truncate probability distribution object
truncate	Mean of probability distribution object
mean	Negative loglikelihood of probability distribution object
negloglik	Confidence intervals for probability distribution parameters
proflik	Profile likelihood function for probability distribution object
std	Standard deviation of probability distribution object
var	Variance of probability distribution object

Definitions Rician Distribution

The Rician distribution is used in communications theory to model scattered signals that reach a receiver using multiple paths.

The Rician distribution uses the following parameters.

Name	Description	Support
s	Noncentrality parameter	$s \geq 0$
sigma	Scale parameter	$\sigma>0$

The probability density function (pdf) is

$$
f(x \mid s, \sigma)=I_{0}\left(\frac{x s}{\sigma^{2}}\right)\left(\frac{x}{\sigma^{2}}\right) \exp \left\{-\frac{x^{2}+s^{2}}{2 \sigma^{2}}\right\} \quad ; \quad x \geq 0
$$

where I_{0} is the zero-order modified Bessel function of the first kind.

Examples

Create a Rician Distribution Object Using Default Parameters

Create a Rician distribution object using the default parameter values.

```
pd = makedist('Rician')
pd =
```

RicianDistribution

Rician distribution $s=1$
sigma $=1$

Create a Rician Distribution Object Using Specified Parameters

Create a Rician distribution object by specifying the parameter values.

```
pd = makedist('Rician','s',0,'sigma',2)
pd =
```

RicianDistribution

```
Rician distribution
            s = 0
        sigma = 2
```

Compute the mean of the distribution.
$\mathrm{m}=\mathrm{mean}(\mathrm{pd})$
m =

prob.RicianDistribution

2.5066

See Also makedist | fitdist | dfittool
Concepts - "Rician Distribution" on page B-106
- Class Attributes
- Property Attributes

Purpose
 Ridge regression

Syntax

Description
b = ridge($\mathrm{y}, \mathrm{x}, \mathrm{k}$)
$\mathrm{b}=$ ridge $(\mathrm{y}, \mathrm{X}, \mathrm{k}$, scaled)
$b=r i d g e(y, x, k)$ returns a vector b of coefficient estimates for a multilinear ridge regression of the responses in y on the predictors in X. X is an n-by- p matrix of p predictors at each of n observations. y is an n-by- 1 vector of observed responses. k is a vector of ridge parameters. If k has m elements, b is p-by- m. By default, b is computed after centering and scaling the predictors to have mean 0 and standard deviation 1. The model does not include a constant term, and X should not contain a column of 1 s .
$b=r i d g e(y, x, k, s c a l e d)$ uses the $\{0,1\}$-valued flag scaled to determine if the coefficient estimates in b are restored to the scale of the original data. ridge $(y, x, k, 0)$ performs this additional transformation. In this case, b contains $p+1$ coefficients for each value of k, with the first row corresponding to a constant term in the model. ridge ($\mathrm{y}, \mathrm{X}, \mathrm{k}, 1$) is the same as ridge (y, X, k). In this case, b contains p coefficients, without a coefficient for a constant term.

The relationship between $b 0=r i d g e(y, x, k, 0)$ and $b 1=$ ridge ($y, x, k, 1$) is given by

```
m = mean(X);
s = std(X,0,1)';
b1_scaled = b1./s;
b0 = [mean(y)-m*b1_scaled; b1_scaled]
```

This can be seen by replacing the $x_{i}(i=1, \ldots, n)$ in the multilinear model $y=b_{0}{ }^{0}+b_{1}{ }^{0} x_{1}+\ldots+b_{n}{ }^{0} x_{n}$ with the z-scores $z_{i}=\left(x_{i}-\mu_{i}\right) / \sigma_{i}$, and replacing y with $y-\mu_{y}$.
In general, $b 1$ is more useful for producing plots in which the coefficients are to be displayed on the same scale, such as a ridge trace (a plot of the regression coefficients as a function of the ridge parameter). b0 is more useful for making predictions.

Coefficient estimates for multiple linear regression models rely on the independence of the model terms. When terms are correlated and the columns of the design matrix X have an approximate linear dependence, the matrix $\left(X^{T} X\right)^{-1}$ becomes close to singular. As a result, the least-squares estimate

$$
\hat{\beta}=\left(X^{T} X\right)^{-1} X^{T} y
$$

becomes highly sensitive to random errors in the observed response y, producing a large variance. This situation of multicollinearity can arise, for example, when data are collected without an experimental design.

Ridge regression addresses the problem by estimating regression coefficients using

$$
\hat{\beta}=\left(X^{T} X+k I\right)^{-1} X^{T} y
$$

where k is the ridge parameter and I is the identity matrix. Small positive values of k improve the conditioning of the problem and reduce the variance of the estimates. While biased, the reduced variance of ridge estimates often result in a smaller mean square error when compared to least-squares estimates.

Examples

Load the data in acetylene.mat, with observations of the predictor variables x 1 , x 2 , x 3 , and the response variable y :

```
load acetylene
```

Plot the predictor variables against each other:

```
subplot(1,3,1)
plot(x1,x2,'.')
xlabel('x1'); ylabel('x2'); grid on; axis square
subplot(1,3,2)
plot(x1,x3,'.')
xlabel('x1'); ylabel('x3'); grid on; axis square
```

```
subplot(1,3,3)
plot(x2,x3,'.')
xlabel('x2'); ylabel('x3'); grid on; axis square
```


Note the correlation between $\times 1$ and the other two predictor variables.
Use ridge and x2fx to compute coefficient estimates for a multilinear model with interaction terms, for a range of ridge parameters:

X $=$ [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = []; \% No constant term
k $=0: 1 \mathrm{e}-5: 5 \mathrm{e}-3$;
b = ridge(y, D,k);
Plot the ridge trace:

```
figure
plot(k,b,'LineWidth',2)
ylim([-100 100])
grid on
xlabel('Ridge Parameter')
ylabel('Standardized Coefficient')
title('{\bf Ridge Trace}')
legend('x1','x2','x3','x1x2','x1x3','x2x3')
```


The estimates stabilize to the right of the plot. Note that the coefficient of the $\times 2 \times 3$ interaction term changes sign at a value of the ridge parameter $\approx 5 \times 10^{-4}$.

[^12]
classregtree.risk

Purpose Node risks
Syntax
$r=r i s k(t)$
$r=r i s k(t, n o d e s)$

Description

$r=r i s k(t)$ returns an n-element vector r of the risk of the nodes in the tree t, where n is the number of nodes. The risk $r(i)$ for node i is the node error $e(i)$ (computed by nodeerr) weighted by the node probability $\mathrm{p}(\mathrm{i})$ (computed by nodeprob).
$r=r i s k(t$, nodes $)$ takes a vector nodes of node numbers and returns the risk values for the specified nodes.

Examples
 Create a classification tree for Fisher's iris data:

```
load fisheriris;
t = classregtree(meas,species,...
    'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2 class = setosa
3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
5 class = virginica
6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica
view(t)
```

Click to display: Identity	\checkmark	Magnification:	100\%	\checkmark	Pruning level:	0 of 4	-


```
e = nodeerr(t);
p = nodeprob(t);
r = risk(t);
r
r=
    0.6667
    0
    0.3333
    0.0333
```


classregtree.risk

 0.0067
 0.0067
 0.0133
 0
 0
 e. *p
ans =
0.6667
0
0.3333
0.0333
0.0067
0.0067
0.0133
0
0
References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.
See Also classregtree | nodeerr | nodeprob

Purpose	Interactive robust regression
Syntax	robustdemo robustdemo (x, y)
Description	robustdemo shows the difference between ordinary least squares and robust regression for data with a single predictor. With no input arguments, robustdemo displays a scatter plot of a sample of roughly linear data with one outlier. The bottom of the figure displays equations of lines fitted to the data using ordinary least squares and robust methods, together with estimates of the root mean squared errors.
Use the right mouse button to click on a point and view its least-squares leverage and robust weight.	
Use the left mouse button to click-and-drag a point. The displays will update. robustdemo (x, y) uses x and y data vectors you supply, in place of the sample data supplied with the function.	
Examples	The following steps show you how to use robustdemo.
1 Start the example. To begin using robustdemo with the built-in data, simply type the function name:	
robustdemo	

robustdemo

Use left mouse button to select and drag points
Use right mouse button to query point properties

Least squares:
$Y=-0.188327+1.10351^{*} X$
Robust:
$Y=-1.77278+1.50415^{*} X$
RMS error $=2.21375$
RMS error $=1.43663$

The resulting figure shows a scatter plot with two fitted lines. The red line is the fit using ordinary least-squares regression. The green line is the fit using robust regression. At the bottom of the figure are the equations for the fitted lines, together with the estimated root mean squared errors for each fit.

2 View leverages and robust weights. Right-click on any data point to see its least-squares leverage and robust weight:

Use left mouse button to select and drag points
 Use right mouse button to query point properties

Least squares:
Robust:

$$
\begin{aligned}
& Y=-0.188327+1.10351^{*} X \\
& Y=-1.77278+1.50415^{*} X
\end{aligned}
$$

$$
\text { RMS error }=2.21375
$$

$$
\text { RMS error }=1.43663
$$

In the built-in data, the right-most point has a relatively high leverage of 0.35 . The point exerts a large influence on the least-squares fit, but its small robust weight shows that it is effectively excluded from the robust fit.

3 See how changes in the data affect the fits. With the left mouse button, click and hold on any data point and drag it to a new location. When you release the mouse button, the displays update:

robustdemo

Use left mouse button to select and drag points
Use right mouse button to query point properties

Least squares:
Robust:

$$
\begin{aligned}
& Y=-1.0661+1.33785^{*} X \\
& Y=-1.18916+1.36459^{*} X
\end{aligned}
$$

RMS error $=1.21477$
RMS error $=1.27697$

Bringing the right-most data point closer to the least-squares line makes the two fitted lines nearly identical. The adjusted right-most data point has significant weight in the robust fit.

See Also

robustfit | leverage

Purpose

Syntax
b = robustfit (X, y$)$
b = robustfit(X,y,wfun,tune)
b = robustfit(X,y,wfun,tune, const)
[b,stats] = robustfit(...)
Robust regression
[b, stats]
$\mathrm{b}=$ robustfit (X, y) returns a p-by- 1 vector b of coefficient estimates for a robust multilinear regression of the responses in y on the predictors in X . X is an n-by- p matrix of p predictors at each of n observations. y is an n-by- 1 vector of observed responses. By default, the algorithm uses iteratively reweighted least squares with a bisquare weighting function.

Note By default, robustfit adds a first column of 1 s to X , corresponding to a constant term in the model. Do not enter a column of 1 s directly into X. You can change the default behavior of robustfit using the input const, below.
robustfit treats NaNs in X or y as missing values, and removes them. $b=$ robustfit($X, y, w f u n$, tune) specifies a weighting function wfun. tune is a tuning constant that is divided into the residual vector before computing weights.

The weighting function wfun can be any one of the following strings:

Weight Function	Equation	Default Tuning Constant
'andrews '	w = (abs(r)<pi) .* sin(r) ./ r	1.339
'bisquare' (default)	$\begin{aligned} & w=(\operatorname{abs}(r)<1) \cdot *(1- \\ & \left.r \cdot{ }^{\wedge} 2\right) \cdot \wedge 2 \end{aligned}$	4.685
'cauchy'	$w=1 . /(1+r . \wedge 2)$	2.385

Weight Function	Equation	Default Tuning Constant
'fair'	$w=1 . /(1+\mathrm{abs}(\mathrm{r}))$	1.400
'huber'	$\mathrm{w}=1 . / \max (1, \mathrm{abs}(\mathrm{r}))$	1.345
'logistic'	$\mathrm{w}=$ tanh (r) ./ r	1.205
'ols'	Ordinary least squares (no weighting function)	None
'talwar'	$\mathrm{w}=1 *(\mathrm{abs}(\mathrm{r})<1)$	2.795
'welsch'	$\mathrm{w}=\exp (-(\mathrm{r} . \wedge 2))$	2.985

If tune is unspecified, the default value in the table is used. Default tuning constants give coefficient estimates that are approximately 95% as statistically efficient as the ordinary least-squares estimates, provided the response has a normal distribution with no outliers. Decreasing the tuning constant increases the downweight assigned to large residuals; increasing the tuning constant decreases the downweight assigned to large residuals.

The value r in the weight functions is

```
r = resid/(tune*s*sqrt(1-h))
```

where resid is the vector of residuals from the previous iteration, h is the vector of leverage values from a least-squares fit, and s is an estimate of the standard deviation of the error term given by
$s=$ MAD/0.6745
Here MAD is the median absolute deviation of the residuals from their median. The constant 0.6745 makes the estimate unbiased for the normal distribution. If there are p columns in X , the smallest p absolute deviations are excluded when computing the median.
You can write your own weight function. The function must take a vector of scaled residuals as input and produce a vector of weights as
output. In this case, wfun is specified using a function handle @ (as in @myfun), and the input tune is required.
b = robustfit (X, y, wfun, tune, const) controls whether or not the model will include a constant term. const is 'on' to include the constant term (the default), or 'off' to omit it. When const is 'on', robustfit adds a first column of 1 s to X. When const is 'off', robustfit does not alter X .
[b,stats] = robustfit(...) returns the structure stats, whose fields contain diagnostic statistics from the regression. The fields of stats are:

- ols_s - Sigma estimate (RMSE) from ordinary least squares
- robust_s - Robust estimate of sigma
- mad_s - Estimate of sigma computed using the median absolute deviation of the residuals from their median; used for scaling residuals during iterative fitting
- s - Final estimate of sigma, the larger of robust_s and a weighted average of ols_s and robust_s
- resid - Residual
- rstud - Studentized residual (see regress for more information)
- se - Standard error of coefficient estimates
- covb - Estimated covariance matrix for coefficient estimates
- coeffcorr - Estimated correlation of coefficient estimates
- t - Ratio of b to se
- $\mathrm{p}-p$-values for t
- w - Vector of weights for robust fit
- $\mathrm{R}-R$ factor in $Q R$ decomposition of x
- dfe - Degrees of freedom for error
- h - Vector of leverage values for least-squares fit

The robustfit function estimates the variance-covariance matrix of the coefficient estimates using inv ($\mathrm{X}^{\prime *} \mathrm{X}$)*stats. $\mathrm{s}^{\wedge} 2$. Standard errors and correlations are derived from this estimate.

Examples

Generate data with the trend $y=10-2 * x$, then change one value to simulate an outlier:

```
x = (1:10)';
y = 10 - 2*x + randn(10,1);
y(10) = 0;
```

Use both ordinary least squares and robust regression to estimate a straight-line fit:

```
bls = regress(y,[ones(10,1) x])
bls =
    7.2481
    -1.3208
brob = robustfit(x,y)
brob =
    9.1063
    -1.8231
```

A scatter plot of the data together with the fits shows that the robust fit is less influenced by the outlier than the least-squares fit:

```
scatter(x,y,'filled'); grid on; hold on
plot(x,bls(1)+bls(2)*x,'r','LineWidth',2);
plot(x,brob(1)+brob(2)*x,'g','LineWidth', 2)
legend('Data','Ordinary Least Squares','Robust Regression')
```


References

[1] DuMouchel, W. H., and F. L. O’Brien. "Integrating a Robust Option into a Multiple Regression Computing Environment." Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface. Alexandria, VA: American Statistical Association, 1989.
[2] Holland, P. W., and R. E. Welsch. "Robust Regression Using Iteratively Reweighted Least-Squares." Communications in Statistics: Theory and Methods, A6, 1977, pp. 813-827.
[3] Huber, P. J. Robust Statistics. Hoboken, NJ: John Wiley \& Sons, Inc., 1981.

robustfit

[4] Street, J. O., R. J. Carroll, and D. Ruppert. "A Note on Computing Robust Regression Estimates via Iteratively Reweighted Least Squares." The American Statistician. Vol. 42, 1988, pp. 152-154.

See Also regress | robustdemo

Purpose Rotate categorical matrix 90 degrees

Syntax
$B=\operatorname{rot} 90(A)$
$B=\operatorname{rot} 90(A, k)$

Description $\quad B=\operatorname{rot} 90(A)$ returns the 90 degree counterclockwise rotation of the 2-D categorical matrix A.
$B=\operatorname{rot} 90(A, k)$ returns the $k * 90$ degree rotation $\mathrm{of} A, k=$ $+-1,+-2, \ldots$

See Also flipdim | fliplr | flipud

rotatefactors

Purpose Rotate factor loadings
Syntax
Description
$B=$ rotatefactors(A)
B = rotatefactors(A,'Method','orthomax','Coeff',gamma)
B = rotatefactors(A,'Method','procrustes','Target',target)
B = rotatefactors(A,'Method','pattern','Target',target)
B = rotatefactors(A,'Method','promax')
$[B, T]=\operatorname{rotatefactors}(A, \ldots)$
$\mathrm{B}=$ rotatefactors(A) rotates the d-by $-m$ loadings matrix A to maximize the varimax criterion, and returns the result in B. Rows of A and B correspond to variables and columns correspond to factors, for example, the (i, j) th element of A is the coefficient for the i th variable on the j th factor. The matrix A usually contains principal component coefficients created with pca or pcacov, or factor loadings estimated with factoran.

B = rotatefactors(A,'Method','orthomax','Coeff',gamma) rotates A to maximize the orthomax criterion with the coefficient gamma, i.e., B is the orthogonal rotation of A that maximizes
sum(D*sum(B.^4,1) - GAMMA*sum(B.^2,1).^2)
The default value of 1 for gamma corresponds to varimax rotation. Other possibilities include gamma $=0, m / 2$, and $d(m-1) /(d+m-2)$, corresponding to quartimax, equamax, and parsimax. You can also supply the strings 'varimax', 'quartimax', 'equamax', or 'parsimax' for the 'method' parameter and omit the 'Coeff' parameter.

If 'Method' is 'orthomax', 'varimax', 'quartimax', 'equamax', or 'parsimax', then additional parameters are

- 'Normalize' - Flag indicating whether the loadings matrix should be row-normalized for rotation. If ' on' (the default), rows of A are normalized prior to rotation to have unit Euclidean norm, and unnormalized after rotation. If 'off ', the raw loadings are rotated and returned.
- 'Reltol' - Relative convergence tolerance in the iterative algorithm used to find T. The default is sqrt(eps).
- 'Maxit' - Iteration limit in the iterative algorithm used to find T. The default is 250 .

B = rotatefactors(A,'Method','procrustes','Target',target) performs an oblique procrustes rotation of A to the d-by- m target loadings matrix target.
$B=$ rotatefactors(A,'Method','pattern','Target',target) performs an oblique rotation of the loadings matrix A to the d-by-m target pattern matrix target, and returns the result in B. target defines the "restricted" elements of B, i.e., elements of B corresponding to zero elements of target are constrained to have small magnitude, while elements of B corresponding to nonzero elements of target are allowed to take on any magnitude.

If 'Method' is 'procrustes' or 'pattern', an additional parameter is 'Type', the type of rotation. If 'Type' is 'orthogonal', the rotation is orthogonal, and the factors remain uncorrelated. If 'Type' is 'oblique ' (the default), the rotation is oblique, and the rotated factors might be correlated.

When 'Method' is 'pattern', there are restrictions on target. If A has m columns, then for orthogonal rotation, the j th column of target must contain at least $m-j$ zeros. For oblique rotation, each column of target must contain at least $m-1$ zeros.

B = rotatefactors(A,'Method','promax') rotates A to maximize the promax criterion, equivalent to an oblique Procrustes rotation with a target created by an orthomax rotation. Use the four orthomax parameters to control the orthomax rotation used internally by promax.

An additional parameter for 'promax' is 'Power', the exponent for creating promax target matrix. 'Power' must be 1 or greater. The default is 4 .
$[B, T]=$ rotatefactors (A, \ldots) returns the rotation matrix T used to create B, that is, $B=A * T$. You can find the correlation matrix of the rotated factors by using inv ($\mathrm{T}^{\prime *} \mathrm{~T}$). For orthogonal rotation, this is the
identity matrix, while for oblique rotation, it has unit diagonal elements but nonzero off-diagonal elements.

Examples

```
rng('default') % for reproducibility
X = randn(100,10);
% Default (normalized varimax) rotation:
% first three principle components.
LPC = pca(X);
[L1,T] = rotatefactors(LPC(:,1:3));
% Equamax rotation:
% first three principle components.
[L2,T] = rotatefactors(LPC(:,1:3),...
                                    'method','equamax');
% Promax rotation:
% first three factors.
LFA = factoran(X,3,'Rotate','none');
[L3,T] = rotatefactors(LFA(:,1:3),...
                                    'method','promax',...
                                    'power',2);
% Pattern rotation:
% first three factors.
Tgt = [\begin{array}{llllllllllll}{1}&{1}&{1}&{1}&{1}&{0}&{1}&{0}&{1}&{1;}\end{array}..
    0 0 0 1 1 1 0 0 0 0; ...
    1001 0 1 1 1 1 0]';
[L4,T] = rotatefactors(LFA(:,1:3),...
                            'method','pattern',...
                            'target',Tgt);
inv(T'*T) % Correlation matrix of the rotated factors
ans =
\begin{tabular}{rrr}
1.0000 & -0.9593 & -0.7098 \\
-0.9593 & 1.0000 & 0.5938 \\
-0.7098 & 0.5938 & 1.0000
\end{tabular}
```

References [1] Harman, H. H. Modern Factor Analysis. 3rd ed. Chicago: University of Chicago Press, 1976.
[2] Lawley, D. N., and A. E. Maxwell. Factor Analysis as a Statistical Method. 2nd ed. New York: American Elsevier Publishing, 1971.
See Also
biplot | factoran | pca | pcacov | procrustes

Purpose Row exchange
Syntax

```
dRE = rowexch(nfactors,nruns)
[dRE,X] = rowexch(nfactors,nruns)
[dRE,X] = rowexch(nfactors,nruns,model)
[dRE,X] = rowexch(...,param1,val1,param2,val2,...)
```


Description

dRE = rowexch(nfactors, nruns) uses a row-exchange algorithm to generate a D-optimal design dRE with nruns runs (the rows of dRE) for a linear additive model with nfactors factors (the columns of dRE). The model includes a constant term.
[dRE, X] = rowexch(nfactors, nruns) also returns the associated design matrix X, whose columns are the model terms evaluated at each treatment (row) of dRE.
[dRE,X] = rowexch(nfactors, nruns,model) uses the linear regression model specified in model. model is one of the following strings:

- 'linear' - Constant and linear terms. This is the default.
- 'interaction' - Constant, linear, and interaction terms
- 'quadratic' - Constant, linear, interaction, and squared terms
- 'purequadratic' - Constant, linear, and squared terms

The order of the columns of \mathbf{X} for a full quadratic model with n terms is:
1 The constant term
2 The linear terms in order $1,2, \ldots, n$
3 The interaction terms in order $(1,2),(1,3), \ldots,(1, n),(2,3), \ldots,(n-1, n)$
4 The squared terms in order $1,2, \ldots, n$
Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In this case, model should have one column for each factor and one row for each term in the model. The entries in any row of model are powers for the factors in the columns. For example, if a model has factors $\mathrm{X} 1, \mathrm{X} 2$, and X 3 , then a row [$\left.\begin{array}{lll}0 & 1 & 2\end{array}\right]$ in model specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model specifies a constant term, which can be omitted.
[dRE,X] = rowexch(...,param1,val1,param2,val2,...) specifies additional parameter/value pairs for the design. Valid parameters and their values are listed in the following table.

Parameter	Value
'bounds '	Lower and upper bounds for each factor, specified as a 2-by-nfactors matrix. Alternatively, this value can be a cell array containing nfactors elements, each element specifying the vector of allowable values for the corresponding factor.
'categorical'	Indices of categorical predictors.
'display'	Either ' on ' or 'off ' to control display of the iteration counter. The default is 'on'.
'excludefun'	Handle to a function that excludes undesirable runs. If the function is f, it must support the syntax $b=f(S)$, where S is a matrix of treatments with nfactors columns and b is a vector of Boolean values with the same number of rows as $S . b(i)$ is true if the i th row S should be excluded.
'init'	Initial design as an nruns-by-nfactors matrix. The default is a randomly selected set of points.
'levels'	Vector of number of levels for each factor.
'maxiter'	Maximum number of iterations. The default is 10.

Parameter	Value
options	A structure that specifies whether to run in parallel, and specifies the random stream or streams. Create the options structure with statset. Option fields:
	- UseParallel — Set to true to compute in parallel. Default is false. - UseSubstreams - Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'.
	- Streams - A RandStream object or cell array of such objects. If you do not specify Streams, rowexch uses the default stream or streams. If you choose to specify Streams, use a single object except in the case - You have an open MATLAB pool
	- UseParallel is true - UseSubstreams is false
In that case, use a cell array the same size as the	
MATLAB pool.	

Algorithms

Both cordexch and rowexch use iterative search algorithms. They operate by incrementally changing an initial design matrix X to increase $D=\left|X^{T} X\right|$ at each step. In both algorithms, there is randomness built into the selection of the initial design and into the choice of the incremental changes. As a result, both algorithms may return locally, but not globally, D-optimal designs. Run each algorithm multiple times
and select the best result for your final design. Both functions have a 'tries ' parameter that automates this repetition and comparison.

At each step, the row-exchange algorithm exchanges an entire row of X with a row from a design matrix C evaluated at a candidate set of feasible treatments. The rowexch function automatically generates a C appropriate for a specified model, operating in two steps by calling the candgen and candexch functions in sequence. Provide your own C by calling candexch directly. In either case, if C is large, its static presence in memory can affect computation.

Examples

Suppose you want a design to estimate the parameters in the following three-factor, seven-term interaction model:

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{12} x_{1} x_{2}+\beta_{13} x_{1} x_{3}+\beta_{23} x_{2} x_{3}+\varepsilon
$$

Use rowexch to generate a D-optimal design with seven runs:

```
nfactors = 3;
nruns = 7;
[dRE,X] = rowexch(nfactors,nruns,'interaction','tries',10)
dRE =
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline -1 & -1 & 1 & & & & \\
\hline 1 & -1 & 1 & & & & \\
\hline 1 & -1 & -1 & & & & \\
\hline 1 & 1 & 1 & & & & \\
\hline -1 & -1 & -1 & & & & \\
\hline -1 & 1 & -1 & & & & \\
\hline -1 & 1 & 1 & & & & \\
\hline \multicolumn{7}{|l|}{\(\mathrm{X}=\)} \\
\hline 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
\hline 1 & 1 & -1 & 1 & -1 & 1 & -1 \\
\hline 1 & 1 & -1 & -1 & -1 & -1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 1 & -1 & -1 & -1 & 1 & 1 & 1 \\
\hline 1 & -1 & 1 & -1 & -1 & 1 & -1 \\
\hline 1 & -1 & 1 & 1 & -1 & -1 & 1 \\
\hline
\end{tabular}
```

Columns of the design matrix X are the model terms evaluated at each row of the design dRE. The terms appear in order from left to right: constant term, linear terms (1, 2, 3), interaction terms (12, 13, 23). Use X to fit the model, as described in "Linear Regression" on page 9-11, to response data measured at the design points in dRE.

See Also
candgen | candexch | cordexch

Purpose Interactive response surface demonstration

Syntax rsmdemo

Description
rsmdemo opens a group of three graphical user interfaces for interactively investigating response surface methodology (RSM), nonlinear fitting, and the design of experiments.

The interfaces allow you to collect and model data from a simulated chemical reaction. Experimental predictors are concentrations of three reactants (hydrogen, n-Pentane, and isopentane) and the response is the reaction rate. The reaction rate is simulated by a Hougen-Watson model (Bates and Watts, [2], pp. 271-272):

$$
\text { rate }=\frac{\beta_{1} x_{2}-x_{3} / \beta_{5}}{1+\beta_{2} x_{1}+\beta_{3} x_{2}+\beta_{4} x_{3}}
$$

where rate is the reaction rate, x_{1}, x_{2}, and x_{3} are the concentrations of hydrogen, n-pentane, and isopentane, respectively, and $\beta_{1}, \beta_{2}, \ldots, \beta_{5}$ are fixed parameters. Random errors are used to perturb the reaction rate for each combination of reactants.

Collect data using one of two methods:
1 Manually set reactant concentrations in the Reaction Simulator interface by editing the text boxes or by adjusting the associated sliders.

When you click Run, the concentrations and simulated reaction rate are recorded on the Trial and Error Data interface.

You are allowed up to 13 independent experimental runs for data collection.

2 Use a designed experiment to set reactant concentrations in the Experimental Data interface by clicking the Do Experiment button.

A 13 -run D-optimal design for a full quadratic model is generated by the cordexch function, and the concentrations and simulated reaction rates are recorded on the same interface.

Once data is collected, scatter plots of reaction rates vs. individual predictors are generated by selecting one of the following from the Plot pop-up menu below the recorded data:

- Hydrogen vs. Rate
- n-Pentane vs. Rate
- Isopentane vs. Rate

Fit a response surface model to the data by clicking the Analyze button below the trial-and-error data or the Response Surface button below the experimental data. Both buttons load the data into the Response Surface Tool rstool. By default, trial-and-error data is fit with a linear additive model and experimental data is fit with a full quadratic model, but the models can be adjusted in the Response Surface Tool.

For experimental data, you have the additional option of fitting a Hougen-Watson model. Click the Nonlinear Model button to load the data and the model in hougen into the Nonlinear Fitting Tool nlintool.

See Also hougen | cordexch | rstool | nlintool

Purpose Interactive response surface modeling

Syntax	rstool
	rstool(X, Y,model)
	rstool(x,y,model, alpha)
	rstool(x,y,model, alpha, xname, yname)

Description

rstool opens a graphical user interface for interactively investigating one-dimensional contours of multidimensional response surface models.

By default, the interface opens with the data from hald.mat and a fitted response surface with constant, linear, and interaction terms.

A sequence of plots is displayed, each showing a contour of the response surface against a single predictor, with all other predictors held fixed.
rstool plots a 95% simultaneous confidence band for the fitted response surface as two red curves. Predictor values are displayed in the text boxes on the horizontal axis and are marked by vertical dashed blue lines in the plots. Predictor values are changed by editing the text boxes or by dragging the dashed blue lines. When you change the value of a predictor, all plots update to show the new point in predictor space.

The pop-up menu at the lower left of the interface allows you to choose among the following models:

- Linear - Constant and linear terms (the default)
- Pure Quadratic - Constant, linear, and squared terms
- Interactions - Constant, linear, and interaction terms
- Full Quadratic - Constant, linear, interaction, and squared terms

Click Export to open the following dialog box:

The dialog allows you to save information about the fit to MATLAB workspace variables with valid names.
rstool (X, Y, model $)$ opens the interface with the predictor data in X, the response data in Y, and the fitted model model. Distinct predictor variables should appear in different columns of X . Y can be a vector, corresponding to a single response, or a matrix, with columns corresponding to multiple responses. Y must have as many elements (or rows, if it is a matrix) as X has rows.

The optional input model can be any one of the following strings:

- 'linear' - Constant and linear terms (the default)
- 'purequadratic' - Constant, linear, and squared terms
- 'interaction' - Constant, linear, and interaction terms
- 'quadratic' - Constant, linear, interaction, and squared terms

To specify a polynomial model of arbitrary order, or a model without a constant term, use a matrix for model as described in x2fx.
rstool(x,y,model, alpha) uses 100(1-alpha)\% global confidence intervals for new observations in the plots.
rstool(x, y, model, alpha, xname, yname) labels the axes using the strings in xname and yname. To label each subplot differently, xname and yname can be cell arrays of strings.

Examples

The following uses rstool to visualize a quadratic response surface model of the 3-D chemical reaction data in reaction. mat:
load reaction
alpha = 0.01; \% Significance level
rstool(reactants, rate, 'quadratic', alpha, $x n, y n$)

The rstool interface is used by rsmdemo to visualize the results of simulated experiments with data like that in reaction.mat. As described in "Response Surface Designs" on page 17-9, rsmdemo uses a response surface model to generate simulated data at combinations of predictors specified by either the user or by a designed experiment.

See Also $\quad x 2 f x$ | rsmdemo | nlintool

Purpose Run test for randomness

```
Syntax
h = runstest(x)
h = runstest(x, v)
h = runstest(x,'ud')
h = runstest(...,param1,val1,param2,val2,...)
[h, p] = runstest(...)
[h,p,stats] = runstest(...)
```


Description

$\mathrm{h}=$ runstest(x) performs a runs test on the sequence of observations in the vector x. This is a test of the null hypothesis that the values in x come in random order, against the alternative that they do not. The test is based on the number of runs of consecutive values above or below the mean of x. Too few runs indicate a tendency for high and low values to cluster. Too many runs indicate a tendency for high and low values to alternate. The test returns the logical value $h=1$ if it rejects the null hypothesis at the 5% significance level, and $\mathrm{h}=0$ if it cannot. The test treats NaN values in x as missing values, and ignores them.
runstest uses a test statistic which is approximately normally distributed when the null hypothesis is true. It is the difference between the number of runs and its mean, divided by its standard deviation.
$h=$ runstest (x, v) performs the test using runs above or below the value v. Values exactly equal to v are discarded. The default value of v is the mean of x.
$h=r u n s t e s t\left(x,{ }^{\prime} u d '\right)$ performs a test for the number of runs up or down. This also tests the hypothesis that the values in x come in random order. Too few runs indicate a trend. Too many runs indicate an oscillation. Values exactly equal to the preceding value are discarded.
h = runstest(...,param1,val1,param2,val2,...) specifies additional parameters and their values. Valid parameter/value pairs are the following:

- 'alpha ' - A scalar giving the significance level of the test
- 'method ' - Either 'exact' to compute the p value using an exact algorithm, or 'approximate' to use a normal approximation. The
default is 'exact', except for runs up/down when the length of is 51 or more. The 'exact ' method is not available for runs up/down when the length of x is over 50 .
- 'tail' - Performs the test against one of the following alternative hypotheses:
- 'both' - two-tailed test (sequence is not random)
- 'right' - right-tailed test (like values separate for runs above/below, direction alternates for runs up/down)
- 'left' - left-tailed test (like values cluster for runs above/below, values trend for runs up/down)
$[\mathrm{h}, \mathrm{p}]=$ runstest (...) returns the p value of the test. The output p is computed from either the test statistic or the exact distribution of the number of runs, depending on the value of the 'method' parameter.
[h,p,stats] = runstest(...) returns a structure stats with the following fields:
- nruns - The number of runs
- n 1 - The number of values above v
- $n 0$ - The number of values below v
- z — The test statistic

Examples $\quad x=\operatorname{randn}(40,1)$;

[h,p] = runstest(x,median(x))
$\mathrm{h}=$
0
$\mathrm{p}=$
0.6286

See Also signrank | signtest

TreeBagger.SampleWithReplacement property

Purpose Flag to sample with replacement
$\begin{array}{ll}\text { Description } & \begin{array}{l}\text { The SampleWithReplacement property is a logical flag specifying if } \\ \text { data are sampled for each decision tree with replacement. True if }\end{array} \\ & \begin{array}{l}\text { TreeBagger samples data with replacement and false otherwise. True } \\ \text { by default. }\end{array}\end{array}$

Sample size and power of test

```
n = sampsizepwr(testtype,p0,p1)
n = sampsizepwr(testtype,p0,p1,power)
power = sampsizepwr(testtype,p0,p1,[],n)
p1 = sampsizepwr(testtype,p0,[],power,n)
[...] = sampsizepwr(..., n,param1,val1,param2,val2,...)
```

$\mathrm{n}=$ sampsizepwr(testtype, $\mathrm{p0}$, p1) returns the sample size n required for a two-sided test of the specified type to have a power (probability of rejecting the null hypothesis when the alternative hypothesis is true) of 0.90 when the significance level (probability of rejecting the null hypothesis when the null hypothesis is true) is 0.05 . p 0 specifies parameter values under the null hypothesis. p1 specifies the single parameter value being tested under the alternative hypothesis.

The following values are available for testtype:

- 'z' $-z$-test for normally distributed data with known standard deviation. pO is a two-element vector [mu0 sigma0] of the mean and standard deviation, respectively, under the null hypothesis. p1 is the value of the mean under the alternative hypothesis.
- ' t ' $-t$-test for normally distributed data with unknown standard deviation. po is a two-element vector [muo sigma0] of the mean and standard deviation, respectively, under the null hypothesis. p1 is the value of the mean under the alternative hypothesis.
- 'var ' - Chi-square test of variance for normally distributed data. p 0 is the variance under the null hypothesis. p 1 is the variance under the alternative hypothesis.
- ' p ' - Test of the p parameter (success probability) for a binomial distribution. pO is the value of p under the null hypothesis. p 1 is the value of p under the alternative hypothesis.

The ' p ' test is a discrete test for which increasing the sample size does not always increase the power. For n values larger than 200, there may be values smaller than the returned n value that also produce the desired size and power.
$\mathrm{n}=$ sampsizepwr(testtype, $\mathrm{p} 0, \mathrm{p} 1$, power) returns the sample size n such that the power is power for the parameter value $p 1$.
power = sampsizepwr(testtype, p0, p1, [], n) returns the power achieved for a sample size of n when the true parameter value is $p 1$.
p1 = sampsizepwr(testtype, p0,[], power, n) returns the parameter value detectable with the specified sample size n and power power.

When computing p 1 for the ' p ' test, if no alternative can be rejected for a given null hypothesis and significance level, the function displays a warning message and returns NaN .
[...] = sampsizepwr(...,n,param1,val1,param2,val2,...) specifies one or more of the following name/value pairs:

- 'alpha' - Significance level of the test (default 0.05)
- 'tail' - The type of test is one of the following:
- 'both' - Two-sided test for an alternative not equal to p0
- 'right' - One-sided test for an alternative larger than po
- 'left' - One-sided test for an alternative smaller than po

Examples

Compute the mean closest to 100 that can be determined to be significantly different from 100 using a t-test with a sample size of 60 and a power of 0.8 .

```
mu1 = sampsizepwr('t',[100 10],[],0.8,60)
mu1 =
    103.6770
```

Compute the sample size n required to distinguish $p=0.26$ from $p=0.6$ with a binomial test. The result is approximate, so make a plot to see if any smaller n values also have the required power of 0.5 .

```
napprox = sampsizepwr('p',0.2,0.26,0.6)
Warning: Values N>200 are approximate. Plotting the power as a function
of N may reveal lower N values that have the required power.
napprox =
```

```
nn = 1:250;
pwr = sampsizepwr('p',0.2,0.26,[],nn);
nexact = min(nn(pwr>=0.6))
nexact =
    213
```

plot(nn, pwr,'b-',[napprox nexact], pwr([napprox nexact]), 'ro');
grid on

See Also

vartest | ttest | ztest | binocdf

Purpose Scatter plot with marginal histograms

```
Syntax scatterhist(x,y)
scatterhist(x,y,Name,Value)
h = scatterhist(__)
```

Description

Input Arguments

scatterhist (x, y) creates a 2-D scatter plot of the data in the vectors x and y, and puts a univariate histogram on the horizontal and vertical axes of the plot.
scatterhist (x, y, Name, Value) creates the plot using additional options specified by one or more name-value pair arguments. For example, you can specify a grouping variable or change the display options.
$h=$ scatterhist (__) returns a vector of three axis handles for the scatter plot, the histogram along the horizontal axis, and the histogram along the vertical axis, respectively, using any of the input arguments in the previous syntaxes.

x-Sample data

vector
Sample data, specified as a vector. The data vectors x and y must be the same length. If x or y contain $N a N$ values, then scatterhist:

- Removes rows with NaN values in either x or y from both data vectors when generating the scatter plot
- Removes rows with NaN values only from the corresponding x or y data vector when generating the marginal histograms

Data Types
single | double
y-Sample data
vector
Sample data, specified as a vector. The data vectors x and y must be the same length.

Data Types

single | double

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Location', 'SouthEast','Direction', 'out' specifies a plot with histograms located below and to the right of the scatter plot, with the bars directed away from the scatter plot.

'NBins' - Number of bins for histograms
positive integer value | vector

Number of bins for histograms, specified as the comma-separated pair consisting of 'Nbins' and a positive integer value greater than or equal to 2 , or vector of two such values. If the number of bins is specified as a positive integer value, that value is the number of bins for both the x and y histograms. If the number of bins is specified by a vector, the first value is the number of bins for the x data, and the second value is the number of bins for the y data. By default, the number of bins is computed based on the sample standard deviation using Scott's rule.

Example: 'NBins', [5,7]

Data Types

single | double

'Location' - Location of marginal histograms

'SouthWest' (default) | 'SouthEast' | 'NorthEast' | 'NorthWest'

Location of the marginal histograms in the figure, specified as the comma-separated pair consisting of 'Location' and one of the following.
'SouthWes Plot the histograms below and to the left of the scatter plot.
'SouthEas \mathbf{P} lot the histograms below and to the right of the scatter plot.
' NorthEas Plot the histograms above and to the right of the scatter plot.
'NorthWes $\mathbf{P l o t}$ the histograms above and to the left of the scatter plot.

Example: 'Location', 'SouthEast'

'Direction' - Direction of marginal histograms

'in' (default) | 'out'
Direction of the marginal histograms, specified as the comma-separated pair consisting of 'Direction' and one of the following.

```
'in' Plot the histograms with the bars directed toward the scatter plot.
'out ' Plot the histograms with the bars directed away from the scatter plot.
```


Example: 'Direction','out'

'Group' - Grouping variable

categorical array | logical or numeric vector | cell array of strings
Grouping variable, specified as the comma-separated pair consisting of 'Group ' and a categorical array, logical or numeric vector, or cell array of strings. Each unique value in a grouping variable defines a group.

For example, if Gender is a cell array of strings with values 'Male' and 'Female', you can use Gender as a grouping variable to plot your data by gender.

Multiple grouping variables can be used by specifying a cell array of grouping variable names. Observations are placed in the same group if they have common values of all specified grouping variables.

For example, if Smoker is a logical vector with values 0 for nonsmokers and 1 for smokers, then specifying the cell array \{Gender, Smoker\} divides observations into four groups: Male Smoker, Male Nonsmoker, Female Smoker, and Female Nonsmoker.

Example: 'Group ' , \{Gender, Smoker\}
Data Types
single | double | logical | cell | char

'Kernel' - Grouped kernel density plot indicator

'on' | 'off' | 'overlay
Grouped kernel density plot indicator, specified as the comma-separated pair consisting of 'Kernel' and one of the following.
'on ' Display kernel density plots for each group. This is the default if a Group parameter is specified.
'off' Display the overall marginal distribution as histograms. This is the default if a Group parameter is not specified.
' overlay ' Display the overall marginal distribution as kernel density plots overlaid onto histograms, similar to histfit.

Example: 'Kernel', 'overlay'

'Bandwidth' - Bandwidth of kernel smoothing window matrix

Bandwidth of kernel smoothing window, specified as the comma-separated pair consisting of 'Bandwidth' and a matrix of size 2 -by- K, where K is the number of unique groups. The first row of the matrix gives the bandwidth of each group in x, and the second row gives the bandwidth of each group in y. By default, scatterhist finds the optimal bandwidth for estimating normal densities. Specifying a different bandwidth value changes the smoothing characteristics of the
resulting kernel density plot. The value specified is a scaling factor for the normal distribution used to generate the kernel density plot.
Example: 'Bandwidth', [.5,.2, .1; . 15,. 25, . 35]

Data Types
single | double

'Legend' - Legend visibility indicator

 'on' | 'off'Legend visibility indicator, specified as the comma-separated pair consisting of 'Legend' and one of the following.

$$
\begin{array}{ll}
\text { 'on ' } & \begin{array}{l}
\text { Set legend visible. This is the default if a Group parameter } \\
\text { is specified. }
\end{array} \\
\text { 'off' } & \begin{array}{l}
\text { Set legend invisible. This is the default if a Group } \\
\text { parameter is not specified. }
\end{array}
\end{array}
$$

Example: 'Legend','on'

'LineStyle' - Style of kernel density plot line

valid line style string | cell array of strings

Style of kernel density plot line, specified as the comma-separated pair consisting of 'LineStyle' and a valid line style string or a cell array of valid line style strings. See plot for valid line style strings. The default is a solid line. Use a cell array to specify different line styles for each group. When the total number of groups exceeds the number of specified values, scatterhist cycles through the specified values.

Example: 'LineStyle', \{'-',':','-.'\}

'LineWidth' - Width of kernel density plot line

0.5 (default) | nonnegative scalar value | vector

Width of kernel density plot line, specified as the comma-separated pair consisting of 'LineWidth' and a nonnegative scalar value or vector of nonnegative scalar values. The specified value is the size of the kernel
density plot line measured in points. The default size is 0.5 points. Use a vector to specify different line widths for each group. When the total number of groups is greater than the number of specified values, scatterhist cycles through the specified values.

Example: 'LineWidth', [0.5, 1, 2]

Data Types

single | double

'Color' - Marker color for each scatter plot group

valid color designation char | string of chars | matrix of RGB values
Marker color for each scatter plot group, specified as the comma-separated pair consisting of 'Color' and a valid color designation character, a string of valid color designation characters, or a 3 -column matrix of RGB values in the range [0,1]. See ColorSpec for predefined colors and their RGB equivalents. If colors are specified using a matrix, each row of the matrix represents a group, and the three columns represent the R value, G value, and B value, respectively. When the total number of groups exceeds the number of specified colors, scatterhist cycles through the specified colors.
Example: 'Color', kcm '
Example: 'Color', [.5, 0, 1; 0, .5, .5]

Data Types

single | double | char

'Marker' - Marker symbol for each scatterplot group

' o' (default) | valid marker symbol | string of valid marker symbols
Marker symbol for each scatter plot group, specified as the comma-separated pair consisting of 'Marker' and a valid marker symbol or string of valid marker symbols. See plot for valid symbols. The default is ' o ', a circle. When the total number of groups exceeds the number of specified symbols, scatterhist cycles through the specified symbols.

```
Example: 'Marker','+do'
```


'MarkerSize' - Marker size for each scatter plot group

6 (default) | nonnegative scalar value | vector

Marker size for each scatter plot group, specified as the comma-separated pair consisting of 'MarkerSize' and a nonnegative scalar value or a vector of nonnegative scalar values, measured in points. When the total number of groups exceeds the number of specified values, scatterhist cycles through the specified values.

Example: 'MarkerSize',10

```
Data Types
single | double
```


Output Arguments

h - Axes handles
 vector

Axes handles for the three plots, returned as a vector. The vector contains the handles for the scatter plot, the histogram along the horizontal axis, and the histogram along the vertical axis, respectively.

Examples Create a Scatterhist Plot

Load the sample data. Create data vector x from the first column of the data matrix, which contains sepal length measurements from iris flowers. Create data vector y from the second column of the data matrix, which contains sepal width measurements from the same flowers.

```
load fisheriris.mat;
x = meas(:,1);
y = meas(:,2);
```

Create a scatter plot and two marginal histograms to visualize the relationship between sepal length and sepal width.

```
scatterhist(x,y)
```


Plot Grouped Data

Load the sample data. Create data vector x from the first column of the data matrix, which contains sepal length measurements from three species of iris flowers. Create data vector y from the second column of the data matrix, which contains sepal width measurements from the same flowers.
load fisheriris.mat;
x = meas(:,1);
y = meas(:,2);
Create a scatter plot and six kernel density plots to visualize the relationship between sepal length and sepal width, grouped by species.

```
scatterhist(x,y,'Group',species)
```


$-\varrho$
$\cdots \cdots$ setosa
$-\ominus \cdots$ virginicalor

The plot shows that the relationship between sepal length and width varies depending on the flower species.

Customize the Plot Display

Load the sample data. Create data vector x from the first column of the data matrix, which contains sepal length measurements from three different species of iris flowers. Create data vector y from the second column of the data matrix, which contains sepal width measurements from the same flowers.
load fisheriris.mat;
$x=m e a s(:, 1) ;$
$y=$ meas $(:, 2)$;
Create a scatter plot and six kernel density plots to visualize the relationship between sepal length and sepal width as measured on three species of iris flowers, grouped by species. Customize the appearance of the plots.

```
scatterhist(x,y,'Group',species,'Location','SouthEast',...
    'Direction','out', 'Color','kbr','LineStyle',{'-',' -.',':'},...
    'LineWidth',[2, 2, 2],'Marker','+od', 'MarkerSize', [4, 5, 6]) ;
```


Customize Plots Using Axes Handles

Load the sample data. Create data vector x from the first column of the data matrix, which contains sepal length measurements from three species of iris flowers. Create data vector y from the second column of the data matrix, which contains sepal width measurements from the same flowers.
load fisheriris.mat;
x = meas(:,1);
y = meas(: 2);
Use axis handles to replace the marginal histograms with box plots.

```
h = scatterhist(x,y,'Group',species);
hold on;
boxplot(h(2),x,species,'orientation','horizontal');
boxplot(h(3),y,species,'labelorientation','inline');
hold off;
```


$-\varrho$
$\cdots \cdots$ setosa
$\cdots \cdots$ versicolor
$-\ominus \cdots$ virginica

scatterhist

$\begin{array}{ll}\text { See Also } & \text { hist | gscatter } \\ \text { Concepts } & \text { - "Grouping Variables" on page 2-51 }\end{array}$

Purpose
Scramble quasi-random point set
Syntax
ps = scramble(p,type)
ps = scramble(p,'clear')
ps = scramble(p)

Description

Examples

 returns the result in ps. scrambling algorithms.ps = scramble (p, type) returns a scrambled copy $p s$ of the point set p of the qrandset class, created using the scramble type specified in the string type. Point sets from different subclasses of qrandset support different scramble types, as indicated in the following table.

Subclass	Scramble Types
haltonset	'RR2' - A permutation of the radical inverse coefficients derived by applying a reverse-radix operation to all of the possible coefficient values. The scramble is described in [1].
sobolset	'MatousekAffineOwen' - A random linear scramble combined with a random digital shift. The scramble is described in [2].

ps = scramble(p, 'clear') removes all scramble settings from p and
ps = scramble (p) removes all scramble settings from p and then adds them back in the order they were originally applied. This typically results in a different point set because of the randomness of the

Use haltonset to generate a 3-D Halton point set, skip the first 1000 values, and then retain every 101st point:

```
p = haltonset(3,'Skip',1e3,'Leap',1e2)
p =
    Halton point set in 3 dimensions (8.918019e+013 points)
    Properties:
            Skip : 1000
```


qrandset.scramble

Leap : 100
ScrambleMethod : none

Use scramble to apply reverse-radix scrambling:

```
p = scramble(p,'RR2')
p =
    Halton point set in 3 dimensions (8.918019e+013 points)
    Properties:
        Skip : }100
        Leap : }10
    ScrambleMethod : RR2
```

Use net to generate the first four points:

```
XO = net(p,4)
XO =
    0.0928 0.6950 0.0029
    0.6958 0.2958 0.8269
    0.3013 0.6497 0.4141
    0.9087 0.7883 0.2166
```

Use parenthesis indexing to generate every third point, up to the 11 th point:

```
x = p(1:3:11,:)
X =
    0.0928 0.6950 0.0029
    0.9087 0.7883 0.2166
    0.3843 0.9840 0.9878
    0.6831 0.7357 0.7923
```


References

[1] Kocis, L., and W. J. Whiten. "Computational Investigations of Low-Discrepancy Sequences." ACM Transactions on Mathematical Software. Vol. 23, No. 2, 1997, pp. 266-294.
[2] Matousek, J. "On the L2-Discrepancy for Anchored Boxes." Journal of Complexity. Vol. 14, No. 4, 1998, pp. 527-556.

See Also haltonset | sobolset

qrandset.ScrambleMethod property

Purpose
Description

Settings that control scrambling
The ScrambleMethod property contains a structure that defines which scrambles to apply to the sequence. The structure consists of two fields:

- Type: A string containing the name of the scramble.
- Options: A cell array of parameter values for the scramble.

Different point sets support different scramble types as outlined in the help for each point set class. An error occurs if you set an invalid scramble type for a given point set.

The ScrambleMethod property also accepts an empty matrix as a value. This will clear all scrambling and set the property to contain a (0×0) structure.

The scramble method provides an alternative, easier way to set scrambles.

\author{
Examples
 Apply a random linear scramble combined with a random digital shift to a sobolset point set class:
 ```
P = sobolset(5);
 P = scramble(P, 'MatousekAffineOwen');
 P.ScrambleMethod

```
}

See Also sobolset | scramble
Purpose Segments containing values
Syntax S = segment(obj, X, P)
Description \(S=\) segment (obj, \(X, P\) ) returns an array \(S\) of integers indicating whichsegment of the piecewise distribution object obj contains each valueof \(X\) or, alternatively, \(P\). One of \(X\) and \(P\) must be empty ([ ]). If \(X\) isnonempty, \(S\) is determined by comparing \(X\) with the quantile boundaryvalues defined for obj. If \(P\) is nonempty, \(S\) is determined by comparing\(P\) with the probability boundary values.
Examples Fit Pareto tails to a \(t\) distribution at cumulative probabilities 0.1 and0.9:
```

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
pvals = 0:0.2:1;
s = segment(obj,[],pvals)
s =

```
    \(\begin{array}{llllll}1 & 2 & 2 & 2 & 2 & 3\end{array}\)
See Also ..... paretotails | boundary | nsegments

Purpose
Syntax

\section*{Description}

Sequential feature selection
```

inmodel = sequentialfs(fun, X,y)

```
inmodel = sequentialfs(fun, X,y)
inmodel = sequentialfs(fun, X,Y,Z,\ldots.)
inmodel = sequentialfs(fun, X,Y,Z,\ldots.)
[inmodel,history] = sequentialfs(fun,X,...)
[inmodel,history] = sequentialfs(fun,X,...)
[] = sequentialfs(...,param1,val1,param2,val2,...)
```

[] = sequentialfs(...,param1,val1,param2,val2,...)

```
inmodel = sequentialfs(fun, \(X, y\) ) selects a subset of features from the data matrix \(X\) that best predict the data in \(y\) by sequentially selecting features until there is no improvement in prediction. Rows of \(X\) correspond to observations; columns correspond to variables or features. \(y\) is a column vector of response values or class labels for each observation in \(X\). \(X\) and \(y\) must have the same number of rows. fun is a function handle to a function that defines the criterion used to select features and to determine when to stop. The output inmodel is a logical vector indicating which features are finally chosen.
Starting from an empty feature set, sequentialfs creates candidate feature subsets by sequentially adding each of the features not yet selected. For each candidate feature subset, sequentialfs performs 10 -fold cross-validation by repeatedly calling fun with different training subsets of \(X\) and \(y\), XTRAIN and ytrain, and test subsets of \(X\) and \(y\), XTEST and ytest, as follows:
criterion = fun(XTRAIN,ytrain,XTEST,ytest)
XTRAIN and ytrain contain the same subset of rows of \(X\) and \(Y\), while XTEST and ytest contain the complementary subset of rows. XTRAIN and XTEST contain the data taken from the columns of \(X\) that correspond to the current candidate feature set.

Each time it is called, fun must return a scalar value criterion. Typically, fun uses XTRAIN and ytrain to train or fit a model, then predicts values for XTEST using that model, and finally returns some measure of distance, or loss, of those predicted values from ytest. In the cross-validation calculation for a given candidate feature set, sequentialfs sums the values returned by fun and divides that sum
by the total number of test observations. It then uses that mean value to evaluate each candidate feature subset.

Typical loss measures include sum of squared errors for regression models (sequentialfs computes the mean-squared error in this case), and the number of misclassified observations for classification models (sequentialfs computes the misclassification rate in this case).

Note sequentialfs divides the sum of the values returned by fun across all test sets by the total number of test observations. Accordingly, fun should not divide its output value by the number of test observations.

After computing the mean criterion values for each candidate feature subset, sequentialfs chooses the candidate feature subset that minimizes the mean criterion value. This process continues until adding more features does not decrease the criterion.
```

inmodel = sequentialfs(fun, X,Y,Z,···.) allows any number of
input variables X, Y, Z, sequentialfs chooses features (columns)
only from X, but otherwise imposes no interpretation on X, Y, Z, All
data inputs, whether column vectors or matrices, must have the same
number of rows. sequentialfs calls fun with training and test subsets
of X, Y, Z, ... as follows:
criterion = fun(XTRAIN,YTRAIN,ZTRAIN,....,
XTEST,YTEST,ZTEST,...)

```
sequentialfs creates XTRAIN, YTRAIN, ZTRAIN, ... , XTEST, YTEST, ZTEST, ... by selecting subsets of the rows of \(X, Y, Z, \ldots\). fun must return a scalar value criterion, but may compute that value in any way. Elements of the logical vector inmodel correspond to columns of \(X\) and indicate which features are finally chosen.
[inmodel,history] = sequentialfs(fun, X, ...) returns information on which feature is chosen at each step. history is a scalar structure with the following fields:
- Crit - A vector containing the criterion values computed at each step.
- In - A logical matrix in which row i indicates the features selected at step i.
[] = sequentialfs(...,param1,val1,param2,val2,...) specifies optional parameter name/value pairs from the following table.
\begin{tabular}{l|l}
\hline Parameter & V \\
\hline ' cv' \(^{\prime}\) & T
\end{tabular}

Value
The validation method used to compute the criterion for each candidate feature subset.
- When the value is a positive integer k , sequentialfs uses k-fold cross-validation without stratification.
- When the value is an object of the cvpartition class, other forms of cross-validation can be specified.
- When the value is 'resubstitution', the original data are passed to fun as both the training and test data to compute the criterion.
- When the value is 'none', sequentialfs calls fun as criterion \(=\) fun ( \(X, Y, Z, \ldots\) ), without separating test and training sets.

The default value is 10 , that is, 10 -fold cross-validation without stratification.

So-called wrapper methods use a function fun that implements a learning algorithm. These methods usually apply cross-validation to select features. So-called filter methods use a function
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline & \begin{tabular}{l} 
fun that measures characteristics of the data \\
(such as correlation) to select features.
\end{tabular} \\
\hline 'moreps' & \begin{tabular}{l} 
A positive integer indicating the number of \\
Monte-Carlo repetitions for cross-validation. The \\
default value is 1. The value must be 1 if the \\
value of 'cv' is 'resubstitution' or 'none '.
\end{tabular} \\
\hline 'direction' & \begin{tabular}{l} 
The direction of the sequential search. The \\
default is 'forward '. A value of 'backward ' \\
specifies an initial candidate set including all \\
features and an algorithm that removes features \\
sequentially until the criterion increases.
\end{tabular} \\
\hline 'keepin' & \begin{tabular}{l} 
A logical vector or a vector of column numbers \\
specifying features that must be included. The \\
default is empty.
\end{tabular} \\
\hline 'keepout' & \begin{tabular}{l} 
A logical vector or a vector of column numbers \\
specifying features that must be excluded. The \\
default is empty.
\end{tabular} \\
\hline 'nfeatures' & \begin{tabular}{l} 
The number of features at which sequentialfs \\
should stop. inmodel includes exactly this \\
many features. The default value is empty, \\
indicating that sequentialfs should stop when \\
a local minimum of the criterion is found. A \\
nonempty value overrides values of 'MaxIter' \\
and 'TolFun' in 'options '.
\end{tabular} \\
\hline 'nullmodel' & \begin{tabular}{l} 
A logical value, indicating whether or not the null \\
model (containing no features from X) should be \\
included in feature selection and in the history \\
output. The default is false.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Parameter & Value \\
\hline 'options' & \begin{tabular}{l}
Options structure for the iterative sequential search algorithm, as created by statset. sequentialfs uses the following statset parameters: \\
- Display - Amount of information displayed by the algorithm. The default is 'off'. \\
- MaxIter - Maximum number of iterations allowed. The default is Inf. \\
- TolFun - Termination tolerance for the objective function value. The default is \(1 \mathrm{e}-6\) if 'direction' is 'forward'; 0 if 'direction' is 'backward'. \\
- TolTypeFun - Use absolute or relative objective function tolerances. The default is 'rel'. \\
- UseParallel - Set to true to compute in parallel. Default is false. \\
- UseSubstreams - Set to true to compute in parallel in a reproducible fashion. Default is false. To compute reproducibly, set Streams to a type allowing substreams: 'mlfg6331_64' or 'mrg32k3a'. \\
- Streams - A RandStream object or cell array consisting of one such object. If you do not specify Streams, sequentialfs uses the default stream.
\end{tabular} \\
\hline
\end{tabular}

Examples
Perform sequential feature selection for classification of noisy features:
```

load fisheriris;
X = randn(150,10);

```
```

X(:,[$$
\begin{array}{lllll}{1}&{3}&{5}&{7}\end{array}
$$])= meas;
y = species;
c = cvpartition(y,'k',10);
opts = statset('display','iter');
fun = @(XT,yT,Xt,yt)...
(sum(~strcmp(yt,classify(Xt,XT,yT,'quadratic'))));
[fs,history] = sequentialfs(fun,X,y,'cv',c,'options',opts)
Start forward sequential feature selection:
Initial columns included: none
Columns that can not be included: none
Step 1, added column 7, criterion value 0.04
Step 2, added column 5, criterion value 0.0266667
Final columns included: 5 7
fs =
0
history =
In: [2\times10 logical]
Crit: [0.0400 0.0267]
history.In
ans =
0

```
See Also
crossval | cvpartition | stepwisefit | statset
Tutorials
- "Example: Sequential Feature Selection" on page 12-71
How To . "Sequential Feature Selection" on page 12-70

Purpose Set and display properties
```

Syntax
set (A)
set(A,PropertyName)
A = set(A,PropertyName,PropertyValue,...)
B $=\operatorname{set}(A$, PropertyName, value)

```

\section*{Description}
set (A) displays all properties of the dataset array \(A\) and their possible values.
set (A,PropertyName) displays possible values for the property specified by the string PropertyName.

A \(=\operatorname{set}(\mathrm{A}\), PropertyName, PropertyValue,...) sets property name/value pairs.
\(B=\operatorname{set}(A\), PropertyName, value) returns a dataset array \(B\) that is a copy of A, but with the property 'PropertyName' set to the value value.

Note Using set(A, 'PropertyName', value) without assigning to a variable does not modify A's properties. Use A = set (A, 'PropertyName', value) to modify A.

\section*{Examples}

Create a dataset array from Fisher's iris data and add a description:
```

load fisheriris
NumObs = size(meas,1);
NameObs = strcat({'Obs'},num2str((1:NumObs)','%-d'));
iris = dataset({nominal(species),'species'},...
{meas,'SL','SW','PL','PW'},...
'ObsNames',NameObs);
iris = set(iris,'Description','Fisher''s Iris Data');
get(iris)
Description: 'Fisher's Iris Data'
Units: {}
DimNames: {'Observations' 'Variables'}

```
```

UserData: []
ObsNames: \{150x1 cell\}
VarNames: \{'species' 'SL' 'SW' 'PL' 'PW'\}

```

See Also get | summary

\section*{CompactTreeBagger.setDefaultYfit}

Purpose Set default value for predict
Syntax \(\quad B=\operatorname{setDefaultYfit(B,Yfit)~}\)
Description \(\quad B=\) setDefaultYfit( \(B, Y f i t\) ) sets the default prediction for ensemble \(B\) to Yfit. The default prediction must be a character variable for classification or a numeric scalar for regression. This setting controls what predicted value CompactTreeBagger returns when no prediction is possible, for example when the predict method needs to predict for an observation which has only false values in the matrix supplied through 'useifort' argument.

\author{
See Also \\ predict | TreeBagger.DefaultYfit
}

\section*{Purpose Set difference for categorical arrays}

Note In a future release, the behavior of categorical.setdiff will change to be consistent with the MATLAB function setdiff. This behavior change is optional in R2012a. For a demonstration of using the 'R2012a' flag to preview the future behavior, or the 'legacy' flag to preserve the current behavior in your existing code, see the documentation for setdiff.

Syntax \(\quad C=\operatorname{setdiff}(A, B)\)
[C,IA] \(=\operatorname{setdiff}(A, B)\)
[...] = setdiff(A,B,'rows')
[...] = setdiff(...,'R2012a')
[...] = setdiff(...,'legacy')
[...] = setdiff(A,B,setOrder)
[...] = setdiff(A,B,'rows',setOrder)

\section*{Description}
\(C=\operatorname{setdiff}(A, B)\) for categorical vectors \(A\) and \(B\), returns a categorical vector \(C\) containing the values in \(A\) that are not in \(B\) with no repetitions. The result C is sorted. The set of categorical levels for C is the sorted union of the sets of levels of the inputs.
\([C, I A]=\operatorname{setdiff}(A, B)\) also returns an index vector IA such that \(C=\) \(A(I A)\). If there are repeated values in \(A\) that are not in \(B\), then the index of the last occurrence of each repeated value is returned.
[...] = setdiff(A, B, 'rows') for categorical matrices \(A\) and \(B\) with the same number of columns, returns the rows from \(A\) that are not in \(B\). The rows of the matrix C are sorted. The set of categorical levels for C is the sorted union of the sets of levels of the inputs. The optional output \(I A\) is an index vector such that \(C=C(I A,:)\).
[...] = setdiff(...,'R2012a') adopts the future behavior of setdiff. You can specify the flag as the final argument with any previous syntax that accepts A, B, or 'rows'.
[...] = setdiff(...,'legacy') preserves the current behavior of setdiff. You can specify the flag as the final argument with any previous syntax that accepts A, B, or 'rows'.
\([\ldots]=\operatorname{setdiff}(A, B\), setOrder \()\) and \([\ldots]=\) setdiff(A, B, 'rows', setOrder) returns the observations of \(C\) in a specific order. setOrder='sorted ' returns the values or rows of C in sorted order. setOrder='stable' returns the values or rows of \(C\) in the same order as \(A\). If \(A\) is a row vector, then \(C\) is also a row vector. Otherwise, \(C\) is a column vector. IA is a column vector. If there are repeated values in \(A\) that are not in \(B\), then the index of the first occurrence of each repeated value is returned.

\section*{See Also}
```

intersect | ismember | setxor | union | unique

```
\begin{tabular}{|c|c|}
\hline Purpose & Set difference for dataset array observations \\
\hline Syntax & ```
C = setdiff(A,B)
C = setdiff(A,B,vars)
C = setxor(A,B,vars,setOrder)
[C,iA] = setxor(___)
``` \\
\hline Description & \begin{tabular}{l}
\(C=\operatorname{setdiff}(A, B)\) for dataset arrays \(A\) and \(B\) returns the set of observations that are in \(A\) but not \(B\), with repetitions removed. The observations in the dataset array \(C\) are sorted. \\
\(C=\operatorname{setdiff}(A, B\), vars \()\) returns the set of observations that are in \(A\) but not \(B\), considering only the variables specified in vars, with repetitions removed. The observations in the dataset array C are sorted by these variables. The values for variables not specified in vars for each observation in \(C\) are taken from the corresponding observation in If there are multiple observations in A that correspond to an observatio in \(C\), those values are taken from the first occurrence. \\
\(C=\operatorname{setxor}(A, B\), vars, setOrder) returns the observations in \(C\) in the order specified by setOrder. \\
\([\mathrm{C}, \mathrm{iA}]=\operatorname{setxor}(\ldots \quad)\) also returns the index vector iA such that C A(iA,:). If there are repeated observations in A, then setxor returns the index of the first occurrence. You can use any of the previous input arguments.
\end{tabular} \\
\hline \multirow[t]{3}{*}{Input Arguments} & A,B \(\quad\) Input dataset arrays. \\
\hline & vars \\
\hline & \begin{tabular}{l}
Cell array of strings containing variable names or a vector of integers containing variable column numbers, indicating the variables that setdiff considers. \\
Specify vars as [] to use its default value of all variables. \\
setOrder
\end{tabular} \\
\hline
\end{tabular}

Flag indicating the sorting order for the observations in C. The possible values of setOrder are:
\begin{tabular}{ll}
'sorted ' & \begin{tabular}{l}
Observations in C are in sorted order \\
(default).
\end{tabular} \\
'stable' & \begin{tabular}{l}
Observations in C are in the same order that \\
they appear in A.
\end{tabular}
\end{tabular}

\section*{Output Arguments}

\section*{Examples}

\section*{Set Difference of Two Dataset Arrays}

Create a scalar structure array, and then convert it into two dataset arrays.
```

S(1,1).Name = 'CLARK';
S(1,1).Gender = 'M';
S(1,1).SystolicBP = 124;
S(1,1).DiastolicBP = 93;
S(2,1).Name = 'BROWN';
S(2,1).Gender = 'F';
S(2,1).SystolicBP = 122;
S(2,1).DiastolicBP = 80;
S(3,1).Name = 'MARTIN';
S(3,1).Gender = 'M';
S(3,1).SystolicBP = 130;

```
```

S(3,1).DiastolicBP = 92;
A = struct2dataset(S(1:2));
B = struct2dataset(S(2:3));

```

The intersection of \(A\) and \(B\) is the second observation, with last name BROWN.

Return the set difference of A and B.
```

[C,iA] = setdiff(A,B)

```
C =
\begin{tabular}{llll}
Name & Gender & SystolicBP & DiastolicBP \\
'CLARK' & 'M' & 124 & 93
\end{tabular}
iA =

1

The first observation in \(A\) is not present in \(B\).

See Also

Concepts
- "Dataset Arrays" on page 2-135

Purpose Label levels
Syntax \(\quad A=\operatorname{set} \operatorname{labels}(A\), labels \()\)
A = setlabels(A,labels,levels)
Description \(\quad A=\operatorname{setlabels}(A, l a b e l s)\) labels the levels in the categorical array \(A\) using the cell array of strings or 2-D character matrix labels. Labels are assigned in the order given in labels.
A = setlabels(A, labels,levels) labels only the levels specified in the cell array of strings or 2-D character matrix levels.

\section*{Examples \\ Example 1}

Relabel the species in Fisher's iris data using new categories:
```

load fisheriris
species = nominal(species);
species = mergelevels(...
species,{'setosa','virginica'},'parent');
species = setlabels(species,'hybrid','versicolor');
getlabels(species)
ans =
'hybrid' 'parent'

```

\section*{Example 2}

1 Load patient data from the CSV file hospital. dat and store the information in a dataset array with observation names given by the first column in the data (patient identification):
```

patients = dataset('file','hospital.dat',...
'delimiter',',',...
'ReadObsNames',true);

```

2 Make the \(\{0,1\}\)-valued variable smoke nominal, and change the labels to 'No' and 'Yes':
```

patients.smoke = nominal(patients.smoke,{'No','Yes'});

```

3 Add new levels to smoke as placeholders for more detailed histories of smokers:
```

patients.smoke = addlevels(patients.smoke,...
{'0-5 Years','5-10 Years','LongTerm'});

```

4 Assuming the nonsmokers have never smoked, relabel the 'No ' level:
```

patients.smoke = setlabels(patients.smoke,'Never','No');

```

5 Drop the undifferentiated 'Yes' level from smoke:
```

patients.smoke = droplevels(patients.smoke,'Yes');
Warning: OLDLEVELS contains categorical levels that
were present in A, caused some array elements to have
undefined levels.

```

Note that smokers now have an undefined level.
6 Set each smoker to one of the new levels, by observation name:
```

patients.smoke('YPL-320') = '5-10 Years';

```

See Also
```

getlabels

```

Purpose
Set exclusive-or for categorical arrays

Note In a future release, the behavior of categorical.setxor will change to be consistent with the MATLAB function setxor. This behavior change is optional in R2012a. For a demonstration of using the 'R2012a' flag to preview the future behavior, or the 'legacy' flag to preserve the current behavior in your existing code, see the documentation for setxor.

Syntax
\(C=\operatorname{set} x o r(A, B)\)
[C,IA,IB] = setxor(A,B)
[...] \(=\operatorname{setxor}(A, B\), 'rows')
[...] = setxor(...,'R2012a')
[...] = setxor(...,'legacy')
[...] = setxor(A,B,setOrder)
[...] = setxor(A,B,'rows',setOrder)

\section*{Description}
\(C=\operatorname{setxor}(A, B)\) for categorical vectors \(A\) and \(B\), returns a categorical vector \(C\) containing the values not in the intersection of \(A\) and \(B\) with no repetitions. The result C is sorted. The set of categorical levels for C is the sorted union of the sets of levels of the inputs.
\([C, I A, I B]=\operatorname{setxor}(A, B)\) also returns index vectors IA and IB such that \(C\) is a sorted combination of the values \(A(I A)\) and \(B(I B)\) If there are repeated values that are not in the intersection in \(A\) or \(B\) then the index of the last occurrence of each repeated value is returned.
\([\ldots]=\operatorname{setxor}\left(A, B, ' r o w s^{\prime}\right)\) for categorical matrices \(A\) and \(B\) with the same number of columns, returns the rows that are not in the intersection of A and B. The rows of the matrix C are sorted. The set of categorical levels for \(C\) is the sorted union of the sets of levels of the inputs. The optional outputs IA and IB are index vectors such that \(C\) is the sorted combination of rows \(A(I A,:)\) and \(B(I B,:)\).
[...] = setxor(...,'R2012a') adopts the future behavior of setxor. You can specify the flag as the final argument with any previous syntax that accepts A, B, or 'rows'.
[...] = setxor(...,'legacy') preserves the current behavior of setxor. You can specify the flag as the final argument with any previous syntax that accepts A, B, or 'rows'.
[...] \(=\operatorname{setxor}(\mathrm{A}, \mathrm{B}\), setOrder) and \([. .]=\). setxor(A, B, 'rows', setOrder) returns the observations of \(C\) in a specific order. setOrder='sorted' returns the values or rows of \(C\) in sorted order. setOrder='stable' returns the values or rows of C in the same order as A. If A and B are row vectors, then \(C\) is also a row vector. Otherwise, \(C\) is a column vector. IA and IB are column vectors. If there are repeated values that are not in the intersection of \(A\) and \(B\), then the index of the first occurrence of each repeated value is returned.

See Also
intersect | ismember | setdiff | union | unique

Purpose Set exclusive or for dataset array observations

Syntax
Description

Input
Arguments
\(C=\operatorname{set} x o r(A, B)\)
\(C=\operatorname{set} x o r(A, B\), vars \()\)
C = setxor(A,B,vars,setOrder)
[C,iA,iB] = setxor(__)
\(C=\operatorname{set} x o r(A, B)\) for dataset arrays \(A\) and \(B\) returns the set of observations that are not in the intersection of the two arrays, with repetitions removed. The observations in the dataset array C are sorted.
\(C=\operatorname{setxor}(A, B, v a r s)\) returns the set of observations that are not in the intersection of the two arrays, considering only the variables specified in vars, with repetitions removed. The observations in the dataset array C are sorted by these variables. The values for variables not specified in vars for each observation in C are taken from the corresponding observation in A or B. If there are multiple observations in A or B that correspond to an observation in C, those values are taken from the first occurrence.
\(C=\operatorname{setxor}(A, B\), vars, setOrder) returns the observations in \(C\) in the order specified by setOrder.
\([C, i A, i B]=\operatorname{set} x o r(\ldots)\) also returns index vectors iA and iB such that \(C\) is a sorted combination of the values \(A(i A,:)\) and \(B(i B,:)\). If there are repeated observations in \(A\) or \(B\), then setxor returns the index of the first occurrence. You can use any of the previous input arguments.

\section*{A,B \\ Input dataset arrays.}

\section*{vars}

Cell array of strings containing variable names or a vector of integers containing variable column numbers, indicating the variables in A and B that setxor considers.

Specify vars as [] to use its default value of all variables.

\section*{setOrder}

Flag indicating the sorting order for the observations in C . The possible values of setOrder are:
```

'sorted' Observations in C are in sorted order (default).
'stable ' Observations in C are in the same order that they appear in A, then B.

```

\section*{Output Arguments}

\section*{C}

Dataset array with the observations not in the intersection of A and \(B\), with repetitions removed. \(C\) is in sorted order (by default), or the order specified by setOrder.
iA
Index vector, indicating the observations from A that are in C. The vector iA contains the index to the first occurrence of any repeated observations in A.

\section*{iB}

Index vector, indicating the observations from \(B\) that are in \(C\). The vector iB contains the index to the first occurrence of any repeated observations in B.

\section*{Examples Symmetric Difference of Two Dataset Arrays}

Create a scalar structure array, and then convert it into two dataset arrays.
```

S(1,1).Name = 'CLARK';
S(1,1).Gender = 'M';
S(1,1).SystolicBP = 124;
S(1,1).DiastolicBP = 93;
S(2,1).Name = 'BROWN';

```

\section*{dataset.setxor}
```

S(2,1).Gender = 'F';
S(2,1).SystolicBP = 122;
S(2,1).DiastolicBP = 80;
S(3,1).Name = 'MARTIN';
S(3,1).Gender = 'M';
S(3,1).SystolicBP = 130;
S(3,1).DiastolicBP = 92;
A = struct2dataset(S(1:2));
B = struct2dataset(S(2:3));

```

The intersection of \(A\) and \(B\) is the second observation, with last name BROWN.

Return the symmetric difference of \(A\) and \(B\).
```

[C,iA,iB] = setxor(A,B);

```
C
C =
\begin{tabular}{llll}
Name & Gender & SystolicBP & DiastolicBP \\
'CLARK' & 'M' & 124 & 93 \\
'MARTIN' & 'M' & 130 & 92
\end{tabular}
[iA iB]
ans =

12

The symmetric difference contains the first observation from A, and the second observation from B.

\section*{See Also}
```

dataset | intersect | ismember | setdiff | sortrows | union |
unique |

```

\footnotetext{
Concepts
- "Dataset Arrays" on page 2-135
}

\section*{gmdistribution.SharedCov property}

Purpose true if all covariance matrices are restricted to be the same
Description Logical true if all the covariance matrices are restricted to be the same (pooled estimate); logical false otherwise.

\section*{Purpose Shift dimensions of categorical array}

Syntax \(\quad B=\operatorname{shiftdim}(A, n)\)
[B,nshifts] = shiftdim(A)
Description \(\quad B=\operatorname{shiftdim}(A, n)\) shifts the dimensions of the categorical array \(A\) by N . When n is positive, shiftdim shifts the dimensions to the left and wraps the n leading dimensions to the end. When n is negative, shiftdim shifts the dimensions to the right and pads with singletons.
[B,nshifts] = shiftdim(A) returns the array B with the same number of elements as A but with any leading singleton dimensions removed. nshifts returns the number of dimensions that are removed. If A is a scalar, shiftdim has no effect.

\section*{See Also}
circshift | reshape | squeeze

\section*{RegressionEnsemble.shrink}
Purpose Prune ensemble
Syntax cmp = shrink(ens)
cmp = shrink(ens,Name, Value)
Description cmp = shrink(ens) returns a compact shrunken version of ens, aregularized ensemble. cmp retains only learners with weights abovea threshold.cmp = shrink(ens,Name, Value) returns an ensemble with additionaloptions specified by one or more Name, Value pair arguments. Youcan specify several name-value pair arguments in any order asName1, Value1, ,NameN, ValueN.
Input ens
ArgumentsA regression ensemble created with fitensemble.

\section*{Name-Value Pair Arguments}
Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'lambda'}
Vector of nonnegative regularization parameter values for lasso. If ens. Regularization is nonempty (populate it with regularize), shrink regularizes ens using lambda. If ens contains a Regularization structure, you cannot pass lambda.
Default: []

\section*{'threshold'}

Lower cutoff on weights for weak learners, a numeric nonnegative scalar. shrink creates cmp from those learners with weights above threshold.

Default: 0

\section*{'weightcolumn'}

Column index of ens.Regularization.TrainedWeights, a positive integer. shrink creates cmp with learner weights from this column.

Default: 1

\section*{Output Arguments}

\section*{Examples}

\section*{cmp}

A regression ensemble of class CompactRegressionEnsemble. Use cmp for making predictions exactly as you use ens, with the predict method.
shrink orders the members of cmp from largest to smallest.
Shrink a 300 -member bagged regression ensemble using 0.1 for the parameter lambda, and view the number of members of the resulting ensemble:
```

X = rand(2000,20);
Y = repmat(-1,2000,1);
Y(sum(X(:,1:5),2)>2.5) = 1;
bag = fitensemble(X,Y,'Bag',300,'Tree','type','regression');
cmp = shrink(bag,'lambda',0.1);
cmp.NTrained
ans =
83

```

See Also regularize | cvshrink | predict

\section*{RegressionEnsemble.shrink}

\author{
Tutorials \\ - "Ensemble Regularization" on page 15-102
}

\section*{gmdistribution.Sigma property}
\begin{tabular}{ll}
Purpose & Input array of covariances \\
Description & Input array of covariances SIGMA.
\end{tabular}

Purpose Wilcoxon signed rank test
Syntax
```

p = signrank(x)
p = signrank(x,y)
p = signrank(x,y,Name,Value)
[p,h] = signrank(___)
[p,h,stats] = signrank(___)
[___] = signrank(x,m)
[___] = signrank(x,m,Name,Value)

```

\section*{Description}
\(\mathrm{p}=\) signrank (x) returns the \(p\)-value of a two-sided Wilcoxon signed rank test.
signrank tests the null hypothesis that data in the vector x come from a distribution whose median is zero at the \(5 \%\) significance level. The test assumes that the data in x come from a continuous distribution symmetric about its median.
\(\mathrm{p}=\) signrank \((\mathrm{x}, \mathrm{y})\) returns the \(p\)-value of a paired, two-sided test for the null hypothesis that \(\mathrm{x}-\mathrm{y}\) comes from a distribution with zero median.
\(\mathrm{p}=\) signrank (\(\mathrm{x}, \mathrm{y}\), Name, Value) returns the \(p\)-value for the sign test with additional options specified by one or more Name, Value pair arguments.
[\(\mathrm{p}, \mathrm{h}]=\operatorname{signrank}(\ldots \quad\)) also returns a logical value indicating the test decision. \(\mathrm{h}=1\) indicates a rejection of the null hypothesis, and \(\mathrm{h}=0\) indicates a failure to reject the null hypothesis at the \(5 \%\) significance level. You can use any of the input arguments in the previous syntaxes.
[p,h,stats] = signrank(\(\qquad\)) also returns the structure stats with information about the test statistic.

[] = signrank \((x, m)\) returns any of the output arguments in the previous syntaxes for the null hypothesis that the data in x are observations from a distribution with median m .
[___] = signrank(x,m,Name, Value) returns any of the output arguments in the previous syntaxes for the signed rank test with additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{x-Sample data}
vector
Sample data, specified as a vector.

\section*{Data Types}
single | double

\section*{y-Sample data}
vector
Sample data, specified as a vector. y must be the same length as x .
Data Types
single | double

\section*{\(\mathbf{m}\) - Hypothesized value of the median}

\section*{scalar}

Hypothesized value of the median, specified as a scalar.
Example: signrank (x, 10)

\section*{Data Types}
single | double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'alpha', 0.01,'method','approximate','tail','right' specifies a right-tailed signed rank test with \(1 \%\) significance level, which returns the approximate p -value.

\section*{'alpha' - Significance level}
0.05 (default) | scalar value in the range 0 to 1

Significance level of the decision of a hypothesis test, specified as the comma-separated pair consisting of 'alpha' and a scalar value in the range 0 to 1 . Significance level of \(h\) is 100 * alpha\%.

Example: 'alpha', 0.01

\section*{Data Types}
double | single
'method' - Computation method of \(\mathbf{p}\)
'exact' | 'approximate'
Computation method of \(p\), specified as the comma-separated pair consisting of 'method' and one of the following.
\begin{tabular}{l|l}
\hline ' exact' & \begin{tabular}{l}
Exact computation of the \(p\)-value, p . Default value for 15 \\
or fewer observations in \(\mathrm{x}, \mathrm{x}-\mathrm{m}\), or \(\mathrm{x}-\mathrm{y}\) when method is \\
unspecified.
\end{tabular} \\
\hline ' approximattedrmal approximation while computing the \(p\)-value, p. \\
\begin{tabular}{l}
Default value for more than 15 observations in \(\mathrm{x}, \mathrm{x}-\mathrm{m}\), \\
or \(\mathrm{x}-\mathrm{y}\) when 'method' is unspecified because the exact \\
method can be slow on large samples.
\end{tabular} \\
\hline
\end{tabular}

Example: 'method','exact'
```

Data Types
char
'tail' - Type of test
'both' (default) | 'right' | 'left'

```

Type of test, specified as the comma-separated pair consisting of 'tail' and one of the following:
\begin{tabular}{|c|c|}
\hline 'both' & \begin{tabular}{l}
Two-sided hypothesis test, which is the default test type. \\
- For a one-sample test, the alternate hypothesis states that the data in x come from a continuous distribution with median different than 0 or m . \\
- For a two-sample test, the alternate hypothesis states that the data in \(x-y\) come from a distribution with median different than 0 .
\end{tabular} \\
\hline & \begin{tabular}{l}
Right-tailed hypothesis test. \\
- For a one-sample test, the alternate hypothesis states that the data in x come from a continuous distribution with median greater than 0 or m . \\
- For a two-sample test, the alternate hypothesis states the data in \(x-y\) come from a distribution with median greater than 0 .
\end{tabular} \\
\hline 'left' & \begin{tabular}{l}
Left-tailed hypothesis test. \\
- For a one-sample test, the alternate hypothesis states that the data in x come from a continuous distribution with median less than 0 or \(m\). \\
- For a two-sample test, the alternate hypothesis states the data in \(x-y\) come from a distribution with median less than 0 .
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Example: 'tail','left'} \\
\hline \multicolumn{2}{|l|}{\(\mathbf{p}\) - \(\boldsymbol{p}\)-value of the test nonnegative scalar} \\
\hline \multicolumn{2}{|l|}{\(p\)-value of the test, returned as a nonnegative scalar from 0 to \(1 . \mathrm{p}\) is the probability of observing a test statistic as or more extreme than the observed value under the null hypothesis. signrank computes the two-sided \(p\)-value by doubling the most significant one-sided value.} \\
\hline
\end{tabular}

\section*{signrank}

\section*{h-Result of the hypothesis test}

1| 0
Result of the hypothesis test, returned as a logical value.
- If \(h=1\), this indicates the rejection of the null hypothesis at the 100 * alpha\% significance level.
- If \(\mathrm{h}=0\), this indicates a failure to reject the null hypothesis at the 100 * alpha\% significance level.

\section*{stats - Test statistics}
structure
Test statistics, returned as a structure. The test statistics stored in stats are:
- signrank: Value of the sign rank test statistic.
- zval: Value of the \(z\) - statistic (computed when 'method' is 'approximate').

\section*{Examples Test for Zero Median of a Single Population}

Test the hypothesis of zero median.
Generate the sample data.
rng('default') \% for reproducibility
\(x=\operatorname{randn}(1,25)+1.30\);
Test the hypothesis that the data in x has zero median.
[\(\mathrm{p}, \mathrm{h}]=\) signrank(x)
\(p=\)
3.2229e-05
h =

At the default \(5 \%\) significance level, the value \(h=1\) indicates that the test rejects the null hypothesis of zero median.

\section*{Test the Median of Differences of Paired Samples}

Test the hypothesis of zero median for the difference between paired samples.

Generate the sample data.
```

rng('default') % for reproducibility
x = lognrnd(2,.25,10,1);
y = x + trnd(2,10,1);

```

Test the hypothesis that \(\mathrm{x}-\mathrm{y}\) has zero median.
```

[p,h] = signrank(x,y)
p =
0.3223
h =
0

```

The results indicate that the test fails to reject the null hypothesis of zero median in the difference at the default \(5 \%\) significance level.

\section*{Signed Rank Test for Large Samples}

Conduct a -sided test on a large sample using approximation.
Navigate to a folder containing sample data.
cd(matlabroot)
cd('help/toolbox/stats/examples')
Load the sample data.

\section*{signrank}
load gradespaired
Test the null hypothesis that the median of the grade differences of students before and after participating in a tutoring program is 0 against the alternate that it is less than 0 .
```

[p,h,stats] = signrank(gradespaired(:,1),···
gradespaired(:,2),'tail','left')
p =
0.0047
h =
1
stats =
zval: -2.5982
signedrank: 2.0175e+03

```

Because the sample size is greater than 15 , signrank uses an approximate method to calculate the \(p\)-value and also returns the value of the \(z\)-statistic. The value \(\mathrm{h}=1\) indicates that the test rejects the null hypothesis that there is no difference between the grade medians at the \(5 \%\) significance level. There is enough statistical evidence to conclude that the median grade before the tutoring program is less than the median grade after the tutoring program.

Repeat the test using the exact method.
```

[p,h,stats] = signrank(gradespaired(:,1),gradespaired(:,2),···.
'tail','left','method','exact')
p =

```
```

h =

```

1
stats =
signedrank: 2.0175e+03
The results obtained using the approximate method are consistent with the exact method.

\section*{Two-Sided Test for the Median of a Single Population}

Load the sample data.

\section*{load mileage}

The data contains the mileages per gallon for three different types of cars in columns 1 to 3 .

Test the hypothesis that the median mileage for the type of cars in the second column differs from 33.
```

[p,h,stats] = signrank(mileage(:,2),33)
p =
0.0313
h =
1
stats =
signedrank: 21

```

At the \(5 \%\) significance level, the results indicate that the median mileage for the second type of cars differs from 33. Note that signrank uses an exact method to calculate the \(p\)-value for small samples and does not return the \(z\)-statistic.

\section*{Right-Sided Test for the Median of a Single Population}

Use the name-value pair arguments in signrank.
Load the sample data.

\section*{load mileage}

The data contains the mileage per gallon for three different types of cars in columns 1 to 3 .

Test the hypothesis that the median mileage for the type of cars in the second row are larger than 33.
```

[p,h,stats] = signrank(mileage(:,2),33,'tail','right')
p =
0.0156
h =
1
stats =
signedrank: 21

```

Repeat the same test at the \(1 \%\) significance level using the approximate method.
```

[p,h,stats] = signrank(mileage(:,2),33,'tail','right',...

```
'alpha',0.01,'method','approximate')
\(p=\)
0.0180
\(\mathrm{h}=\)

0
stats \(=\)
zval: 2.0966
signedrank: 21
This result, \(\mathrm{h}=0\), indicates that the null hypothesis cannot be rejected at the \(1 \%\) significance level.

\section*{Definitions Wilcoxon Signed Rank Test}

The Wilcoxon signed rank test is a nonparametric test for two populations when the observations are paired. In this case, the test statistic, W , is the sum of the ranks of positive differences between the observations in the two samples (that is, \(x-y\)). When you use the test for one sample, then W is the sum of the ranks of positive differences between the observations and the hypothesized median value \(M_{0}\) (which is 0 when you use signrank (\(x\)) and \(m\) when you use signrank (\(x, m\))).

\section*{z-Statistic}

For large samples, or when method is approximate, the signrank function calculates the \(p\)-value using the \(z\)-statistic, given by
\[
z=\frac{(W-n(n+1) / 4)}{\sqrt{\frac{n(n+1)(2 n+1)-\text { tieadj }}{24}}},
\]
where \(n\) is the sample size of the difference \(\mathrm{x} \quad \mathrm{y}\) or \(\mathrm{x}-\mathrm{m}\). For the two-sample case, signrank uses [tie_rank, tieadj] = tiedrank(abs(diffxy), 0, 0, epsdiff) to obtain the tie adjustment value tieadj.

Algorithms
signrank treats NaNs in x and y as missing values and ignores them.
For the two-sample case, signrank uses a tolerance based on the values epsdiff \(=e p s(x)+e p s(y)\). The signrank function treats any pair of values with difference \(d(i)=x(i)-y(i)\) that differ by no more than the sum of their two eps values (abs(d(i)) < epsdiff(i)) as ties.

\section*{References}
[1] Gibbons, J. D., and S. Chakraborti. Nonparametric Statistical Inference, 5th Ed., Boca Raton, FL: Chapman \& Hall/CRC Press, Taylor \& Francis Group, 2011.
[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods. Hoboken, NJ: John Wiley \& Sons, Inc., 1999.

See Also ranksum | signtest | ttest | ztest

\section*{Purpose Sign test}

Syntax \(\quad p=\operatorname{signtest}(x)\)
p = signtest(x,y)
\(p\) = signtest(\(x, y\), Name, Value)
[p,h] = signtest(___)
[p,h,stats] = signtest(__)
[___] = signtest(x,m)
\([\ldots]\)] \(=\) signtest \((x, m\), Name, Value \()\)

\section*{Description}
\(\mathrm{p}=\) signtest(x) returns the \(p\)-value for a two-sided sign test.
signtest tests the hypothesis that data in x has a continuous distribution with zero median against the alternative that the distribution does not have zero median at the \(5 \%\) significance level.
\(\mathrm{p}=\) signtest \((\mathrm{x}, \mathrm{y})\) returns the \(p\)-value of a two-sided sign test. Here, signtest tests for the hypothesis that the data in \(x-y\) has a distribution with zero median against the alternative that the distribution does not have zero median. Note that a hypothesis of zero median for \(\mathrm{x}-\mathrm{y}\) is not equivalent to a hypothesis of equal median for \(x\) and \(y\).
\(\mathrm{p}=\) signtest (\(\mathrm{x}, \mathrm{y}\), Name, Value) returns the \(p\)-value for the sign test with additional options specified by one or more Name, Value pair arguments.
[\(p, h\)] = signtest (__) also returns a logical value indicating the test decision. The value \(\mathrm{h}=1\) indicates a rejection of the null hypothesis, and \(\mathrm{h}=0\) indicates a failure to reject the null hypothesis at the \(5 \%\) significance level. You can use any of the input arguments in the previous syntaxes.

\section*{signtest}
[p,h,stats] = signtest(__) also returns the structure stats containing information about the test statistic.

[] = signtest (\(\mathrm{x}, \mathrm{m}\)) returns any of the output arguments in the previous syntaxes for the test whether the data in \(x\) are observations from a distribution with median \(m\) against the alternative that the median is different from m .
[___] = signtest(x,m,Name, Value) returns any of the output arguments in the previous syntaxes for the sign test with additional options specified by one or more Name,Value pair arguments.

\section*{Input \\ Arguments \\ x-Sample data \\ vector}

Sample data, specified as a vector.

\section*{Data Types \\ single | double}

\section*{y-Sample data}
vector
Sample data, specified as a vector. y must be the same length as x .
```

Data Types
single | double

```

\section*{\(m\) - Hypothesized value of the median}

\section*{scalar}

Hypothesized value of the median, specified as a scalar.
Example: signtest (x,35)

\author{
Data Types \\ single | double
}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'alpha',0.01,'method','approximate','tail','right' specifies a right-tailed sign test with \(1 \%\) significance level, which returns the approximate p -value.

\section*{'alpha' - Significance level}

\subsection*{0.05 (default) | scalar value in the range 0 to 1}

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'alpha' and a scalar value in the range 0 to 1 . The default value of alpha is 0.05 . Significance level of h is 100 * alpha\%.

Example: 'alpha', 0.01
Data Types
double | single

\section*{'method' - p-value computation method}
```

'exact' | 'approximate

```
\(p\)-value computation method, specified as the comma-separated pair consisting of 'method ' and one of the following:
\begin{tabular}{l|l}
\hline 'exact' & Exact computation of the \(p\)-value, p. \\
\hline 'approximate' & Normal approximation for computing the \(p\)-value, p. \\
\hline
\end{tabular}

The default computation method is 'exact', if there are fewer than 100 observations and 'approximate' if there are 100 observations or more.

Example: 'method','exact'

\section*{Data Types}
char

\section*{signtest}

\section*{'tail' - Type of test}
'both' (default) | 'right' | 'left'
Type of test, specified as the comma-separated pair consisting of 'tail' and one of the following:
\begin{tabular}{|c|c|}
\hline 'both' & \begin{tabular}{l}
Two-sided hypothesis test, which is the default test type. \\
- For a one-sample test, the alternate hypothesis states that the data in x come from a continuous distribution with median different than zero (or m). \\
- For a two-sample test, the alternate hypothesis states that the data in \(\mathrm{x}-\mathrm{y}\) come from a distribution with median different than zero.
\end{tabular} \\
\hline & \begin{tabular}{l}
'Right-tailed hypothesis test. \\
- For a one-sample test, the alternate hypothesis states that the data in \(x\) come from a continuous distribution with median greater than zero (or m). \\
- For a two-sample test, the alternate hypothesis states the data in \(x-y\) come from a distribution with median greater than zero.
\end{tabular} \\
\hline 'left' & \begin{tabular}{l}
Left-tailed hypothesis test. \\
- For a one-sample test, the alternate hypothesis states that the data in x come from a continuous distribution with median less than zero (or m). \\
- For a two-sample test, the alternative hypothesis states the data in \(\mathrm{x}-\mathrm{y}\) come from a distribution with median less than zero.
\end{tabular} \\
\hline
\end{tabular}

Example: 'tail','left'

\section*{Output Arguments}

\section*{\(\mathbf{p}\) - \(\boldsymbol{p}\)-value of the test}
nonnegative scalar
\(p\)-value of the test, returned as a nonnegative scalar from 0 to \(1 . \mathrm{p}\) is the probability of observing a test statistic as or more extreme than the observed value under the null hypothesis. signtest computes the two-sided \(p\)-value by doubling the most significant one-sided value.

\section*{h-Result of the hypothesis test \\ 1 | 0}

Result of the hypothesis test, returned as a logical value.
- If \(\mathrm{h}=1\), this indicates rejection of the null hypothesis at the 100 * alpha\% significance level.
- If \(\mathrm{h}=0\), this indicates a failure to reject the null hypothesis at the 100 * alpha\% significance level.

\section*{stats - Test statistics}
structure
Test statistics, returned as a structure. The test statistics stored in stats are:
- sign: Value of the sign test statistic.
- zval: Value of the z-statistic (computed only for large samples).

\section*{Examples Test for Zero Median of a Single Population}

Test the hypothesis of zero median.
Generate the sample data.
```

rng('default') % for reproducibility
x = randn(1,25);

```

The sampling distribution of x is symmetric with zero median.
Test the null hypothesis that x comes from a distribution with a median different from zero median.

\section*{signtest}
```

[p,h,stats] = signtest(x,0)
p =
0.1078
h =
0
stats =
zval: NaN
sign: 17

```

At the default \(5 \%\) significance level, the result \(\mathrm{h}=0\) indicates that signtest fails to reject to the null hypothesis of zero median. signtest calculates the \(p\)-value using the exact method, hence it does not calculate zval and returns it as a NaN.

\section*{Test for Zero Median for the Difference of Paired Samples}

Test the hypothesis of zero median for the difference between paired samples.

Generate the sample data.
```

rng('default') % for reproducibility
before = lognrnd(2,.25,10,1);
after = before + (lognrnd(0,.5,10,1) - 1);

```

The sampling distribution of the difference between before and after is symmetric with zero median.

Test the null hypothesis that the difference of before and after has zero median.
[\(\mathrm{p}, \mathrm{h}]=\) signtest (before, after)
\(p=\)
0.7539

At the default 5\% significance level, the value \(\mathrm{h}=0\) indicates that signtest fails to reject to the null hypothesis of zero median in the difference.

\section*{Medians of Paired Samples}

Test the hypothesis of zero median for the difference between two paired samples using the exact and approximate methods.

Generate the sample data.
```

rng('default') % for reproducibility
x = lognrnd(2,.25,15,1);
y = x + trnd(2,15,1);
display([x y])
ans =
8.4521 7.8047
11.6869 11.4094
4.2009 5.1133
9.1664 12.1655
8.0020 10.0300
5.3285 6.0153
6.6300 5.1235
8.0499 8.6737
18.0763 19.2164
14.7665 15.3380
5.2726 8.4187
15.7798 16.2093
8.8583 8.5575
7.2735 7.4783

```

\section*{signtest}
```

8.8347 7.8894

```

Test the hypothesis that \(\mathrm{x}-\mathrm{y}\) has zero median.
[\(\mathrm{p}, \mathrm{h}\), stats] \(=\) signtest \((\mathrm{x}, \mathrm{y})\)
p =
 0.3018
h =
 0
stats =
 zval: NaN
 sign: 5

At the default \(5 \%\) significance level, the value \(\mathrm{h}=0\) indicates that the test fails to reject the null hypothesis of zero median in the difference.

Repeat the test using the approximate method.
[p,h,stats] = signtest(x,y,'method','approximate')
\(p=\)
0.3017
\(\mathrm{h}=\)
0
zval: -1.0328
sign: 5
The approximate \(p\)-value, which signtest obtains using the z-statistic, is really close to the exact \(p\)-value.

\section*{Test for Large Samples}

Perform a left-sided sign test for large samples.
Navigate to a folder containing sample data.
```

cd(matlabroot)
cd('help/toolbox/stats/examples')

```

Load the sample data.
load gradespaired
Test the null hypothesis that the median of the grade differences before and after the tutoring program is 0 against the alternate that it is less than 0 .
```

[p,h,stats] = signtest(gradespaired(:,1),gradespaired(:,2),···.
'tail','left')
p =
0.0013
h =
1
stats =

```

\section*{signtest}
zval: - 3.0110
sign: 37

Because the sample size is large (greater than 100), signtest uses an approximate method to calculate the \(p\)-value and also returns the value of the \(z\)-statistic. The test rejects the null hypothesis that there is no difference between the grade medians at the \(5 \%\) significance level.

\section*{Test for Median of a Single Population}

Test the hypothesis that the population median is different from a specified value.

Load the sample data.
load lawdata
The data set has 15 observations for variables gpa and lsat.
Test the hypothesis that the median lsat score is higher than 570.
```

[p,h,stats] = signtest(lsat,570,'tail','right')
p =
0.0176
h =
1
stats =
zval: NaN
sign: 12

```

Both the \(p\)-value, 0.0176 , and \(\mathrm{h}=1\) indicate that at the \(5 \%\) significance level the test concludes in favor of the alternate hypothesis.

\section*{Definitions}

\section*{Algorithms}

\section*{Sign Test}

The sign test is a nonparametric test for the median of a population or median of the difference of two populations.

For example, for tests on a single population median:
- If the test is two-sided, then the test statistic, \(S\), is the minimum of the number of observations that are smaller or larger than the hypothesized median value, \(M_{0}\).
- If the test is right-sided, then \(S\) is the number of observations that are larger than the hypothesized median value \(M_{0}\).
- If the test is left-sided, then \(S\) is the number of observations that are smaller than the hypothesized median value \(M_{0}\).

\section*{z-Statistic}

For a large sample, signtest uses the \(z\)-statistic to approximate the \(p\)-value.

The signtest test statistic is the number of elements that are greater than 0 (for signtest (\(x\)) or signtest (\(x-y\))), or \(m\) (for signtest (\(x, m\)). . Hence, the \(z\)-statistic of the sign test, with the continuity correction, is:
\[
z=\frac{(S-E(S))}{\sqrt{V(S)}}=\frac{(S-(0.5) n-0.5 \operatorname{sign}(n p o s-n n e g))}{\sqrt{(0.5)(0.5) n}},
\]
where npos and nneg are the number of positive and negative differences from the hypothesized median value, respectively.

For a one-sample test, signtest omits values in x that are zero or NaN .
For a two-sample test, signtest omits values in \(x-y\) that are zero or NaN.

\section*{References}
[1] Gibbons, J. D., and S. Chakraborti. Nonparametric Statistical Inference, 5th Ed. Boca Raton, FL: Chapman \& Hall/CRC Press, Taylor \& Francis Group, 2011.
[2] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods. Hoboken, NJ: John Wiley \& Sons, Inc., 1999.

See Also ranksum | signrank | ttest | ztest

\section*{Purpose}

Silhouette plot
```

silhouette(X,clust)

```
s = silhouette(X,clust)
[s,h] = silhouette(X,clust)
[...] = silhouette(X,clust,metric)
[...] = silhouette(X,clust,distfun, p1, p2,...)

Description

\section*{Syntax}
s = silhouette(X, clust)
[s,h] = silhouette(X, clust)
[...] = silhouette(X,clust,metric)
[...] = silhouette(X,clust,distfun, p1,p2,...)
silhouette(X,clust) plots cluster silhouettes for the \(n\)-by- \(p\) data matrix \(X\), with clusters defined by clust. Rows of \(X\) correspond to points, columns correspond to coordinates. clust can be a categorical variable, numeric vector, character matrix, or cell array of strings containing a cluster name for each point. silhouette treats NaNs or empty strings in clust as missing values, and ignores the corresponding rows of \(X\). By default, silhouette uses the squared Euclidean distance between points in X .
\(\mathrm{s}=\) silhouette(X, clust) returns the silhouette values in the \(n\)-by- 1 vector s, but does not plot the cluster silhouettes.
[s,h] = silhouette(X, clust) plots the silhouettes, and returns the silhouette values in the \(n\)-by- 1 vector s, and the figure handle in \(h\).
[...] = silhouette(X, clust,metric) plots the silhouettes using the inter-point distance function specified in metric. Choices for metric are given in the following table.
\begin{tabular}{l|l}
\hline Metric & Description \\
\hline 'Euclidean' & Euclidean distance \\
\hline 'sqEuclidean' & Squared Euclidean distance (default) \\
\hline 'cityblock' & Sum of absolute differences \\
\hline 'cosine' & \begin{tabular}{l}
One minus the cosine of the included angle \\
between points (treated as vectors)
\end{tabular} \\
\hline 'correlation' & \begin{tabular}{l}
One minus the sample correlation between points \\
(treated as sequences of values)
\end{tabular} \\
\hline
\end{tabular}

\section*{Definitions}

\section*{Silhouette Value}

The silhouette value for each point is a measure of how similar that point is to points in its own cluster compared to points in other clusters, and ranges from -1 to +1 .
The silhouette value for the ith point, Si , is defined as
```

Si = (bi-ai)/ max(ai,bi)

```
where ai is the average distance from the ith point to the other points in the same cluster as \(i\), and bi is the minimum average distance from the ith point to points in a different cluster, minimized over clusters.

\section*{Examples}
```

X = [randn(10,2)+ones(10,2);
randn(10,2)-ones(10,2)];
cidx = kmeans(X,2,'distance','sqeuclid');
s = silhouette(X,cidx,'sqeuclid');

```
References [1] Kaufman L., and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. Hoboken, NJ: John Wiley \& Sons, Inc., 1990.
See Also dendrogram | kmeans | linkage | pdist
How To - "Grouping Variables" on page 2-51

\section*{categorical.single}

Purpose Convert categorical array to single array

\section*{Syntax \\ \(B\) = single(A)}

Description \(B=\) single \((A)\) converts the categorical array \(A\) to a single array. Each element of \(B\) contains the internal categorical level code for the corresponding element of \(A\).

See Also double

\section*{dataset.single}

Purpose Convert dataset variables to single array
Syntax
\(B=\) single \((A)\)
\(B=\) single(A,vars)

Description \(B=\) single \((A)\) returns the contents of the dataset \(A\), converted to one single array. The classes of the variables in the dataset must support the conversion.
\(B=\) single(A,vars) returns the contents of the dataset variables specified by vars. vars is a positive integer, a vector of positive integers, a variable name, a cell array containing one or more variable names, or a logical vector.

\author{
See Also \\ dataset | double | replacedata
}
Purpose Size of categorical array
```

Syntax
d $=\operatorname{size}(A)$
[m,n] = size(A)
[m1,m2,m3,...,mn] = size(A)
$\mathrm{m}=\operatorname{size}(\mathrm{A}, \operatorname{dim})$

```

Description \(d=\operatorname{size}(A)\) returns the two-element row vector \(d=[m, n]\) containing the number of rows and columns in the matrix for an m-by-n categorical matrix A. For n-D categorical arrays, size (A) returns a 1-by-n vector of dimension lengths. Trailing singleton dimensions are ignored.
\([m, n]=\operatorname{size}(A)\) for a categorical matrix \(A\), returns the number of rows and columns in \(A\) as separate output variables.
\([m 1, m 2, m 3, \ldots, m n]=\operatorname{size}(A)\), for \(n>1\), returns the sizes of the first \(n\) dimensions of the categorical array \(A\). If the number of output arguments \(n\) does not equal ndims (\(A\)), then for:
\[
\begin{array}{ll}
\mathrm{n}>\operatorname{ndims}(\mathrm{A}) & \begin{array}{l}
\text { size returns ones in the "extra" variables, } \\
\text { i.e., outputs ndims }(\mathrm{A})+1 \text { through } \mathrm{n} .
\end{array} \\
\mathrm{n}<\operatorname{ndims}(\mathrm{A}) & \begin{array}{l}
\text { mn contains the product of the sizes of } \\
\text { dimensions } n \text { through ndims }(A) .
\end{array}
\end{array}
\]
\(\mathrm{m}=\operatorname{size}(\mathrm{A}, \mathrm{dim})\) returns the length of the dimension specified by the scalar dim. For example, size \((A, 1)\) returns the number of rows. If dim > ndims(A), \(m\) will be 1 .

See Also length | ndims | numel
Purpose Size of dataset array
Syntax

\[
D=\operatorname{SIZE}(A)
\]

[NOBS,NVARS] = SIZE(A)

\[
[\mathrm{M} 1, \mathrm{M} 2, \mathrm{M} 3, \ldots, \mathrm{MN}]=\operatorname{SIZE}(\mathrm{A})
\]

M = size(A,dim)
\(D=\operatorname{SIZE}(A)\) returns the two-element row vector \(D=[\) NOBS, NVARS] containing the number of observations and number of variables in the dataset A. A dataset array always has two dimensions.
[NOBS,NVARS] = SIZE(A) returns the numbers of observations and variables in the dataset A as separate output variables.
[M1, M2, M3, ..., MN] = SIZE (A), for N > 2, returns M1 = NOBS, M2 = NVARS, and M3,..,MN = 1.
\(M=\) size(\(\mathrm{A}, \mathrm{dim}\)) returns the length of the dimension specified by the scalar dim:
- M = size(A,1) returns NOBS
- \(M=\operatorname{size}(A, 2)\) returns NVARS
- \(M=\operatorname{size}(A, k)\) returns 1 for \(k>2\)

\section*{See Also \\ length | ndims | numel}

\section*{qrandset.size}

Purpose Number of dimensions in matrix
Syntax \(\quad\)\begin{tabular}{ll}
\(d=\operatorname{size}(p)\) \\
& {\([m, n]=\operatorname{size}(p)\)} \\
& \(m=\operatorname{size}(p, \operatorname{dim})\)
\end{tabular}

\section*{Description}
\(d=\operatorname{size}(p)\) returns the two-element row vector \(d=[m, n]\) containing the number of points in the point set and the number of dimensions the points are in, for the point set \(p\). These correspond to the number of rows and columns in the matrix that would be produced by the expression \(\mathrm{p}(:,:\)).
\([m, n]=\operatorname{size}(p)\) returns the number of points and dimensions for \(p\) as separate output variables.
\(m=\operatorname{size}(p, d i m)\) returns the length of the dimension specified by the scalar dim. For example, size (\(p, 1\)) returns the number of rows (points in the point set). If dim is greater than \(2, \mathrm{~m}\) will be 1 .

Examples The commands
```

P = sobolset(12);
d = size(P)
return
d = [9.0072e+015 12]

```

The command
[m,n] = size(P)
returns
\(\mathrm{m}=9.0072 \mathrm{e}+015\)
n = 12

The command
\(\mathrm{m} 2=\operatorname{size}(\mathrm{P}, 2)\)
returns
\(\mathrm{m} 2=12\)
See Also
length | ndims | qrandset

\section*{slicesample}

Slice sampler
```

rnd = slicesample(initial,nsamples,'pdf',pdf)

```
rnd = slicesample(initial,nsamples,'pdf',pdf)
rnd = slicesample(initial,nsamples,'logpdf',logpdf)
rnd = slicesample(initial,nsamples,'logpdf',logpdf)
[rnd,neval] = slicesample(initial,...)
[rnd,neval] = slicesample(initial,...)
[rnd,neval] = slicesample(initial,...,Name,Value)
```

[rnd,neval] = slicesample(initial,...,Name,Value)

```

\section*{Input Arguments}

Tips

\section*{initial}

Initial point, a scalar or row vector. Set initial so pdf(initial) is a strictly positive scalar. length(initial) is the number of dimensions of each sample.

\section*{nsamples}

Positive integer, the number of samples that slicesample generates.

\section*{pdf}

Handle to a function that generates the probability density function, specified with @. pdf can be unnormalized, meaning it need not integrate to 1 .

\section*{logpdf}

Handle to a function that generates the logarithm of the probability density function, specified with @. logpdf can be the logarithm of an unnormalized pdf.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'burnin'}

Nonnegative integer, the number of samples to generate and discard before generating the samples to return. The slice sampling algorithm is a Markov chain whose stationary distribution is proportional to that of the pdf argument. Set burnin to a high enough value that you believe the Markov chain approximately reaches stationarity after burnin samples.

\section*{Default: 0}

\section*{'thin'}

Positive integer, where slicesample discards every thin - 1 samples and returns the next. The slice sampling algorithm is a Markov chain, so the samples are serially correlated. To reduce the serial correlation, choose a larger value of thin.

Default: 1

\section*{slicesample}

\section*{'width'}

Width of the interval around the current sample, a scalar or vector of positive values. slicesample begins with this interval and searches for an appropriate region containing the points of pdf that evaluate to a large enough value.
- If width is a scalar and the samples have multiple dimensions, slicesample uses width for each dimension.
- If width is a vector, it should have the same length as initial.

\section*{Default: 10}

\section*{Output Arguments}

\section*{rnd}
nsamples-by-length(initial) matrix, where each row is one sample.

\section*{neval}

Scalar, the mean number of function evaluations per sample. neval includes the burnin and thin evaluations, not just the evaluations of samples returned in rnd. Therefore the total number of function evaluations is
```

neval*(nsamples*thin + burnin).

```

Generate random samples from a multimodal density using slicesample.

1 Define a function proportional to a multimodal density:
```

f= @(x) exp(-x.^2/2).*(1 + (sin(3*x)).^2).*...
(1 + (cos(5*x).^2));
area = integral(f,-5,5);

```

2 Generate 2000 samples from the density, using a burn-in period of 1000, and keeping one in five samples:
\[
N=2000 ;
\]
```

x = slicesample(1,N,'pdf',f,'thin',5,'burnin',1000);

```

3 Plot a histogram of the sample:
```

[binheight,bincenter] = hist(x,50);
h = bar(bincenter,binheight,'hist');
set(h,'facecolor',[0.8 . 8 1]);

```

4 Scale the density to have the same area as the histogram, and superimpose it on the histogram:
```

hold on
xd = get(gca,'XLim');
xgrid = linspace(xd(1),xd(2),1000);
binwidth = (bincenter(2)-bincenter(1));
y = (N*binwidth/area) * f(xgrid);
plot(xgrid,y,'r','LineWidth',2)
hold off

```


The samples seem to fit the theoretical distribution well, so the burnin value seems adequate.

\section*{Algorithms}

At each point in the sequence of random samples, slicesample selects the next point by "slicing" the density to form a neighborhood around the previous point where the density is above some value. Consequently, the sample points are not independent. Nearby points in the sequence tend to be closer together than they would be from a sample of independent values. For many purposes, the entire set of points can be used as a sample from the target distribution. However, when this type of serial correlation is a problem, the burnin and thin parameters can help reduce that correlation.
slicesample uses the slice sampling algorithm of Neal [1]. For numerical stability, it converts a pdf function into a logpdf function. The algorithm to resize the support region for each level, called "stepping-out" and "stepping-in," was suggested by Neal.

\author{
References [1] Neal, Radford M. Slice Sampling. Ann. Stat. Vol. 31, No. 3, pp. 705-767, 2003. Available at Project Euclid.
}

\author{
See Also
}
mhsample | rand | randsample

\section*{Purpose Skewness}
Syntax \(\quad\)\begin{tabular}{rl}
\(y\) & \(=\operatorname{skewness}(X)\) \\
\(y\) & \(=\operatorname{skewness}(X, f l a g)\) \\
\(y\) & \(=\operatorname{skewness}(X, f l a g, \operatorname{dim})\)
\end{tabular}

Description

Algorithms
\(y=\) skewness \((X)\) returns the sample skewness of \(X\). For vectors, skewness \((x)\) is the skewness of the elements of \(x\). For matrices, skewness (X) is a row vector containing the sample skewness of each column. For N-dimensional arrays, skewness operates along the first nonsingleton dimension of \(X\).
\(y=s k e w n e s s(X, f l a g)\) specifies whether to correct for bias (flag \(=0)\) or not (flag \(=1\), the default). When \(X\) represents a sample from a population, the skewness of \(X\) is biased; that is, it will tend to differ from the population skewness by a systematic amount that depends on the size of the sample. You can set flag \(=0\) to correct for this systematic bias.
\(\mathrm{y}=\) skewness \((\mathrm{X}, \mathrm{fl}\) ag, dim) takes the skewness along dimension dim of \(X\).
skewness treats NaNs as missing values and removes them.
Skewness is a measure of the asymmetry of the data around the sample mean. If skewness is negative, the data are spread out more to the left of the mean than to the right. If skewness is positive, the data are spread out more to the right. The skewness of the normal distribution (or any perfectly symmetric distribution) is zero.

The skewness of a distribution is defined as
\[
s=\frac{E(x-\mu)^{3}}{\sigma^{3}}
\]
where \(\mu\) is the mean of \(x, \sigma\) is the standard deviation of \(x\), and \(E(t)\) represents the expected value of the quantity \(t\). skewness computes a sample version of this population value.

When you set flag to 1 , the following equation applies:
\[
s_{1}=\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{3}}{\left(\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right)^{3}}
\]

When you set flag to 0 , the following equation applies:
\[
s_{0}=\frac{\sqrt{n(n-1)}}{n-2} s_{1}
\]

This bias-corrected formula requires that X contain at least three elements.

\section*{Examples}
```

X = randn([5 4])
X =
1.1650 1.6961 -1.4462 -0.3600
0.6268 0.0591-0.7012 -0.1356
0.0751 1.7971 1.2460 -1.3493
0.3516 0.2641 -0.6390-1.2704
-0.6965 0.8717 0.5774 0.9846
y = skewness(X)
y =
-0.2933 0.0482 0.2735 0.4641

```

See Also kurtosis | mean | moment | std | var

\section*{qrandset.Skip property}

\section*{Purpose Number of initial points to omit from sequence}

Description The Skip property of a point set contains a positive integer which specifies the number of initial points in the sequence to omit from the point set. The default Skip value is 0 .

Initial points of a sequence sometimes exhibit undesirable properties, for example the first point is often \((0,0,0, \ldots)\) and this may "unbalance" the sequence since its counterpart, (\(1,1,1, \ldots\)), never appears. Another common reason is that initial points often exhibit correlations among different dimensions which disappear later in the sequence.

Examples Examine the difference between skipping and not skipping points:
```

% No skipping produces the standard Sobol sequence.
P = sobolset(5);
P(1:3,:)
% Skip the first point of the sequence. The point set now
% starts at the second point of the basic Sobol sequence.
P.Skip = 1;
P(1:3,:)

```

See Also Leap | net | qrandset | subsref

\section*{Superclasses qrandset}

Purpose Sobol quasi-random point sets
Description sobolset is a quasi-random point set class that produces points from the Sobol sequence. The Sobol sequence is a base-2 digital sequence that fills space in a highly uniform manner.

\section*{Construction}
sobolset
Construct Sobol quasi-random
point set point set

\section*{Methods}

\section*{Inherited Methods}

Methods in the following table are inherited from qrandset.
\begin{tabular}{ll}
disp & Display qrandset object \\
end & \begin{tabular}{l}
Last index in indexing expression \\
for point set
\end{tabular} \\
length & \begin{tabular}{l}
Length of point set
\end{tabular} \\
ndims & Number of dimensions in matrix \\
net & Generate quasi-random point set \\
scramble & Scramble quasi-random point set \\
size & \begin{tabular}{l}
Number of dimensions in matrix \\
Subscripted reference for \\
qrandset
\end{tabular} \\
subsref &
\end{tabular}

\section*{Properties}

PointOrder
Point generation method

\section*{Inherited Properties}

Properties in the following table are inherited from qrandset.

Dimensions
Leap
ScrambleMethod
Skip

Type

Number of dimensions
Interval between points
Settings that control scrambling
Number of initial points to omit from sequence
Name of sequence on which point set \(P\) is based

Copy
Semantics

References

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes in the MATLAB Object-Oriented Programming documentation.
[1] Bratley, P., and B. L. Fox, "ALGORITHM 659 Implementing Sobol's Quasirandom Sequence Generator," ACM Transactions on Mathematical Software, Vol. 14, No. 1, pp. 88-100, 1988.
[2] Joe, S., and F. Y. Kuo, "Remark on Algorithm 659: Implementing Sobol's Quasirandom Sequence Generator," ACM Transactions on Mathematical Software, Vol. 29, No. 1, pp. 49-57, 2003.
[3] Hong, H. S., and F. J. Hickernell, "ALGORITHM 823: Implementing Scrambled Digital Sequences," ACM Transactions on Mathematical Software, Vol. 29, No. 2, pp. 95-109, 2003.
[4] Matousek, J., "On the L2-discrepancy for anchored boxes," Journal of Complexity, Vol. 14, pp. 527-556, 1998.

See Also haltonset
How To . "Quasi-Random Point Sets" on page 6-16
Purpose Construct Sobol quasi-random point set
Syntax

\(\mathrm{p}=\) sobolset(d)

p = sobolset(d,prop1,val1,prop2,val2,...)

Description

\section*{Examples}
\(p=\) sobolset (d) constructs a d-dimensional point set \(p\) of the sobolset class, with default property settings.
p = sobolset(d,prop1,val1,prop2,val2,...) specifies property name/value pairs used to construct \(p\).
The object \(p\) returned by sobolset encapsulates properties of a specified quasi-random sequence. The point set is finite, with a length determined by the Skip and Leap properties and by limits on the size of point set indices (maximum value of \(2^{53}\)). Values of the point set are not generated and stored in memory until you access \(p\) using net or parenthesis indexing.
Generate a 3-D Sobol point set, skip the first 1000 values, and then retain every 101st point:
```

p = sobolset(3,'Skip',1e3,'Leap',1e2)
p =
Sobol point set in 3 dimensions (8.918019e+013 points)
Properties:
Skip : }100
Leap : 100
ScrambleMethod : none
PointOrder : standard

```
Use scramble to apply a random linear scramble combined with a random digital shift:
```

p = scramble(p,'MatousekAffineOwen')
p =
Sobol point set in 3 dimensions (8.918019e+013 points)
Properties:
Skip : 1000

```
```

Leap : 100
ScrambleMethod : MatousekAffineOwen PointOrder : standard

```

Use net to generate the first four points:
```

XO = net(p,4)
XO =
0.7601 0.5919 0.9529
0.1795 0.0856 0.0491
0.5488 0.0785 0.8483
0.3882 0.8771 0.8755

```

Use parenthesis indexing to generate every third point, up to the 11th point:
```

X = p(1:3:11,:)
X =
0.7601 0.5919 0.9529
0.3882 0.8771 0.8755
0.6905 0.4951 0.8464
0.1955 0.5679 0.3192

```

\section*{References [1] Bratley, P., and B. L. Fox. "Algorithm 659 Implementing} Sobol's Quasirandom Sequence Generator." ACM Transactions on Mathematical Software. Vol. 14, No. 1, 1988, pp. 88-100.
[2] Joe, S., and F. Y. Kuo. "Remark on Algorithm 659: Implementing Sobol's Quasirandom Sequence Generator." ACM Transactions on Mathematical Software. Vol. 29, No. 1, 2003, pp. 49-57.
[3] Hong, H. S., and F. J. Hickernell. "Algorithm 823: Implementing Scrambled Digital Sequences." ACM Transactions on Mathematical Software. Vol. 29, No. 2, 2003, pp. 95-109.
[4] Matousek, J. "On the L2-Discrepancy for Anchored Boxes." Journal of Complexity. Vol. 14, No. 4, 1998, pp. 527-556.

See Also haltonset | net | scramble

Purpose Sort elements of ordinal array
Syntax
\(B=\operatorname{sort}(A)\)
\(B=\operatorname{sort}(A, d i m)\)
\(B=\operatorname{sort}(A, d i m, m o d e)\)
\([B, I]=\operatorname{sort}(A, \ldots)\)

\section*{Description}
\(B=\operatorname{sort}(A)\), when \(A\) is an ordinal vector, sorts the elements of \(A\) in ascending order. For ordinal matrices, sort (A) sorts each column of A in ascending order. For \(N\)-D ordinal arrays, sort (A) sorts the along the first nonsingleton dimension of \(A\). \(B\) is an ordinal array with the same levels as A.
\(B=\operatorname{sort}(A, d i m)\) sorts \(A\) along dimension dim.
\(B=\operatorname{sort}(A, d i m\), mode \()\) sorts \(A\) in the order specified by mode. mode is ' ascend ' for ascending order, or 'descend' for descending order.
\([B, I]=\operatorname{sort}(A, \ldots)\) also returns an index matrix I. If \(A\) is a vector, then \(B=A(I)\). If \(A\) is an \(m\)-by- \(n\) matrix and \(\operatorname{dim}\) is 1 , then \(B(:, j)=\) \(A(I(:, j), j)\) for \(j=1: n\).
Elements with undefined levels are sorted to the end.

\section*{Examples \\ Sort the columns of an ordinal array in ascending order:}
```

A = ordinal([6 2 5; 2 4 1; 3 2 4],...
A =
hi med hi
med hi lo
med med hi
B = sort(A)
B =
med med lo
med med hi
hi hi hi

```
 \{'lo','med','hi'\},[],[0 0246\(])\)

See Also
sortrows

\section*{Purpose Sort rows of dataset array}
Syntax \(\quad\)\begin{tabular}{rl}
\(B\) & \(=\operatorname{sortrows}(A)\) \\
\(B\) & \(=\operatorname{sortrows}(A, \operatorname{vars})\) \\
\(B\) & \(=\operatorname{sortrows}\left(A\right.\), ' obsnames \(\left.^{\prime}\right)\) \\
\(B\) & \(=\operatorname{sortrows}(A, \operatorname{vars}, \operatorname{mode})\) \\
{\([B, i d x]=\operatorname{sortrows}(A)\)}
\end{tabular}

\section*{Description}

\section*{Examples}

Sort the data in hospital.mat by age and then by last name:
```

load hospital
hospital(1:5,1:3)
ans =

```
\begin{tabular}{llll}
& LastName & Sex & Age \\
YPL-320 & 'SMITH' & Male & 38 \\
GLI-532 & 'JOHNSON' & Male & 43 \\
PNI-258 & 'WILLIAMS' & Female & 38 \\
MIJ-579 & 'JONES' & Female & 40 \\
XLK-030 & 'BROWN' & Female & 49 \\
& & \\
hospital = sortrows (hospital, \{'Age' , 'LastName' \}); \\
hospital (1:5,1:3) \\
ans = & & \\
REV-997 & 'ALEXANDER' & Male & 25 \\
FZR-250 & 'HALL' & Male & 25 \\
LIM-480 & 'HILL' & Female & 25 \\
XUE-826 & 'JACKSON' & Male & 25 \\
SCQ-914 & 'JAMES' & Male & 25
\end{tabular}

Sort the data in hospital by gender in ascending order, and age in descending order.
hospital = sortrows(hospital,\{'Sex','Age'\},\{'ascend','descend'\}); hospital(1:5,1:3)
ans =
\begin{tabular}{llll}
& \multicolumn{1}{l}{ LastName } & Sex & Age \\
XLK-030 & 'BROWN' & Female & 49 \\
GGU-691 & 'HUGHES' & Female & 49 \\
KKL-155 & 'ADAMS' & Female & 48 \\
HQO-561 & 'BRYANT' & Female & 48 \\
BKD-785 & 'CLARK' & Female & 48
\end{tabular}
hospital(end-4:end, 1:3)
ans =
\begin{tabular}{llll}
& LastName & Sex & Age \\
VNL-702 & 'MOORE' & Male & 28 \\
REV-997 & 'ALEXANDER' & Male & 25
\end{tabular}

\section*{dataset.sortrows}
\begin{tabular}{llll}
FZR-250 & 'HALL' & Male & 25 \\
XUE-826 & 'JACKSON' & Male & 25 \\
SCQ-914 & 'JAMES' & Male & 25
\end{tabular}
See Also dataset | sortrowsunique |

Related Examples

\section*{Purpose}

Sort rows

\section*{Syntax}
\(B=\) sortrows \((A)\)
\(B=\operatorname{sortrows}(A, c o l)\)
\([B, I]=\) sortrows \((A)\)
\([B, I]=\) sortrows \((A, c o l)\)
Description
\(B=\) sortrows \((A)\) sorts the rows of the 2-D ordinal matrix \(A\) in ascending order, as a group. \(B\) is an ordinal array with the same levels as A.
\(B=\) sortrows(A, col) sorts A based on the columns specified in the vector col. If an element of col is positive, the corresponding column in A is sorted in ascending order; if an element of col is negative, the corresponding column in \(A\) is sorted in descending order.
\([B, I]=\operatorname{sortrows}(A)\) and \([B, I]=\operatorname{sortrows}(A, C o l)\) also returns an index matrix \(I\) such that \(B=A(I,:)\).
Elements with undefined levels are sorted to the end.

\section*{Examples}

Sort the rows of an ordinal array in ascending order for the first column, and then in descending order for the second column:
```

A = ordinal([6 2 5; 2 4 1; 3 2 4],...
{'lo','med','hi'},[],[0}02466]
A =
hi med hi
med hi lo
med med hi
B = sortrows(A,[1 -2])
B =
med hi lo
med med hi
hi med hi

```

See Also sort | sortrows

\section*{Purpose Format distance matrix}
```

Syntax z = squareform(y)
y = squareform(Z)
Z = squareform(y,'tovector')
Y = squareform(Z,'tomatrix')

```

\section*{Description}

\section*{Examples}
```

y = 1:6
y =
1 2 3 3 4 5 6
X = [0 1 2 3; 1 0 4 5; 2 4 0 6; 3 5 6 0]
x =
0}12
1
2 4 0
3 5 6 0

```

Then squareform(y) = X and squareform(X) = y.

See Also pdist

Purpose Squeeze singleton dimensions from categorical array

\section*{Syntax \\ \(B=\) squeeze (\(A\))}

Description \(B=\) squeeze \((A)\) returns an array \(B\) with the same elements as the categorical array \(A\) but with all the singleton dimensions removed. A singleton is a dimension such that size (A, dim) \(=1.2\)-D arrays are unaffected by squeeze so that row vectors remain rows.

See Also shiftdim

\section*{Purpose \\ Syntax \\ Description}

Stack data from multiple variables into single variable
tall = stack(wide,datavars)
[tall,iwide] = stack(wide,datavars)
tall = stack(wide,datavars,Parameter,value)
tall = stack(wide, datavars) converts a wide-format dataset array into a tall-format array, by stacking multiple variables in wide into a single variable in tall. In general, tall contains fewer variables but more observations than wide.
datavars specifies a group of \(m\) data variables in wide. stack creates a single data variable in tall by interleaving their values, and if wide has \(n\) observations, then tall has m-by-n observations. In other words, stack takes the \(m\) data values from each observation in wide and stacks them up to create \(m\) observations in tall. datavars is a positive integer, a vector of positive integers, a variable name, a cell array containing one or more variable names, or a logical vector. stack also creates a grouping variable in tall to indicate which of the \(m\) data variables in wide each observation in tall corresponds to.
stack assigns values for the "per-variable properties (e.g., Units and VarDescription) for the new data variable in tall from the corresponding property values for the first variable listed in datavars.
stack copies the remaining variables from wide to tall without stacking, by replicating each of their values \(m\) times. These variables are typically grouping variables. Because their values are constant across each group of \(m\) observations in tall, they identify which observation in wide an observation in tall came from.
[tall,iwide] = stack(wide,datavars) returns an index vector iwide indicating the correspondence between observations in tall and those in wide. stack creates tall(\(\mathrm{j},:\)) using wide(iwide(j), datavarss).

For more information on grouping variables, see "Grouping Variables" on page 2-51.

\section*{Input Arguments}

\section*{Examples}
tall = stack(wide,datavars, Parameter, value) uses the following parameter name/value pairs to control how stack converts variables in wide to variables in tall:
\begin{tabular}{l|l}
\hline 'ConstVars' & \begin{tabular}{l}
Variables in wide to copy to tall \\
without stacking. ConstVars \\
is a positive integer, a vector \\
of positive integers, a variable \\
name, a cell array containing \\
one or more variable names, or a \\
logical vector. The default is all \\
variables in wide not specified in \\
datavars.
\end{tabular} \\
\hline 'NewDataVarName' & \begin{tabular}{l}
A name for the data variable to be \\
created in tall. The default is a \\
concatenation of the names of the \\
m variables that are stacked up.
\end{tabular} \\
\hline 'IndVarName' & \begin{tabular}{l}
A name for the grouping variable \\
to create in tall to indicate the \\
source of each value in the new \\
data variable. The default is \\
based on the 'NewDataVarName' \\
parameter.
\end{tabular} \\
\hline
\end{tabular}

You can also specify multiple groups of data variables in wide, each of which becomes a variable in tall. All groups must contain the same number of variables. Use a cell array to contain multiple parameter values for datavars, and a cell array of strings to contain multiple 'NewDataVarName'.

Convert a wide format data set to tall format, and then back to a different wide format:
load flu
\% FLU has a 'Date' variable, and 10 variables for estimated \% influenza rates (in 9 different regions, estimated from
\% Google searches, plus a nationwide estimate from the
\% CDC). Combine those 10 variables into a "tall" array that
\% has a single data variable, 'FluRate', and an indicator
\% variable, 'Region', that says which region each estimate
\% is from.
[flu2,iflu] = stack(flu, 2:11, 'NewDataVarName','FluRate', ...
 'IndVarName', 'Region')
\% The second observation in FLU is for \(10 / 16 / 2005\). Find the
\% observations in FLU2 that correspond to that date.
flu(2,:)
flu2(iflu==2,:)
\% Use the 'Date' variable from that tall array to split
\% 'FluRate' into 52 separate variables, each containing the
\% estimated influenza rates for each unique date. The new
\% "wide" array has one observation for each region. In
\% effect, this is the original array FLU "on its side".
dateNames = cellstr(datestr(flu.Date,'mmm_DD_YYYY'));
[flu3,iflu2] = unstack(flu2, 'FluRate', 'Date', ...
 'NewDataVarNames', dateNames)
\% Since observations in FLU3 represent regions, IFLU2
\% indicates the first occurrence in FLU2 of each region.
flu2(iflu2,:)

\author{
See Also
}
dataset.unstack | dataset.join
How To . "Grouping Variables" on page 2-51

\section*{qrandstream.State property}

\section*{Purpose Current state of the stream}

\section*{Description The State property of a quasi-random stream contains the index into the associated point set of the next point to draw in the stream. Getting and resetting the State property allows you to return a stream to a previous state. The initial value of State is 1 .}

\section*{Examples}

Q = qrandstream('sobol', 5);
s = Q.State;
u1 = qrand (Q, 10)
Q.State = s;
\(u 2=\) qrand \((Q, 10) \%\) contains exactly the same values as \(u 1\)
See Also qrand

\section*{Purpose Access values in statistics options structure}

Syntax val = statget (options, param)
val = statget(options,param,default)

Description

\section*{Input \\ Arguments}
val \(=\) statget (options, param) returns the value of the parameter specified by the string param in the statistics options structure options. If the parameter is undefined in options, statget returns []. You need to type only enough leading characters to define the parameter name uniquely. statget ignores case for parameter names. For available options, see Inputs.
val = statget(options, param, default) returns default if the specified parameter is undefined in the optimization options structure options.

\section*{DerivStep}

Relative difference used in finite difference derivative calculations. A positive scalar, or a vector of positive scalars the same size as the vector of parameters estimated by the Statistics Toolbox function using the options structure.

\section*{Display}

Amount of information displayed by the algorithm.
- 'off' - Displays no information.
- 'final' - Displays the final output.
- 'iter' - Displays iterative output to the command window for some functions; otherwise displays the final output.

\section*{FunValCheck}

Check for invalid values, such as NaN or Inf, from the objective function.
- 'off'
- 'on'

\section*{GradObi}

Flags whether the objective function returns a gradient vector as a second output.
- 'off'
- 'on'

\section*{Jacobian}

Flags whether the objective function returns a Jacobian as a second output.
- 'off'
- 'on'

\section*{MaxFunEvals}

Maximum number of objective function evaluations allowed. Positive integer.

\section*{Maxlter}

Maximum number of iterations allowed. Positive integer.

\section*{OutputFen}

The solver calls all output functions after each iteration.
- Function handle specified using @
- a cell array with function handles
- an empty array (default)

\section*{Robust}

Invoke robust fitting option.
- 'off'
- 'on'

\section*{RobustWgtFun}

A weight function for robust fitting. Valid only when Robust is 'on'. Can also be a function handle that accepts a normalized residual as input and returns the robust weights as output.
- 'bisquare'
- 'andrews'
- 'cauchy'
- 'fair'
- 'huber'
- 'logistic'
- 'talwar'
- 'welsch'

\section*{Streams}

A single instance of the RandStream class, or a cell array of RandStream instances. The Streams option is accepted by some functions to govern what stream(s) to use in generating random numbers within the function. If 'UseSubstreams' is true, the Streams value must be a scalar, or must be empty. If 'UseParallel' is true and 'UseSubstreams ' is false, then the Streams argument must either be empty, or its length must match the number of processors used in the computation: equal to the matlabpool size if a matlabpool is open, a scalar otherwise.

\section*{TolBnd}

Parameter bound tolerance. Positive scalar.

\section*{Tolfun}

Termination tolerance for the objective function value. Positive scalar.

\section*{TolTypeFun}

Use TolFun for absolute or relative objective function tolerances.
- 'abs'
- 'rel'

\section*{TolTypeX}

Use TolX for absolute or relative parameter tolerances.
- 'abs'
- 'rel'

\section*{TolX}

Termination tolerance for the parameters. Positive scalar.

\section*{Tune}

The tuning constant used in robust fitting to normalize the residuals before applying the weight function. The default value depends upon the weight function. This parameter is necessary if you specify the weight function as a function handle. Positive scalar.

\section*{UseParallel}

Flag indicating whether eligible functions should use capabilities of the Parallel Computing Toolbox (PCT), if the capabilities are available. That is, if the PCT is installed, and a PCT matlabpool is in effect. Valid values are false (the default), for serial computation, and true, for parallel computation.

\section*{UseSubstreams}

Flag indicating whether the random number generator in eligible functions should use Substream property of the RandStream class. false (default) or true. When true, high level iterations within the function will set the Substream property to the value of the iteration. This behavior helps to generate reproducible random number streams in parallel and/or serial mode computation.

\section*{WgtFun}

A weight function for robust fitting. Valid only when Robust is 'on'. Can also be a function handle that accepts a normalized residual as input and returns the robust weights as output.
- 'bisquare'
- 'andrews'
- 'cauchy'
- 'fair'
- 'huber'
- 'logistic'
- 'talwar'
- 'welsch'

\section*{Examples}

This statement returns the value of the Display statistics options parameter from the structure called my_options.
```

val = statget(my_options,'Display')

```

Return the value of the Display statistics options parameter from the structure called my_options (as in the previous example). If the Display parameter is undefined, statget returns the value 'final'.
```

optnew = statget(my_options,'Display','final');

```

See Also statset

Purpose Create statistics options structure
Syntax
statset
statset(statfun)
options = statset(...)
options = statset(fieldname1,val1,fieldname2,val2,...)
options = statset(oldopts,fieldname1,val1,fieldname2,val2, ...)
options = statset(oldopts, newopts)

\section*{Description}
statset with no input arguments and no output arguments displays all fields of a statistics options structure and their possible values.
statset (statfun) displays fields and default values used by the Statistics Toolbox function statfun. Specify statfun using a string name or a function handle.
options = statset(...) creates a statistics options structure options. With no input arguments, all fields of the options structure are an empty array ([]). With a specified statfun, function-specific fields are default values and the remaining fields are []. Function-specific fields set to [] indicate that the function is to use its default value for that parameter. For available options, see Inputs.
options = statset(fieldname1,val1,fieldname2,val2,...) creates an options structure in which the named fields have the specified values. Any unspecified values are []. Use strings for field names. For fields that are string-valued, you must input the complete string for the value. If you provide an invalid string for a value, statset uses the default.
options =
statset(oldopts,fieldname1,val1,fieldname2, val2,...)
creates a copy of oldopts with the named parameters changed to the specified values.
options = statset(oldopts, newopts) combines an existing options structure, oldopts, with a new options structure, newopts. Any
parameters in newopts with nonempty values overwrite corresponding parameters in oldopts.

\section*{Input \\ Arguments}

\section*{DerivStep}

Relative difference used in finite difference derivative calculations. A positive scalar, or a vector of positive scalars the same size as the vector of parameters estimated by the Statistics Toolbox function using the options structure.

\section*{Display}

Amount of information displayed by the algorithm.
- 'off' - Displays no information.
- 'final' - Displays the final output.
- 'iter' - Displays iterative output to the command window for some functions; otherwise displays the final output.

\section*{FunValCheck}

Check for invalid values, such as NaN or Inf, from the objective function.
- 'off'
- 'on'

\section*{GradObi}

Flags whether the objective function returns a gradient vector as a second output.
- 'off'
- 'on'

\section*{Jacobian}

Flags whether the objective function returns a Jacobian as a second output.
- 'off'
- 'on'

\section*{MaxFunEvals}

Maximum number of objective function evaluations allowed. Positive integer.

\section*{Maxlter}

Maximum number of iterations allowed. Positive integer.

\section*{OutputFen}

The solver calls all output functions after each iteration.
- Function handle specified using @
- a cell array with function handles
- an empty array (default)

\section*{Robust}

Invoke robust fitting option.
- 'off'
- 'on'

Robust will be removed in a future software release. Use RobustWgtFun for robust fitting.

\section*{RobustWgtFun}

Weight function for robust fitting. Can also be a function handle that accepts a normalized residual as input and returns the robust weights as output. If you use a function handle, give a Tune constant. See "Robust Options" on page 20-2713.

\section*{Streams}

A single instance of the RandStream class, or a cell array of RandStream instances. The Streams option is accepted by some functions to govern what stream(s) to use in generating random numbers within the function. If 'UseSubstreams' is true, the Streams value must be a scalar, or must be empty. If 'UseParallel' is true and 'UseSubstreams' is false, then the Streams argument must either be empty, or its length must match the number of processors used in the computation: equal to the matlabpool size if a matlabpool is open, a scalar otherwise.

\section*{TolBnd}

Parameter bound tolerance. Positive scalar.

\section*{Tolfun}

Termination tolerance for the objective function value. Positive scalar.

\section*{TolTypeFun}

Use TolFun for absolute or relative objective function tolerances.
- 'abs'
- 'rel'

\section*{TolTypeX}

Use TolX for absolute or relative parameter tolerances.
- 'abs'
- 'rel'

\section*{TolX}

Termination tolerance for the parameters. Positive scalar.

\section*{Tune}

Tuning constant used in robust fitting to normalize the residuals before applying the weight function. The default value depends upon the
weight function. This parameter is necessary if you specify the weight function as a function handle. Positive scalar. See "Robust Options" on page 20-2713.

\section*{UseParallel}

Flag indicating whether eligible functions should use capabilities of the Parallel Computing Toolbox (PCT), if the capabilities are available. That is, if the PCT is installed, and a PCT matlabpool is in effect. Valid values are true (the default), for serial computation, and false, for parallel computation.

\section*{UseSubstreams}

Flag indicating whether the random number generator in eligible functions should use Substream property of the RandStream class. false (default) or true. When true, high level iterations within the function will set the Substream property to the value of the iteration. This behavior helps to generate reproducible random number streams in parallel and/or serial mode computation.

\section*{Wgrfun}

Weight function for robust fitting. Valid only when Robust is 'on'. Can also be a function handle that accepts a normalized residual as input and returns the robust weights as output. See "Robust Options" on page 20-2713.

WgtFun will be removed in a future software release. Use RobustWgtFun instead.

\section*{Definitions Robust Options}
\begin{tabular}{|c|c|c|}
\hline Weight Function & Equation & Default Tuning Constant \\
\hline 'andrews ' & \[
w=(\operatorname{abs}(r)<p i) . * \sin (r) . /
\]
r & 1.339 \\
\hline bisquare (default) & \[
\begin{aligned}
& w=(\operatorname{abs}(r)<1) \cdot *(1- \\
& r \cdot \wedge 2) \cdot \wedge 2
\end{aligned}
\] & 4.685 \\
\hline 'cauchy' & \(w=1 . /(1+r . \wedge 2)\) & 2.385 \\
\hline 'fair' & \(w=1 . /(1+a b s(r))\) & 1.400 \\
\hline 'huber' & \(w=1 . / \max (1, \operatorname{abs}(r))\) & 1.345 \\
\hline 'logistic' & \(w=\tanh (r) . / r\) & 1.205 \\
\hline 'talwar' & \(w=1 *(\operatorname{abs}(r)<1)\) & 2.795 \\
\hline 'welsch' & \(w=\exp (-(r . \wedge 2))\) & 2.985 \\
\hline [] & No robust fitting & - \\
\hline
\end{tabular}

\section*{Examples}

Suppose you want to change the default parameter values for the function evfit, which fits an extreme value distribution to data. The defaults parameter values are:
```

statset('evfit')
ans =
Display: 'off'
MaxFunEvals: []
MaxIter: []
TolBnd: []
TolFun: []
TolTypeFun: []
TolX: 1.0000e-06
TolTypeX: []
GradObj: []
Jacobian: []

```
DerivStep: []
 FunValCheck: []
 Robust: []
 RobustWgtFun: []
 WgtFun: []
 Tune: []
 UseParallel: []
UseSubstreams: []
 Streams: []
 OutputFen: []
The only parameters that evfit uses are Display and TolX. To create an options structure with the value of TolX set to \(1 \mathrm{e}-8\), enter:
```

options = statset('TolX',1e-8)
% Pass options to evfit:
mu = 1;
sigma = 1;
data = evrnd(mu,sigma,1,100);
paramhat = evfit(data,[],[],[],options)

```

\section*{See Also \\ statget}
Purpose Standard deviation of probability distribution object
Syntax

\[
s=s t d(p d)
\]
Description \(s=s t d(p d)\) returns the standard deviation \(s\) of the probability distribution pd.

\section*{Input \\ Arguments}

Output
Arguments

\section*{Examples Standard Deviation of a Fitted Distribution}

Load the sample data. Create a vector containing the first column of students' exam grade data.
```

load examgrades;

```
x = grades(:,1);

Create a probability distribution object by fitting a kernel distribution to the data.
```

pd = fitdist(x,'Kernel')

```
pd \(=\)

KernelDistribution

\section*{prob.KernelDistribution.std}

\author{
Bandwidth = 3.61677 \\ Support = unbounded
}

Compute the standard deviation of the fitted distribution.
\(s=s t d(p d)\)
s =
9.4069

See Also
fitdist | dfittool

\title{
Purpose Return standard deviation of ProbDistUnivParam object
}
\[
\text { Syntax } \quad S=\operatorname{std}(P D)
\]

Description \(\quad S=\operatorname{std}(P D)\) returns \(S\), the standard deviation of the ProbDistUnivParam object PD.

\section*{Input \(P D\) \\ \(P D \quad\) An object of the class ProbDistUnivParam. \\ Arguments}

\section*{Output \(s\) \\ Arguments}

S

See Also std

\section*{prob.ParametricTruncatableDistribution.std}

\section*{Purpose Standard deviation of probability distribution object}

Syntax \(\quad s=s t d(p d)\)
Description \(s=s t d(p d)\) returns the standard deviation \(s\) of the probability distribution pd.

Input pd - Probability distribution
Arguments
probability distribution object
Probability distribution, specified as a probability distribution object. Create a probability distribution object with specified parameter values using makedist.

\section*{Output s-Standard deviation \\ Arguments \\ nonnegative scalar value}

Standard deviation of the probability distribution, returned as a nonnegative scalar value.

\section*{Examples Standard Deviation of a Triangular Distribution}

Create a triangular distribution object.
```

pd = makedist('Triangular','a',-3,'b',1,'c',3)
pd =

```

TriangularDistribution
\(A=-3, B=1, C=3\)
Compute the standard deviation of the distribution.
\(\mathrm{s}=\mathrm{std}(\mathrm{pd})\)
s =
1.2472

See Also makedist

\section*{prob.ToolboxFittableParametricDistribution.std}

Purpose Standard deviation of probability distribution object
Syntax \(\quad s=s t d(p d)\)
Description \(\quad s=s t d(p d)\) returns the standard deviation \(s\) of the probability distribution pd.

Input
Arguments
pd - Probability distribution
probability distribution object
Probability distribution, specified as a probability distribution object. Create a probability distribution object with specified parameter values using makedist. Alternatively, create a probability distribution object by fitting it to data using fitdist or dfittool.

\section*{Output s-Standard deviation \\ Arguments}

\section*{Examples Standard Deviation of a Fitted Distribution}

Load the sample data. Create a vector containing the first column of students' exam grade data.
```

load examgrades;
x = grades(:,1);

```

Fit a normal distribution object to the data.
```

pd = fitdist(x,'Normal')
pd =

```

NormalDistribution

\title{
prob.ToolboxFittableParametricDistribution.std
}
```

Normal distribution
mu = 75.0083 [73.4321, 76.5846]
sigma = 8.7202 [7.7391, 9.98843]

```

Compute the standard deviation of the fitted distribution.
\(s=s t d(p d)\)

S =
8.7202

For a normal distribution, the standard deviation is equal to the parameter sigma.

\section*{Standard Deviation of a Skewed Distribution}

Create a Weibull probability distribution object
```

pd = makedist('Weibull','a',5,'b',2)
pd =

```
 WeibullDistribution
 Weibull distribution
 \(\mathrm{A}=5\)
 \(B=2\)

Compute the standard deviation of the distribution.
```

s = std(pd)
s =
2.3163

```

See Also makedist | fitdist | dfittool

\section*{GeneralizedLinearModel.step}
\begin{tabular}{|c|c|}
\hline Purpose & Improve generalized linear regression model by adding or removing terms \\
\hline Syntax & ```
mdl1 = step(mdl)
mdl1 = step(mdl,Name,Value)
``` \\
\hline Description & \begin{tabular}{l}
mdl1 = step \((\mathrm{mdl})\) returns an improved generalized linear model based on mdl , with one predictor added or removed. \\
mdl1 = step(mdl, Name, Value) improves a generalized linear model with additional options specified by one or more Name, Value pair arguments.
\end{tabular} \\
\hline Tips & - Use addTerms or removeTerms to control exactly which terms enter or leave the model. \\
\hline Input Arguments & \begin{tabular}{l}
mdl \\
Generalized linear model, as constructed by GeneralizedLinearModel.fit or GeneralizedLinearModel.stepwise.
\end{tabular} \\
\hline & Name-Value Pair Arguments \\
\hline & Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN. \\
\hline & 'Criterion' \\
\hline
\end{tabular}

Criterion that step uses in selecting terms to add or remove.
\begin{tabular}{l|l|l|l}
\hline Criterion & PEnter & PRemove & Compared Against \\
\hline 'Deviance' \(^{\text {' }}\) & 0.05 & \(<0.1\) & \(p\)-value for \(F\) or chi-square test \\
\hline 'SSE' \(^{2}\) & 0.05 & \(<0.1\) & \(p\)-value for \(F\) test \\
\hline
\end{tabular}

\section*{GeneralizedLinearModel.step}
\begin{tabular}{l|l|l|l}
\hline Criterion & PEnter & PRemove & Compared Against \\
\hline 'AIC' & 0 & \(<0.01\) & Change in AIC \\
\hline 'BIC' & 0 & \(<0.01\) & Change in BIC \\
\hline 'Rsquared' & 0.1 & \(>0.05\) & Increase in R-squared \\
\hline 'AdjRsquared' & 0 & \(>-0.05\) & Increase in adjusted R-squared \\
\hline
\end{tabular}

Default: 'deviance'

\section*{'Lower'}

Model specification that describes the terms that must exist in the fit.

Default: 'constant'

\section*{'NSteps'}

Maximum number of steps to take.
Default: 1

\section*{'Penter'}

Improvement measure for adding a term.
- If Criterion = 'sse' or 'deviance', Penter is the value of \(p\) such that, if a term has a \(p\)-value less than \(p\), then add the term to the model.
- For other values of Criterion, if the improvement in the criterion is more than Penter, then add the term to the model.

Default: 0.05 for Criterion = 'sse' or 'deviance'; 0 for other values of Criterion

\section*{'PRemove'}

\section*{GeneralizedLinearModel.step}

Improvement measure for removing a term.
- If Criterion = 'sse' or 'deviance', PRemove is the value of \(p\) such that, if a term has a \(p\)-value greater than \(p\), then remove the term from the model.
- For other values of Criterion, if the improvement in the criterion is less than Penter, then remove the term from the model.

Default: 0.1 for Criterion = 'sse' or 'deviance'; 0 for other values of Criterion

\section*{'Upper'}

Model specification describing largest set of terms in the fit.
Default: 'interactions'

\section*{'Verbose'}

Integer from 0 to 2 controlling the display of information.
- 0 suppresses all display.
- 1 displays the action taken at each step.
- 2 also displays the actions evaluated at each step.

Default: 1

\section*{Output \\ mdl1} Arguments

Linear model, the same as mdl but with additional terms given in terms. You can set mdl1 equal to mdl to overwrite mdl.

\section*{Examples \\ Add Predictors One at a Time}

Fit a Poisson regression model using random data and a single predictor, then step in other predictors.

\section*{GeneralizedLinearModel.step}

Generate artificial data with 20 predictors, using three of the predictors for the responses.
```

rng('default') % for reproducibility
X = randn(100,20);
mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);
y = poissrnd(mu);

```

Construct a generalized linear model using \(X(:, 1)\) as the only predictor.
```

mdl = GeneralizedLinearModel.fit(X,y,...
'y ~ x1','Distribution','poisson')

```
mdl =
Generalized Linear regression model:
    \(\log (y) \sim 1+x 1\)
    Distribution = Poisson
Estimated Coefficients:
\begin{tabular}{lrrrl} 
& Estimate & SE & tStat & pValue \\
(Intercept) & 1.1278 & 0.057487 & 19.618 & \(1.0904 \mathrm{e}-85\) \\
x1 & 0.061287 & 0.04848 & 1.2642 & 0.20617
\end{tabular}
100 observations, 98 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 1.59, p-value \(=0.208\)

Add a variable to the model using step.
```

mdl1 = step(mdl)

1. Adding x5, Deviance = 134.2976, Chi2Stat = 50.80176, PValue = 1.021821e-12
mdl1 =
```
Generalized Linear regression model:
    \(\log (y) \sim 1+x 1+x 5\)

\section*{GeneralizedLinearModel.step}


Add another variable to the model using step.
```

mdl1 = step(mdl1)
2. Adding x15, Deviance = 105.9973, Chi2Stat = 28.30027, PValue = 1.038814e-07
mdl1 =

```

Generalized Linear regression model:
\(\log (y) \sim 1+x 1+x 5+x 15\)
Distribution = Poisson

Estimated Coefficients:
\begin{tabular}{lrrrl} 
& Estimate & \multicolumn{1}{l}{ SE } & \multicolumn{1}{l}{ tStat } & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 1.0459 & 0.0627 & 16.681 & \(1.7975 \mathrm{e}-62\) \\
x1 & 0.026907 & 0.05003 & 0.53782 & 0.5907 \\
x5 & 0.3983 & 0.068376 & 5.8251 & \(5.7073 \mathrm{e}-09\) \\
x15 & 0.28949 & 0.053992 & 5.3618 & \(8.2375 \mathrm{e}-08\)
\end{tabular}

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 80.7, p -value \(=2.18 \mathrm{e}-17\)

\section*{Algorithms}

Stepwise regression is a systematic method for adding and removing terms from a linear or generalized linear model based on their statistical

\section*{GeneralizedLinearModel.step}
significance in explaining the response variable. The method begins with an initial model, specified using modelspec, and then compares the explanatory power of incrementally larger and smaller models.

MATLAB uses forward and backward stepwise regression to determine a final model. At each step, the method searches for terms to add to or remove from the model based on the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse', and in this case, LinearModel.stepwise and GeneralizedLinearModel.stepwise use the \(p\)-value of an F-statistic to test models with and without a potential term at each step. If a term is not currently in the model, the null hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient evidence to reject the null hypothesis, the term is added to the model. Conversely, if a term is currently in the model, the null hypothesis is that the term has a zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed from the model.

Here is how stepwise proceeds when 'Criterion' is 'sse':
1 Fit the initial model.
2 If any terms not in the model have \(p\)-values less than an entrance tolerance (that is, if it is unlikely that they would have zero coefficient if added to the model), add the one with the smallest \(p\)-value and repeat this step; otherwise, go to step 3 .

3 If any terms in the model have \(p\)-values greater than an exit tolerance (that is, if it is unlikely that the hypothesis of a zero coefficient can be rejected), remove the one with the largest \(p\)-value and go to step 2 ; otherwise, end.

There are several other criteria available, which you can specify using the 'Criterion' argument. You can use the change in the value of the Akaike information criterion, Bayesian information criterion, R-squared, adjusted R-squared, or deviance (only for GeneralizedLinearModel.stepwise) as a criterion to add or remove terms.

\section*{GeneralizedLinearModel.step}

Depending on the terms included in the initial model and the order in which terms are moved in and out, the method may build different models from the same set of potential terms. The method terminates when no single step improves the model. There is no guarantee, however, that a different initial model or a different sequence of steps will not lead to a better fit. In this sense, stepwise models are locally optimal, but may not be globally optimal.Alternatives Use GeneralizedLinearModel.stepwise to select a model from astarting model, continuing until no single step is beneficial.
Use addTerms or removeTerms to add or remove particular terms.
\begin{tabular}{ll} 
See Also & \begin{tabular}{l} 
addTerms | GeneralizedLinearModel | removeTerms | \\
GeneralizedLinearModel.stepwise |
\end{tabular} \\
Related & \begin{tabular}{l} 
- "Plots to Understand Predictor Effects and How to Modify a Model" \\
Examples
\end{tabular}
\end{tabular}
Concepts - "Generalized Linear Models" on page 9-143

\section*{Purpose}

Improve linear regression model by adding or removing terms

\section*{Syntax}
mdl1 = step(mdl)
mdl1 = step(mdl,Name,Value)

\section*{Input Arguments}
mdl1 \(=\) step \((\mathrm{mdl})\) returns an improved linear model based on mdl, with one predictor added or removed.

Note You can use step only if mdl. Robust = []. This holds when you create mdl with LinearModel.fit having the RobustOpts name-value pair set to the default 'off'.
mdl1 \(=\) step(mdl, Name, Value) improves a linear model with additional options specified by one or more Name, Value pair arguments.

\section*{mdl}

Linear model, as constructed by LinearModel.fit or LinearModel.stepwise.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'Criterion'}

Criterion that step uses in selecting terms to add or remove:

\section*{LinearModel.step}
\begin{tabular}{l|l|l|l}
\hline Criterion & PEnter & PRemove & Compared Against \\
\hline 'SSE' & 0.05 & \(<0.1\) & \(p\)-value for \(F\) test \\
\hline 'AIC' & 0 & \(<0.01\) & Change in AIC \\
\hline 'BIC' & 0 & \(<0.01\) & Change in BIC \\
\hline 'Rsquared' & 0.1 & \(>0.05\) & Increase in R-squared \\
\hline 'AdjRsquared' & 0 & \(>-0.05\) & Increase in adjusted R-squared \\
\hline
\end{tabular}

Default: 'sse'

\section*{'Lower'}

Model specification that describes the terms that must exist in the fit.

Default: 'constant'

\section*{'NSteps'}

Maximum number of steps to take.
Default: 1

\section*{'Penter'}

Improvement measure for adding a term.
- If Criterion = 'sse' or 'deviance', Penter is the value of \(p\) such that, if a term has a \(p\)-value less than \(p\), then add the term to the model.
- For other values of Criterion, if the improvement in the criterion is more than Penter, then add the term to the model.

Default: 0.05 for Criterion = 'sse' or 'deviance'; 0 for other values of Criterion

\section*{'PRemove'}

Improvement measure for removing a term.
- If Criterion = 'sse' or 'deviance', PRemove is the value of \(p\) such that, if a term has a \(p\)-value greater than \(p\), then remove the term from the model.
- For other values of Criterion, if the improvement in the criterion is less than Penter, then remove the term from the model.

Default: 0.1 for Criterion = 'sse' or 'deviance'; 0 for other values of Criterion

\section*{'Upper'}

Model specification describing largest set of terms in the fit.
Default: 'interactions'

\section*{'Verbose'}

Integer from 0 to 2 controlling the display of information.
- 0 suppresses all display.
- 1 displays the action taken at each step.
- 2 also displays the actions evaluated at each step.

Default: 1

Output
Arguments

\section*{Examples}
mdll
Linear model. Typically you set mdl1 equal to mdl.

\section*{Modify a Linear Model}

Fit a linear model to car data. Use step to see if a quadratic model would help the fit quality.

\section*{LinearModel.step}

Load carsmall data, and make a dataset from weight and model year predictors with MPG response.
```

load carsmall
ds = dataset(MPG,Weight);
ds.Year = ordinal(Model_Year);

```

Make a linear model of MPG as a function of Year and Weight.
```

mdl = LinearModel.fit(ds,'MPG ~ Year + Weight')
mdl =
Linear regression model:
MPG ~ 1 + Weight + Year
Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	40.11	1.5418	26.016	$1.2024 \mathrm{e}-43$
Weight	-0.0066475	0.00042802	-15.531	$3.3639 \mathrm{e}-27$
Year_76	1.9291	0.74761	2.5804	0.011488
Year_82	7.9093	0.84975	9.3078	$7.8681 \mathrm{e}-15$

Number of observations: 94, Error degrees of freedom: 90
Root Mean Squared Error: 2.92
R-squared: 0.873, Adjusted R-Squared 0.868
F-statistic vs. constant model: 206, p-value = 3.83e-40

```

Use step to adjust the model to potentially include full quadratic terms.
mdl1 = step(mdl,'upper','quadratic')
1. Adding Weight^2, FStat \(=9.9164\), pValue \(=0.0022303\)
mdl1 \(=\)
Linear regression model:
    MPG ~ 1 + Weight + Year + Weight^2

\section*{LinearModel.step}
\begin{tabular}{|c|c|c|c|c|}
\hline & Estimate & SE & tStat & pValue \\
\hline (Intercept) & 54.206 & 4.7117 & 11.505 & 2.6648e-19 \\
\hline Weight & -0.016404 & 0.0031249 & -5.2493 & 1.0283e-06 \\
\hline Year_76 & 2.0887 & 0.71491 & 2.9215 & 0.0044137 \\
\hline Year_82 & 8.1864 & 0.81531 & 10.041 & 2.6364e-16 \\
\hline Weight^2 & 1.5573e-06 & 4.9454e-07 & 3.149 & 0.0022303 \\
\hline
\end{tabular}
```

Number of observations: 94, Error degrees of freedom: 89
Root Mean Squared Error: 2.78
R-squared: 0.885, Adjusted R-Squared 0.88
F-statistic vs. constant model: 172, p-value = 5.52e-41

```

\section*{Algorithms}

Stepwise regression is a systematic method for adding and removing terms from a linear or generalized linear model based on their statistical significance in explaining the response variable. The method begins with an initial model, specified using modelspec, and then compares the explanatory power of incrementally larger and smaller models.

MATLAB uses forward and backward stepwise regression to determine a final model. At each step, the method searches for terms to add to or remove from the model based on the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse', and in this case, LinearModel.stepwise and GeneralizedLinearModel.stepwise use the \(p\)-value of an F -statistic to test models with and without a potential term at each step. If a term is not currently in the model, the null hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient evidence to reject the null hypothesis, the term is added to the model. Conversely, if a term is currently in the model, the null hypothesis is that the term has a zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed from the model.

Here is how stepwise proceeds when 'Criterion' is 'sse':
1 Fit the initial model.

\section*{LinearModel.step}

2 If any terms not in the model have \(p\)-values less than an entrance tolerance (that is, if it is unlikely that they would have zero coefficient if added to the model), add the one with the smallest \(p\)-value and repeat this step; otherwise, go to step 3.

3 If any terms in the model have \(p\)-values greater than an exit tolerance (that is, if it is unlikely that the hypothesis of a zero coefficient can be rejected), remove the one with the largest \(p\)-value and go to step 2 ; otherwise, end.

There are several other criteria available, which you can specify using the 'Criterion' argument. You can use the change in the value of the Akaike information criterion, Bayesian information criterion, R-squared, adjusted R-squared, or deviance (only for GeneralizedLinearModel.stepwise) as a criterion to add or remove terms.

Depending on the terms included in the initial model and the order in which terms are moved in and out, the method may build different models from the same set of potential terms. The method terminates when no single step improves the model. There is no guarantee, however, that a different initial model or a different sequence of steps will not lead to a better fit. In this sense, stepwise models are locally optimal, but may not be globally optimal.
Alternatives Use LinearModel.stepwise to select a model from a starting model,continuing until no single step is beneficial.
Use addTerms or removeTerms to add or remove particular terms.
See Also addTerms | LinearModel | removeTerms | LinearModel.stepwise
Tutorials - "Linear Regression Workflow" on page 9-43
- "Change Models" on page 9-36
How To - "Linear Regression" on page 9-11

\section*{Purpose Interactive stepwise regression}
```

Syntax stepwise
stepwise(X,y)
stepwise(X,y,inmodel,penter,premove)

```

\section*{Description}
stepwise uses the sample data in hald.mat to display a graphical user interface for performing stepwise regression of the response values in heat on the predictive terms in ingredients.

\section*{stepwise}


The upper left of the interface displays estimates of the coefficients for all potential terms, with horizontal bars indicating \(90 \%\) (colored) and \(95 \%\) (grey) confidence intervals. The red color indicates that, initially, the terms are not in the model. Values displayed in the table are those that would result if the terms were added to the model.

The middle portion of the interface displays summary statistics for the entire model. These statistics are updated with each step.

The lower portion of the interface, Model History, displays the RMSE for the model. The plot tracks the RMSE from step to step, so you can compare the optimality of different models. Hover over the blue dots in the history to see which terms were in the model at a particular step. Click on a blue dot in the history to open a copy of the interface initialized with the terms in the model at that step.

Initial models, as well as entrance/exit tolerances for the \(p\)-values of \(F\)-statistics, are specified using additional input arguments to stepwise. Defaults are an initial model with no terms, an entrance tolerance of 0.05 , and an exit tolerance of 0.10 .

To center and scale the input data (compute \(z\)-scores) to improve conditioning of the underlying least-squares problem, select Scale Inputs from the Stepwise menu.

You proceed through a stepwise regression in one of two ways:
1 Click Next Step to select the recommended next step. The recommended next step either adds the most significant term or removes the least significant term. When the regression reaches a local minimum of RMSE, the recommended next step is "Move no terms." You can perform all of the recommended steps at once by clicking All Steps.

2 Click a line in the plot or in the table to toggle the state of the corresponding term. Clicking a red line, corresponding to a term not currently in the model, adds the term to the model and changes the line to blue. Clicking a blue line, corresponding to a term currently in the model, removes the term from the model and changes the line to red.

To call addedvarplot and produce an added variable plot from the stepwise interface, select Added Variable Plot from the Stepwise menu. A list of terms is displayed. Select the term you want to add, and then click OK.

Click Export to display a dialog box that allows you to select information from the interface to save to the MATLAB workspace.

Check the information you want to export and, optionally, change the names of the workspace variables to be created. Click OK to export the information.
stepwise ( \(\mathrm{X}, \mathrm{y}\) ) displays the interface using the \(p\) predictive terms in the \(n\)-by- \(p\) matrix X and the response values in the \(n\)-by- 1 vector y . Distinct predictive terms should appear in different columns of \(X\).

Note stepwise automatically includes a constant term in all models. Do not enter a column of 1 s directly into X .
stepwise treats NaN values in either X or y as missing values, and ignores them.
stepwise( \(\mathrm{X}, \mathrm{y}\), inmodel, penter, premove) additionally specifies the initial model (inmodel) and the entrance (penter) and exit (premove) tolerances for the \(p\)-values of \(F\)-statistics. inmodel is either a logical vector with length equal to the number of columns of \(X\), or a vector of indices, with values ranging from 1 to the number of columns in \(X\). The value of penter must be less than or equal to the value of premove.

\section*{Algorithms}

Stepwise regression is a systematic method for adding and removing terms from a multilinear model based on their statistical significance in a regression. The method begins with an initial model and then compares the explanatory power of incrementally larger and smaller models. At each step, the \(p\) value of an \(F\)-statistic is computed to test models with and without a potential term. If a term is not currently in the model, the null hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient evidence to reject the null hypothesis, the term is added to the model. Conversely, if a term is currently in the model, the null hypothesis is that the term has a zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed from the model. The method proceeds as follows:

1 Fit the initial model.

2 If any terms not in the model have \(p\)-values less than an entrance tolerance (that is, if it is unlikely that they would have zero coefficient if added to the model), add the one with the smallest \(p\) value and repeat this step; otherwise, go to step 3.

3 If any terms in the model have \(p\)-values greater than an exit tolerance (that is, if it is unlikely that the hypothesis of a zero coefficient can be rejected), remove the one with the largest \(p\) value and go to step 2 ; otherwise, end.

Depending on the terms included in the initial model and the order in which terms are moved in and out, the method may build different models from the same set of potential terms. The method terminates when no single step improves the model. There is no guarantee, however, that a different initial model or a different sequence of steps will not lead to a better fit. In this sense, stepwise models are locally optimal, but may not be globally optimal.

See Also addedvarplot | regress | stepwisefit

\section*{GeneralizedLinearModel.stepwise}
Purpose \(\quad\)\begin{tabular}{rl} 
Create generalized linear regression model by stepwise regression \\
Syntax & \(\quad\)\begin{tabular}{rl}
mdl & \(=\) GeneralizedLinearModel.stepwise \((\mathrm{ds}\), modelspec \()\) \\
mdl & \(=\) GeneralizedLinearModel.stepwise \((\mathrm{X}, \mathrm{y}\), modelspec \()\) \\
mdl & \(=\) GeneralizedLinearModel.stepwise \((\ldots\), modelspec, Name, \\
& Value \()\)
\end{tabular}
\end{tabular}

Description

Tips

Input
Arguments
mdl = GeneralizedLinearModel.stepwise(ds,modelspec) creates a generalized linear model of a dataset array ds, using stepwise regression to add or remove predictors. modelspec is the starting model for the stepwise procedure.
mdl = GeneralizedLinearModel.stepwise(X,y,modelspec) creates a generalized linear model of the responses \(y\) to a data matrix \(X\), using stepwise regression to add or remove predictors.
mdl =
GeneralizedLinearModel.stepwise(..., modelspec, Name, Value) creates a generalized linear model with additional options specified by one or more Name, Value pair arguments.
- The generalized linear model mdl is a standard linear model unless you specify otherwise with the Distribution name-value pair.
- For other methods such as fit or devianceTest, or properties of the GeneralizedLinearModel object, see GeneralizedLinearModel.

\section*{ds}

Dataset array, where by default the last column is the response variable, and all other columns are the predictors. Predictors can be numeric, or can be any grouping variable type, such as logical or categorical (see "Grouping Variables" on page 2-51). The response must be numeric or logical.

To set a different column as the response variable, use the ResponseVar name-value pair. To use a subset of the columns as predictors, use the PredictorVars name-value pair.

\section*{GeneralizedLinearModel.stepwise}

\section*{X}

Matrix of predictor values. Each column of \(X\) represents one variable, and each row represents one observation.

\section*{\(y\)}

Vector of response values with the same number of rows as X . Each entry in \(y\) is the response to the data in the corresponding row of \(X\).

\section*{modelspec}

Model specification. This is the starting model for the stepwise method. Possibilities:
- String specifying the type of model.
\begin{tabular}{l|l}
\hline String & Model Type \\
\hline 'constant' & \begin{tabular}{l} 
Model contains only a constant \\
(intercept) term.
\end{tabular} \\
\hline 'linear' & \begin{tabular}{l} 
Model contains an intercept and linear \\
terms for each predictor.
\end{tabular} \\
\hline 'interactions' & \begin{tabular}{l} 
Model contains an intercept, linear \\
terms, and all products of pairs of \\
distinct predictors (no squared terms).
\end{tabular} \\
\hline 'purequadratic' & \begin{tabular}{l} 
Model contains an intercept, linear \\
terms, and squared terms.
\end{tabular} \\
\hline
\end{tabular}

\section*{GeneralizedLinearModel.stepwise}
\begin{tabular}{l|l}
\hline String & Model Type \\
\hline 'quadratic' & \begin{tabular}{l} 
Model contains an intercept, linear \\
terms, interactions, and squared terms.
\end{tabular} \\
\hline 'polyijk' & \begin{tabular}{l} 
Model is a polynomial with all terms \\
up to degree \(i\) in the first predictor, \\
degree \(j\) in the second predictor, \\
etc. Use numerals 0 through 9. For \\
example, 'poly2111' has a constant \\
plus all linear and product terms, and \\
also contains terms with predictor 1 \\
squared.
\end{tabular} \\
\hline
\end{tabular}
- T-by-P+1 matrix, namely "Terms Matrix" on page 20-2749, specifying terms to include in model, where \(T\) is the number of terms and \(P\) is the number of predictor variables, and plus one is for the response variable.
- String representing a "Formula" on page 20-2753 in the form
'Y ~ terms ',
where the terms are in "Wilkinson Notation" on page 20-2754.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'BinomialSize'}

Vector or name of a variable of the same length as the response, specifying the size of the sample (number of trials) used in fitting the binomial distribution. This is the n parameter for the fitted binomial distribution. BinomialSize applies only when the Distribution parameter is 'binomial'.

\section*{GeneralizedLinearModel.stepwise}

BinomialSize can be a scalar, meaning all observations have the same number of trials.

As an alternative to BinomialSize, you can specify the response as a two-column vector with counts in column 1 and BinomialSize in column 2.

Default: 1

\section*{'CategoricalVars'}

Identify the categorical variables. Choices:
- Cell array of strings of the variable names in the ds dataset array.
- Logical or numerical index vector indicating which data columns are categorical. For example, if predictors 2 and 3 out of 6 are categorical, pass either
\([2,3]\)
or
logical([0 \(\left.1 \begin{array}{lllll}0 & 1 & 0 & 0 & 0\end{array}\right]\)
Default: For data matrix X, default is [ ] (none). For dataset array ds, default is to treat ds variables as categorical if they are categorical, logical, character arrays, or cell arrays of strings.

\section*{'Criterion'}

Criterion that stepwise uses in selecting terms to add or remove:
- 'sse' - \(p\)-value for an \(F\) test of the change in sse by adding or removing the term.
- 'deviance' - p-value for a chi-square test of the change in deviance.
- 'aic' - Change in the value of AIC.

\section*{GeneralizedLinearModel.stepwise}
- 'bic' - Change in the value of BIC.
- 'rsquared' - Change in the value of \(R^{2}\).
- 'adjrsquared ' - Change in the value of adjusted \(R^{2}\).

Default: 'sse'

\section*{'DispersionFlag'}

Logical value that applies only to 'binomial' and 'poisson' distributions. true causes the fitting function to estimate a dispersion parameter when computing standard errors. false causes the fitting function to use the theoretical value. The fitting function always estimates the dispersion for other distributions.

Default: false for 'binomial' and 'poisson' distributions

\section*{'Distribution'}

Name of the distribution of the response, one of:
'normal' Normal distribution
'binomial' Binomial distribution
'poisson' Poisson distribution
'gamma ' Gamma distribution
'inverse Inverse Gaussian distribution
gaussian'

Default: 'normal'

\section*{'Exclude'}

Logical or numerical index vector indicating which observations to exclude from the fit. For example, to exclude observations 2 and 3 out of 6 , pass either

\section*{GeneralizedLinearModel.stepwise}
\([2,3]\)
or
logical([0 \(\left.\left.1 \begin{array}{lllll}1 & 1 & 0 & 0 & 0\end{array}\right]\right)\)
Default: []

\section*{'Intercept'}

Logical value indicating whether to include a constant term (intercept) in the model. Use Intercept only when you specify the model by a string, not a formula or matrix.

Default: true

\section*{'Link'}

The link function to use in place of the canonical link. The link function defines the relationship \(f(\mu)=X^{*} b\) between the mean response \(\mu\) and the linear combination of predictors \(X^{*} b\). Specify the link as follows.
\begin{tabular}{l|l|l}
\hline Link Function Name & Link Function & Mean (Inverse) Function \\
\hline 'identity' & \(f(\mu)=\mu\) & \(\mu=X b\) \\
\hline 'log' & \(f(\mu)=\log (\mu)\) & \(\mu=\exp (X b)\) \\
\hline 'logit' & \(f(\mu)=\log (\mu /(1-\mu))\) & \(\mu=\exp (X b) /(1+\exp (X b))\) \\
\hline 'probit' & \(f(\mu)=\Phi^{-1}(\mu)\) & \(\mu=\Phi(X b)\) \\
\hline 'comploglog' & \(f(\mu)=\log (-\log (1-\mu))\) & \(\mu=1-\exp (-\exp (X b))\) \\
\hline 'reciprocal' & \(f(\mu)=\log (-\log (\mu))\) & \(\mu=\exp (-\exp (X b))\) \\
\hline
\end{tabular}

\section*{GeneralizedLinearModel.stepwise}
\begin{tabular}{l|l|l}
\hline Link Function Name & Link Function & Mean (Inverse) Function \\
\hline p (a number) & \(f(\mu)=\mu^{p}\) & \(\mu=X b^{1 / p}\) \\
\hline \begin{tabular}{l} 
S (a structure) \\
S has three fields, each \\
a function handle that \\
accepts a vector of inputs \\
and returns a vector the \\
same size:
\end{tabular} & \(f(\mu)=\mathrm{S}\). Link \((\mu)\) & \(\mu=\mathrm{S}\). Inverse \((X b)\) \\
- S.Link - The link \\
function & & \\
- S.Inverse - The \\
inverse link function \\
- S.Derivative-The \\
derivative of the link \\
function
\end{tabular}

Default: The canonical link function (see "Definitions" on page 20-784)

\section*{'Lower'}

Model specification that describes the terms that must exist in the fit.

Default: 'constant'

\section*{'Offset'}

Vector or name of a variable with the same length as the response. GeneralizedLinearModel.fit and GeneralizedLinearModel.stepwise use Offset as an additional predictor, with a coefficient value fixed at 1.0. In other words, the formula for fitting is

\section*{GeneralizedLinearModel.stepwise}
```

\mu ~ Offset + (terms involving real predictors)

```
with the Offset predictor having coefficient 1.
For example, consider a Poisson regression model. Suppose the number of counts is known for theoretical reasons to be proportional to a predictor A. By using the log link function and by specifying \(\log (A)\) as an offset, you can force the model to satisfy this theoretical constraint.

Default: []

\section*{'Penter'}

Improvement measure for adding a term.
- If Criterion = 'sse' or 'deviance', Penter is the value of \(p\) such that, if a term has a \(p\)-value less than \(p\), then add the term to the model.
- For other values of Criterion, if the improvement in the criterion is more than Penter, then add the term to the model.

Default: 0.05 for Criterion = 'sse' or 'deviance'; 0 for other values of Criterion

\section*{'PredictorVars'}

Identify the predictors to use for fitting. Choices:
- Cell array of strings of the variable names. The strings should be names in the ds dataset array, or the VarNames name-value pair.
- Logical or numerical index vector indicating which predictors to use. For example, to use predictors 2 and 3 out of 6 , pass either
[2,3]
or

\section*{GeneralizedLinearModel.stepwise}
```

logical([00 1 1 1 0 0 0}]

```

Default: All variables in \(X\), or all variables in ds except for ResponseVar

\section*{'PRemove'}

Improvement measure for removing a term.
- If Criterion = 'sse' or 'deviance', PRemove is the value of \(p\) such that, if a term has a \(p\)-value greater than \(p\), then remove the term from the model.
- For other values of Criterion, if the improvement in the criterion is less than Penter, then remove the term from the model.

Default: 0.1 for Criterion = 'sse' or 'deviance'; 0 for other values of Criterion

\section*{'ResponseVar'}

Variable that the fitting function uses for response data. Give either the variable name or its column number. Typically, you use ResponseVar when fitting a dataset array ds. Choices are:
- String of the variable name.
- Logical or numerical index vector indicating which predictors to use. For example, to use the fourth variable as the response out of six variables, pass either
'ResponseVar',[4]
or
'ResponseVar',logical([0 0 0 1 0 0])
Default: Last column of ds

\section*{GeneralizedLinearModel.stepwise}

\section*{'Upper'}

Model specification describing largest set of terms in the fit.
Default: 'interactions'

\section*{'VarNames'}

Cell array of strings, first naming the columns of \(X\), and with the response variable y last. Not applicable to variables in a dataset array, because those variables already have names.

Default: \{'x1','x2',...,'xn','y'\}, where \(n\) is the number of columns of \(X\)

\section*{'Weights'}

Vector of nonnegative observation weights.
Default: ones(size(y))

\section*{Output mdl}

Arguments
Generalized linear model representing a least-squares fit of the link of the response to the data.

\section*{Definitions Terms Matrix}

A terms matrix is a T-by- \(\mathrm{P}+1\) matrix specifying terms in a model, where T is the number of terms, P is the number of predictor variables, and plus one is for the response variable. The value of \(T(i, j)\) is the exponent of variable \(j\) in term \(i\). For example, if there are three predictor variables A, B, and C:
```

[0 0 0 0] % constant term or intercept
[0 1 0 0] % B; equivalently, A^0 * B^1 * C^0
[1 0 1 0] % A*C
[2 0 0 0] % A^2
[0 1 2 0] % B*(C^2)

```

\section*{GeneralizedLinearModel.stepwise}

The 0 at the end of each term represents the response variable. In general,
- If you have the variables in a dataset array, then a 0 must represent the response variable depending on the position of the response variable in the dataset array. For example:

Load sample data and define the dataset array.
load hospital
ds = dataset(hospital.Sex,hospital.BloodPressure(:,1), hospital.Age,... hospital.Smoker,'VarNames',\{'Sex','BloodPressure','Age','Smoker'\});

Represent the linear model 'BloodPressure ~ 1 + Sex + Age + Smoker' in a terms matrix. The response variable is in the second column of the data set array, so there must be a column of zeros for the response variable in the second column of the term matrix.
```

T = [0 0 0 0;1 0 0 0;0 0 1 0;0 0 0 1]
T =

0	0	0	0
1	0	0	0
0	0	1	0
0	0	0	1

```

Redefine the dataset array.
```

ds = dataset(hospital.BloodPressure(:,1),hospital.Sex,hospital.Age,
hospital.Smoker,'VarNames',{'BloodPressure','Sex','Age','Smoker'});

```

Now, the response variable is the first term in the data set array. Specify the same linear model, 'BloodPressure ~ 1 + Sex + Age + Smoker', using a term matrix.
```

T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
T =

```

\section*{GeneralizedLinearModel.stepwise}
\begin{tabular}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{tabular}
- If you have the predictor and response variables in a matrix and column vector, then you must include a 0 for the response variable at the end of each term. For example:
Load sample data and define the matrix of predictors.
load carsmall
X = [Acceleration, Weight];
Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to data. This model includes the main effect and two way interaction terms for the variables, Acceleration and Weight, and a second order term for the variable, Weight.
```

T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]

```
\(T=\)
\begin{tabular}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 2 & 0
\end{tabular}

Fit a linear model.
mdl = LinearModel.fit(X,MPG,T)
mdl =

Linear regression model:

\section*{GeneralizedLinearModel.stepwise}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Estimated Coefficients:} \\
\hline & Estimate & SE & tStat & pValue \\
\hline (Intercept) & 48.906 & 12.589 & 3.8847 & 0.00019665 \\
\hline x 1 & 0.54418 & 0.57125 & 0.95261 & 0.34337 \\
\hline x2 & -0.012781 & 0.0060312 & -2.1192 & 0.036857 \\
\hline x1: x 2 & -0.00010892 & 0.00017925 & -0.6076 & 0.545 \\
\hline x2^2 & 9.7518e-07 & 7.5389e-07 & 1.2935 & 0.19917 \\
\hline \multicolumn{5}{|l|}{Number of observations: 94, Error degrees of freedom: 89} \\
\hline \multicolumn{5}{|l|}{Root Mean Squared Error: 4.1} \\
\hline \multicolumn{5}{|l|}{R-squared: 0.751, Adjusted R-Squared 0.739} \\
\hline \multicolumn{5}{|l|}{F-statistic vs. constant model: 67, p -value \(=4.99 \mathrm{e}-26\)} \\
\hline
\end{tabular}

Only the intercept and x2 term, which corresponds to the Weight variable, are significant at the \(5 \%\) significance level.

Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.
```

T = [0 0 0;1 0 0;0 1 0;1 1 0];
mdl = LinearModel.stepwise(X,MPG,[0 O O],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28
mdl =
Linear regression model:
y ~ 1 + x2
Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	49.238	1.6411	30.002	$2.7015 \mathrm{e}-49$
x2	-0.0086119	0.0005348	-16.103	$1.6434 e-28$

```

Number of observations: 94, Error degrees of freedom: 92

\section*{GeneralizedLinearModel.stepwise}
```

Root Mean Squared Error: 4.13
R-squared: 0.738, Adjusted R-Squared 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28

```

The results of the stepwise regression are consistent with the results of LinearModel.fit in the previous step.

\section*{Formula}

A formula for model specification is a string of the form
'Y ~ terms',
where
- \(Y\) is the response name.
- terms contains
- Variable names
- + means include the next variable
- - means do not include the next variable
- : defines an interaction, a product of terms
- * defines an interaction and all lower-order terms
- ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as well
- () groups terms

Note Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include -1 in the formula.

For example,

\section*{GeneralizedLinearModel.stepwise}
'Y ~ A + B + C' means a three-variable linear model with intercept.
' \(Y \sim A+B+C-1\) ' is a three-variable linear model without intercept.
' \(Y\) ~ A + B + C + B^2' is a three-variable model with intercept and a \(B^{\wedge} 2\) term.
\(' Y \sim A+B^{\wedge} 2+C\) ' is the same as the previous example because \(B^{\wedge} 2\) includes a \(B\) term.
\(' Y \sim A+B+C+A: B '\) includes an \(A * B\) term.
\(' Y \sim A * B+C '\) is the same as the previous example because \(A * B=\) \(A+B+A: B\).
\(' Y \sim A * B * C-A: B: C '\) has all interactions among \(A, B\), and \(C\), except the three-way interaction.
' \(Y \sim A^{*}(B+C+D)^{\prime}\) has all linear terms, plus products of \(A\) with each of the other variables.

\section*{Wilkinson Notation}

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.
\begin{tabular}{l|l}
\hline Wilkinson Notation & Factors in Standard Notation \\
\hline 1 & Constant (intercept) term \\
\hline\(A^{\wedge} k\), where \(k\) is a positive integer & \(A, A^{2}, \ldots, A^{k}\) \\
\hline\(A+B\) & \(A, B\) \\
\hline\(A * B\) & \(A, B, A * B\) \\
\hline\(A: B\) & \(A * B\) only \\
\hline\(-B\) & Do not include \(B\) \\
\hline\(A * B+C\) & \(A, B, C, A * B\) \\
\hline\(A+B+C+A: B\) & \(A, B, C, A * B\) \\
\hline\(A * B * C-A: B: C\) & \(A, B, C, A * B, A * C, B * C\) \\
\hline\(A *(B+C)\) & \(A, B, C, A * B, A * C\) \\
\hline
\end{tabular}

\section*{GeneralizedLinearModel.stepwise}

Statistics Toolbox notation always includes a constant term unless you explicitly remove the term using - 1 .

\section*{Canonical Link Function}

The default link function for a generalized linear model is the canonical link function.

Canonical Link Functions for Generalized Linear Models
\begin{tabular}{l|l|l|l}
\hline Distribution & \begin{tabular}{l} 
Link Function \\
Name
\end{tabular} & Link Function & \begin{tabular}{l} 
Mean (Inverse) \\
Function
\end{tabular} \\
\hline 'normal' & 'identity' & \(f(\mu)=\mu\) & \(\mu=X b\) \\
\hline 'binomial' & 'logit' & \(f(\mu)=\log (\mu /(1-\mu))\) & \(\mu=\exp (X b) /(1+\exp (X b))\) \\
\hline 'poisson' & 'log' & \(f(\mu)=\log (\mu)\) & \(\mu=\exp (X b)\) \\
\hline 'gamma' & -1 & \(f(\mu)=1 / \mu\) & \(\mu=1 /(X b)\) \\
\hline \begin{tabular}{l} 
'inverse \\
gaussian'
\end{tabular} & -2 & \(f(\mu)=1 / \mu^{2}\) & \(\mu=(X b)^{-1 / 2}\) \\
\hline
\end{tabular}

\section*{Examples Create a Generalized Linear Model Stepwise}

Create response data using just three of 20 predictors, and create a generalized linear model stepwise to see if it uses just the correct predictors.

Create data with 20 predictors, and Poisson response using just three of the predictors, plus a constant.
```

rng('default') % for reproducibility
X = randn(100,20);
mu = exp(X(:,[5 10 15])*[.4;.2;.3] + 1);
y = poissrnd(mu);

```

Fit a generalized linear model using the Poisson distribution.
mdl \(=\) GeneralizedLinearModel.stepwise(X,y,...

\section*{GeneralizedLinearModel.stepwise}
```

 'constant','upper','linear','Distribution','poisson')
 1. Adding x5, Deviance = 134.439, Chi2Stat = 52.24814, PValue = 4.891229e-13
2. Adding x15, Deviance = 106.285, Chi2Stat = 28.15393, PValue = 1.1204e-07
3. Adding x10, Deviance = 95.0207, Chi2Stat = 11.2644, PValue = 0.000790094
mdl =
```
Generalized Linear regression model:
    \(\log (y) \sim 1+x 5+x 10+x 15\)
    Distribution \(=\) Poisson

Estimated Coefficients:
\begin{tabular}{lcrll} 
& Estimate & \multicolumn{1}{l}{ SE } & tStat & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 1.0115 & 0.064275 & 15.737 & \(8.4217 \mathrm{e}-56\) \\
x5 & 0.39508 & 0.066665 & 5.9263 & \(3.0977 \mathrm{e}-09\) \\
x10 & 0.18863 & 0.05534 & 3.4085 & 0.0006532 \\
x15 & 0.29295 & 0.053269 & 5.4995 & \(3.8089 \mathrm{e}-08\)
\end{tabular}

100 observations, 96 error degrees of freedom
Dispersion: 1
Chi^2-statistic vs. constant model: 91.7, p-value = 9.61e-20

\section*{Algorithms}

Stepwise regression is a systematic method for adding and removing terms from a linear or generalized linear model based on their statistical significance in explaining the response variable. The method begins with an initial model, specified using modelspec, and then compares the explanatory power of incrementally larger and smaller models.

MATLAB uses forward and backward stepwise regression to determine a final model. At each step, the method searches for terms to add to or remove from the model based on the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse', and in this case, LinearModel.stepwise and GeneralizedLinearModel.stepwise use the \(p\)-value of an F-statistic to test models with and without a potential term at each step. If a term is not currently in the model, the null

\section*{GeneralizedLinearModel.stepwise}
hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient evidence to reject the null hypothesis, the term is added to the model. Conversely, if a term is currently in the model, the null hypothesis is that the term has a zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed from the model.

Here is how stepwise proceeds when 'Criterion' is 'sse':
1 Fit the initial model.
2 If any terms not in the model have \(p\)-values less than an entrance tolerance (that is, if it is unlikely that they would have zero coefficient if added to the model), add the one with the smallest \(p\)-value and repeat this step; otherwise, go to step 3.

3 If any terms in the model have \(p\)-values greater than an exit tolerance (that is, if it is unlikely that the hypothesis of a zero coefficient can be rejected), remove the one with the largest \(p\)-value and go to step 2 ; otherwise, end.

There are several other criteria available, which you can specify using the 'Criterion' argument. You can use the change in the value of the Akaike information criterion, Bayesian information criterion, R-squared, adjusted R-squared, or deviance (only for GeneralizedLinearModel.stepwise) as a criterion to add or remove terms.

Depending on the terms included in the initial model and the order in which terms are moved in and out, the method may build different models from the same set of potential terms. The method terminates when no single step improves the model. There is no guarantee, however, that a different initial model or a different sequence of steps will not lead to a better fit. In this sense, stepwise models are locally optimal, but may not be globally optimal.

\section*{GeneralizedLinearModel.stepwise}
Alternatives Use GeneralizedLinearModel.fit to create a model with a fixedspecification. Use step, addTerms, or removeTerms to adjust a fittedmodel.
References
[1] Collett, D. Modeling Binary Data. New York: Chapman \& Hall, 2002.
[2] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman \& Hall, 1990.
[3] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman \& Hall, 1990.
See Also GeneralizedLinearModel | GeneralizedLinearModel.fit |
Related - "Compare large and small stepwise models" on page 9-111
Examples
Concepts - "Generalized Linear Models" on page 9-143

\section*{LinearModel.stepwise}

\section*{Purpose}

Create linear regression model by stepwise regression
Syntax

\section*{Description}

Tips

\section*{Input Arguments}
```

mdl = LinearModel.stepwise(ds,modelspec)
mdl = LinearModel.stepwise(X,y,modelspec)
mdl = LinearModel.stepwise(___,modelspec,Name,Value)

```
mdl = LinearModel.stepwise(ds,modelspec) returns a linear model of a dataset array ds, using stepwise regression to add or remove predictors. modelspec is the starting model for the stepwise procedure.
mdl = LinearModel.stepwise(X,y,modelspec) creates a linear model of the responses \(y\) to a data matrix \(X\), using stepwise regression to add or remove predictors. modelspec is the starting model for the stepwise procedure.
mdl = LinearModel.stepwise(__, modelspec, Name, Value) creates a linear model for any of the inputs in the previous syntaxes, with additional options specified by one or more Name, Value pair arguments. modelspec is the starting model for the stepwise procedure.
- You cannot use robust regression with stepwise regression. Check your data for outliers before using LinearModel.stepwise.
- For other methods such as fit or anova, or properties of the LinearModel object, see LinearModel.

\section*{ds}

Dataset array, where by default the last column is the response variable, and all other columns are the predictors. Predictors can be numeric, or can be any grouping variable type, such as logical or categorical (see "Grouping Variables" on page 2-51). The response must be numeric or logical.

To set a different column as the response variable, use the ResponseVar name-value pair. To use a subset of the columns as predictors, use the PredictorVars name-value pair.

\section*{X}

\section*{LinearModel.stepwise}

Matrix of predictor values. Each column of X represents one variable, and each row represents one observation.

\section*{\(y\)}

Vector of response values with the same number of rows as \(X\). Each entry in \(y\) is the response to the data in the corresponding row of \(X\).

\section*{modelspec}

Model specification. This is the starting model for the stepwise method. Possibilities:
- String specifying the type of model.
\begin{tabular}{l|l}
\hline String & Model Type \\
\hline 'constant' & \begin{tabular}{l} 
Model contains only a constant \\
(intercept) term.
\end{tabular} \\
\hline 'linear' & \begin{tabular}{l} 
Model contains an intercept and linear \\
terms for each predictor.
\end{tabular} \\
\hline 'interactions' & \begin{tabular}{l} 
Model contains an intercept, linear \\
terms, and all products of pairs of \\
distinct predictors (no squared terms).
\end{tabular} \\
\hline 'purequadratic' & \begin{tabular}{l} 
Model contains an intercept, linear \\
terms, and squared terms.
\end{tabular} \\
\hline 'quadratic' & \begin{tabular}{l} 
Model contains an intercept, linear \\
terms, interactions, and squared terms.
\end{tabular} \\
\hline 'polyijk' & \begin{tabular}{l} 
Model is a polynomial with all terms \\
up to degree i in the first predictor, \\
degree j in the second predictor, \\
etc. Use numerals 0 through 9. For \\
example, 'poly2111' has a constant \\
plus all linear and product terms, and \\
also contains terms with predictor 1 \\
squared.
\end{tabular} \\
\hline
\end{tabular}

\section*{LinearModel.stepwise}
- T-by-P+1 matrix, namely "Terms Matrix" on page 20-2765, specifying terms to include in model, where \(T\) is the number of terms and \(P\) is the number of predictor variables, and plus one is for the response variable.
- String representing a "Formula" on page 20-2769 in the form
\[
\text { ' } Y \sim \text { terms ', }
\]
where the terms are in "Wilkinson Notation" on page 20-2770.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'CategoricalVars'}

Identify the categorical variables. Choices:
- Cell array of strings of the variable names in the ds dataset array.
- Logical or numerical index vector indicating which data columns are categorical. For example, if predictors 2 and 3 out of 6 are categorical, pass either
\([2,3]\)
or
logical([0 \(1 \times 1000])\)
Default: For data matrix X, default is [ ] (none). For dataset array ds, default is to treat ds variables as categorical if they are categorical, logical, character arrays, or cell arrays of strings.

\section*{LinearModel.stepwise}

\section*{'Criterion'}

Criterion that stepwise uses in selecting terms to add or remove:
- 'sse' - \(p\)-value for an \(F\) test of the change in sse by adding or removing the term.
- 'aic' - Change in the value of AIC.
- 'bic' - Change in the value of BIC.
- 'rsquared' - Change in the value of \(R^{2}\).
- 'adjrsquared' - Change in the value of adjusted \(R^{2}\).

Default: 'sse'

\section*{'Exclude'}

Logical or numerical index vector indicating which observations to exclude from the fit. For example, to exclude observations 2 and 3 out of 6 , pass either
[2,3]
or
logical([0 \(\left.1 \begin{array}{lllll}1 & 0 & 0 & 0\end{array}\right]\)

Default: []

\section*{'Intercept'}

Logical value indicating whether to include a constant term (intercept) in the model. Use Intercept only when you specify the model by a string, not a formula or matrix.

Default: true

\section*{'Lower'}

\section*{LinearModel.stepwise}

Model specification that describes the terms that must exist in the fit.

Default: 'constant'

\section*{'NSteps'}

Maximum number of steps to take.
Default: 1

\section*{'Penter'}

Improvement measure for adding a term.
- If Criterion = 'sse', Penter is the value of \(p\) such that, if a term has a \(p\)-value less than \(p\), then add the term to the model.
- For other values of Criterion, if the improvement in the criterion is more than Penter, then add the term to the model.

Default: 0.05 for Criterion = 'sse'; 0 for other values of Criterion

\section*{'PredictorVars'}

Identify the predictors to use for fitting. Choices:
- Cell array of strings of the variable names. The strings should be names in the ds dataset array, or the VarNames name-value pair.
- Logical or numerical index vector indicating which predictors to use. For example, to use predictors 2 and 3 out of 6 , pass either
[2,3]
or
logical([0 \(\left.1 \times 1 \begin{array}{lll} & 0 & 0\end{array}\right)\)

\section*{LinearModel.stepwise}

Default: All variables in X, or all variables in ds except for ResponseVar

\section*{'PRemove'}

Improvement measure for removing a term.
- If Criterion = 'sse', PRemove is the value of \(p\) such that, if a term has a \(p\)-value greater than \(p\), then remove the term from the model.
- For other values of Criterion, if the improvement in the criterion is less than Penter, then remove the term from the model.

Default: 0.1 for Criterion = 'sse'; 0 for other values of Criterion

\section*{'ResponseVar'}

Variable that the fitting function uses for response data. Give either the variable name or its column number. Typically, you use ResponseVar when fitting a dataset array ds. Choices are:
- String of the variable name.
- Logical or numerical index vector indicating which predictors to use. For example, to use the fourth variable as the response out of six variables, pass either
'ResponseVar',[4]
or
'ResponseVar',logical([0 001000\(])\)

Default: Last column of ds

\section*{'Upper'}

\section*{LinearModel.stepwise}

Model specification describing largest set of terms in the fit.
Default: 'interactions'

\section*{'VarNames'}

Cell array of strings, first naming the columns of \(X\), and with the response variable y last. Not applicable to variables in a dataset array, because those variables already have names.

Default: \{'x1','x2',...,'xn', 'y'\}, where \(n\) is the number of columns of \(X\)

\section*{'Verbose'}

Integer from 0 to 2 controlling the display of information.
- O suppresses all display.
- 1 displays the action taken at each step.
- 2 also displays the actions evaluated at each step.

Default: 1

\section*{'Weights'}

Vector of nonnegative observation weights.
Default: ones(size(y))

\section*{Output mdl}

Arguments

\section*{Definitions}

Linear model representing a least-squares fit of the response to the data.

\section*{Terms Matrix}

A terms matrix is a T-by- \(\mathrm{P}+1\) matrix specifying terms in a model, where T is the number of terms, P is the number of predictor variables,

\section*{LinearModel.stepwise}
and plus one is for the response variable. The value of \(T(i, j)\) is the exponent of variable \(j\) in term i. For example, if there are three predictor variables \(\mathrm{A}, \mathrm{B}\), and C :
[0 0 0 0 0 \% \% constant term or intercept
[0 10000 \% B; equivalently, \(\mathrm{A}^{\wedge} 0\) * \(\mathrm{B}^{\wedge} 1\) * \(\mathrm{C}^{\wedge} 0\)
\(\left[\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right] \% A^{*} C\)
[2 0 0 0] \% A^2
[0 1200 \% \(\mathrm{B}^{*}\left(\mathrm{C}^{\wedge} 2\right)\)
The 0 at the end of each term represents the response variable. In general,
- If you have the variables in a dataset array, then a 0 must represent the response variable depending on the position of the response variable in the dataset array. For example:

Load sample data and define the dataset array.
load hospital
ds = dataset(hospital.Sex,hospital.BloodPressure(:,1),hospital.Age,... hospital.Smoker,'VarNames',\{'Sex','BloodPressure', 'Age', 'Smoker'\});

Represent the linear model 'BloodPressure ~ \(1+\) Sex + Age + Smoker' in a terms matrix. The response variable is in the second column of the data set array, so there must be a column of zeros for the response variable in the second column of the term matrix.
\(\mathrm{T}=[0000 ; 1000 ; 0010 ; 0001]\)
T =
\begin{tabular}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{tabular}

Redefine the dataset array.

\section*{LinearModel.stepwise}
ds = dataset(hospital.BloodPressure(:,1), hospital.Sex, hospital.Age, hospital. Smoker, 'VarNames', \{'BloodPressure', 'Sex', 'Age', 'Smoker'\});

Now, the response variable is the first term in the data set array. Specify the same linear model, 'BloodPressure \(\sim 1+\) Sex + Age + Smoker ', using a term matrix.
```

T = [0 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]

```
\(\mathrm{T}=\)
\begin{tabular}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{tabular}
- If you have the predictor and response variables in a matrix and column vector, then you must include a 0 for the response variable at the end of each term. For example:

Load sample data and define the matrix of predictors.
```

load carsmall
X = [Acceleration,Weight];

```

Specify the model 'MPG ~ Acceleration + Weight + Acceleration:Weight + Weight^2' using a term matrix and fit the model to data. This model includes the main effect and two way interaction terms for the variables, Acceleration and Weight, and a second order term for the variable, Weight.
```

T = [0 0 0;1 0 0;0 1 0;1 1 0;0 2 0]
T =

```
\begin{tabular}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{tabular}

\section*{LinearModel.stepwise}
\begin{tabular}{lll}
1 & 1 & 0 \\
0 & 2 & 0
\end{tabular}

Fit a linear model.
```

mdl = LinearModel.fit(X,MPG,T)
mdl =
Linear regression model:
y ~ 1 + x1*x2 + x2^2
Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	48.906	12.589	3.8847	0.00019665
x1	0.54418	0.57125	0.95261	0.34337
x2	-0.012781	0.0060312	-2.1192	0.036857
x1: x2	-0.00010892	0.00017925	-0.6076	0.545
x2^2	$9.7518 e-07$	$7.5389 e-07$	1.2935	0.19917

```

Number of observations: 94, Error degrees of freedom: 89 Root Mean Squared Error: 4.1
R-squared: 0.751, Adjusted R-Squared 0.739
F-statistic vs. constant model: 67, \(p\)-value \(=4.99 \mathrm{e}-26\)
Only the intercept and x2 term, which corresponds to the Weight variable, are significant at the \(5 \%\) significance level.

Now, perform a stepwise regression with a constant model as the starting model and a linear model with interactions as the upper model.
```

T = [0 0 0;1 0 0;0 1 0;1 1 0];
mdl = LinearModel.stepwise(X,MPG,[0 O 0],'upper',T)

1. Adding x2, FStat = 259.3087, pValue = 1.643351e-28
mdl =
```

\section*{LinearModel.stepwise}
```

Linear regression model:
y ~ 1 + x2
Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	49.238	1.6411	30.002	$2.7015 \mathrm{e}-49$
x2	-0.0086119	0.0005348	-16.103	$1.6434 \mathrm{e}-28$

Number of observations: 94, Error degrees of freedom: 92
Root Mean Squared Error: 4.13
R-squared: 0.738, Adjusted R-Squared 0.735
F-statistic vs. constant model: 259, p-value = 1.64e-28

```

The results of the stepwise regression are consistent with the results of LinearModel.fit in the previous step.

\section*{Formula}

A formula for model specification is a string of the form
' \(Y\) ~ terms ',
where
- \(Y\) is the response name.
- terms contains
- Variable names
- + means include the next variable
- - means do not include the next variable
- : defines an interaction, a product of terms
- * defines an interaction and all lower-order terms
- ^ raises the predictor to a power, exactly as in * repeated, so ^ includes lower order terms as well

\section*{LinearModel.stepwise}
- () groups terms

Note Formulas include a constant (intercept) term by default. To exclude a constant term from the model, include - 1 in the formula.

For example,
'Y ~ A + B + C' means a three-variable linear model with intercept.
' \(Y \sim A+B+C-1 '\) is a three-variable linear model without intercept.
' \(\mathrm{Y} \sim \mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{B}^{\wedge} \mathrm{2}^{\prime}\) is a three-variable model with intercept and a \(B^{\wedge} 2\) term.
' \(Y\) ~ \(A+B^{\wedge} 2+C\) ' is the same as the previous example because \(\mathrm{B}^{\wedge} 2\) includes a \(B\) term.
' \(Y\) ~ \(A+B+C+A: B '\) includes an \(A * B\) term.
' \(Y \sim A * B+C\) ' is the same as the previous example because \(A * B=\) \(A+B+A: B\).
\(' Y \sim A * B * C-A: B: C '\) has all interactions among \(A, B\), and \(C\), except the three-way interaction.
' \(Y \sim A^{*}(B+C+D)^{\prime}\) has all linear terms, plus products of \(A\) with each of the other variables.

\section*{Wilkinson Notation}

Wilkinson notation describes the factors present in models. The notation relates to factors present in models, not to the multipliers (coefficients) of those factors.
\begin{tabular}{l|l}
\hline Wilkinson Notation & Factors in Standard Notation \\
\hline 1 & Constant (intercept) term \\
\hline\(A^{\wedge} k\), where \(k\) is a positive integer & \(A, A^{2}, \ldots, A^{k}\) \\
\hline\(A+B\) & \(A, B\) \\
\hline\(A * B\) & \(A, B, A * B\) \\
\hline
\end{tabular}

\section*{LinearModel.stepwise}
\begin{tabular}{l|l}
\hline Wilkinson Notation & Factors in Standard Notation \\
\hline\(A: B\) & \(A * B\) only \\
\hline\(-B\) & Do not include \(B\) \\
\hline\(A * B+C\) & \(A, B, C, A * B\) \\
\hline\(A+B+C+A: B\) & \(A, B, C, A * B\) \\
\hline\(A * B * C-A: B: C\) & \(A, B, C, A * B, A * C, B * C\) \\
\hline\(A *(B+C)\) & \(A, B, C, A * B, A * C\) \\
\hline
\end{tabular}

Statistics Toolbox notation always includes a constant term unless you explicitly remove the term using - 1 .

\section*{Examples Linear Model from Stepwise Regression}

Fit a linear model of the Hald data using stepwise regression.
Load the data.
load hald
Fit a linear model to the data.
mdl = LinearModel.stepwise(ingredients,heat,'PEnter',0.06)
1. Adding x4, FStat \(=22.7985\), pValue \(=0.000576232\)
2. Adding x1, FStat \(=108.2239\), pValue \(=1.105281 \mathrm{e}-06\)
3. Adding x2, FStat \(=5.0259\), pValue \(=0.051687\)
4. Removing \(\mathrm{x} 4, \mathrm{FStat}=1.8633\), \(\mathrm{pValue}=0.2054\)
\(m d l=\)

Linear regression model:
\(y \sim 1+x 1+x 2\)
Estimated Coefficients:

\section*{LinearModel.stepwise}
\begin{tabular}{lcrll} 
& Estimate & \multicolumn{1}{l}{ SE } & tStat & \multicolumn{1}{l}{ pValue } \\
(Intercept) & 52.577 & 2.2862 & 22.998 & \(5.4566 \mathrm{e}-10\) \\
x1 & 1.4683 & 0.1213 & 12.105 & \(2.6922 \mathrm{e}-07\) \\
x2 & 0.66225 & 0.045855 & 14.442 & \(5.029 \mathrm{e}-08\)
\end{tabular}
```

Number of observations: 13, Error degrees of freedom: 10
Root Mean Squared Error: 2.41
R-squared: 0.979, Adjusted R-Squared 0.974
F-statistic vs. constant model: 230, p-value = 4.41e-09

```

\section*{Simultaneously Specify the Variables and Use Formula}

Simultaneously identify response and predictor variables and specify the initial model using formula in stepwise regression.

Load sample data.
load hospital
Fit a linear model to the data.
```

mdl = LinearModel.stepwise(hospital,'Weight~1+Smoker',...
'ResponseVar','Weight','PredictorVars',{'Sex','Age','Smoker'},...
'CategoricalVar',{'Sex','Smoker'})

1. Adding Sex, FStat = 770.0158, pValue = 6.262758e-48
2. Removing Smoker, FStat = 0.21224, pValue = 0.64605
mdl =
Linear regression model:
Weight ~ 1 + Sex
Estimated Coefficients:

	Estimate	SE	tStat	pValue
(Intercept)	130.47	1.1995	108.77	$5.2762 \mathrm{e}-104$
Sex_Male	50.06	1.7496	28.612	$2.2464 \mathrm{e}-49$

```

\section*{LinearModel.stepwise}
```

Number of observations: 100, Error degrees of freedom: 98
Root Mean Squared Error: 8.73
R-squared: 0.893, Adjusted R-Squared 0.892
F-statistic vs. constant model: 819, p-value = 2.25e-49

```

The weight of the patients do not seem to differ significantly according to age or the status of smoking, or interaction of these factors with gender. LinearModel.stepwise only includes Sex in the final linear model.

\begin{abstract}
Algorithms
Stepwise regression is a systematic method for adding and removing terms from a linear or generalized linear model based on their statistical significance in explaining the response variable. The method begins with an initial model, specified using modelspec, and then compares the explanatory power of incrementally larger and smaller models.

MATLAB uses forward and backward stepwise regression to determine a final model. At each step, the method searches for terms to add to or remove from the model based on the value of the 'Criterion' argument. The default value of 'Criterion' is 'sse', and in this case, LinearModel.stepwise and GeneralizedLinearModel.stepwise use the \(p\)-value of an F-statistic to test models with and without a potential term at each step. If a term is not currently in the model, the null hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient evidence to reject the null hypothesis, the term is added to the model. Conversely, if a term is currently in the model, the null hypothesis is that the term has a zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed from the model.
\end{abstract}

Here is how stepwise proceeds when 'Criterion' is 'sse':
1 Fit the initial model.
2 If any terms not in the model have \(p\)-values less than an entrance tolerance (that is, if it is unlikely that they would have zero coefficient if added to the model), add the one with the smallest \(p\)-value and repeat this step; otherwise, go to step 3.

\section*{LinearModel.stepwise}

3 If any terms in the model have \(p\)-values greater than an exit tolerance (that is, if it is unlikely that the hypothesis of a zero coefficient can be rejected), remove the one with the largest \(p\)-value and go to step 2 ; otherwise, end.

There are several other criteria available, which you can specify using the 'Criterion' argument. You can use the change in the value of the Akaike information criterion, Bayesian information criterion, R-squared, adjusted R-squared, or deviance (only for GeneralizedLinearModel.stepwise) as a criterion to add or remove terms.

Depending on the terms included in the initial model and the order in which terms are moved in and out, the method may build different models from the same set of potential terms. The method terminates when no single step improves the model. There is no guarantee, however, that a different initial model or a different sequence of steps will not lead to a better fit. In this sense, stepwise models are locally optimal, but may not be globally optimal.
References

[1] Draper, N. R., and H. Smith. Applied Regression Analysis. Hoboken, NJ: Wiley-Interscience, pp. 307-312, 1998.
Alternatives You can construct a model using LinearModel.fit, then manually adjust the model using step, addTerms, or removeTerms. Use LinearModel.fit for robust regression. You cannot use robust regression and stepwise regression together.
See Also LinearModel | LinearModel.fit | step
Tutorials . "Compare large and small stepwise models" on page 9-111
How To . "Linear Regression" on page 9-11
- "Stepwise Regression" on page 9-111

\section*{Purpose \\ Syntax
Description}

Stepwise regression
b = stepwisefit(X,y)
[b,se, pval,inmodel,stats, nextstep,history] = stepwisefit(...)
[...] = stepwisefit(X,y,param1,val1,param2,val2,...)
b = stepwisefit \((x, y)\) uses a stepwise method to perform a multilinear regression of the response values in the \(n\)-by- 1 vector y on the \(p\) predictive terms in the \(n\)-by- \(p\) matrix X. Distinct predictive terms should appear in different columns of \(X\).
b is a \(p\)-by- 1 vector of estimated coefficients for all of the terms in X . The stepwisefit function calculates the coefficient estimate values in \(b\) as follows:
- If a term is not in the final model, then the corresponding coefficient estimate in b results from adding only that term to the predictors in the final model.
- If a term is in the final model, then the coefficient estimate in \(\mathbf{b}\) for that term is a result of the final model, that is stepwise does not consider the terms it excluded from the model while computing these values.

Note stepwisefit automatically includes a constant term in all models. Do not enter a column of 1 s directly into X .
stepwisefit treats NaN values in either X or y as missing values, and ignores them.
[b,se,pval,inmodel,stats,nextstep,history] = stepwisefit(...) returns the following additional information:
- se - A vector of standard errors for b
- pval - A vector of \(p\)-values for testing whether elements of b are 0
- inmodel - A logical vector, with length equal to the number of columns in \(X\), specifying which terms are in the final model
- stats - A structure of additional statistics with the following fields. All statistics pertain to the final model except where noted.
- source - The string 'stepwisefit'
- dfe - Degrees of freedom for error
- df0 - Degrees of freedom for the regression
- SStotal - Total sum of squares of the response
- SSresid - Sum of squares of the residuals
- fstat \(-F\)-statistic for testing the final model vs. no model (mean only)
- pval - \(p\) value of the \(F\)-statistic
- rmse - Root mean square error
- xr - Residuals for predictors not in the final model, after removing the part of them explained by predictors in the model
- yr - Residuals for the response using predictors in the final model
- B - Coefficients for terms in final model, with values for a term not in the model set to the value that would be obtained by adding that term to the model
- SE - Standard errors for coefficient estimates
- TSTAT - \(t\) statistics for coefficient estimates
- PVAL — \(p\)-values for coefficient estimates
- intercept - Estimated intercept
- wasnan - Indicates which rows in the data contained NaN values
- nextstep - The recommended next step-either the index of the next term to move in or out of the model, or 0 if no further steps are recommended
- history - Structure containing information on steps taken, with the following fields:
- B - Matrix of regression coefficients, where each column is one step, and each row is one coefficient.
- rmse - Root mean square errors for the model at each step.
- df0 - Degrees of freedom for the regression at each step.
- in - Logical array indicating which predictors are in the model at each step, where each row is one step, and each column is one predictor.
[...] = stepwisefit(X,y,param1,val1,param2,val2,...) specifies one or more of the name/value pairs described in the following table.
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline 'inmodel' & \begin{tabular}{l} 
A logical vector specifying terms to include in the \\
initial fit. The default is to specify no terms.
\end{tabular} \\
\hline 'penter' & \begin{tabular}{l} 
The maximum \(p\) value for a term to be added. The \\
default is 0.05.
\end{tabular} \\
\hline 'premove' & \begin{tabular}{l} 
The minimum \(p\) value for a term to be removed. The \\
default is the maximum of the value of 'penter' and \\
0.10.
\end{tabular} \\
\hline 'display' & \begin{tabular}{l} 
'on' displays information about each step in the \\
command window. This is the default. \\
'off' omits the display.
\end{tabular} \\
\hline 'maxiter' & \begin{tabular}{l} 
The maximum number of steps in the regression. The \\
default is Inf.
\end{tabular} \\
\hline
\end{tabular}

\section*{stepwisefit}
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline 'keep' & \begin{tabular}{l} 
A logical vector specifying terms to keep in their initial \\
state. The default is to specify no terms.
\end{tabular} \\
\hline 'scale' & \begin{tabular}{l} 
'on' centers and scales each column of X (computes \\
\(z\)-scores) before fitting. \\
'off' does not scale the terms. This is the default.
\end{tabular} \\
\hline
\end{tabular}

\section*{Algorithms}

Stepwise regression is a systematic method for adding and removing terms from a multilinear model based on their statistical significance in a regression. The method begins with an initial model and then compares the explanatory power of incrementally larger and smaller models. At each step, the \(p\) value of an \(F\)-statistic is computed to test models with and without a potential term. If a term is not currently in the model, the null hypothesis is that the term would have a zero coefficient if added to the model. If there is sufficient evidence to reject the null hypothesis, the term is added to the model. Conversely, if a term is currently in the model, the null hypothesis is that the term has a zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term is removed from the model. The method proceeds as follows:

1 Fit the initial model.
2 If any terms not in the model have \(p\)-values less than an entrance tolerance (that is, if it is unlikely that they would have zero coefficient if added to the model), add the one with the smallest \(p\) value and repeat this step; otherwise, go to step 3.

3 If any terms in the model have \(p\)-values greater than an exit tolerance (that is, if it is unlikely that the hypothesis of a zero coefficient can be rejected), remove the one with the largest \(p\) value and go to step 2 ; otherwise, end.

Depending on the terms included in the initial model and the order in which terms are moved in and out, the method may build different

\section*{Examples}
models from the same set of potential terms. The method terminates when no single step improves the model. There is no guarantee, however, that a different initial model or a different sequence of steps will not lead to a better fit. In this sense, stepwise models are locally optimal, but may not be globally optimal.

Load the data in hald.mat, which contains observations of the heat of reaction of various cement mixtures:
\begin{tabular}{llrl}
\begin{tabular}{l} 
load hald \\
whos
\end{tabular} & & & \\
\(\quad\) Name & Size & Bytes & Class Attributes \\
& & & \\
Description & \(22 \times 58\) & 2552 & char \\
hald & \(13 \times 5\) & 520 & double \\
heat & \(13 \times 1\) & 104 & double \\
ingredients & \(13 \times 4\) & 416 & double
\end{tabular}

The response (heat) depends on the quantities of the four predictors (the columns of ingredients).
Use stepwisefit to carry out the stepwise regression algorithm, beginning with no terms in the model and using entrance/exit tolerances of \(0.05 / 0.10\) on the \(p\)-values:
```

stepwisefit(ingredients,heat,...
'penter',0.05,'premove',0.10);
Initial columns included: none
Step 1, added column 4, p=0.000576232
Step 2, added column 1, p=1.10528e-006
Final columns included: 1 4
'Coeff' 'Std.Err.' 'Status' 'P'
[1.4400] [0.1384] 'In' [1.1053e-006]
[0.4161] [0.1856] 'Out' [0.0517]
[-0.4100] [0.1992] 'Out' [0.0697]
[-0.6140] [0.0486] 'In' [1.8149e-007]

```
stepwisefit automatically includes an intercept term in the model, so you do not add it explicitly to ingredients as you would for regress. For terms not in the model, coefficient estimates and their standard errors are those that result by adding the corresponding term to the final model.

The inmodel parameter is used to specify terms in an initial model:
```

initialModel = ...
[false true false false]; % Force in 2nd term
stepwisefit(ingredients,heat,...
'inmodel',initialModel,...
'penter',.05,'premove',0.10);
Initial columns included: 2
Step 1, added column 1, p=2.69221e-007
Final columns included: 1 2
'Coeff' 'Std.Err.' 'Status' 'P'

1.4683]	0.1213]	In'	[2.6922e-007]
[0.6623]	[0.0459]	'In'	[5.0290e-008]
[0.2500]	[0.1847]	'Out'	$0.2089]$
[-0.2365]	$0.1733]$	'Out'	$0.2054]$

```

The preceding two models, built from different initial models, use different subsets of the predictive terms. Terms 2 and 4, swapped in the two models, are highly correlated:
```

term2 = ingredients(:,2);
term4 = ingredients(:,4);
R = corrcoef(term2,term4)
R =
1.0000 -0.9730
-0.9730 1.0000

```

To compare the models, use the stats output of stepwisefit:
```

[betahat1,se1,pval1,inmodel1,stats1] = ...
stepwisefit(ingredients,heat,...
'penter',.05,'premove',0.10,...

```
```

 'display','off');
 [betahat2,se2,pval2,inmodel2,stats2] = ...
stepwisefit(ingredients,heat,...
'inmodel',initialModel,...
'penter',.05,'premove',0.10,...
'display','off');
RMSE1 = stats1.rmse
RMSE1 =
2.7343
RMSE2 = stats2.rmse
RMSE2 =
2.4063

```

The second model has a lower Root Mean Square Error (RMSE).
References [1] Draper, N. R., and H. Smith. Applied Regression Analysis. Hoboken, NJ: Wiley-Interscience, 1998. pp. 307-312.

See Also stepwise | addedvarplot | regress

Purpose Subscripted assignment for categorical array

\section*{Syntax \\ \(A=\operatorname{subsasgn}(A, S, B)\)}

Description
\(A=\operatorname{subsasgn}(A, S, B)\) is called for the \(\operatorname{syntax} A(i)=B . S\) is a structure array with the fields:
\begin{tabular}{ll} 
type & \begin{tabular}{l} 
String containing ' ( ) ' specifying \\
the subscript type. Only \\
parenthesis subscripting is \\
allowed.
\end{tabular} \\
subs & \begin{tabular}{l} 
Cell array or string containing \\
the actual subscripts.
\end{tabular}
\end{tabular}

\section*{See Also \\ categorical | subsref}
\begin{tabular}{ll} 
Purpose & Subscripted reference for classregtree object \\
Syntax & \\
Description & Subscript assignment is not allowed for a classregtree object. \\
See Also & classregtree
\end{tabular}

Purpose
Description

Subscripted assignment to dataset array
\(A=\operatorname{subsasgn}(A, S, B)\) is called for the \(\operatorname{syntax} A(i, j)=B, A\{i, j\}=B\), or \(A\). var \(=B\) when \(A\) is a dataset array. \(S\) is a structure array with the fields:
\begin{tabular}{ll} 
type & String containing ' ( ) ', ' \(\}\) ', or \\
subs & '. specifying the subscript type. \\
& Cell array or string containing \\
& the actual subscripts.
\end{tabular}
\(A(i, j)=B\) assigns the contents of the dataset array \(B\) to a subset of the observations and variables in the dataset array A. i and j are one of the following types:
- positive integers
- vectors of positive integers
- observation/variable names
- cell arrays containing one or more observation/variable names
- logical vectors

The assignment does not use observation names, variable names, or any other properties of \(B\) to modify properties of \(A\); however properties of \(A\) are extended with default values if the assignment expands the number of observations or variables in A. Elements of B are assigned into A by position, not by matching names.
\(A\{i, j\}=B\) assigns the value \(B\) into an element of the dataset array \(A\). \(i\) and \(J\) are positive integers, or logical vectors. Cell indexing cannot assign into multiple dataset elements, that is, the subscripts i and \(j\) must each refer to only a single observation or variable. B is cast to the type of the target variable if necessary. If the dataset element already exists, A\{i, j\} may also be followed by further subscripting as supported by the variable.

For dataset variables that are cell arrays, assignments such as \(\mathrm{A}\{1\), 'CellVar' \(\}=\mathrm{B}\) assign into the contents of the target dataset element in the same way that \{\}-indexing of an ordinary cell array does.

For dataset variables that are n-D arrays, i.e., each observation is a matrix or array, an assignment such as A\{1,'ArrayVar'\} = B assigns into the second and following dimensions of the target dataset element, i.e., the assignment adds a leading singleton dimension to \(B\) to account for the observation dimension of the dataset variable.
A.var \(=B\) or \(A .(\) varname \()=B\) assigns B to a dataset variable. var is a variable name literal, or varname is a character variable containing a variable name. If the dataset variable already exists, the assignment completely replaces that variable. To assign into an element of the variable, A. var or A. (varname) may be followed by further subscripting as supported by the variable. In particular, A.var(obsnames,...) = \(B\) and A.var\{obsnames, ...\} = B (when supported by var) provide assignment into a dataset variable using observation names.
A.properties.propertyname \(=P\) assigns to a dataset property. propertyname is one of the following:
- 'ObsNames'
- 'VarNames'
- 'Description'
- 'Units'
- 'DimNames'
- 'UserData'
- 'VarDescription'

To assign into an element of the property, A. properties.propertyname may also be followed by further subscripting as supported by the property.

You cannot assign multiple values into dataset variables or properties using assignments such as [A.CellVar\{1:2\}] = B,

\section*{dataset.subsasgn}
[A.StructVar(1:2).field] = B, or [A.Properties.ObsNames\{1:2\}] \(=\) B. Use multiple assignments of the form A.CellVar \(\{1\}=\) B instead.
Similarly, if a dataset variable is a cell array with multiple columns or is an n-D cell array, then the contents of that variable for a single observation consists of multiple cells, and you cannot assign to all of them using the syntax A\{1,'CellVar' \(\}=B\). Use multiple assignments of the form [A.CellVar\{1,1\}] = B instead.

\section*{See Also dataset | set | subsref}
\begin{tabular}{ll} 
Purpose & Subscripted reference for Gaussian mixture distribution object \\
Description & Subscript assignment is not allowed for gmdistribution objects. \\
See Also & gmdistribution
\end{tabular}

\section*{NaiveBayes.subsasgn}

\section*{Purpose Subscripted reference for NaiveBayes object}

Description Subscript assignment is not allowed for a NaiveBayes object.
\begin{tabular}{|c|c|}
\hline Purpose & Subscript index for categorical array \\
\hline Syntax & \(\mathrm{I}=\) subsindex(A) \\
\hline Description & I = subsindex (A) is called for the syntax \(\mathrm{X}(\mathrm{A})^{\prime}\) ' when A is a categorical array and \(X\) is one of the built-in types (most commonly 'double'). subsindex returns the internal categorical level codes of \(A\) converted to zero-based integer indices. subsindex is invoked separately on all the subscripts in an expression such as \(X(A, B)\). \\
\hline Examples & ```
load fisheriris
a = ordinal(species,[],unique(species));
colmeans = grpstats(meas,a,@mean);
residuals = meas - colmeans(a,:);
``` \\
\hline See Also & categorical | double \\
\hline
\end{tabular}

\section*{classregtree.subsref}

Purpose Subscripted reference for classregtree object

\section*{Syntax \\ \(B=\operatorname{subsref}(T, S)\)}

Description
\(B=\) subsref \((T, S)\) is called for the syntax \(T(X)\) when \(T\) is a classregtree object. \(S\) is a structure array with the fields:
type String containing '()', '\{\}', or '.' specifying the subscript type.
subs Cell array or string containing the actual subscripts.
[...]=T(...) invokes the eval method for the tree T.

\section*{See Also \\ classregtree | eval}

Purpose Subscripted reference for categorical array
Syntax \(\quad A=\operatorname{subsref}(A, S, B)\)
Description
\(A=\operatorname{subsref}(A, S, B)\) is called for the \(\operatorname{syntax} A(I)=B\). S is a structure array with the fields:
\begin{tabular}{ll}
type & \begin{tabular}{l}
String containing ' ()' specifying \\
the subscript type. Only \\
parenthesis subscripting is \\
allowed.
\end{tabular} \\
subs & \begin{tabular}{l}
Cell array or string containing \\
the actual subscripts.
\end{tabular}
\end{tabular}

\footnotetext{
See Also
categorical | subsasgn
}

\section*{dataset.subsref}

\section*{Purpose Subscripted reference for dataset array}

\section*{Syntax \\ \(B=\operatorname{subsref}(A, S)\)}

Description
\(B=\operatorname{subsref}(A, S)\) is called for the syntax \(A(i, j), A\{i, j\}\), or \(A . v a r\) when \(A\) is a dataset array. \(S\) is a structure array with the fields:
```

type String containing '()', '{}', or '.' specifying
the subscript type.
subs Cell array or string containing the actual subscripts.

```
\(B=A(i, j)\) returns a dataset array that contains a subset of the observations and variables in the dataset array A. i and \(j\) are one of the following types:
- positive integers
- vectors of positive integers
- observation/variable names
- cell arrays containing one or more observation/variable names
- logical vectors

B contains the same property values as A, subsetted for observations or variables where appropriate.
\(B=A\{i, j\}\) returns an element of a dataset variable. \(i\) and \(j\) are positive integers, or logical vectors. Cell indexing cannot return multiple dataset elements, that is, the subscripts \(i\) and \(j\) must each refer to only a single observation or variable. A\{i,j\} may also be followed by further subscripting as supported by the variable.

For dataset variables that are cell arrays, expressions such as A\{1, 'CellVar' \} return the contents of the referenced dataset element in the same way that \{\}-indexing on an ordinary cell array does. If the dataset variable is a single column of cells, the contents of a single cell
is returned. If the dataset variable has multiple columns or is n-D, multiple outputs containing the contents of multiple cells are returned.

For dataset variables that are n-D arrays, i.e., each observation is a matrix or an array, expressions such as A\{1, 'ArrayVar'\} return A. ArrayVar \((1,:, \ldots)\) with the leading singleton dimension squeezed out.

B = A.var or A. (varname) returns a dataset variable. var is a variable name literal, or varname is a character variable containing a variable name. A.var or A. (varname) may also be followed by further subscripting as supported by the variable. In particular, A.var(obsnames,...) and A.var\{obsnames,...\} (when supported by var) provide subscripting into a dataset variable using observation names.
\(P=A . P r o p e r t i e s . p r o p e r t y n a m e ~ r e t u r n s ~ a ~ d a t a s e t ~ p r o p e r t y . ~\) propertyname is one of the following:
- 'ObsNames'
- 'VarNames'
- 'Description'
- 'Units'
- 'DimNames'
- 'UserData'
- 'VarDescription'
A.properties.propertyname may also be followed by further subscripting as supported by the property.

\section*{Limitations}

Subscripting expressions such as A.CellVar\{1:2\}, A.StructVar(1:2).field, or A.Properties.ObsNames \(\{1: 2\}\) are valid, but result in subsref returning multiple outputs in the form of a comma-separated list. If you explicitly assign to output
arguments on the left-hand side of an assignment, for example, [cellval1,cellval2] = A.CellVar\{1:2\}, those variables will receive the corresponding values. However, if there are no output arguments, only the first output in the comma-separated list is returned.
Similarly, if a dataset variable is a cell array with multiple columns or is an \(n\)-D cell array, then subscripting expressions such as A\{1, 'CellVar'\} result in subsref returning the contents of multiple cells. You should explicitly assign to output arguments on the left-hand side of an assignment, for example, [cellval1, cellval2] = A\{1, 'CellVar'\}.

\section*{See Also}
dataset | set | subsasgn

Purpose
Subscripted reference for Gaussian mixture distribution object

\section*{Syntax}
\(B=\operatorname{subsref}(T, S)\)
Description
\(B=\operatorname{subsref}(T, S)\) is called for the syntax \(T(X)\) when \(T\) is a gmdistribution object. \(S\) is a structure array with the following fields:
\(\begin{array}{ll}\text { type } & \begin{array}{l}\text { String containing ' () ', ' }\} \text { ', or '.' specifying the } \\ \text { subscript type. }\end{array} \\ \text { subs } & \text { Cell array or string containing the actual subscripts. }\end{array}\)

See Also gmdistribution

\section*{NaiveBayes.subsref}

\section*{Purpose Subscripted reference for NaiveBayes object}

\section*{Syntax \\ b = subsref(nb,s)}

Description
\(\mathrm{b}=\operatorname{subsref}(\mathrm{nb}, \mathrm{s})\) is called for the syntax \(\mathrm{nb}(\mathrm{s})\) when nb is a NaiveBayes object. \(S\) is a structure array with the fields:
type
subs
string containing '()', '\}, or '.' specifying the subscript type.

Cell array or string containing the actual subscripts.

\section*{Purpose Subscripted reference for qrandset}

Syntax
\(x=p(i, j)\)
\(x=\operatorname{subsref}(p, s)\)

Description
\(x=p(i, j)\) returns a matrix that contains a subset of the points from the point set \(p\). The indices in i select points from the set and the indices in \(j\) select columns from those points. i and \(j\) are vector of positive integers or logical vectors. A colon used as a subscript, as in \(p(i,:)\), indicates the entire row (or column).
\(x=\operatorname{subsref}(p, s)\) is called for the syntax \(p(i), p\{i\}\), or \(p . i . s\) is a structure array with the fields:
type string containing '()', '\}', or '.' specifying the subscript type.
subs Cell array or string containing the actual subscripts.

\section*{Examples}
\begin{tabular}{l|l}
\hline Command & Returns \\
\hline\(p=\operatorname{sobolset}(5) ;\) & The fifth point \\
\hline\(x=p(1: 10,:)\) & All columns of the first 10 points \\
\hline\(x=p(e n d, 1)\) & The first column of the last point \\
\hline\(x=p([1,4,5],:)\) & Points 1,4, and 5 \\
\hline
\end{tabular}

See Also qrandset

Purpose Summary statistics for categorical array
Syntax summary (\(A\))
C = summary (A)
[C,labels] = summary(A)

\section*{Description}
summary (A) displays the number of elements in the categorical array A equal to each of the possible levels in A. If A contains any undefined elements, the output also includes the number of undefined elements.
\(C=\) summary (A) returns counts of the number of elements in the categorical array A equal to each of the possible levels in A. If A is a matrix or \(N\)-dimensional array, C is a matrix or array with rows corresponding to the levels of A. If A contains any undefined elements, C contains one more row than the number of levels of \(A\), with the number of undefined elements in \(c\) (end) or \(c\) (end,:).
[C,labels] = summary (A) also returns the list of categorical level labels corresponding to the counts in C .

Examples Count the number of patients in each age group in the data in hospital.mat:
load hospital edges = 0:10:100;
labels = strcat(num2str(\(0: 10: 90)\) ', '\%d'), \{'s'\});
AgeGroup \(=\) ordinal(hospital.Age,labels, [],edges);
[c,labels] = summary(AgeGroup);
Table = dataset(\{labels,'AgeGroup'\},\{c,'Count'\});
Table(3:6,:)
ans =
 AgeGroup Count
 '20s' 15
 '30s' 41
 '40s' 42
 '50s' 2

See Also islevel | ismember | levelcounts

\section*{Purpose}

Print summary of dataset array
\begin{tabular}{ll}
Syntax & summary \((A)\) \\
\(s=\operatorname{summary}(A)\)
\end{tabular}
summary (A) prints a summary of a dataset array and the variables that it contains.
s = summary (A) returns a scalar structure \(s\) that contains a summary of the dataset A and the variables that A contains. For more information on the fields in s, see Outputs.

Summary information depends on the type of the variables in the data set:
- For numerical variables, summary computes a five-number summary of the data, giving the minimum, the first quartile, the median, the third quartile, and the maximum.
- For logical variables, summary counts the number of trues and falses in the data.
- For categorical variables, summary counts the number of data at each level.

\section*{Output \\ Arguments}

The following list describes the fields in the structure s:
- Description - A character array containing the dataset description.
- Variables - A structure array with one element for each dataset variable in A. Each element has the following fields:
- Name - A character string containing the name of the variable.
- Description - A character string containing the variable's description.
- Units - A character string containing the variable's units.
- Size - A numeric vector containing the size of the variable.
- Class - A character string containing the class of the variable.
- Data - A scalar structure containing the following fields.

For numeric variables:
- Probabilities - A numeric vector containing the probabilities [0.0 . 25.50 .75 1.0] and NaN (if any are present in the corresponding dataset variable).
- Quantiles - A numeric vector containing the values that correspond to 'Probabilities' for the corresponding dataset variable, and a count of NaNs (if any are present).
For logical variables:
- Values - The logical vector [true false].
- Counts - A numeric vector of counts for each logical value. For categorical variables:
- Levels - A cell array containing the labels for each level of the corresponding dataset variable.
- Counts - A numeric vector of counts for each level.
'Data' is empty if variable is not numeric, categorical, or logical. If a dataset variable has more than one column, then the corresponding 'Quantiles' or 'Counts' field is a matrix or an array.

\section*{Examples Summarize Fisher's iris data:}
```

load fisheriris
species = nominal(species);
data = dataset(species,meas);
summary(data)
species: [150x1 nominal]
setosa versicolor virginica
50 50 50

```
\begin{tabular}{lrrrr}
meas: \([150 \times 4\) double] & & & \\
min & 4.3000 & 2 & 1 & 0.1000 \\
1st Q & 5.1000 & 2.8000 & 1.6000 & 0.3000 \\
median & 5.8000 & 3 & 4.3500 & 1.3000 \\
3rd Q & 6.4000 & 3.3000 & 5.1000 & 1.8000 \\
max & 7.9000 & 4.4000 & 6.9000 & 2.5000
\end{tabular}

Summarize the data in hospital.mat:
```

load hospital
summary(hospital)
LastName: [100x1 cell string]
Sex: [100x1 nominal]
Female Male
53 47

```
Dataset array created from the data file hospital.dat.
The first column of the file ("id") is used for observation
names. Other columns ("sex" and "smoke") have been
converted from their original coded values into categorical
and logical variables. Two sets of columns ("sys" and
"dia", "trial1" through "trial4") have been combined into
single variables with multivariate observations. Column
headers have been replaced with more descriptive variable
names. Units have been added where appropriate.
Age: [100x1 double, Units = Yrs]
 min 1st \(Q\) median \(3 r d Q\) max
 \(\begin{array}{lllll}25 & 32 & 39 & 44 & 50\end{array}\)
Weight: [100x1 double, Units = Lbs]
min 1st Q median 3rd Q max
Smoker: [100x1 logical]
true false

 3466
BloodPressure: [100x2 double, Units = mm Hg]
Systolic/Diastolic
min 10968
 1st Q \(117.5000 \quad 77.5000\)
 median \(122 \quad 81.5000\)
 3rd Q 127.5000 89
 \(\max 13899\)
Trials: [100x1 cell, Units = Counts]
From zero to four measurement trials performed
```

See Also
get | set | grpstats

```

\section*{ProbDist.Support property}

Purpose Read-only structure containing information about support of ProbDist object

\section*{Description}

Support is a read-only property of the ProbDist class. Support is a structure containing information about the support of a ProbDist object. It includes the following fields:
- range
- closedbound
- iscontinuous

\section*{Values}

The values for the three fields in the structure are:
- range - A two-element vector [L, U], such that all of the probability is contained from \(L\) to \(U\).
- closedbound - A two-element logical vector indicating whether the corresponding range endpoint is included. Possible values for each endpoint are 1 (true) or 0 (false).
- iscontinuous - A logical value indicates if the distribution takes values on the entire interval from \(L\) to \(U\) (true), or if it takes only integer values within this range (false). Possible values are 1 (true) or 0 (false).

Use this information to view and compare information about the support of distributions.

\section*{Purpose Convert structure array to dataset array}

Syntax

Description
ds = struct2dataset(S) converts a structure array to a dataset array.
ds = struct2dataset(S,Name, Value) performs the conversion using additional options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}
ds = struct2dataset(S)
ds = struct2dataset(S,Name,Value)

\section*{S - Input structure array}
structure array

Input structure array to convert to a dataset array, specified as a scalar structure array with \(N\) fields, each with \(M\) rows, or a nonscalar \(M\)-by-1 structure array with \(N\) fields.

Data Types
struct

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'ReadObsNames','myField' specifies that the structure field, myField, contains observation names.

\section*{'ReadObsNames' - Name of structure field containing observation names for dataset array \\ false (default) | string}

Name of structure field containing observation names for the output dataset array, specified as the comma-separated pair consisting of 'ReadObsNames' and a string containing a field name from

\section*{struct2dataset}
the input structure array, S. When you specify a field name, struct2dataset uses that field to create observation names, and sets ds.Properties.DimNames equal to \{ReadObsNames, 'Variables'\}.
For example, to specify that observation names are in the structure field, Names, use

\section*{Example: 'ReadObsNames', 'Names'}

By default, or if ReadObsNames is equal to false, struct2dataset does not create observation names unless you specify names using the name-value pair argument ObsNames.

\section*{'ObsNames' - Observation names for dataset array cell array of strings}

Observation names for the output dataset array, specified as the comma-separated pair consisting of 'ObsNames' and a cell array of strings containing observation names. The names do not need to be valid MATLAB identifiers, but they must be unique.

\section*{'AsScalar' - Indicator for how to treat scalar structure false | true}

Indicator for how to treat a scalar input structure array, specified as the comma-separated pair consisting of 'AsScalar' and either true or false. The default value is true if \(S\) is a scalar structure array, and false otherwise.

By default, struct2dataset converts a scalar structure array with \(N\) fields, each with \(M\) rows, into an \(M\)-by- \(N\) dataset array.

If instead you set AsScalar equal to false for a scalar input structure array, then struct2dataset converts S to a dataset array with \(N\) observations.

\section*{Output \\ Arguments}

\section*{ds - Output dataset array}
dataset array
Output dataset array, returned by default with \(M\) observations and \(N\) variables.
- If S is a scalar structure array with \(N\) fields, each with \(M\) rows, then ds is an \(M\)-by- \(N\) dataset array.
- If S is a nonscalar \(M\)-by- 1 structure array with \(N\) fields, then ds is an \(M\)-by- \(N\) dataset array.
- If S is a scalar structure array with \(N\) fields, each with \(M\) rows, and AsScalar is set equal to false, then ds is a dataset array with \(N\) observations.

\section*{Examples Convert Scalar Structure Array to Dataset Array}

Convert a scalar structure array to a dataset array using the default options.

Create a structure array to convert.
```

S.Name = {'CLARK';'BROWN';'MARTIN'};
S.Gender = {'M';'F';'M'};
S.SystolicBP = [124;122;130];
S.DiastolicBP = [93;80;92];
S
S =

```
\begin{tabular}{rl}
Name: & \(\{3 \times 1\) cell\} \\
Gender: & \(\{3 \times 1\) cell\} \\
SystolicBP: & {\([3 \times 1\) double \(]\)} \\
DiastolicBP: \([3 \times 1\) double \(]\)
\end{tabular}

The scalar structure array has four fields, each with three rows.
Convert the structure array to a dataset array.
```

ds = struct2dataset(S)
ds =

```

Name
'CLARK'

Gender
'M'

SystolicBP
DiastolicBP 12493
\begin{tabular}{llll}
'BROWN ' & ' \({ }^{\prime}\) ' & 122 & 80 \\
'MARTIN ' & 'M ' & 130 & 92
\end{tabular}

The structure field names in \(S\) become the variable names in the output dataset array. The size of ds is 3-by-4.

\section*{Convert Nonscalar Structure Array to Dataset Array}

Convert a nonscalar structure array to a dataset array, using one of the structure fields for observation names.

Create a nonscalar structure array to convert.
```

S(1,1).Name = 'CLARK';
S(1,1).Gender = 'M';
S(1,1).SystolicBP = 124;
S(1,1).DiastolicBP = 93;
S(2,1).Name = 'BROWN';
S(2,1).Gender = 'F';
S(2,1).SystolicBP = 122;
S(2,1).DiastolicBP = 80;
S(3,1).Name = 'MARTIN';
S(3,1).Gender = 'M';
S(3,1).SystolicBP = 130;
S(3,1).DiastolicBP = 92;
s
S =
3x1 struct array with fields:
Name
Gender
SystolicBP
DiastolicBP

```

This is a 3 -by- 1 structure array with 4 fields.

Convert the structure array to a dataset array, using the Name field for observation names.
```

ds = struct2dataset(S,'ReadObsNames','Name')

```
ds =
\begin{tabular}{llll}
& Gender & SystolicBP & DiastolicBP \\
CLARK & 'M' & 124 & 93 \\
BROWN & 'F' & 122 & 80 \\
MARTIN & 'M' & 130 & 92
\end{tabular}

The size of ds is 3-by-3 because the structure field Name is used for observation names, and not as a dataset array variable.
ds.Properties.DimNames
ans =
'Name' 'Variables'
ds.Properties.ObsNames
ans \(=\)
'CLARK'
'BROWN'
'MARTIN'
See Also dataset | dataset2struct | cell2dataset
\begin{tabular}{ll}
Related & - "Create a Dataset Array from Workspace Variables" on page 2-65 \\
Examples & - "Create a Dataset Array from a File" on page 2-71 \\
Concepts & - "Dataset Arrays" on page 2-135
\end{tabular}

Purpose Interactive contour plot
Syntax surfht (\(Z\))
surfht(\(x, y, z\))
surfht \((Z)\) is an interactive contour plot of the matrix \(Z\) treating the values in Z as height above the plane. The \(x\)-values are the column indices of \(Z\) while the \(y\)-values are the row indices of \(Z\).
surfht (\(\mathrm{x}, \mathrm{y}, \mathrm{Z}\)) where x and y are vectors specify the \(x\) and \(y\)-axes on the contour plot. The length of \(x\) must match the number of columns in \(Z\), and the length of \(y\) must match the number of rows in \(Z\).

There are vertical and horizontal reference lines on the plot whose intersection defines the current \(x\) value and \(y\) value. You can drag these dotted white reference lines and watch the interpolated \(z\) value (at the top of the plot) update simultaneously. Alternatively, you can get a specific interpolated \(z\) value by typing the \(x\) value and \(y\) value into editable text fields on the \(x\)-axis and \(y\)-axis respectively.

\section*{classregtree.surrcutcategories}
\begin{tabular}{ll}
Purpose & \begin{tabular}{l}
Categories used for surrogate splits in decision tree
\end{tabular} \\
Syntax & \begin{tabular}{l}
\(C=\) surrcutcategories \((T)\) \\
\(C=\) surrcutcategories \((T, J)\)
\end{tabular} \\
Description & \begin{tabular}{l}
\(C=\) surrcutcategories \((T)\) returns an \(n\)-element cell array \(C\) of the \\
categories used for surrogate splits in the decision tree T, where \(n\) is \\
the number of nodes in the tree. For each node \(K, C\{K\}\) is a cell array. \\
The length of \(C\{K\}\) is equal to the number of surrogate predictors \\
found at this node. Every element of \(C\{K\}\) is either an empty string \\
for a continuous surrogate predictor or a two-element cell array with \\
categories for a categorical surrogate predictor. The first element of this \\
two-element cell array lists categories assigned to the left child by this \\
surrogate split and the second element of this two-element cell array \\
lists categories assigned to the right child by this surrogate split. The \\
order of the surrogate split variables at each node is matched to the \\
order of variables returned by surrcutvar. The optimal-split variable \\
at this node is not included. For non-branch (leaf) nodes, \(C\) contains \\
an empty cell.
\end{tabular} \\
C = surrcutcategories (\(T, J\)) takes an array \(J\) of node numbers and
\end{tabular}

\section*{classregtree.surrcutflip}

\section*{Purpose Numeric cutpoint assignments used for surrogate splits in decision tree}
```

Syntax
V = surrcutflip(T)
V = surrcutflip(T,J)

```
\(\mathrm{V}=\operatorname{surrcutflip}(\mathrm{T})\) returns an \(n\)-element cell array V of the numeric cut assignments used for surrogate splits in the decision tree \(T\), where \(n\) is the number of nodes in the tree. For each node K, V\{K\} is a numeric vector. The length of \(\mathrm{V}\{\mathrm{K}\}\) is equal to the number of surrogate predictors found at this node. Every element of \(V\{K\}\) is either zero for a categorical surrogate predictor or a numeric cut assignment for a continuous surrogate predictor. The numeric cut assignment can be either -1 or +1 . For every surrogate split with a numeric cut \(C\) based on a continuous predictor variable \(Z\), the left child is chosen if \(Z<C\) and the cut assignment for this surrogate split is +1 , or if \(Z>=C\) and the cut assignment for this surrogate split is -1 . Similarly, the right child is chosen if \(Z>=C\) and the cut assignment for this surrogate split is +1 , or if \(Z<C\) and the cut assignment for this surrogate split is -1 . The order of the surrogate split variables at each node is matched to the order of variables returned by surrcutvar. The optimal-split variable at this node is not included. For non-branch (leaf) nodes, V contains an empty array.
\(V=\operatorname{surrcutflip}(T, J)\) takes an array \(J\) of node numbers and returns the cutpoint assignments for the specified nodes.

See Also classregtree | surrcutvar | surrcutcategories | surrcuttype | surrcutpoint | cutpoint

\section*{Purpose}

Cutpoints used for surrogate splits in decision tree

Syntax

Description

V = surrcutpoint (T)
V = surrcutpoint(\(\mathrm{T}, \mathrm{J}\))
\(\mathrm{V}=\operatorname{surrcutpoint}(\mathrm{T})\) returns an \(n\)-element cell array V of the numeric values used for surrogate splits in the decision tree \(T\), where \(n\) is the number of nodes in the tree. For each node \(K, V\{K\}\) is a numeric vector. The length of \(\vee\{K\}\) is equal to the number of surrogate predictors found at this node. Every element of V\{K\} is either either NaN for a categorical surrogate predictor or a numeric cut for a continuous surrogate predictor. For every surrogate split with a numeric cut \(C\) based on a continuous predictor variable \(Z\), the left child is chosen if \(Z<C\) and surrcutflip for this surrogate split is -1 . Similarly, the right child is chosen if \(Z>=C\) and surrcutflip for this surrogate split is +1 , or if \(Z<C\) and surrcutflip for this surrogate split is -1 . The order of the surrogate split variables at each node is matched to the order of variables returned by surrcutvar. The optimal-split variable at this node is not included. For non-branch (leaf) nodes, V contains an empty cell.
\(\mathrm{V}=\) surrcutpoint \((\mathrm{T}, \mathrm{J})\) takes an array J of node numbers and returns the cutpoint assignments for the specified nodes.

\section*{See Also}
classregtree | surrcutvar | surrcutcategories | surrcuttype | surrcutflip | cutpoint

\section*{classregtree.surrcutłype}

Purpose Types of surrogate splits used at branches in decision tree
Syntax
C = surrcuttype(T)
C = surrcuttype(T,J)

Description

See Also
\(C=\) surrcuttype \((T)\) returns an \(n\)-element cell array \(C\) indicating types of surrogate splits at each node in the tree \(T\), where \(n\) is the number of nodes in the tree. For each node K, C \(\{K\}\) is a cell array with the types of the surrogate split variables at this node. The variables are sorted by the predictive measure of association with the optimal predictor in the descending order, and only variables with the positive predictive measure are included. The order of the surrogate split variables at each node is matched to the order of variables returned by surrcutvar. The optimal-split variable at this node is not included. For non-branch (leaf) nodes, C contains an empty cell. A surrogate split type can be either 'continuous' if the cut is defined in the form \(Z<V\) for a variable \(Z\) and cutpoint \(V\) or 'categorical' if the cut is defined by whether \(Z\) takes a value in a set of categories.
\(C=\) surrcuttype \((T, J)\) takes an array \(J\) of node numbers and returns the cut types for the specified nodes.
classregtree | numnodes | cuttype | surrcutvar
\begin{tabular}{ll}
Purpose & \begin{tabular}{l}
Variables used for surrogate splits in decision tree
\end{tabular} \\
Syntax & \begin{tabular}{l}
\(V=\) surrcutvar \((T)\) \\
\(V=\) surrcutvar \((T, J)\) \\
{\([V, N U M]=\operatorname{surrcutvar}(\ldots)\)}
\end{tabular} \\
Description & \begin{tabular}{l}
\(V=\) surrcutvar \((T)\) returns an \(n\)-element cell array \(V\) of the names of \\
the variables used for surrogate splits in each node of the tree \(T\), where \(n\) \\
is the number of nodes in the tree. Every element of \(V\) is a cell array with \\
the names of the surrogate split variables at this node. The variables \\
are sorted by the predictive measure of association with the optimal \\
predictor in the descending order, and only variables with the positive \\
predictive measure are included. The optimal-split variable at this node \\
is not included. For non-branch (leaf) nodes, \(V\) contains an empty cell.
\end{tabular} \\
& \begin{tabular}{l}
\(V=\) surrcutvar \((T, J)\) takes an array \(J\) of node numbers and returns \\
the cut types for the specified nodes.
\end{tabular} \\
[V,NUM]=surrcutvar (...) also returns a cell array NUM with indices \\
for each variable.
\end{tabular}

Purpose Predictive measure of association for surrogate splits in decision tree
Syntax \(\quad \begin{aligned} & A=\operatorname{sur} r \operatorname{varassoc}(T) \\ & A=\operatorname{sur} v a r a s s o c \\ &(T, J)\end{aligned}\)
Description
A \(=\) surrvarassoc (\(T\)) returns an \(n\)-element cell array \(A\) of the predictive measures of association for surrogate splits in the decision tree T, where \(n\) is the number of nodes in the tree. For each node K, \(A\{K\}\) is a numeric vector. The length of \(A\{K\}\) is equal to the number of surrogate predictors found at this node. Every element of \(A\{K\}\) gives the predictive measure of association between the optimal split and this surrogate split. The order of the surrogate split variables at each node is matched to the order of variables returned by surrcutvar. The optimal-split variable at this node is not included. For non-branch (leaf) nodes, V contains an empty cell.
\(A=\) surrvarassoc \((T, J)\) takes an array \(J\) of node numbers and returns the predictive measure of association for the specified nodes.

See Also
classregtree | surrcutcategories | surrcuttype | surrcutflip | surrcutpoint | surrcutvar

\section*{Purpose}

Classify using support vector machine (SVM)

\section*{Syntax}

Group = svmclassify(SVMStruct,Sample)
Group = svmclassify(SVMStruct,Sample,'Showplot',true)
Description

\section*{Input Arguments}

Group = svmclassify(SVMStruct, Sample) classifies each row of the data in Sample, a matrix of data, using the information in a support vector machine classifier structure SVMStruct, created using the svmtrain function. Like the training data used to create SVMStruct, Sample is a matrix where each row corresponds to an observation or replicate, and each column corresponds to a feature or variable. Therefore, Sample must have the same number of columns as the training data. This is because the number of columns defines the number of features. Group indicates the group to which each row of Sample has been assigned.
Group = svmclassify(SVMStruct,Sample,'Showplot',true) plots the Sample data in the figure created using the Showplot property with the svmtrain function. This plot appears only when the data is two-dimensional.

\section*{SVMStruct}

Support vector machine classifier structure created using the svmtrain function.

\section*{Sample}

A matrix where each row corresponds to an observation or replicate, and each column corresponds to a feature or variable. Therefore, Sample must have the same number of columns as the training data. This is because the number of columns defines the dimensionality of the data space.

\section*{Showplot}

Describes whether to display a plot of the classification. Displays only for 2-D problems. Follow with a Boolean argument: true to display the plot, false to give no display.

\section*{Output \\ Arguments}

\section*{Examples}

\section*{Group}

Column vector with the same number of rows as Sample. Each entry (row) in Group represents the class of the corresponding row of Sample.

Find a line separating the Fisher iris data on versicolor and virginica species, according to the petal length and petal width measurements. These two species are in rows 51 and higher of the data set, and the petal length and width are the third and fourth columns.
```

load fisheriris
xdata = meas(51:end,3:4);
group = species(51:end);
svmStruct = svmtrain(xdata,group,'showplot',true);

```


Classify a new flower with petal length 5 and petal width 2 , and circle the new point:
```

species = svmclassify(svmStruct,[5 2],'showplot',true)
hold on;plot(5,2,'ro','MarkerSize',12);hold off
species =
'virginica'

```


\section*{Algorithms}

The svmclassify function uses results from svmtrain to classify vectors \(x\) according to the following equation:
\[
c=\sum_{i} \alpha_{i} k\left(s_{i}, x\right)+b,
\]
where \(s_{i}\) are the support vectors, \(a_{i}\) are the weights, \(b\) is the bias, and \(k\) is a kernel function. In the case of a linear kernel, \(k\) is the dot product.

If \(c \geq 0\), then \(x\) is classified as a member of the first group, otherwise it is classified as a member of the second group.

\section*{References}
[1] Kecman, V., Learning and Soft Computing, MIT Press, Cambridge, MA. 2001.
[2] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., and Vandewalle, J., Least Squares Support Vector Machines, World Scientific, Singapore, 2002.
[3] Scholkopf, B., and Smola, A.J., Learning with Kernels, MIT Press, Cambridge, MA. 2002.
[4] Cristianini, N., and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, First Edition (Cambridge: Cambridge University Press). http://www.support-vector.net/

\section*{See Also}
svmtrain
How To
- "Support Vector Machines (SVM)" on page 15-161

Purpose Train support vector machine classifier
```

Syntax SvMStruct = svmtrain(Training,Group)
SVMStruct = svmtrain(Training,Group,Name,Value)

```

Description SVMStruct = svmtrain(Training, Group) returns a structure, SVMStruct, containing information about the trained support vector machine (SVM) classifier.

SVMStruct = svmtrain(Training, Group, Name, Value) returns a structure with additional options specified by one or more Name, Value pair arguments.

Tips

Input
Arguments
- To classify new data, use the result of training, sVMStruct, with the svmclassify function.

\section*{Training}

Matrix of training data, where each row corresponds to an observation or replicate, and each column corresponds to a feature or variable. svmtrain treats NaNs or empty strings in Training as missing values and ignores the corresponding rows of Group.

\section*{Group}

Grouping variable, which can be a categorical, numeric, or logical vector, a cell vector of strings, or a character matrix with each row representing a class label. Each element of Group specifies the group of the corresponding row of Training. Group should divide Training into two groups. Group has the same number of elements as there are rows in Training. svmtrain treats each NaN, empty string, or 'undefined' in Group as a missing value, and ignores the corresponding row of Training.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'autoscale'}

Boolean specifying whether svmtrain automatically centers the data points at their mean, and scales them to have unit standard deviation, before training.

Default: true

\section*{'boxconstraint'}

Value of the box constraint C for the soft margin. C can be a scalar, or a vector of the same length as the training data.

If C is a scalar, it is automatically rescaled by \(\mathrm{N} /(2 * \mathrm{~N} 1)\) for the data points of group one and by \(\mathrm{N} /\left(2^{*} \mathrm{~N} 2\right)\) for the data points of group two, where N 1 is the number of elements in group one, N 2 is the number of elements in group two, and \(N=N 1+N 2\). This rescaling is done to take into account unbalanced groups, that is cases where N 1 and N 2 have very different values.

If \(C\) is an array, then each array element is taken as a box constraint for the data point with the same index.

\section*{Default: 1}

\section*{'kernelcachelimit'}

Value that specifies the size of the kernel matrix cache for the SMO training method. The algorithm keeps a matrix with up to kernelcachelimit \(\times\) kernelcachelimit double-precision, floating-point numbers in memory.

Default: 5000

\section*{'kernel_function'}

Kernel function svmtrain uses to map the training data into kernel space. The default kernel function is the dot product. The kernel function can be one of the following strings or a function handle:
- 'linear' - Linear kernel, meaning dot product.
- 'quadratic' - Quadratic kernel.
- 'polynomial' - Polynomial kernel (default order 3). Specify another order with the polyorder name-value pair.
- 'rbf' - Gaussian Radial Basis Function kernel with a default scaling factor, sigma, of 1 . Specify another value for sigma with the rbf_sigma name-value pair.
- 'mlp' - Multilayer Perceptron kernel with default scale [11 1 1]. Specify another scale with the mlp_params name-value pair.
- @kfun - Function handle to a kernel function. A kernel function must be of the form
function \(K=k f u n(U, V)\)
The returned value, \(K\), is a matrix of size \(M\)-by- \(N\), where \(U\) and \(V\) have \(M\) and \(N\) rows respectively.
If kfun has extra parameters, include the extra parameters via an anonymous function. For example, suppose that your kernel function is:
```

function k = kfun(u,v,p1,p2)
k = tanh(p1*(u*v')+p2);

```

Set values for p 1 and p 2 , and then use an anonymous function:
@(u,v) kfun(u,v,p1,p2)
Default: 'linear'

\section*{'kktviolationlevel'}

Value that specifies the fraction of variables allowed to violate the Karush-Kuhn-Tucker (KKT) conditions for the SMO training method. Set any value in \([0,1)\). For example, if you set kktviolationlevel to 0.05 , then \(5 \%\) of the variables are allowed to violate the KKT conditions.

Tip Set this option to a positive value to help the algorithm converge if it is fluctuating near a good solution.

For more information on KKT conditions, see Cristianini and Shawe-Taylor [4].

Default: 0

\section*{'method'}

Method used to find the separating hyperplane. Options are:
- 'QP' - Quadratic programming (requires an Optimization Toolbox license). The classifier is a 2 -norm soft-margin support vector machine. Give quadratic programming options with the options name-value pair, and create options with optimset.
- 'SMO' - Sequential Minimal Optimization. Give SMO options with the options name-value pair, and create options with statset.
- 'LS' — Least squares.

Default: SMO

\section*{'mlp_params'}

Parameters of the Multilayer Perceptron (mlp) kernel. The mlp kernel requires two parameters, [P1 P2]. The kernel \(K=\tanh \left(P 1 * U^{*} V^{\prime}+P 2\right)\), where \(P 1>0\) and \(P 2<0\).

Default: [\(\left.1 \begin{array}{ll}1 & 1\end{array}\right]\)

\section*{'options'}

Options structure for training.
- When you set 'method' to 'SMO' (default), create the options structure using statset. Options are:
Display
\begin{tabular}{l}
String that specifies the level of information \\
about the optimization iterations that is \\
displayed as the algorithm runs. Choices are: \\
- off (default) - Reports nothing. \\
- iter - Reports every 500 iterations. \\
- final - Reports only when the algorithm \\
finishes.
\end{tabular}
Maxiter
\begin{tabular}{l}
Integer that specifies the maximum number \\
of iterations of the main loop. If this limit \\
is exceeded before the algorithm converges, \\
then the algorithm stops and returns an error. \\
Default is 15000.
\end{tabular}

The other name-value pairs that relate specifically to the 'SMO' method are kernelcachelimit, kktviolationlevel, and tolkkt.
- When you set method to 'QP', create the options structure using optimset. For details of applicable option choices, see quadprog options. SVM uses a convex quadratic program, so you can choose the 'interior-point-convex' quadprog algorithm. In limited testing, the 'interior-point-convex' algorithm was the best quadprog option for svmtrain, in both speed and memory utilization.

\section*{'polyorder'}

Order of the polynomial kernel.
Default: 3

\section*{'rbf_sigma'}

Scaling factor (sigma) in the radial basis function kernel.
Default: 1

\section*{'showplot'}

Boolean indicating whether to plot the grouped data and separating line. Creates a plot only when the data has two columns (features).

Default: false

\section*{'tolkkt'}

Value that specifies the tolerance with which the Karush-Kuhn-Tucker (KKT) conditions are checked for the SMO training method. For a definition of KKT conditions, see "Karush-Kuhn-Tucker (KKT) Conditions" on page 20-2828.

Default: 1e-3

\section*{Output \\ Arguments}

\section*{SVMStruct}

Structure containing information about the trained SVM classifier in the following fields:
- SupportVectors - Matrix of data points with each row corresponding to a support vector in the normalized data space. This matrix is a subset of the Training input data matrix, after normalization has been applied according to the 'AutoScale' argument.
- Alpha - Vector of weights for the support vectors. The sign of the weight is positive for support vectors belonging to the first group, and negative for the second group.
- Bias - Intercept of the hyperplane that separates the two groups in the normalized data space (according to the 'AutoScale' argument).
- KernelFunction - Handle to the function that maps the training data into kernel space.
- KernelFunctionArgs - Cell array of any additional arguments required by the kernel function.
- GroupNames - Categorical, numeric, or logical vector, a cell vector of strings, or a character matrix with each row representing a class label. Specifies the group identifiers for the support vectors. It has the same number of elements as there are rows in SupportVectors. Each element specifies the group to which the corresponding row in SupportVectors belongs.
- SupportVectorIndices - Vector of indices that specify the rows in Training, the training data, that were selected as support vectors after the data was normalized, according to the AutoScale argument.
- ScaleData - Field containing normalization factors. When 'AutoScale' is set to false, it is empty. When AutoScale is set to true, it is a structure containing two fields:
- shift - Row vector of values. Each value is the negative of the mean across an observation in Training, the training data.
- scaleFactor - Row vector of values. Each value is 1 divided by the standard deviation of an observation in Training, the training data.

Both svmtrain and svmclassify apply the scaling in ScaleData.
- FigureHandles - Vector of figure handles created by svmtrain when using the 'Showplot' argument.

\section*{Definitions}

\section*{Karush-Kuhn-Tucker (KKT) Conditions}

The Karush-Kuhn-Tucker (KKT) conditions are analogous to the condition that the gradient must be zero at a minimum, modified to take constraints into account. The difference is that the KKT conditions hold for constrained problems. The KKT conditions use the auxiliary Lagrangian function:
\[
L(x, \lambda)=f(x)+\sum \lambda_{g, i} g_{i}(x)+\sum \lambda_{h, i} h_{i}(x) .
\]

Here \(f(x)\) is the objective function, \(g(x)\) is a vector of constraint functions \(g(x) \leq 0\), and \(h(x)\) is a vector of constraint functions \(h(x)=0\). The vector \(\lambda\), which is the concatenation of \(\lambda_{g}\) and \(\lambda_{h}\), is the Lagrange multiplier vector. Its length is the total number of constraints.

The KKT conditions are:
\[
\begin{aligned}
\nabla_{x} L(x, \lambda) & =0 \\
\lambda_{g, i} g_{i}(x) & =0 \forall i \\
g(x) & \leq 0 \\
h(x) & =0 \\
\lambda_{g, i} & \geq 0 .
\end{aligned}
\]

For more information, see Karush-Kuhn-Tucker conditions.

\section*{Examples}

Find a line separating the Fisher iris data on versicolor and virginica species, according to the petal length and petal width measurements. These two species are in rows 51 and higher of the data set, and the petal length and width are the third and fourth columns.
```

load fisheriris
xdata = meas(51:end,3:4);
group = species(51:end);
svmStruct = svmtrain(xdata,group,'showplot',true);

```


Algorithms
The svmtrain function uses an optimization method to identify support vectors \(s_{i}\), weights \(\alpha_{i}\), and bias \(b\) that are used to classify vectors \(x\) according to the following equation:
\[
c=\sum_{i} \alpha_{i} k\left(s_{i}, x\right)+b,
\]
where \(k\) is a kernel function. In the case of a linear kernel, \(k\) is the dot product. If \(c \geq 0\), then \(x\) is classified as a member of the first group, otherwise it is classified as a member of the second group.

\section*{Memory Usage and Out of Memory Error}

When you set 'Method' to 'QP', the svmtrain function operates on a data set containing \(N\) elements, and it creates an (\(\mathrm{N}+1\))-by- \((\mathrm{N}+1)\) matrix to find the separating hyperplane. This matrix needs at least \(8^{*}(n+1)^{\wedge} 2\) bytes of contiguous memory. If this size of contiguous memory is not available, the software displays an "out of memory" error message.

When you set 'Method' to 'SMO' (default), memory consumption is controlled by the kernelcachelimit option. The SMO algorithm stores only a submatrix of the kernel matrix, limited by the size specified by the kernelcachelimit option. However, if the number of data points exceeds the size specified by the kernelcachelimit option, the SMO algorithm slows down because it has to recalculate the kernel matrix elements.

When using svmtrain on large data sets, and you run out of memory or the optimization step is very time consuming, try either of the following:
- Use a smaller number of samples and use cross-validation to test the performance of the classifier.
- Set 'Method' to 'SMO', and set the kernelcachelimit option as large as your system permits.

\section*{References}
[1] Kecman, V., Learning and Soft Computing, MIT Press, Cambridge, MA. 2001.
[2] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., and Vandewalle, J., Least Squares Support Vector Machines, World Scientific, Singapore, 2002.
[3] Scholkopf, B., and Smola, A.J., Learning with Kernels, MIT Press, Cambridge, MA. 2002.
[4] Cristianini, N., and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, First Edition (Cambridge: Cambridge University Press). http://www.support-vector.net/

See Also svmclassify | classify
How To . "Support Vector Machines (SVM)" on page 15-161
- "Grouping Variables" on page 2-51
Purpose Frequency table
Syntax TABLE = tabulate(x) tabulate(x)
Description TABLE \(=\) tabulate \((x)\) creates a frequency table of data in vector \(x\).Information in TABLE is arranged as follows:
- 1st column - The unique values of \(x\)- 2nd column - The number of instances of each value
- 3rd column - The percentage of each value
If \(x\) is a numeric array, TABLE is a numeric matrix. If the elements of \(x\)are nonnegative integers, TABLE includes 0 counts for integers between1 and \(\max (\mathrm{x})\) that do not appear in x .
If \(x\) is a categorical variable, character array, or cell array of strings,TABLE is a cell array.tabulate (x) with no output arguments displays the table in thecommand window.
Examples
\begin{tabular}{|c|c|c|}
\hline Value & Count & Percent \\
\hline 1 & 1 & 16.67\% \\
\hline 2 & 1 & 16.67\% \\
\hline 3 & 1 & 16.67\% \\
\hline 4 & 3 & 50.00\% \\
\hline
\end{tabular}
See Also pareto
How To - "Grouping Variables" on page 2-51

Purpose Read tabular data from file
```

Syntax
[data,varnames,casenames] = tblread
[data,varnames,casenames] = tblread(filename)
[data,varnames,casenames] = tblread(filename,delimiter)

```

\section*{Description}
[data, varnames, casenames] = tblread displays the File Open dialog box for interactive selection of a tabular data file. The file format has variable names in the first row, case names in the first column and data starting in the \((2,2)\) position. Outputs are:
- data - Numeric matrix with a value for each variable-case pair
- varnames - String matrix containing the variable names in the first row of the file
- casenames - String matrix containing the names of each case in the first column of the file
[data, varnames, casenames] = tblread(filename) allows command line specification of the name of a file in the current folder, or the complete path name of any file, using the string filename.
[data, varnames,casenames] = tblread(filename,delimiter) reads from the file using delimiter as the delimiting character. Accepted values for delimiter are:
```

- ' ' or 'space'
- '\t' or 'tab'
- ',' or 'comma'
- ';' or 'semi'
- '|' or 'bar'

```

The default value of delimiter is 'space'.
```

Examples
[data,varnames,casenames] = tblread('sat.dat')
data =
470 530

```

520480
varnames = Male
Female
casenames =
Verbal
Quantitative
See Also tblwrite | tdfread | caseread

Purpose Write tabular data to file
```

Syntax tblwrite(data,varnames,casenames)
tblwrite(data,varnames,casenames,filename)
tblwrite(data,varnames,casenames,filename,delimiter)

```

\section*{Description}
tblwrite(data, varnames, casenames) displays the File Open dialog box for interactive specification of the tabular data output file. The file format has variable names in the first row, case names in the first column and data starting in the \((2,2)\) position.
varnames is a string matrix containing the variable names. casenames is a string matrix containing the names of each case in the first column. data is a numeric matrix with a value for each variable-case pair.
tblwrite(data, varnames, casenames, filename) specifies a file in the current folder, or the complete path name of any file in the string filename.
tblwrite(data, varnames, casenames,filename,delimiter) writes to the file using delimiter as the delimiting character. The following table lists the accepted character values for delimiter and their equivalent string values.
\begin{tabular}{ll}
\hline Character & String \\
' ' & 'space' \\
'\t' & 'tab' \\
',' & 'comma' \\
';' & 'semi' \\
'|' & 'bar' \\
\hline
\end{tabular}

The default value of delimiter is 'space'.

\section*{Examples}

Continuing the example from tblread:
```

tblwrite(data,varnames,casenames,'sattest.dat')

```
type sattest.dat
Male Female
Verbal 470530
Quantitative 520 480
See Also casewrite | tblread

Purpose
Student's \(t\) cumulative distribution function

\section*{Syntax}

Description
\(P=\operatorname{tcdf}(X, V)\) computes Student's \(t\) cdf at each of the values in \(X\) using the corresponding degrees of freedom in \(V . X\) and \(V\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs.

The \(t \mathrm{cdf}\) is
\[
p=F(x \mid v)=\int_{-\infty}^{x} \frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{t^{2}}{v}\right)^{\frac{v+1}{2}}} d t
\]

The result, \(p\), is the probability that a single observation from the \(t\) distribution with \(v\) degrees of freedom will fall in the interval \([-\infty, x)\).

\section*{Examples}
```

mu = 1; % Population mean
sigma = 2; % Population standard deviation
n = 100; % Sample size
x = normrnd(mu,sigma,n,1); % Random sample from population
xbar = mean(x); % Sample mean
s = std(x); % Sample standard deviation
t = (xbar-mu)/(s/sqrt(n)) % t-statistic
t =
0.2489
p = 1-tcdf(t,n-1) % Probability of larger t-statistic
p =
0.4020

```

This probability is the same as the \(p\) value returned by a \(t\)-test of the null hypothesis that the sample comes from a normal population with mean \(\mu\) :
```

[h,ptest] = ttest(x,mu,0.05,'right')
h =
0
ptest =
0.4020

```
See Also cdf | tpdf | tinv | tstat | trnd
How To . "Student's t Distribution" on page B-108

Purpose Read tab-delimited file
```

Syntax
tdfread
tdfread(filename)
tdfread(filename,delimiter)
s = tdfread(filename,...)

```

\section*{Description}
tdfread displays the File Open dialog box for interactive selection of a data file, then reads data from the file. The file should have variable names separated by tabs in the first row, and data values separated by tabs in the remaining rows. tdfread creates variables in the workspace, one for each column of the file. The variable names are taken from the first row of the file. If a column of the file contains only numeric data in the second and following rows, tdfread creates a double variable. Otherwise, tdfread creates a char variable. After all values are imported, tdfread displays information about the imported values using the format of the tdfread command.
tdfread(filename) allows command line specification of the name of a file in the current folder, or the complete path name of any file, using the string filename.
tdfread(filename, delimiter) indicates that the character specified by delimiter separates columns in the file. Accepted values for delimiter are:
- ' ' or 'space'
- ' \(\backslash t\) ' or 'tab'
- ', ' or 'comma'
- ';' or 'semi'
- '|' or 'bar'

The default delimiter is 'tab'.
\(s=\) tdfread(filename, ...) returns a scalar structure \(s\) whose fields each contain a variable.

Examples The following displays the contents of the file sat2.dat:
type sat2.dat

Test, Gender, Score
Verbal, Male,470
Verbal, Female,530
Quantitative,Male,520
Quantitative,Female, 480
The following creates the variables Gender, Score, and Test from the file sat2.dat and displays the contents of the MATLAB workspace:
```

tdfread('sat2.dat',',')

```
Name Size Bytes Class Attributes
\begin{tabular}{llll}
Gender & \(4 \times 6\) & 48 & char \\
Score & \(4 \times 1\) & 32 & double \\
Test & \(4 \times 12\) & 96 & char
\end{tabular}

See Also tblread | caseread

\section*{ClassificationDiscriminant.template}
\begin{tabular}{|c|c|}
\hline Purpose & Discriminant analysis classifier template for ensemble \\
\hline Syntax & \[
\begin{aligned}
& \mathrm{t}=\text { ClassificationDiscriminant.template() } \\
& \mathrm{t}=\text { ClassificationDiscriminant.template(Name, Value) }
\end{aligned}
\] \\
\hline Description & \begin{tabular}{l}
t = ClassificationDiscriminant.template() returns a learner template suitable to use in the fitensemble function. \\
t = ClassificationDiscriminant.template(Name, Value) creates a template with additional options specified by one or more Name, Value pair arguments.
\end{tabular} \\
\hline Input Arguments & \begin{tabular}{l}
Name-Value Pair Arguments \\
Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN. \\
'delta'
\end{tabular} \\
\hline & \begin{tabular}{l}
Threshold on linear coefficients, a nonnegative scalar. If a coefficient of obj has magnitude smaller than delta, obj sets this coefficient to 0 , and so you can eliminate the corresponding predictor from the model. Set delta to a higher value to eliminate more predictors. \\
delta must be 0 for quadratic discriminant models. \\
Default: 0
\end{tabular} \\
\hline & 'discrimType' \\
\hline
\end{tabular}

String specifying the discriminant type. Case-insensitive. One of:
- 'linear'
- 'quadratic'

\section*{ClassificationDiscriminant.template}
- 'diagLinear'
- 'diagQuadratic'
- 'pseudoLinear'
- 'pseudoQuadratic'

Default: 'linear'

\section*{'fillCoeffs'}

String, either 'on' or 'off', specifying whether to populate the Coeffs property in the classifier object. Setting to 'on' can be computationally intensive, especially when cross validating.

Default: 'on', except 'off' when cross validating

\section*{'gamma'}

Parameter for regularizing the correlation matrix of predictors.
- Linear discriminant - Scalar from 0 to 1.
- If you pass a value strictly between 0 and 1, ClassificationDiscriminant.fit sets the discriminant type to 'Linear'.
- If you pass 0 for gamma and 'Linear' for DiscrimType, and if the correlation matrix is singular, ClassificationDiscriminant.fit sets gamma to the minimal value required for inverting the covariance matrix.
- If you set gamma to 1 , ClassificationDiscriminant.fit sets the discriminant type to 'diagLinear'.
- Quadratic discriminant - Either 0 or 1.
- If you pass 0 for gamma and 'Quadratic' for DiscrimType, and if one of the classes has a singular covariance matrix, ClassificationDiscriminant.fit errors.

\section*{ClassificationDiscriminant.template}
- If you set gamma to 1 , ClassificationDiscriminant.fit sets the discriminant type to 'diagQuadratic'.

\section*{'SaveMemory'}

When 'on', ClassificationDiscriminant.fit does not store the full covariance matrix, but instead stores enough information to compute the matrix. The predict method computes the full covariance matrix for prediction, and does not store the matrix. When 'off', ClassificationDiscriminant.fit computes and stores the full covariance matrix in obj.

Set SaveMemory to 'on ' when X has thousands of predictors.
Default: 'off'

\section*{Output t}

\section*{Examples}

\section*{Discriminant analysis template for nondefault options}

Create a nondefault discriminant analysis template for use in fitensemble.

Create a template for pseudolinear discriminant analysis.
```

t = ClassificationDiscriminant.template('discrimType','pseudoLinear')
t =
Fit template for classification Discriminant.
classreg.learning.modelparams.DiscriminantParams
Package: classreg.learning.modelparams
Properties:
DiscrimType: 'pseudoLinear'

```

\section*{ClassificationDiscriminant.template}

\author{
Gamma: [] \\ Delta: [] \\ FillCoeffs: [] \\ SaveMemory: [] \\ Method: 'Discriminant \\ Type: 'classification \\ \section*{Superclasses} \\ You can use \(t\) for ensemble learning. \\ See Also ClassificationDiscriminant | fitensemble
}

\section*{ClassificationKNN.template}
Purpose \(\quad k\)-nearest neighbor classifier template for ensemble
```

Syntax $\quad t=$ ClassificationKNN.template()
t = ClassificationKNN.template(Name, Value)

```

Description
\(\mathrm{t}=\) ClassificationKNN.template() returns a learner template suitable to use in the fitensemble function.
t = ClassificationKNN.template(Name, Value) creates a template with additional options specified by one or more Name, Value pair arguments.

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'BreakTies'}

String specifying the method predict uses to break ties if multiple classes have the same smallest cost. By default, ties occur when multiple classes have the same number of nearest points among the K nearest neighbors.
- 'nearest ' - Use the class with the nearest neighbor among tied groups.
- 'random' - Use a random tiebreaker among tied groups.
- 'smallest' - Use the smallest index among tied groups.

Default: 'smallest'

\section*{'BucketSize'}

\section*{ClassificationKNN.template}

Maximum number of data points in the leaf node of the \(k\) d-tree. This argument is meaningful only when NSMethod is 'kdtree'.

Default: 50

\section*{'Cov'}

Positive definite matrix, the covariance matrix when computing the Mahalanobis distance. This argument is only valid when 'Distance' is 'mahalanobis'.

Default: nancov (X)

\section*{'Distance'}

String or function handle specifying the distance metric. The allowable strings depend on the NSMethod parameter, which you set in ClassificationKNN.fit, and which exists as a field in ModelParams.
\begin{tabular}{l|l}
\hline NSMethod & Distance Metric Names \\
\hline exhaustive & Any distance metric of ExhaustiveSearcher \\
\hline kdtree & \begin{tabular}{l}
'cityblock', 'chebychev ', 'euclidean ', or \\
'minkowski'
\end{tabular} \\
\hline
\end{tabular}

For definitions, see "Distance Metrics" on page 15-9.
The distance metrics of ExhaustiveSearcher:
\begin{tabular}{l|l}
\hline Value & Description \\
\hline 'cityblock' & City block distance. \\
\hline 'chebychev' & \begin{tabular}{l}
Chebychev distance (maximum coordinate \\
difference).
\end{tabular} \\
\hline 'correlation' & \begin{tabular}{l}
One minus the sample linear correlation \\
between observations (treated as \\
sequences of values).
\end{tabular} \\
\hline
\end{tabular}

\section*{ClassificationKNN.template}
\begin{tabular}{l|l}
\hline Value & Description \\
\hline 'cosine' & \begin{tabular}{l}
One minus the cosine of the included angle \\
between observations (treated as vectors).
\end{tabular} \\
\hline 'euclidean' & Euclidean distance. \\
\hline 'hamming' & \begin{tabular}{l}
Hamming distance, percentage of \\
coordinates that differ.
\end{tabular} \\
\hline 'jaccard' & \begin{tabular}{l}
One minus the Jaccard coefficient, the \\
percentage of nonzero coordinates that \\
differ.
\end{tabular} \\
\hline 'mahalanobis' & \begin{tabular}{l}
Mahalanobis distance, computed using a \\
positive definite covariance matrix C. The \\
default value of C is the sample covariance \\
matrix of X, as computed by nancov (X). \\
To specify a different value for C, use the \\
'Cov' name-value pair.
\end{tabular} \\
\hline 'minkowski' & \begin{tabular}{l}
Minkowski distance. The default exponent \\
is 2. To specify a different exponent, use \\
the 'P' name-value pair.
\end{tabular} \\
\hline 'seuclidean' & \begin{tabular}{l}
Standardized Euclidean distance. Each \\
coordinate difference between X and a \\
query point is scaled, meaning divided by \\
a scale value S. The default value of S is \\
the standard deviation computed from X, \\
S = nanstd (X). To specify another value \\
for S, use the Scale name-value pair.
\end{tabular} \\
\hline
\end{tabular}

\section*{ClassificationKNN.template}
\(\left.\begin{array}{l|l}\hline \text { Value } & \text { Description } \\
\hline \text { 'spearman' } & \begin{array}{l}\text { One minus the sample Spearman's rank } \\
\text { correlation between observations (treated } \\
\text { as sequences of values). }\end{array} \\
\hline \text { @distfun } & \begin{array}{l}\text { Distance function handle. distfun has } \\
\text { the form } \\
\text { function D2 = DISTFUN(ZI , ZJ) } \\
\text { \% calculation of distance } \\
\cdots\end{array} \\
\text { where } \\
\text { - ZI is a 1-by-N vector containing one row } \\
\text { of X or Y. } \\
\text { - ZJ is an M2-by-N matrix containing } \\
\text { multiple rows of X or Y. }\end{array}\right\}\)\begin{tabular}{l}
- D2 is an M2-by-1 vector of distances, \\
and D2 (k) is the distance between \\
observations ZI and ZJ (J, :).
\end{tabular}

Default: 'euclidean', except the default is 'hamming' when CategoricalPredictors is 'all'

\section*{'DistanceWeight'}

String or function handle specifying the distance weighting function.
\begin{tabular}{l|l}
\hline DistanceWeight & Meaning \\
\hline 'equal' & No weighting \\
\hline 'inverse' & Weight is 1/distance \\
\hline
\end{tabular}

\section*{ClassificationKNN.template}
\begin{tabular}{l|l}
\hline DistanceWeight & Meaning \\
\hline 'squaredinverse ' & Weight is \(1 /\) distance \(^{2}\) \\
\hline @fcn & \begin{tabular}{l}
fcn is a function that accepts a matrix \\
of nonnegative distances, and returns \\
a matrix the same size containing \\
nonnegative distance weights. For \\
example, 'squaredinverse' is equivalent \\
to @(d)d.^(-2).
\end{tabular} \\
\hline
\end{tabular}

Default: 'equal'

\section*{'Exponent'}

Positive scalar specifying the exponent of Minkowski distance. This argument is only valid when 'Distance' is 'minkowski'.

\section*{Default: 2}

\section*{'IncludeTies'}

Logical value indicating whether predict includes all the neighbors whose distance values are equal to the Kth smallest distance. If IncludeTies is true, predict includes all these neighbors. Otherwise, predict uses exactly K neighbors.

Default: false

\section*{'NSMethod'}

String specifying the nearest neighbor search method:
- 'kdtree' - Create and use a \(k\) d-tree to find nearest neighbors. 'kdtree' is valid when the distance metric is one of the following:
- 'euclidean'
- 'cityblock'

\section*{ClassificationKNN.template}
- 'minkowski'
- 'chebyshev'
- 'exhaustive' - Use the exhaustive search algorithm. The distance values from all points in \(X\) to each point in \(Y\) are computed to find nearest neighbors.

Default: 'kdtree' when X has 10 or fewer columns, X is not sparse, and the distance metric is a 'kdtree' type; otherwise, 'exhaustive'

\section*{'NumNeighbors'}

Positive integer specifying the number of nearest neighbors in \(X\) to find for classifying each point when predicting.

\section*{Default: 1}

\section*{'Scale'}

Vector containing nonnegative values, with length equal to the number of columns in \(X\). Each coordinate difference between \(X\) and a query point is scaled by the corresponding element of Scale. This argument is only valid when 'Distance' is 'seuclidean'.

Default: nanstd(X)

\section*{Output Arguments}

\section*{Examples KNN template for nondefault options}

Create a nondefault \(k\)-nearest neighbor template for use in fitensemble.

Create a template for 5 -nearest neighbor search.

\section*{ClassificationKNN.template}
t = ClassificationKNN.template('NumNeighbors',5)
t =
Fit template for classification KNN.
classreg.learning.modelparams.KNNParams
Package: classreg.learning.modelparams
Properties:
NumNeighbors: 5
NSMethod:
Distance:
BucketSize: []
IncludeTies:
DistanceWeight: []
BreakTies: []
Exponent: []
Cov: []
Scale: []
Method: 'KNN
Type: 'classification
Superclasses
You can use t for ensemble learning.
See Also ClassificationKNN | fitensemble
Related - "Random Subspace Classification" on page 15-118

\section*{ClassificationTree.template}
\begin{tabular}{|c|c|}
\hline Purpose & Create classification template \\
\hline Syntax & ```
t = ClassificationTree.template
t = ClassificationTree.template(Name,Value)
``` \\
\hline Description & \begin{tabular}{l}
\(\mathrm{t}=\) ClassificationTree.template returns a learner template suitable to use in the fitensemble function. \\
t = ClassificationTree.template(Name, Value) creates a template with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, , NameN, ValueN.
\end{tabular} \\
\hline Input Arguments & \begin{tabular}{l}
Name-Value Pair Arguments \\
Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.
\end{tabular} \\
\hline
\end{tabular}

\section*{'AlgorithmForCategorical'}

Algorithm to find the best split on a categorical predictor for data with \(K=3\) or more classes. The available algorithms are:
\begin{tabular}{ll} 
'Exact' & \begin{tabular}{l} 
For a categorical predictor \\
with \(C\) categories, consider all \\
\(2^{C-1}-1\) combinations.
\end{tabular} \\
'PullLeft' & \begin{tabular}{l} 
Start with all \(C\) categories on \\
the right branch. Consider \\
moving each category to the
\end{tabular} \\
& left branch as it achieves \\
the minimum impurity for \\
the \(K\) classes among the \\
remaining categories. Out of
\end{tabular}

\section*{ClassificationTree.template}
this sequence, choose the split that has the lowest impurity.
'PCA'
'OVAbyClass'

Compute a score for each category using the inner product between the first principal component of a weighted covariance matrix (of the centered class probability matrix) and the vector of class probabilities for that category. Sort the scores in ascending order, and consider all \(C-1\) splits [1].
Start with all C categories on the right branch. For each class, order the categories based on their probability for that class. For the first class, consider moving each category to the left branch in order, recording the impurity criterion at each move. Repeat for the remaining classes. Out of this sequence, choose the split that has the minimum impurity.

Default: ClassificationTree selects the optimal subset of algorithms for each split using the known number of classes and levels of a categorical predictor. For two classes, ClassificationTree always performs the exact search.

\section*{'MaxCat'}

ClassificationTree splits a categorical predictor using the exact search algorithm if the predictor has at most MaxCat levels in

\section*{ClassificationTree.template}
the split node. Otherwise, ClassificationTree finds the best categorical split using one of the inexact algorithms.

Specify MaxCat as a numeric nonnegative scalar value. Passing a small value can lead to long computation time and memory overload.

Default: 10

\section*{'MergeLeaves'}

String that specifies whether to merge leaves after the tree is grown. Values are 'on' or 'off'.

When 'on', ClassificationTree merges leaves that originate from the same parent node, and that give a sum of risk values greater or equal to the risk associated with the parent node. When 'off', ClassificationTree does not merge leaves.

Default: 'off'

\section*{'MinLeaf'}

Each leaf has at least MinLeaf observations per tree leaf. If you supply both MinParent and MinLeaf, ClassificationTree uses the setting that gives larger leaves: MinParent=max (MinParent,2*MinLeaf).

Default: Half the number of training observations for boosting, 1 for bagging

\section*{'MinParent'}

Each branch node in the tree has at least MinParent observations. If you supply both MinParent and MinLeaf, ClassificationTree uses the setting that gives larger leaves: MinParent=max(MinParent,2*MinLeaf).

\section*{ClassificationTree.template}

Default: Number of training observations for boosting, 2 for bagging

\section*{'NVarToSample'}

Number of predictors to select at random for each split. Can be a positive integer or 'all', which means use all available predictors.

Default: 'all' for boosting, square root of number of predictors for bagging

\section*{'Prune'}

When 'on', ClassificationTree grows the classification tree and computes the optimal sequence of pruned subtrees. When 'off' ClassificationTree grows the tree without pruning.

Default: 'off'

\section*{'PruneCriterion'}

String with the pruning criterion, either 'error' or 'impurity'.
Default: 'error'

\section*{'SplitCriterion'}

Criterion for choosing a split. One of 'gdi' (Gini's diversity index), 'twoing ' for the twoing rule, or 'deviance' for maximum deviance reduction (also known as cross entropy).

Default: 'gdi'

\section*{'Surrogate'}

String describing whether to find surrogate decision splits at each branch node. Specify as 'on', 'off', 'all', or a positive scalar value.

\section*{ClassificationTree.template}
- When 'on', ClassificationTree finds at most 10 surrogate splits at each branch node.
- When set to a positive integer value, ClassificationTree finds at most the specified number of surrogate splits at each branch node.
- When set to 'all', ClassificationTree finds all surrogate splits at each branch node. The 'all' setting can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values. The setting also enables you to compute measures of predictive association between predictors.

Default: 'off'

\section*{Output Arguments}

Examples

Classification tree template suitable to use in the fitensemble function. In an ensemble, \(t\) specifies how to grow the classification trees.

Create a classification template with surrogate splits, and train an ensemble for the Fisher iris model with the template:
```

t = ClassificationTree.template('surrogate','on');
load fisheriris
ens = fitensemble(meas,species,'AdaBoostM2',100,t);

```

\section*{References}
[1] Coppersmith, D., S. J. Hong, and J. R. M. Hosking. "Partitioning Nominal Attributes in Decision Trees." Data Mining and Knowledge Discovery, Vol. 3, 1999, pp. 197-217.

See Also
ClassificationTree | ClassificationTree.fit | fitensemble

\section*{RegressionTree.template}

Purpose Create regression template
Syntax \(\quad \begin{aligned} \mathrm{t} & =\text { RegressionTree.template } \\ \mathrm{t} & =\text { RegressionTree.template (Name, Value) }\end{aligned}\)
Description \(\quad t=\) RegressionTree.template returns a learner template suitable to use in the fitensemble function.
\(\mathrm{t}=\) RegressionTree.template (Name, Value) creates a template with additional options specified by one or more Name, Value pair arguments. You can specify several name-value pair arguments in any order as Name1, Value1, ,NameN, ValueN.

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'MergeLeaves'}

String that specifies whether to merge leaves after the tree is grown. Values are 'on' or 'off'.

When 'on', RegressionTree merges leaves that originate from the same parent node, and that give a sum of risk values greater or equal to the risk associated with the parent node. When 'off', RegressionTree does not merge leaves.

Default: 'off'

\section*{'MinLeaf'}

Each leaf has at least MinLeaf observations per tree leaf. If you supply both MinParent and MinLeaf, RegressionTree uses the setting that gives larger leaves: MinParent=max(MinParent,2*MinLeaf).

Default: Half the number of training observations for boosting, 5 for bagging

\section*{'MinParent'}

Each branch node in the tree has at least MinParent observations. If you supply both MinParent and MinLeaf, RegressionTree uses the setting that gives larger leaves: MinParent=max (MinParent, 2*MinLeaf).

Default: Number of training observations for boosting, 10 for bagging

\section*{'NVarToSample'}

Number of predictors to select at random for each split. Can be a positive integer or 'all', which means use all available predictors.

Default: 'all' for boosting, one third of the number of predictors for bagging

\section*{'Prune'}

When 'on', RegressionTree grows the regression tree and computes the optimal sequence of pruned subtrees. When 'off' RegressionTree grows the tree without pruning.

Default: 'off'

\section*{'Surrogate'}

String describing whether to find surrogate decision splits at each branch node. Specify as 'on', 'off', 'all', or a positive scalar value.
- When 'on', RegressionTree finds at most 10 surrogate splits at each branch node.

\section*{RegressionTree.template}
- When set to a positive integer value, RegressionTree finds at most the specified number of surrogate splits at each branch node.
- When set to 'all', RegressionTree finds all surrogate splits at each branch node. The 'all' setting can use much time and memory.

Use surrogate splits to improve the accuracy of predictions for data with missing values. The setting also enables you to compute measures of predictive association between predictors.

Default: 'off'

\section*{Output Arguments}

\section*{Examples}

Create a regression template with surrogate splits, and train an ensemble for the carsmall data with the template:
```

t = RegressionTree.template('surrogate','on');
load carsmall
X = [Acceleration Displacement Horsepower Weight];
ens = fitensemble(X,MPG,'LSBoost',100,t);

```

See Also RegressionTree | RegressionTree.fit | fitensemble

\author{
Purpose \\ Syntax \\ Description
}

Error rate
cost = test(t,'resubstitution')
cost = test(t,'test', X,y)
cost = test(t,'crossvalidate',X,y)
[cost,secost,ntnodes,bestlevel] = test(...)
[...] = test(...,param1,val1,param2,val2,...)
cost = test(t,'resubstitution') computes the cost of the tree t using a resubstitution method. t is a decision tree as created by classregtree. The cost of the tree is the sum over all terminal nodes of the estimated probability of a node times the cost of a node. If \(t\) is a classification tree, the cost of a node is the sum of the misclassification costs of the observations in that node. If \(t\) is a regression tree, the cost of a node is the average squared error over the observations in that node. cost is a vector of cost values for each subtree in the optimal pruning sequence for \(t\). The resubstitution cost is based on the same sample that was used to create the original tree, so it under estimates the likely cost of applying the tree to new data.
cost \(=\) test( t, 'test', \(\mathrm{X}, \mathrm{y}\) ) uses the matrix of predictors X and the response vector y as a test sample, applies the decision tree \(t\) to that sample, and returns a vector cost of cost values computed for the test sample. \(X\) and \(y\) should not be the same as the learning sample, that is, the sample that was used to fit the tree \(t\).
cost \(=\) test( \(\mathrm{t}, \mathrm{C}\) crossvalidate', \(\mathrm{X}, \mathrm{y}\) ) uses 10 -fold cross-validation to compute the cost vector. X and y should be the learning sample, that is, the sample that was used to fit the tree \(t\). The function partitions the sample into 10 subsamples, chosen randomly but with roughly equal size. For classification trees, the subsamples also have roughly the same class proportions. For each subsample, test fits a tree to the remaining data and uses it to predict the subsample. It pools the information from all subsamples to compute the cost for the whole sample.
[cost, secost, ntnodes, bestlevel] = test(...) also returns the vector secost containing the standard error of each cost value, the vector ntnodes containing the number of terminal nodes for each

\section*{classregtree.test}
subtree, and the scalar bestlevel containing the estimated best level of pruning. A bestlevel of 0 means no pruning. The best level is the one that produces the smallest tree that is within one standard error of the minimum-cost subtree.
[...] = test(...,param1,val1,param2,val2,...) specifies optional parameter name/value pairs for methods other than 'resubstitution', chosen from the following:
- 'weights' - Observation weights.
- 'nsamples' - The number of cross-validation samples (default is 10).
- 'treesize' - Either 'se' (default) to choose the smallest tree whose cost is within one standard error of the minimum cost, or 'min' to choose the minimal cost tree.

\section*{Examples}

Find the best tree for Fisher's iris data using cross-validation. Start with a large tree:
```

load fisheriris;
t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'},...
'splitmin',5)
t =
Decision tree for classification
if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
class = setosa
if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
class = virginica
if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
if PW<1.55 then node 10 elseif PW>=1.55 then node 11 else virginica
class = versicolor
class = virginica
class = virginica

```

11 class = versicolor
view(t)
\begin{tabular}{|l|l|l|l|l|l|}
\hline Click to display: & Identity & \(\rightarrow\) Magnification: & \(100 \%\) & \(\rightarrow\) & Pruning level: 0 of \(\mathbf{4}\) \\
\hline
\end{tabular}


Find the minimum-cost tree:
```

[c,s,n,best] = test(t,'cross',meas,species);
tmin = prune(t,'level',best)
tmin =
Decision tree for classification

```

\section*{classregtree.test}
```

1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
class = setosa
if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
class = versicolor
class = virginica
view(tmin)

```
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Click to display: & Identity & \(\square\) & Magnification: & \(100 \%\) & \(\square\) & Pruning level: \\
\hline 0 of 2 & & \\
\hline
\end{tabular}


Plot the smallest tree within one standard error of the minimum cost tree:
```

[mincost, minloc] = min(c);
plot(n, c, 'b-o',...
n(best+1), c(best+1),'bs',..
$\mathrm{n},(\mathrm{mincost}+\mathrm{s}(\operatorname{minloc}))$ *ones(size(n)),'k--')
xlabel('Tree size (number of terminal nodes)')
ylabel('Cost')

```


The solid line shows the estimated cost for each tree size, the dashed line marks one standard error above the minimum, and the square marks the smallest tree under the dashed line.

\section*{classregtree.test}

\author{
References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984. \\ See Also classregtree | eval | view | prune
}

\section*{Purpose Test indices for cross-validation}
```

Syntax
idx = test(c)
idx = test(c,i)

```
\(i d x=\) test (c) returns the logical vector idx of test indices for an object c of the cvpartition class of type 'holdout' or 'resubstitution'.
If c.Type is 'holdout', idx specifies the observations in the test set.
If c.Type is 'resubstitution', idx specifies all observations.
\(i d x=\operatorname{test}(c, i)\) returns the logical vector idx of test indices for repetition \(i\) of an object \(c\) of the cvpartition class of type 'kfold' or 'leaveout'.

If c.Type is 'kfold', idx specifies the observations in the test set in fold i.

If c. Type is 'leaveout', idx specifies the observation left out at repetition i.

Examples Identify the test indices in the first fold of a partition of 10 observations for 3 -fold cross-validation:
c = cvpartition(10, 'kfold', 3)
c =
K-fold cross validation partition
N: 10
NumTestSets: 3
TrainSize: 767
TestSize: 343
test( \(\mathrm{c}, 1\) )
ans \(=\)
1
1
0
0

0
0
0
0
1
0
See Also
cvpartition | training

\section*{Purpose Size of each test set}
\(\begin{array}{ll}\text { Description } \quad & \text { Value is a vector in partitions of type 'kfold' and 'leaveout'. } \\ & \text { Value is a scalar in partitions of type 'holdout' and } \\ \text { 'resubstitution'. }\end{array}\)

Purpose Rank adjusted for ties
Syntax \(\quad \begin{aligned} {[R, T I E A D J] } & =\operatorname{tiedrank}(X) \\ {[R, T I E A D J] } & =\operatorname{tiedrank}(X, 1) \\ {[R, T I E A D J] } & =\operatorname{tiedrank}(X, 0,1)\end{aligned}\)

\section*{Description}

Examples
Counting from smallest to largest, the two 20 values are 2nd and 3rd, so they both get rank 2.5 (average of 2 and 3 ):
```

tiedrank([10 20 30 40 20])
ans =
1.0000 2.5000 4.0000 5.0000 2.5000

```
See Also ansaribradley | corr | partialcorr | ranksum | signrank

Purpose Product of categorical arrays
Syntax \(\quad C=\operatorname{times}(A, B)\)
Description \(\quad C=\operatorname{times}(A, B)\) returns a categorical array each of whose elements has the level formed from the concatenation of the levels of the corresponding elements of \(A\) and \(B\). The set of levels of \(C\) is the cartesian product of the sets of levels of A and of B. The syntax A .* B calls C \(=\) times(A,B).

See Also categorical

Purpose
Student's \(t\) inverse cumulative distribution function

\section*{Syntax \\ \(X=\operatorname{tinv}(P, V)\)}
\(X=\operatorname{tinv}(P, V)\) computes the inverse of Student's \(t\) cdf using the degrees of freedom in \(V\) for the corresponding probabilities in \(P\). \(P\) and \(V\) can be vectors, matrices, or multidimensional arrays that are the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The values in P must lie on the interval [01].

The t inverse function in terms of the \(t\) cdf is
\[
x=F^{-1}(p \mid v)=\{x: F(x \mid v)=p\}
\]
where
\[
p=F(x \mid v)=\int_{-\infty}^{x} \frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{t^{2}}{v}\right)^{\frac{v+1}{2}}} d t
\]

The result, \(x\), is the solution of the cdf integral with parameter \(v\), where you supply the desired probability \(p\).

Examples What is the 99th percentile of the \(t\) distribution for one to six degrees of freedom?
```

percentile = tinv(0.99,1:6)
percentile =

31.8205	6.9646	4.5407	3.7469	3.3649	3.1427

```

See Also icdf | tcdf | tpdf | trnd | tstat
How To . "Student's t Distribution" on page B-108

Superclasses ToolboxFittableParametricDistribution
Purpose \(\quad t\) Location-Scale probability distribution object
Description prob.tLocationScaleDistribution is an object consisting of parameters, a model description, and sample data for a \(t\) location-scale probability distribution.
Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

\section*{Construction}
pd \(=\) makedist('tLocationScale') creates a \(t\) location-scale probability distribution object using the default parameter values.
pd = makedist('tLocationScale','mu', mu,'sigma', sigma, 'nu', nu) creates a \(t\) location-scale probability distribution object using the specified parameter values.

\section*{Input Arguments}

\section*{mu - Location parameter}

0 (default) | scalar value
Location parameter for the \(t\) location-scale distribution, specified as a scalar value.

\section*{Data Types}
single | double
sigma-Scale parameter
1 (default) | positive scalar value
Scale parameter for the \(t\) location-scale distribution, specified as a positive scalar value.
```

Data Types
single | double
nu - Degrees of freedom

```

\section*{prob.tLocationScaleDistribution}

\section*{5 (default) | positive scalar value}

Degrees of freedom for the \(t\) location-scale distribution, specified as a positive scalar value.

\author{
Data Types \\ single | double
}

\section*{Properties}
mu
Location parameter of the \(t\) location-scale distribution, stored as a scalar value.

\section*{Data Types \\ single | double}
sigma
Scale parameter of the \(t\) location-scale distribution, stored as a positive scalar value.
```

Data Types
single | double
nu

```

Degrees of freedom of the \(t\) location-scale distribution, stored as a positive scalar value.
```

Data Types
single | double

```

\section*{DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{Data Types \\ char}

\section*{InputData}

Data used for distribution fitting, stored as a structure containing the following:
- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.

\section*{Data Types}
single | double

\section*{IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated. If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

\section*{Data Types}
logical

\section*{NumParameters}

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterCovariance}

Covariance matrix of the parameter estimates, stored as a \(p\)-by- \(p\) matrix, where \(p\) is the number of parameters in the distribution. The ( \(\mathrm{i}, \mathrm{j}\) ) element is the covariance between the estimates of the \(i\) ith parameter and the \(j\) th parameter. The ( \(i, i\) ) element is the estimated variance of the ith parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.
```

Data Types
single | double

```

\section*{prob.tLocationScaleDistribution}

\section*{ParameterDescription}

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

\section*{Data Types \\ char}

\section*{ParameterIsFixed}

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

\section*{Data Types}
logical

\section*{ParameterNames}

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

\section*{Data Types \\ char}

\section*{ParameterValues}

Values of distribution parameters, stored as a vector. This property is read-only.

\section*{Data Types}
single | double

\section*{Truncation}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

\author{
Data Types \\ single | double
}
\begin{tabular}{ccl} 
Methods & Inherited Methods & \\
cdf & \begin{tabular}{l} 
Cumulative distribution function \\
of probability distribution object
\end{tabular} \\
icdf & \begin{tabular}{l} 
Inverse cumulative distribution \\
function of probability \\
distribution object
\end{tabular} \\
iqr & \begin{tabular}{l} 
Interquartile range of probability \\
distribution object
\end{tabular} \\
median & \begin{tabular}{l} 
Median of probability distribution \\
object
\end{tabular} \\
random & \begin{tabular}{l} 
Probability density function of \\
probability distribution object
\end{tabular} \\
truncate & \begin{tabular}{l} 
Generate random numbers from \\
probability distribution object
\end{tabular} \\
mean & \begin{tabular}{l} 
Truncate probability distribution \\
object
\end{tabular} \\
negloglik & \begin{tabular}{l} 
Mean of probability distribution \\
object
\end{tabular} \\
paramci & \begin{tabular}{l} 
Negative loglikelihood of \\
probability distribution object
\end{tabular} \\
std & \begin{tabular}{l} 
Confidence intervals for \\
probability distribution \\
parameters
\end{tabular} \\
var & \begin{tabular}{l} 
Profile likelihood function for \\
probability distribution object
\end{tabular} \\
\begin{tabular}{ll} 
Standard deviation of probability \\
distribution object
\end{tabular} \\
Variance of probability \\
distribution object
\end{tabular}

\section*{prob.tLocationScaleDistribution}

\section*{Definitions}

\section*{Examples}

\section*{t Location-Scale Distribution}

The \(t\) location-scale distribution is useful for modeling data distributions with heavier tails (more prone to outliers) than the normal distribution. It approaches the normal distribution as \(v\) approaches infinity, and smaller values of \(v\) yield heavier tails.

The \(t\) location-scale distribution uses the following parameters.
\begin{tabular}{l|l|l}
\hline Parameter & Description & Support \\
\hline mu & \begin{tabular}{l} 
Location \\
parameter
\end{tabular} & \(-\infty<\mu<\infty\) \\
\hline sigma & Scale parameter & \(\sigma>0\) \\
\hline nu & Shape parameter & \(v>0\) \\
\hline
\end{tabular}

The probability density function (pdf) is
\[
f(x \mid \mu, \sigma, v)=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\sigma \sqrt{v \pi} \Gamma\left(\frac{v}{2}\right)}\left[\frac{v+\left(\frac{x-\mu}{\sigma}\right)^{2}}{v}\right]^{\left(-\frac{v+1}{2}\right)} \quad ;-\infty<x<\infty
\]
where \(\Gamma(\cdot)\) is the Gamma function.

\section*{Create a t Location-Scale Distribution Object Using Default Parameters}

Create a \(t\) location scale distribution object using the default parameter values.
```

pd = makedist('tLocationScale')

```
pd \(=\)
        \(\mathrm{mu}=0\)
    sigma = 1
        nu \(=5\)

\section*{Create at Location-Scale Distribution Object Using Specified Parameters}

Create a \(t\) location-scale distribution object by specifying the parameter values.
```

pd = makedist('tLocationScale','mu',-2,'sigma',1,'nu', 20)
pd =
tLocationScaleDistribution
t Location-Scale distribution
mu = -2
sigma = 1
nu = 20

```

Compute the interquartile range of the distribution.
\(r=i q r(p d)\)
\(r=\)
1.3739

See Also makedist | fitdist | dfittool

\section*{Concepts}
- "t Location-Scale Distribution" on page B-110
- Class Attributes
- Property Attributes

\section*{prob.ToolboxFittableParametricDistribution}

Superclasses TruncatableDistribution
Purpose Toolbox-integrated fittable parametric probability distribution object
Description Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

Methods
mean
negloglik
paramci
proflik
std
var

\section*{Inherited Methods}
icdf
iqr

Mean of probability distribution object
Negative loglikelihood of probability distribution object
Confidence intervals for probability distribution parameters

Profile likelihood function for probability distribution object

Standard deviation of probability distribution object

Variance of probability distribution object

Cumulative distribution function of probability distribution object
Inverse cumulative distribution function of probability distribution object

Interquartile range of probability distribution object
\begin{tabular}{ll} 
median & \begin{tabular}{l} 
Median of probability distribution \\
object
\end{tabular} \\
pdf & \begin{tabular}{l} 
Probability density function of \\
probability distribution object
\end{tabular} \\
random & \begin{tabular}{l} 
Generate random numbers from \\
probability distribution object
\end{tabular} \\
truncate & \begin{tabular}{l} 
Truncate probability distribution \\
object
\end{tabular}
\end{tabular}

\section*{See Also makedist | fitdist | dfittool}

Concepts - Class Attributes
- Property Attributes

Purpose Student's \(t\) probability density function

\section*{Syntax \\ \(Y=\operatorname{tpdf}(X, V)\)}

Description
\(Y=\operatorname{tpdf}(\mathrm{X}, \mathrm{V})\) computes Student's \(t\) pdf at each of the values in X using the corresponding degrees of freedom in \(V . X\) and \(V\) can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs.

Student's \(t \mathrm{pdf}\) is
\[
y=f(x \mid v)=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{x^{2}}{v}\right)^{\frac{v+1}{2}}}
\]

\section*{Examples}

\section*{See Also pdf | tcdf | tinv | tstat | trnd}

How To - "Student's t Distribution" on page B-108

\section*{cvpartition.training}

Purpose Training indices for cross-validation
```

Syntax idx = training(c)
idx = training(c,i)

```

Description \(\quad i d x=\) training ( \(c\) ) returns the logical vector idx of training indices for an object \(c\) of the cvpartition class of type 'holdout' or 'resubstitution'.

If c.Type is 'holdout', idx specifies the observations in the training set.

If c.Type is 'resubstitution', idx specifies all observations.
idx \(=\) training( \(c, i)\) returns the logical vector idx of training indices for repetition \(i\) of an object \(c\) of the cvpartition class of type 'kfold' or 'leaveout'.

If c.Type is 'kfold', idx specifies the observations in the training set in fold i.

If c.Type is 'leaveout', idx specifies the observations left in at repetition i.

\section*{Examples}

Identify the training indices in the first fold of a partition of 10 observations for 3 -fold cross-validation:
c = cvpartition(10,'kfold',3)
c =
K-fold cross validation partition
N: 10
NumTestSets: 3 TrainSize: 767 TestSize: 343
training( \(\mathrm{c}, 1\) )
ans =
0
0

See Also cvpartition | test

\section*{cvpartition.TrainSize property}

Purpose Size of each training set
Description
Value is a vector in partitions of type 'kfold' and 'leaveout'.
Value is a scalar in partitions of type 'holdout' and 'resubstitution'.

\section*{See Also \\ type}
Purpose Transpose categorical matrix
Syntax

B = transpose(A)

Description \(\quad B=\) transpose \((A)\) returns the transpose of the 2-D categorical matrix A. ctranspose is identical to transpose for categorical arrays. The syntax A.' calls transpose.

See Also ctranspose | permute

\section*{TreeBagger.TreeArgs property}

Purpose Cell array of arguments for classregtree
Description \(\quad \begin{aligned} & \text { The TreeArgs property is a cell array of arguments for the } \\ & \text { classregtree constructor. TreeBagger uses these arguments in } \\ & \text { growing new trees for the ensemble. }\end{aligned}\)

\section*{Purpose \\ Description}

\section*{Construction TreeBagger}

\section*{Methods \\ append \\ compact}

Create ensemble of bagged decision trees

\footnotetext{
Append new trees to ensemble
Compact ensemble of decision trees
}

\section*{TreeBagger}
\begin{tabular}{ll} 
error & \begin{tabular}{l} 
Error (misclassification \\
probability or MSE)
\end{tabular} \\
fillProximities & \begin{tabular}{l} 
Proximity matrix for training \\
data
\end{tabular} \\
growTrees & \begin{tabular}{l} 
Train additional trees and add to \\
ensemble
\end{tabular} \\
margin & \begin{tabular}{l} 
Classification margin \\
mdsProx
\end{tabular} \\
\begin{tabular}{l} 
Multidimensional scaling of \\
proximity matrix
\end{tabular} \\
meanMargin & Mean classification margin \\
oobError & Out-of-bag error \\
oobMargin & Out-of-bag margins \\
oobPredict & Out-of-bag mean margins \\
predict & \begin{tabular}{l} 
Ensemble predictions for \\
out-of-bag observations
\end{tabular} \\
& Predict response
\end{tabular}

\section*{Properties}

\section*{ClassNames}

A cell array containing the class names for the response variable Y. This property is empty for regression trees.

\section*{ComputeOOBPrediction}

A logical flag specifying whether out-of-bag predictions for training observations should be computed. The default is false.

If this flag is true, the following properties are available:
- OOBIndices
- OOBInstanceWeight

If this flag is true, the following methods can be called:
- oobError
- oobMargin
- oobMeanMargin

See also oobError, OOBIndices, OOBInstanceWeight, oobMargin, oobMeanMargin.

\section*{ComputeOOBVarimp}

A logical flag specifying whether out-of-bag estimates of variable importance should be computed. The default is false. If this flag is true, then Compute00BPrediction is true as well.
If this flag is true, the following properties are available:
- OOBPermutedVarDeltaError
- OOBPermutedVarDeltaMeanMargin
- OOBPermutedVarCountRaiseMargin

\section*{Cost}

A matrix with misclassification costs. This property is empty for ensembles of regression trees.
See also classregtree.

\section*{DefaultYfit}

Default value returned by predict and oobPredict. The DefaultYfit property controls what predicted value is returned when no prediction is possible. For example, when oobPredict needs to predict for an observation that is in-bag for all trees in the ensemble.
- For classification, you can set this property to either ' ' or 'MostPopular'. If you choose 'MostPopular' (the default), the property value becomes the name of the most probably class in

\section*{TreeBagger}
the training data. If you choose ' ' , the in-bag observations are excluded from computation of the out-of-bag error and margin.
- For regression, you can set this property to any numeric scalar. The default value is the mean of the response for the training data. If you set this property to NaN , the in-bag observations are excluded from computation of the out-of-bag error and margin.

\section*{DeltaCritDecisionSplit}

A numeric array of size 1-by-Nvars of changes in the split criterion summed over splits on each variable, averaged across the entire ensemble of grown trees.

See also classregtree.varimportance.

\section*{FBoot}

Fraction of observations that are randomly selected with replacement for each bootstrap replica. The size of each replica is Nobs \(\times\) FBoot, where Nobs is the number of observations in the training set. The default value is 1 .

\section*{MergeLeaves}

A logical flag specifying whether decision tree leaves with the same parent are merged for splits that do not decrease the total risk. The default value is false.

\section*{Method}

Method used by trees. The possible values are 'classification' for classification ensembles, and 'regression' for regression ensembles.

\section*{MinLeaf}

Minimum number of observations per tree leaf. By default, MinLeaf is 1 for classification and 5 for regression. For classregtree training, the MinParent value is set equal to 2*MinLeaf.

\section*{NTrees}

Scalar value equal to the number of decision trees in the ensemble.

\section*{NVarSplit}

A numeric array of size 1-by-Nvars, where every element gives a number of splits on this predictor summed over all trees.

\section*{NVarToSample}

Number of predictor or feature variables to select at random for each decision split. By default, NVarToSample is equal to the square root of the total number of variables for classification, and one third of the total number of variables for regression.

\section*{OOBIndices}

Logical array of size Nobs-by-NTrees, where Nobs is the number of observations in the training data and NTrees is the number of trees in the ensemble. A true value for the \((i, j)\) element indicates that observation \(i\) is out-of-bag for tree \(j\). In other words, observation \(i\) was not selected for the training data used to grow tree \(j\).

\section*{OOBInstanceWeight}

Numeric array of size Nobs-by-1 containing the number of trees used for computing the out-of-bag response for each observation. Nobs is the number of observations in the training data used to create the ensemble.

\section*{OOBPermutedVarCountRaiseMargin}

A numeric array of size 1-by-Nvars containing a measure of variable importance for each predictor variable (feature). For any variable, the measure is the difference between the number of raised margins and the number of lowered margins if the values of that variable are permuted across the out-of-bag observations. This measure is computed for every tree, then averaged over the entire ensemble and divided by the standard deviation over the entire ensemble. This property is empty for regression trees.

\section*{OOBPermutedVarDeltaError}

\section*{TreeBagger}

A numeric array of size 1-by-Nvars containing a measure of importance for each predictor variable (feature). For any variable, the measure is the increase in prediction error if the values of that variable are permuted across the out-of-bag observations. This measure is computed for every tree, then averaged over the entire ensemble and divided by the standard deviation over the entire ensemble.

\section*{OOBPermutedVarDeltaMeanMargin}

A numeric array of size 1-by-Nvars containing a measure of importance for each predictor variable (feature). For any variable, the measure is the decrease in the classification margin if the values of that variable are permuted across the out-of-bag observations. This measure is computed for every tree, then averaged over the entire ensemble and divided by the standard deviation over the entire ensemble. This property is empty for regression trees.

\section*{OutlierMeasure}

A numeric array of size Nobs-by-1, where Nobs is the number of observations in the training data, containing outlier measures for each observation.

See also CompactTreeBagger.OutlierMeasure.

\section*{Prior}

A vector with prior probabilities for classes. This property is empty for ensembles of regression trees.

See also classregtree.

\section*{Proximity}

A numeric matrix of size Nobs-by-Nobs, where Nobs is the number of observations in the training data, containing measures of the proximity between observations. For any two observations, their proximity is defined as the fraction of trees for which these observations land on the same leaf. This is a symmetric matrix
with 1 s on the diagonal and off-diagonal elements ranging from 0 to 1 .

See also CompactTreeBagger.proximity, classregtree.varimportance.

\section*{Prune}

The Prune property is true if decision trees are pruned and false if they are not. Pruning decision trees is not recommended for ensembles. The default value is false.

See also classregtree. prune.

\section*{SampleWithReplacement}

A logical flag specifying if data are sampled for each decision tree with replacement. True if TreeBagger samples data with replacement and false otherwise. True by default.

\section*{TreeArgs}

Cell array of arguments for the classregtree constructor. These arguments are used by TreeBagger when growing new trees for the ensemble.

\section*{Trees}

A cell array of size NTrees-by- 1 containing the trees in the ensemble.

See also NTrees.

\section*{VarAssoc}

A matrix of size Nuars-by-Nvars with predictive measures of variable association, averaged across the entire ensemble of grown trees. If you grew the ensemble setting 'surrogate' to 'on ', this matrix for each tree is filled with predictive measures of association averaged over the surrogate splits. If you grew the ensemble setting 'surrogate' to 'off' (default), VarAssoc is diagonal.

\section*{VarNames}

\section*{TreeBagger}

A cell array containing the names of the predictor variables (features). TreeBagger takes these names from the optional 'names' parameter. The default names are 'x1', 'x2', etc.

\section*{W}

Numeric vector of weights of length Nobs, where Nobs is the number of observations (rows) in the training data. TreeBagger uses these weights for growing every decision tree in the ensemble. The default W is ones (Nobs, 1).

X
A numeric matrix of size Nobs-by-Nvars, where Nobs is the number of observations (rows) and Nvars is the number of variables (columns) in the training data. This matrix contains the predictor (or feature) values.

\section*{Y}

An array of true class labels for classification, or response values for regression. Y can be a numeric column vector, a character matrix, or a cell array of strings.

\section*{Copy Semantics}

\section*{How To}

Value. To learn how this affects your use of the class, see Comparing Handle and Value Classes in the MATLAB Object-Oriented Programming documentation.
- "Ensemble Methods" on page 15-58
- "Classification Trees and Regression Trees" on page 15-30
- "Grouping Variables" on page 2-51
\begin{tabular}{|c|c|}
\hline Purpose & Create ensemble of bagged decision trees \\
\hline Syntax & ```
B = TreeBagger(ntrees,X,Y)
B = TreeBagger(ntrees,X,Y,'param1',val1,'param2',val2,...)
``` \\
\hline \multirow[t]{7}{*}{Description} & \(B=\) TreeBagger (ntrees, \(X, Y\)) creates an ensemble \(B\) of ntrees decision trees for predicting response \(Y\) as a function of predictors \(X\). By default TreeBagger builds an ensemble of classification trees. The function can build an ensemble of regression trees by setting the optional input argument 'method' to 'regression'. \\
\hline & \(X\) is a numeric matrix of training data. Each row represents an observation and each column represents a predictor or feature. Y is an array of true class labels for classification or numeric function values for regression. True class labels can be a numeric vector, character matrix, vector cell array of strings or categorical vector. TreeBagger converts labels to a cell array of strings for classification. \\
\hline & For more information on grouping variables, see "Grouping Variables" on page 2-51. \\
\hline & \(B=\) TreeBagger(ntrees, \(\mathrm{X}, \mathrm{Y}\), 'param1', val1,'param2', val2, \(\ldots\)) specifies optional parameter name/value pairs: \\
\hline & FBoot \(\quad\)\begin{tabular}{l}
Fraction of input data to sample with replacement \\
from the input data for growing each new tree. \\
Default value is 1.
\end{tabular} \\
\hline & 'OOBPred' 'on' to store info on what observations are out of bag for each tree. This info can be used by oobPredict to compute the predicted class probabilities for each tree in the ensemble. Default is 'off'. \\
\hline & 'OOBVarImp' 'on' to store out-of-bag estimates of feature importance in the ensemble. Default is 'off'. Specifying 'on' also sets the 'OOBPred' value to 'on'. \\
\hline
\end{tabular}

\section*{TreeBagger}
\begin{tabular}{ll}
'Method' & \begin{tabular}{l}
Either 'classification' or 'regression'. \\
Regression requires a numeric Y.
\end{tabular} \\
'NVarToSample' & \begin{tabular}{l}
Number of variables to select at random for each \\
decision split. Default is the square root of the \\
number of variables for classification and one third \\
of the number of variables for regression. Valid \\
values are 'all' or a positive integer. Setting this \\
argument to any valid value but 'all' invokes
\end{tabular} \\
Breiman's 'random forest' algorithm.
\end{tabular}
- 'UseSubstreams' - If true select each bootstrap replicate using a separate Substream of the random number generator (aka Stream). This option is available only with RandStream types that support Substreams: 'mlfg6331_64' or 'mrg32k3a'. Default is false, do not use a different Substream to compute each bootstrap replicate.
- Streams - A RandStream object or cell array of such objects. If you do not specify Streams, TreeBagger uses the default stream or streams. If you choose to specify Streams, use a single object except in the case
- You have an open MATLAB pool
- UseParallel is true
- UseSubstreams is false

In that case, use a cell array the same size as the MATLAB pool.
In addition to the optional arguments above, this method accepts all optional classregtree arguments with the exception of 'minparent'. Refer to the documentation for classregtree for more detail.
```

Examples load fisheriris
b = TreeBagger(50,meas,species,'00BPred','on')
plot(oobError(b))
xlabel('number of grown trees')
ylabel('out-of-bag classification error')
returns
b =
Ensemble with 50 bagged decision trees:
Training X: [150x4]

```

\section*{TreeBagger}
\[
\begin{array}{rr}
\text { Training Y: } & \text { [150x1] } \\
\text { Method: } & \text { classification } \\
\text { Nvars: } & 4 \\
\text { NVarToSample: } & 2 \\
\text { MinLeaf: } & 1 \\
\text { FBoot: } & 1 \\
\text { SampleWithReplacement: } & 1 \\
\text { Compute00BPrediction: } & 1 \\
\text { Compute00BVarImp: } & 0 \\
\text { Proximity: } & {[]} \\
\text { Prune: } & 0 \\
\text { MergeLeaves: } & 0 \\
\text { TreeArgs: } & \\
\text { ClassNames:'setosa' 'versicolor' 'virginica' }
\end{array}
\]

See Alsoclassregtree | CompactTreeBagger
How To
- "Ensemble Methods" on page 15-58
- "Grouping Variables" on page 2-51

\section*{Purpose}

Plot tree

Note treedisp will be removed in a future release. Use classregtree.view instead.
```

Syntax
treedisp(t)
treedisp(t,param1,val1,param2,val2,...)

```

\section*{Description}

Note This function is superseded by the view method of the classregtree class and is maintained only for backwards compatibility. It accepts objects \(t\) created with the classregtree constructor.
treedisp (\(t\)) takes as input a decision tree \(t\) as computed by the treefit function, and displays it in a figure window. Each branch in the tree is labeled with its decision rule, and each terminal node is labeled with the predicted value for that node.

For each branch node, the left child node corresponds to the points that satisfy the condition, and the right child node corresponds to the points that do not satisfy the condition.
The Click to display pop-up menu at the top of the figure enables you to display more information about each node, as described in the following table.
\begin{tabular}{l|l}
\hline Menu Choice & Displays \\
\hline Identity & \begin{tabular}{l}
The node number, whether the node is a branch \\
or a leaf, and the rule that governs the node
\end{tabular} \\
\hline Variable ranges & \begin{tabular}{l}
The range of each of the predictor variables for \\
that node
\end{tabular} \\
\hline Node statistics & \begin{tabular}{l}
Descriptive statistics for the observations falling \\
into this node
\end{tabular} \\
\hline
\end{tabular}

\section*{treedisp}

After you select the type of information you want, click any node to display the information for that node.

The Pruning level button displays the number of levels that have been cut from the tree and the number of levels in the unpruned tree. For example, 1 of 6 indicates that the unpruned tree has six levels, and that one level has been cut from the tree. Use the spin button to change the pruning level.
treedisp(t,param1,val1,param2,val2,...) specifies optional parameter name-value pairs, listed in the following table.
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline 'names ' & \begin{tabular}{l}
A cell array of names for the predictor variables, \\
in the order in which they appear in the \(X\) matrix \\
from which the tree was created (see treefit)
\end{tabular} \\
\hline 'prunelevel' & Initial pruning level to display \\
\hline
\end{tabular}

\section*{Examples}

Create and graph classification tree for Fisher's iris data. The names in this example are abbreviations for the column contents (sepal length, sepal width, petal length, and petal width).
```

load fisheriris;
t = treefit(meas,species);
treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & - \\
\hline Click to display: & Identity & \(\checkmark\) & Magnification: & 100\% & \(\checkmark\) & Pruning level: & 0 of 4 & - \\
\hline
\end{tabular}

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also treefit | treeprune | treetest

Purpose Fit tree

Note treefit will be removed in a future release. Use classregtree instead.
```

Syntax $\quad t=\operatorname{treefit}(x, y)$
t = treefit(X,y,param1,val1,param2,val2,...)

```

\section*{Description}

Note This function is superseded by the classregtree constructor of the classregtree class and is maintained only for backwards compatibility. It returns objects \(t\) in the classregtree class.
\(t=\operatorname{treefit}(X, y)\) creates a decision tree \(t\) for predicting response \(y\) as a function of predictors \(X\). \(X\) is an \(n\)-by-m matrix of predictor values. \(y\) is either a vector of \(n\) response values (for regression), or a character array or cell array of strings containing \(n\) class names (for classification). Either way, t is a binary tree where each non-terminal node is split based on the values of a column of \(X\).
\(\mathrm{t}=\) treefit \((\mathrm{X}, \mathrm{y}\), param1, val1, param2, val2, ...) specifies optional parameter name-value pairs. Valid parameter strings are:

The following table lists parameters available for all trees.
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline 'catidx' & \begin{tabular}{l}
Vector of indices of the columns of X . treefit \\
treats these columns as unordered categorical \\
values.
\end{tabular} \\
\hline 'method' & \begin{tabular}{l}
Either 'classification' (default if y is text) or \\
'regression' (default if y is numeric).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline 'splitmin' & \begin{tabular}{l}
A number n such that impure nodes must have n \\
or more observations to be split (default 10).
\end{tabular} \\
\hline 'prune' & \begin{tabular}{l}
'on' (default) to compute the full tree and a \\
sequence of pruned subtrees, or 'off' for the full \\
tree without pruning.
\end{tabular} \\
\hline
\end{tabular}

The following table lists parameters available for classification trees only.
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline 'cost' & \begin{tabular}{l}
p-by-p matrix \(C\), where \(p\) is the number of distinct \\
response values or class names in the input y. \\
\(C(i, j)\) is the cost of classifying a point into class \\
\(j\) if its true class is i. (The default has \(C(i, j)=1\) \\
if \(i \sim=j\), and \(C(i, j)=0\) if \(i=j)\).\(C can also be a\) \\
structure S with two fields: S.group containing \\
the group names, and S.cost containing a matrix \\
of cost values.
\end{tabular} \\
\hline 'splitcriterion' & \begin{tabular}{l}
Criterion for choosing a split: either ' gdi' \\
(default) for Gini's diversity index, 'twoing' for \\
the twoing rule, or 'deviance ' for maximum \\
deviance reduction.
\end{tabular} \\
\hline 'priorprob' & \begin{tabular}{l}
Prior probabilities for each class, specified as a \\
vector (one value for each distinct group name) \\
or as a structure S with two fields: S.group \\
containing the group names, and S. prob \\
containing a vector of corresponding probabilities.
\end{tabular} \\
\hline
\end{tabular}

Examples Create a classification tree for Fisher's iris data:
```

load fisheriris;
t = treefit(meas,species);
treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});

```

\section*{treefit}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Click to display: Identity & \(\checkmark\) & Magnification: & 100\% & \(\checkmark\) & Pruning level: & 0 of 4 & - \\
\hline
\end{tabular}

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification
See Also treedisp | treetest
How To . "Grouping Variables" on page 2-51

\section*{Purpose}

Prune tree

Note treeprune will be removed in a future release. Use classregtree. prune instead.

\section*{Syntax}
```

t2 = treeprune(t1,'level',level)
t2 = treeprune(t1,'nodes',nodes)
t2 = treeprune(t1)

```

\section*{Description}

Note This function is superseded by the prune method of the classregtree class and is maintained only for backwards compatibility. It accepts objects \(t 1\) created with the classregtree constructor and returns objects t 2 in the classregtree class.
t2 = treeprune(t1,'level',level) takes a decision tree t1 as created by the treefit function, and a pruning level, and returns the decision tree t2 pruned to that level. Setting level to 0 means no pruning. Trees are pruned based on an optimal pruning scheme that first prunes branches giving less improvement in error cost.
t2 = treeprune(t1, 'nodes', nodes) prunes the nodes listed in the nodes vector from the tree. Any t1 branch nodes listed in nodes become leaf nodes in t2, unless their parent nodes are also pruned. The treedisp function can display the node numbers for any node you select.
t2 \(=\) treeprune(t 1) returns the decision tree t2 that is the same as t 1 , but with the optimal pruning information added. This is useful only if you created t1 by pruning another tree, or by using the treefit function with pruning set 'off'. If you plan to prune a tree multiple times, it is more efficient to create the optimal pruning sequence first.

Pruning is the process of reducing a tree by turning some branch nodes into leaf nodes, and removing the leaf nodes under the original branch.

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also treefit | treetest | treedisp

\section*{TreeBagger.Trees property}
Purpose Decision trees in ensemble
Description The Trees property is a cell array of size NTrees-by- 1 containing the trees in the ensemble.
See Also NTrees

\section*{Purpose}

Error rate
Syntax
```

cost = treetest(t,'resubstitution')
cost = treetest(t,'test',X,y)
cost = treetest(t,'crossvalidate',X,y)
[cost,secost,ntnodes,bestlevel] = treetest(...)
[...] = treetest(...,param1,val1,param2,val2,...)

```

Note treetest will be removed in a future release. Use classregtree.test instead.

\section*{Description}

Note This function is superseded by the test method of the classregtree class class and is maintained only for backwards compatibility. It accepts objects \(t\) created with the classregtree constructor.
cost \(=\) treetest(\(t\), 'resubstitution') computes the cost of the tree \(t\) using a resubstitution method. \(t\) is a decision tree as created by the treefit function. The cost of the tree is the sum over all terminal nodes of the estimated probability of that node times the node's cost. If \(t\) is a classification tree, the cost of a node is the sum of the misclassification costs of the observations in that node. If \(t\) is a regression tree, the cost of a node is the average squared error over the observations in that node. cost is a vector of cost values for each subtree in the optimal pruning sequence for \(t\). The resubstitution cost is based on the same sample that was used to create the original tree, so it underestimates the likely cost of applying the tree to new data.
cost \(=\) treetest(\(t\), 'test', \(\mathrm{X}, \mathrm{y}\)) uses the predictor matrix X and response \(y\) as a test sample, applies the decision tree \(t\) to that sample, and returns a vector cost of cost values computed for the test sample. X and y should not be the same as the learning sample, which is the sample that was used to fit the tree \(t\).
cost \(=\) treetest(t, 'crossvalidate', \(\mathrm{X}, \mathrm{y}\)) uses 10 -fold cross-validation to compute the cost vector. \(X\) and \(y\) should be the learning sample, which is the sample that was used to fit the tree \(t\). The function partitions the sample into 10 subsamples, chosen randomly but with roughly equal size. For classification trees, the subsamples also have roughly the same class proportions. For each subsample, treetest fits a tree to the remaining data and uses it to predict the subsample. It pools the information from all subsamples to compute the cost for the whole sample.
[cost, secost, ntnodes,bestlevel] = treetest(...) also returns the vector secost containing the standard error of each cost value, the vector ntnodes containing number of terminal nodes for each subtree, and the scalar bestlevel containing the estimated best level of pruning. bestlevel \(=0\) means no pruning, i.e., the full unpruned tree. The best level is the one that produces the smallest tree that is within one standard error of the minimum-cost subtree.
[...] = treetest(...,param1,val1,param2,val2,...) specifies optional parameter name-value pairs chosen from the following table.
\begin{tabular}{l|l}
\hline Parameter & Value \\
\hline 'nsamples ' & \begin{tabular}{l}
The number of cross-validations samples (default \\
ic -10)
\end{tabular} \\
\hline 'treesize' & \begin{tabular}{l}
Either 'se' (default) to choose the smallest tree \\
whose cost is within one standard error of the \\
minimum cost, or 'min' to choose the minimal cost \\
tree.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Find the best tree for Fisher's iris data using cross-validation. The solid line shows the estimated cost for each tree size, the dashed line marks one standard error above the minimum, and the square marks the smallest tree under the dashed line.
```

% Start with a large tree.
load fisheriris;
t = treefit(meas,species','splitmin',5);

```
```

% Find the minimum-cost tree.
[c,s,n,best] = treetest(t,'cross',meas,species);
tmin = treeprune(t,'level',best);
% Plot smallest tree within 1 std of minimum cost tree.
[mincost,minloc] = min(c);
plot(n,c,'b-o',...
n(best+1),c(best+1),'bs',...
n,(mincost+s(minloc))*ones(size(n)),'k--');
xlabel('Tree size (number of terminal nodes)')
ylabel('Cost')

```


\author{
References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984. \\ See Also treefit | treedisp
}

\section*{Purpose}

Predicted responses

Note treeval will be removed in a future release. Use classregtree.eval instead.

\author{
Syntax \\ \section*{Description}
}
```

yfit = treeval(t,x)
yfit = treeval(t,X,subtrees)
[yfit,node] = treeval(...)
[yfit,node,cname] = treeval(...)

```

Note This function is superseded by the eval method of the classregtree class and is maintained only for backwards compatibility. It accepts objects \(t\) created with the classregtree constructor.
yfit \(=\) treeval \((\mathrm{t}, \mathrm{X})\) takes a classification or regression tree t as produced by the treefit function and a matrix \(X\) of predictor values, and produces a vector yfit of predicted response values. For a regression tree, yfit(i) is the fitted response value for a point having the predictor values \(\mathrm{X}(\mathrm{i},:)\). For a classification tree, yfit(i) is the class number into which the tree would assign the point with data X(i,:). To convert the number into a class name, use the third output argument, cname (described below).
yfit \(=\) treeval(\(\mathrm{t}, \mathrm{X}\), subtrees) takes an additional vector subtrees of pruning levels, with 0 representing the full, unpruned tree. T must include a pruning sequence as created by the treefit or prunetree function. If subtree has \(k\) elements and X has \(n\) rows, the output yfit is an \(n\)-by- \(k\) matrix, with the \(j\) th column containing the fitted values produced by the subtrees (j) subtree. subtrees must be sorted in ascending order.
[yfit, node] = treeval(...) also returns an array node of the same size as yfit containing the node number assigned to each row of \(X\). The treedisp function can display the node numbers for any node you select.
[yfit, node, cname] = treeval(...) is valid only for classification trees. It returns a cell array cname containing the predicted class names.

\author{
Examples Find the predicted classifications for Fisher's iris data: \\ load fisheriris; \\ t = treefit(meas,species); \% Create decision tree \\ sfit = treeval(t,meas); \% Find assigned class numbers \\ sfit \(=\) t.classname(sfit); \% Get class names \\ mean(strcmp(sfit,species)) \% Proportion in correct class \\ ans \(=\) \\ 0.9800
}

\author{
References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.
}

\section*{See Also treefit | treeprune | treetest}

\section*{Superclasses ParametricTruncatableDistribution}

Purpose Triangular probability distribution object
Description prob.TriangularDistribution is an object consisting of parameters and a model description for a triangular probability distribution. Create a probability distribution object with specified parameters using makedist.

\section*{Construction}
pd = makedist('Triangular') creates a triangular probability distribution object using the default parameter values.
pd = makedist('Triangular','a', a, 'b', b, 'c', c) creates a triangular distribution object using the specified parameter values.

\section*{Input Arguments}

\section*{a-Lower limit}

\section*{0 (default) | scalar value}

Lower limit for the triangular distribution, specified as a scalar value.

\section*{Data Types \\ single | double \\ b - Peak location}
0.5 (default) | scalar value

Peak location for the triangular distribution, specified as a scalar value greater than or equal to \(a\).

\section*{Data Types}
single | double

\section*{c - Upper limit}

1 (default) | scalar value
Upper limit for the triangular distribution, specified as a scalar value greater than or equal to \(b\).

\section*{prob.TriangularDistribution}

\author{
Data Types \\ single | double
}

\section*{Properties}
a
Lower limit for the triangular distribution, stored as a scalar value.
```

Data Types
single | double
b

```

Location of the peak for the triangular distribution, stored as a scalar value greater than or equal to a.
```

Data Types
single | double

```
c
Upper limit for the triangular distribution, stored as a scalar value greater than or equal to \(b\).

\section*{Data Types \\ single | double}

\section*{DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{Data Types \\ char}

\section*{IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated. If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

\author{
Data Types \\ logical
}

\section*{NumParameters}

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterDescription}

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

\section*{Data Types}
char

\section*{ParameterNames}

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

\section*{Data Types}
char

\section*{ParameterValues}

Values of distribution parameters, stored as a vector. This property is read-only.

\section*{Data Types}
single | double

\section*{Truncation}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

\author{
Data Types \\ single | double
}

\section*{prob.TriangularDistribution}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{11}{*}{Methods} & \multicolumn{2}{|l|}{Inherited Methods} \\
\hline & cdf & Cumulative distribution function of probability distribution object \\
\hline & icdf & Inverse cumulative distribution function of probability distribution object \\
\hline & iqr & Interquartile range of probability distribution object \\
\hline & median & Median of probability distribution object \\
\hline & pdf & Probability density function of probability distribution object \\
\hline & random & Generate random numbers from probability distribution object \\
\hline & truncate & Truncate probability distribution object \\
\hline & mean & Mean of probability distribution object \\
\hline & std & Standard deviation of probability distribution object \\
\hline & var & Variance of probability distribution object \\
\hline
\end{tabular}

\section*{Definitions Triangular Distribution}

The triangular distribution is frequently used in simulations when limited sample data is available. The lower and upper limits represent the smallest and largest values, and the location of the peak represents an estimate of the mode.

The triangular distribution uses the following parameters.

\section*{prob.TriangularDistribution}
\begin{tabular}{l|l|l}
\hline Parameter & Description & Support \\
\hline a & Lower limit & \(a \leq b\) \\
\hline b & Peak location & \(a \leq b \leq c\) \\
\hline c & Upper limit & \(a \leq b \leq c\) \\
\hline
\end{tabular}

The probability density function (pdf) is
\[
f(x \mid a, b, c)=\frac{2(x-a)}{(c-a)(b-a)} \quad ; \quad a \leq x \leq b
\]
and
\[
f(x \mid a, b, c)=\frac{2(c-x)}{(c-a)(c-b)} \quad ; \quad b<x \leq c .
\]

The value of the pdf is 0 when \(x<\alpha\) or \(x>c\).

\section*{Examples}

\section*{Create a Triangular Distribution Object Using Default Parameters}

Create a triangular distribution object using the default parameter values.
pd = makedist('Triangular')
pd \(=\)
TriangularDistribution
\(A=0, B=0.5, C=1\)

\section*{Create a Triangular Distribution Object Using Specified Parameters}

Create a triangular distribution object by specifying parameter values.
```

pd = makedist('Triangular', 'a',-2,'b',1,'c',5)
pd =

```

TriangularDistribution
\(A=-2, B=1, C=5\)

Compute the mean of the distribution.
\(m=\operatorname{mean}(p d)\)
m =
1.3333

See Also makedist
Concepts - Class Attributes
- Property Attributes
\begin{tabular}{ll}
Purpose & Mean excluding outliers \\
Syntax & \(m=\operatorname{trimmean}(X\), percent \()\) \\
& trimmean \((X\), percent, dim \()\) \\
& \(m=\operatorname{trimmean}(X\), percent, flag \()\) \\
& \(m=\operatorname{trimmean}(x\), percent,flag, dim \()\)
\end{tabular}

Description

Tips
'floor' Round \(k\) down to the next smaller integer.
'weight ' If \(k=i+f\) where \(i\) is the integer part and \(f\) is the fraction, compute a weighted mean with weight (\(1-f\)) for the \((i+1)\) th and (\(n-i\))th values, and full weight for the values between them.
\(m=\) trimmean(x, percent,flag,dim) takes the trimmed mean along dimension dim of \(x\).
\(m=\) trimmean(X, percent) calculates the trimmed mean of the values in \(X\). For a vector input, \(m\) is the mean of \(X\), excluding the highest and lowest k data values, where \(\mathrm{k}=\mathrm{n}\) * (percent/100)/2 and where n is the number of values in \(X\). For a matrix input, \(m\) is a row vector containing the trimmed mean of each column of \(X\). For \(n\)-D arrays, trimmean operates along the first non-singleton dimension. percent is a scalar between 0 and 100 .
trimmean (X, percent, dim) takes the trimmed mean along dimension dim of \(X\).
\(m=\) trimmean(X, percent,flag) controls how to trim when \(k\) is not an integer. flag can be chosen from the following:
\begin{tabular}{ll}
'round ' & \begin{tabular}{l}
Round \(k\) to the nearest integer (round to a smaller \\
integer if \(k\) is a half integer). This is the default.
\end{tabular} \\
'floor' & \begin{tabular}{l}
Round \(k\) down to the next smaller integer.
\end{tabular} \\
'weight ' & \begin{tabular}{l}
If \(k=i+f\) where \(i\) is the integer part and \(f\) is the \\
fraction, compute a weighted mean with weight \\
\((1-f)\) for the \((i+1)\) th and \((n-i)\) th values, and \\
full weight for the values between them.
\end{tabular}
\end{tabular}
,
The trimmed mean is a robust estimate of the location of a sample. If there are outliers in the data, the trimmed mean is a more representative estimate of the center of the body of the data than the mean. However, if the data is all from the same probability distribution,

\section*{trimmean}
then the trimmed mean is less efficient than the sample mean as an estimator of the location of the data.

\section*{Examples}

\section*{Example 1}

This example shows a Monte Carlo simulation of the efficiency of the \(10 \%\) trimmed mean relative to the sample mean for normal data.
```

x = normrnd(0,1,100,100);
m = mean(x);
trim = trimmean(x,10);
sm = std(m);
strim = std(trim);
efficiency = (sm/strim).^2
efficiency =
0.9702

```

\section*{Example 2}

Generate random data from the \(t\) distribution, which tends to have outliers:
```

rng('default') % to reproduce the plot exactly
x = trnd(1,40,1);
probplot(x)

```


Though the distribution is symmetric around zero, there are several outliers which will affect the mean. The trimmed mean is much closer to zero, which is much more representative of the data:
```

mean(x)
ans =
2.7991
trimmean(x,25)
ans =

```

\section*{trimmean}
\[
0.8797
\]

See Also mean | median | geomean | harmmean
Purpose Student's \(t\) random numbers
Syntax \(\mathrm{R}=\operatorname{trnd}(\mathrm{V})\)
\(R=\operatorname{trnd}(V, m, n, \ldots)\)
\(R=\operatorname{trnd}(V,[m, n, \ldots])\)
Description\(R=\operatorname{trnd}(V)\) generates random numbers from Student's \(t\) distributionwith \(V\) degrees of freedom. \(V\) can be a vector, a matrix, or amultidimensional array. The size of \(R\) is the size of \(V\).
\(R=\operatorname{trnd}(V, m, n, \ldots)\) or \(R=\operatorname{trnd}(V,[m, n, \ldots])\) generates an
\(m\)-by-n-by-... array. The \(V\) parameter can be a scalar or an array of the
same size as R.

\section*{Examples}
```

noisy = trnd(ones(1,6))
noisy =
19.7250}00.3488 0.2843 0.4034 0.4816 -2.4190
numbers = trnd(1:6,[1 6])
numbers =
-1.9500 -0.9611 -0.9038

```
numbers \(=\operatorname{trnd}(3,2,6)\)
numbers =
 -0.3177-0.0812 -0.6627 \(0.1905-1.5585-0.0433\)
 \(\begin{array}{lllllll}0.2536 & 0.5502 & 0.8646 & 0.8060 & -0.5216 & 0.0891\end{array}\)
See Also random | tpdf | tcdf | tinv | tstat
How To . "Student's \(t\) Distribution" on page B-108

\section*{prob.TruncatableDistribution}

Purpose Truncatable probability distribution object
Description Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.
\begin{tabular}{ll}
Methods & cdf \\
& icdf \\
& iqr \\
& median \\
& pdf \\
& random \\
See Also & makedist | fitdist | dfittool \\
Concepts & \begin{tabular}{l}
\(\bullet\) Class Attributes \\
\\
\end{tabular}
\end{tabular}

\title{
prob.TruncatableDistribution.truncate
}

\section*{Purpose Truncate probability distribution object}

Syntax \(\quad t=\) truncate (pd, lower, upper)
Description \(\quad \mathrm{t}=\) truncate (pd, lower, upper) returns a probability distribution t , which is the probability distribution pd truncated to the specified interval with lower limit, lower, and upper limit, upper.

\section*{Input Arguments}

\section*{Output \\ Arguments}

\section*{pd - Probability distribution \\ probability distribution object}

Probability distribution, specified as a probability distribution object. Create a probability distribution object with specified parameter values using makedist. Alternatively, for fittable distributions, create a probability distribution object by fitting it to data using fitdist or dfittool.

\section*{lower - Lower truncation limit}
scalar value
Lower truncation limit, specified as a scalar value.

\section*{Data Types}
single | double

\section*{upper - Upper truncation limit}
scalar value
Upper truncation limit, specified as a scalar value.

\section*{Data Types}
single | double

\section*{t- Truncated distribution}
probability distribution object
Truncated distribution, returned as a probability distribution object. The pdf of \(t\) is 0 outside the truncation interval. Inside the truncation interval, the pdf of \(t\) is equal to the \(p d f\) of \(p d\), but divided by the probability assigned to that interval by pd.

\section*{prob.TruncatableDistribution.truncate}

\section*{Examples Truncate a Probability Distribution}

Create a standard normal probability distribution object.
pd = makedist('Normal')
pd =
NormalDistribution
```

Normal distribution
mu = 0
sigma = 1

```

Truncate the distribution to have a lower limit of -2 and an upper limit of 2 .
```

t = truncate(pd,-2,2)

```
\(\mathrm{t}=\)

NormalDistribution
```

Normal distribution
mu = 0
sigma = 1
Truncated to the interval [-2, 2]

```

Plot the pdf of the original and truncated distributions for a visual comparison.
```

x = -3:.1:3;
figure;
plot(x,pdf(pd,x),'Color','red','LineWidth',2)
hold on;
plot(x,pdf(t,x),'Color','blue','LineWidth',2)
hold off;

```

\section*{prob.TruncatableDistribution.truncate}

\section*{Generate Random Numbers from a Truncated Distribution}

Create a standard normal probability distribution object.
pd = makedist('Normal')
pd =
NormalDistribution

\section*{prob.TruncatableDistribution.truncate}
```

Normal distribution
mu = 0
sigma = 1

```

Truncate the distribution by restricting it to positive values. Set the lower limit to 0 and the upper limit to infinity.
```

t = truncate(pd,0,inf)
t =
NormalDistribution
Normal distribution
mu = 0
sigma = 1
Truncated to the interval [0, Inf]

```

Generate random numbers from the truncated distribution and visualize with a histogram.
```

r = random(t,10000,1);
hist(r,100)

```


\author{
See Also \\ makedist | fitdist | dfittool
}

Purpose
Student's \(t\) mean and variance

\section*{Syntax \\ [M,V] = tstat(NU)}
\([M, V]=\operatorname{tstat}(N U)\) returns the mean of and variance for Student's \(t\) distribution using the degrees of freedom in NU. M and \(V\) are the same size as NU.

The mean of the Student's \(t\) distribution with parameter \(v\) is zero for values of \(v\) greater than 1 . If \(v\) is one, the mean does not exist. The variance for values of \(v\) greater than 2 is \(v /(v-2)\).

\section*{Examples}

Find the mean of and variance for 1 to 30 degrees of freedom.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\(\mathrm{m}=\)} \\
\hline NaN 0 & 00 & 0 & & \\
\hline 00 & 00 & 0 & & \\
\hline 00 & 00 & 0 & & \\
\hline 00 & 00 & 0 & & \\
\hline 00 & 00 & 0 & & \\
\hline 00 & 00 & 0 & & \\
\hline \multicolumn{5}{|l|}{\(\mathrm{v}=\)} \\
\hline NaN & 1.4000 & 1.1818 & 1.1176 & 1.0870 \\
\hline NaN & 1.3333 & 1.1667 & 1.1111 & 1.0833 \\
\hline 3.0000 & 1.2857 & 1.1538 & 1.1053 & 1.0800 \\
\hline 2.0000 & 1.2500 & 1.1429 & 1.1000 & 1.0769 \\
\hline 1.6667 & 1.2222 & 1.1333 & 1.0952 & 1.0741 \\
\hline 1.5000 & 1.2000 & 1.1250 & 1.0909 & 1.0714 \\
\hline
\end{tabular}

Note that the variance does not exist for one and two degrees of freedom.

\section*{See Also}
```

tpdf | tcdf | tinv | trnd

```
```

Purpose $\quad$ One-sample and paired-sample $t$-test
Syntax $\quad h=$ ttest $(x)$
h = ttest $(x, y)$
h = ttest( $x, y$, Name, Value)
$h=t t e s t(x, m)$
h = ttest(x,m,Name, Value)
[h, p] = ttest(__)
[h,p,ci,stats] = ttest(___)

```

Description \(\quad h=t\) test (\(x\)) returns a test decision for the null hypothesis that the data in \(x\) comes from a normal distribution with mean equal to zero and unknown variance, using the one-sample \(t\)-test. The alternative hypothesis is that the population distribution does not have a mean equal to zero. The result h is 1 if the test rejects the null hypothesis at the \(5 \%\) significance level, and 0 otherwise.
\(\mathrm{h}=\mathrm{ttest}(\mathrm{x}, \mathrm{y})\) returns a test decision for the null hypothesis that the data in \(x \quad y\) comes from a normal distribution with mean equal to zero and unknown variance, using the paired-sample \(t\)-test.
\(\mathrm{h}=\mathrm{ttest}(\mathrm{x}, \mathrm{y}\), Name, Value) returns a test decision for the paired-sample \(t\)-test with additional options specified by one or more name-value pair arguments. For example, you can change the significance level or conduct a one-sided test.
\(h=t \operatorname{test}(x, m)\) returns a test decision for the null hypothesis that the data in X comes from a normal distribution with mean m and unknown variance. The alternative hypothesis is that the mean is not m .
\(\mathrm{h}=\mathrm{ttest}(\mathrm{x}, \mathrm{m}\), Name, Value) returns a test decision for the one-sample \(t\)-test with additional options specified by one or more name-value
pair arguments. For example, you can change the significance level or conduct a one-sided test.
[\(\mathrm{h}, \mathrm{p}\)] = ttest (__) also returns the \(p\)-value, p , of the test, using any of the input arguments from the previous syntax groups.
[h,p,ci,stats] = ttest(__) also returns the confidence interval ci for the mean of x , or of \(\mathrm{x} \quad \mathrm{y}\) for the paired \(t\)-test, and the structure stats containing information about the test statistic.

\section*{Input \\ Arguments}

\section*{x-Sample data}

\section*{vector | matrix | multidimensional array}

Sample data, specified as a vector, matrix, or multidimensional array. ttest performs a separate \(t\)-test along each column and returns a vector of results. If \(y\) sample data is specified, \(x\) and \(y\) must be the same size.
```

Data Types
single | double

```

\section*{\(y\)-Sample data}
vector | matrix | multidimensional array
Sample data, specified as a vector, matrix, or multidimensional array. If \(y\) sample data is specified, \(x\) and \(y\) must be the same size.
```

Data Types
single | double

```

\section*{m-Hypothesized population mean}

\section*{0 (default) | scalar value}

Hypothesized population mean, specified as a scalar value.
Data Types
single | double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'Tail','right', 'Alpha', 0.01 conducts a right-tailed hypothesis test at the \(1 \%\) significance level.

\section*{'Alpha' - Significance level}
0.05 (default) | scalar value in the range \((0,1)\)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range \((0,1)\).

Example: 'Alpha', 0.01
Data Types
single | double

\section*{'Dim' - Dimension}
first nonsingleton dimension (default) | positive integer value
Dimension of the input matrix along which to test the means, specified as the comma-separated pair consisting of 'Dim' and a positive integer value. For example, specifying 'Dim', 1 tests the column means, while 'Dim' , 2 tests the row means.

\section*{Example: 'Dim',2}

Data Types
single | double

\section*{'Tail' - Type of alternative hypothesis}
'both' (default) | 'right' | 'left'
Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of 'Tail' and one of the following.
\begin{tabular}{ll}
'both' & \begin{tabular}{l}
Test the alternative hypothesis that the population \\
mean is not m.
\end{tabular} \\
'right' & \begin{tabular}{l}
Test the alternative hypothesis that the population \\
mean is greater than m.
\end{tabular} \\
'left' \(\quad\)\begin{tabular}{l}
Test the alternative hypothesis that the population \\
mean is less than \(m\).
\end{tabular} \\
Example: 'Tail', 'right'
\end{tabular}

\section*{Output Arguments}
h - Hypothesis test result
1|0
Hypothesis test result, returned as a logical value.
- If \(h=1\), this indicates the rejection of the null hypothesis at the Alpha significance level.
- If \(h=0\), this indicates a failure to reject the null hypothesis at the Alpha significance level.

\section*{p-p-value}
scalar value in the range \((0,1)\)
\(p\)-value of the test, returned as a scalar value in the range \((0,1) . \mathrm{p}\) is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of \(p\) cast doubt on the validity of the null hypothesis.

\section*{ci - Confidence interval}
vector
Confidence interval for the true population mean, returned as a two-element vector containing the lower and upper boundaries of the \(100 \times(1-A l p h a) \%\) confidence interval.

\section*{stats - Test statistics}
structure
Test statistics, returned as a structure containing the following:
- tstat - Value of the test statistic.
- \(d f\) - Degrees of freedom of the test.
- sd - Estimated population standard deviation. For a paired \(t\)-test, this is the standard deviation of \(x \quad y\).

\section*{Examples Test for a Mean Equal to Zero}

Load the sample data. Create a vector containing the third column of the stock returns data.
load stockreturns;
x = stocks(: 3);
Test the null hypothesis that the sample data comes from a population with mean equal to zero.
```

[h,p,ci,stats] = ttest(x)
h =
1
p =
0.0106
ci =
-0.7357
-0.0997
stats =
tstat: -2.6065
df: 99
sd: 1.6027

```

The returned value \(h=1\) indicates that ttest rejects the null hypothesis at the \(5 \%\) significance level.

\section*{Test Hypothesis at a Different Significance Level}

Load the sample data. Create a vector containing the third column of the stock returns data.
load stockreturns;
x = stocks(: 3);
Test the null hypothesis that the sample data are from a population with mean equal to zero at the \(1 \%\) significance level.
```

h = ttest(x,0,'Alpha',0.01)

```
h =

0
The returned value \(\mathrm{h}=0\) indicates that ttest does not reject the null hypothesis at the \(1 \%\) significance level.

\section*{Paired-Sample \(\boldsymbol{t}\)-Test}

Load the sample data. Create vectors containing the first and second columns of the data matrix to represent students' grades on two exams.
load examgrades;
\(x=\operatorname{grades}(:, 1)\);
y = grades(:,2);
Test the null hypothesis that the pairwise difference between data vectors \(x\) and \(y\) has a mean equal to zero.
```

[h,p] = ttest(x,y)
h =
0
p =
0.9805

```

The returned value of \(\mathrm{h}=0\) indicates that ttest does not reject the null hypothesis at the default \(5 \%\) significance level.

\section*{Paired-Sample \(\boldsymbol{t}\)-Test at a Different Significance Level}

Load the sample data. Create vectors containing the first and second columns of the data matrix to represent students' grades on two exams.
```

load examgrades;
x = grades(:,1);
y = grades(:,2);

```

Test the null hypothesis that the pairwise difference between data vectors \(x\) and \(y\) has a mean equal to zero at the \(1 \%\) significance level.
```

[h,p] = ttest(x,y,'Alpha',0.01)
h =
0
p =
0.9805

```

The returned value of \(h=0\) indicates that ttest does not reject the null hypothesis at the \(1 \%\) significance level.

\section*{Test for a Hypothesized Mean}

Load the sample data. Create a vector containing the first column of the students' exam grades data.
```

load examgrades;
x = grades(:,1);

```

Test the null hypothesis that sample data comes from a distribution with mean \(\mathrm{m}=75\).
h = ttest \((x, 75)\)
h =

0
The returned value of \(\mathrm{h}=0\) indicates that ttest does not reject the null hypothesis at the \(5 \%\) significance level.

\section*{One-Sided Hypothesis Test}

Load the sample data. Create a vector containing the first column of the students' exam grades data.
```

load examgrades;
x = grades(:,1);

```

Test the null hypothesis that the data comes from a population with mean equal to 65 , against the alternative that the mean is greater than 65 .
```

h = ttest(x,65,'Tail','right')
h =
1

```

The returned value of \(h=1\) indicates that ttest rejects the null hypothesis at the \(5 \%\) significance level, in favor of the alternate hypothesis that the data comes from a population with a mean greater than 65.

\section*{Definitions One-Sample \(\mathbf{t}\)-Test}

The one-sample \(t\)-test is a parametric test of the location parameter when the population standard deviation is unknown. The test statistic is
\[
t=\frac{\bar{x}-\mu}{s / \sqrt{n}},
\]
where \(\bar{x}\) is the sample mean, \(\mu\) is the hypothesized population mean, \(s\) is the sample standard deviation, and \(n\) is the sample size. Under the null hypothesis, the test statistic has Student's \(t\) distribution with \(n-1\) degrees of freedom.

\section*{Multidimensional Array}

A multidimensional array has more than two dimensions. For example, if \(x\) is a 1-by- 3 -by- 4 array, then \(x\) is a three-dimensional array.

\section*{First Nonsingleton Dimension}

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1 . For example, if \(x\) is a 1 -by- 2 -by- 3 -by- 4 array, then the second dimension is the first nonsingleton dimension of \(x\).

See Also
ztest | ttest2

Purpose \(\quad\) Two-sample \(t\)-test
\(\begin{array}{cl}\text { Syntax } \quad & h=\operatorname{ttest2}(x, y) \\ & h=\operatorname{ttest2}(x, y, \text { Name }, \text { Value }) \\ & {[h, p]=\operatorname{ttest2}(\ldots)} \\ & {[h, p, c i, \operatorname{stats}]=\text { ttest2 }(\ldots)}\end{array}\)

\section*{Description}

\section*{Input \\ Arguments}
\(\mathrm{h}=\mathrm{ttest2}(\mathrm{x}, \mathrm{y})\) returns a test decision for the null hypothesis that the data in vectors \(x\) and \(y\) comes from independent random samples from normal distributions with equal means and equal but unknown variances, using the two-sample \(t\)-test. The alternative hypothesis is that the data in x and y comes from populations with unequal means. The result h is 1 if the test rejects the null hypothesis at the \(5 \%\) significance level, and 0 otherwise.
\(\mathrm{h}=\) ttest2(\(\mathrm{x}, \mathrm{y}\), Name, Value) returns a test decision for the two-sample \(t\)-test with additional options specified by one or more name-value pair arguments. For example, you can change the significance level or conduct the test without assuming equal variances.
[h, p] = ttest2 (__) also returns the p-value, p , of the test, using any of the input arguments in the previous syntaxes.
[h, p, ci, stats] = ttest2(__) also returns the confidence interval on the difference of the population means, ci, and the structure stats containing information about the test statistic.

\section*{x-Sample data}
vector | matrix | multidimensional array
Sample data, specified as a vector, matrix, or multidimensional array. ttest2 treats NaN values as missing data and ignores them.
- If \(x\) and \(y\) are specified as vectors, they do not need to be the same length.
- If \(x\) and \(y\) are specified as matrices, they must have the same number of columns. ttest2 performs a separate \(t\)-test along each column and returns a vector of results.
- If \(x\) and \(y\) are specified as multidimensional arrays, they must have the same size along all but the first nonsingleton dimension.

\section*{Data Types}
single | double

\section*{\(y\)-Sample data}
vector | matrix | multidimensional array
Sample data, specified as a vector, matrix, or multidimensional array. ttest2 treats NaN values as missing data and ignores them.
- If \(x\) and \(y\) are specified as vectors, they do not need to be the same length.
- If \(x\) and \(y\) are specified as matrices, they must have the same number of columns. ttest2 performs a separate \(t\)-test along each column and returns a vector of results.
- If \(x\) and \(y\) are specified as multidimensional arrays, they must have the same size along all but the first nonsingleton dimension. ttest2 works along the first nonsingleton dimension.

\section*{Data Types}
single | double

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ... , NameN, ValueN.

Example: 'Tail','right','Alpha', 0.01,'Vartype', 'unequal' specifies a right-tailed test at the \(1 \%\) significance level, and does not assume that x and y have equal population variances.

\section*{'Alpha' - Significance level}
0.05 (default) | scalar value in the range \((0,1)\)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range \((0,1)\).

\section*{Example: 'Alpha',0.01}

\section*{Data Types}
single | double

\section*{'Dim' - Dimension}
first nonsingleton dimension (default) | positive integer value
Dimension of the input matrix along which to test the means, specified as the comma-separated pair consisting of 'Dim' and a positive integer value. For example, specifying 'Dim', 1 tests the column means, while 'Dim' , 2 tests the row means.

Example: 'Dim',2

\section*{Data Types \\ single | double}

\section*{'Tail' - Type of alternative hypothesis \\ 'both' (default) | 'right' | 'left'}

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of 'Tail' and one of the following.
\begin{tabular}{ll}
'both ' & \begin{tabular}{l}
Test the alternative hypothesis that the population \\
means are not equal.
\end{tabular} \\
'right' & \begin{tabular}{l}
Test the alternative hypothesis that the population \\
mean of \(x\) is greater than the population mean of \(y\).
\end{tabular} \\
'left' & \begin{tabular}{l}
Test the alternative hypothesis that the population \\
mean of \(x\) is less than the population mean of \(y\).
\end{tabular}
\end{tabular}

Example: 'Tail','right'

\section*{'Vartype' - Variance type \\ 'equal' (default) | 'unequal'}

Variance type, specified as the comma-separated pair consisting of 'Vartype' and one of the following.
'equal' Conduct test using the assumption that x and y are from normal distributions with unknown but equal variances.
'unequal' Conduct test using the assumption that x and y are from normal distributions with unknown and unequal variances. This is called the Behrens-Fisher problem. ttest2 uses Satterthwaite's approximation for the effective degrees of freedom.

Vartype must be a single string, even when X is a matrix or a multidimensional array.

Example: 'Vartype','unequal

\section*{Output Arguments}

\section*{h - Hypothesis test result}

1|0
Hypothesis test result, returned as a logical value.
- If \(\mathrm{h}=1\), this indicates the rejection of the null hypothesis at the Alpha significance level.
- If \(h=0\), this indicates a failure to reject the null hypothesis at the Alpha significance level.

\section*{p-p-value}
scalar value in the range \((0,1)\)
\(p\)-value of the test, returned as a scalar value in the range \((0,1) . \mathrm{p}\) is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of \(p\) cast doubt on the validity of the null hypothesis.

\section*{ttest2}

\section*{ci - Confidence interval}

\section*{vector}

Confidence interval for the difference in population means of \(x\) and \(y\), returned as a two-element vector containing the lower and upper boundaries of the \(100 \times(1-\) Alpha \() \%\) confidence interval.

\section*{stats - Test statistics}

\section*{structure}

Test statistics for the two-sample \(t\)-test, returned as a structure containing the following:
- tstat - Value of the test statistic.
- \(d f\) - Degrees of freedom of the test.
- sd - Pooled estimate of the population standard deviation (for the equal variance case) or a vector containing the unpooled estimates of the population standard deviations (for the unequal variance case).

\section*{Examples}

\section*{Test for Equal Means}

Load the data set. Create vectors containing the first and second columns of the data matrix to represent students' grades on two exams.
```

load examgrades;
x = grades(:,1);
y = grades(:,2);

```

Test the null hypothesis that the two data samples are from populations with equal means.
```

[h,p,ci,stats] = ttest2(x,y)
h =
0
p =
0.9867

```
```

ci =
-1.9438
1.9771
stats =
tstat: 0.0167
df: 238
sd: 7.7084

```

The returned value of \(\mathrm{h}=0\) indicates that ttest2 does not reject the null hypothesis at the default \(5 \%\) significance level.

\section*{Test for Equal Means Without Assuming Equal Variances}

Load the data set. Create vectors containing the first and second columns of the data matrix to represent students' grades on two exams.
```

load examgrades;
x = grades(:,1);
y = grades(:,2);

```

Test the null hypothesis that the two data vectors are from populations with equal means, without assuming that the populations also have equal variances.
```

[h,p] = ttest2(x,y,'Vartype','unequal')
h =
0
p =
0.9867

```

The returned value of \(h=0\) indicates that ttest2 does not reject the null hypothesis at the default \(5 \%\) significance level even if equal variances are not assumed.

\section*{Definitions}

\section*{See Also}

\section*{Two-Sample t-test}

The two-sample \(t\)-test is a parametric test that compares the location parameter of two independent data samples. The test statistic is
\[
t=\frac{\bar{x}-\bar{y}}{\sqrt{\frac{s_{x}^{2}}{n}}+\frac{s_{y}^{2}}{m}},
\]
where \(\bar{x}\) and \(\bar{y}\) are the sample means, \(s_{x}\) and \(s_{y}\) are the sample standard deviations, and \(n\) and \(m\) are the sample sizes.

In the case where it is assumed that the two data samples are from populations with equal variances, the test statistic under the null hypothesis has Student's \(t\) distribution with \(n+m-2\) degrees of freedom, and the sample standard deviations are replaced by the pooled standard deviation
\[
s=\sqrt{\frac{(n-1) s_{x}^{2}+(m-1) s_{y}^{2}}{n+m-2}}
\]

In the case where it is not assumed that the two data samples are from populations with equal variances, the test statistic under the null hypothesis has an approximate Student's \(t\) distribution with a number of degrees of freedom given by Satterthwaite's approximation. This test is sometimes called Welch's \(t\)-test.

\section*{Multidimensional Array}

A multidimensional array has more than two dimensions. For example, if \(x\) is a 1-by-3-by-4 array, then \(x\) is a three-dimensional array.

\section*{First Nonsingleton Dimension}

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1 . For example, if \(x\) is a 1 -by- 2 -by- 3 -by- 4 array, then the second dimension is the first nonsingleton dimension of \(x\).
ttest | ztest

\section*{Purpose Tree type}

\section*{Syntax ttype \(=\) type \((t)\)}

Description ttype \(=\) type(\(t\)) returns the type of the tree \(t\). ttype is 'regression ' for regression trees and 'classification' for classification trees.

\section*{Examples Create a classification tree for Fisher's iris data:}
```

load fisheriris;
t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2 class = setosa
3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
class = virginica
if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
class = virginica
class = versicolor
class = virginica

```
view(t)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Click to display: Identity & \(\checkmark\) & Magnification: & 100\% & & Pruning level: & 0 of 4 & - \\
\hline
\end{tabular}

```

ttype = type(t)
ttype =
classification

```

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.

\section*{See Also \\ classregtree}
Purpose Type of partition
Description The type of validation partition. It is 'kfold', 'holdout', 'leaveout', or 'resubstitution'.
See Also trainsize

\section*{qrandset.Type property}

Purpose Name of sequence on which point set \(P\) is based
Description P.Type returns a string that contains the name of the sequence on which the point set \(P\) is based, for example 'Sobol'. You cannot change the Type property for a point set.

\section*{Purpose Convert categorical array to unsigned 8-bit integers}
Syntax
B = uint8(A)

Description \(\quad B=\) uint8 \((A)\) converts the categorical array \(A\) to unsigned 8-bit integers. Each element of B contains the internal categorical level code for the corresponding element of A. Undefined elements of A are assigned the value 0 in \(B\). If A contains more than intmax ('uint8') levels, the internal codes will saturate to intmax ('uint8')when cast to int8.

See Also double | int8

\section*{categorical.uint 16}

Purpose Convert categorical array to unsigned 16-bit integers

\section*{Syntax \\ \(B=\) uint16(A)}

Description \(\quad B=\) uint16(A) converts the categorical array A to unsigned 16-bit integers. Each element of \(B\) contains the internal categorical level code for the corresponding element of \(A\).

Undefined elements of A are assigned the value 0 in B.
See Also double | int16

\title{
Purpose Convert categorical array to unsigned 32-bit integers
}
Syntax
\(B=\) uint32(A)

Description \(\quad B=\) uint32 \((A)\) converts the categorical array A to unsigned 32-bit integers. Each element of B contains the internal categorical level code for the corresponding element of \(A\).

Undefined elements of A are assigned the value 0 in B.
See Also double | int32

Purpose Convert categorical array to unsigned 64-bit integers

\section*{Syntax \\ \(B=\) uint64(A)}

Description
\(B=\) uint64 (A) converts the categorical array \(A\) to unsigned 64-bit integers. Each element of B contains the internal categorical level code for the corresponding element of \(A\).

Undefined elements of A are assigned the value 0 in B.
See Also
double | int64

Purpose Text label for undefined levels
\(\begin{array}{ll}\text { Description } & \begin{array}{l}\text { Text label for undefined levels. Constant property with value } \\ \text { '<undefined> ' . }\end{array}\end{array}\)

\section*{prob.UniformDistribution}

Superclasses ParametricTruncatableDistribution
Purpose Uniform probability distribution object
Description prob.UniformDistribution is an object consisting of parameters and a model description for a uniform probability distribution. Create a probability distribution object with specified parameters using makedist.

Construction
pd = makedist('Uniform') creates a uniform probability distribution object using the default parameter values.
pd = makedist('Uniform','Lower',lower,'Upper', upper) creates a uniform distribution object using the specified parameter values.

\section*{Input Arguments}

\section*{lower - Lower parameter}

0 (default) | scalar value
Lower limit for the uniform distribution, specified as a scalar value.
```

Data Types
single | double
upper - Upper parameter
1 (default) | scalar value

```

Upper parameter for the uniform distribution, specified as a scalar value greater than lower.

\section*{Data Types}
single | double

\section*{Properties lower}

Lower parameter for the uniform distribution, stored as a scalar value.

\section*{Data Types \\ single | double \\ upper}

Upper parameter for the uniform distribution, stored as a scalar value greater than lower.

\section*{Data Types}
single | double

\section*{DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{Data Types}
char

\section*{IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated.
If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

\section*{Data Types}
logical

\section*{NumParameters}

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterDescription}

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

\section*{prob.UniformDistribution}

\section*{Data Types \\ char \\ ParameterNames}

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

\section*{Data Types}
char

\section*{ParameterValues}

Values of distribution parameters, stored as a vector. This property is read-only.

\section*{Data Types \\ single | double \\ Truncation}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.
```

Data Types
single | double

```

\section*{Methods Inherited Methods}
\begin{tabular}{ll}
cdf & \begin{tabular}{l}
Cumulative distribution function \\
of probability distribution object
\end{tabular} \\
icdf & \begin{tabular}{l}
Inverse cumulative distribution \\
function of probability \\
distribution object
\end{tabular} \\
iqr & \begin{tabular}{l}
Interquartile range of probability \\
distribution object
\end{tabular} \\
median & \begin{tabular}{l}
Median of probability distribution \\
object
\end{tabular}
\end{tabular}
\begin{tabular}{ll}
pdf & \begin{tabular}{l}
Probability density function of \\
probability distribution object \\
Generate random numbers from \\
probability distribution object
\end{tabular} \\
truncate & \begin{tabular}{l}
Truncate probability distribution \\
object
\end{tabular} \\
mean & \begin{tabular}{l}
Mean of probability distribution \\
object
\end{tabular} \\
std & \begin{tabular}{l}
Standard deviation of probability \\
distribution object
\end{tabular} \\
var & \begin{tabular}{l}
Variance of probability \\
distribution object
\end{tabular}
\end{tabular}

\section*{Definitions Uniform Distribution}

The uniform distribution has a constant probability density function between its two parameters, lower (the minimum) and upper (the maximum). This distribution is appropriate for representing round-off errors in values tabulated to a particular number of decimal places.

The uniform distribution uses the following parameters.
\begin{tabular}{l|l|l}
\hline Parameter & Description & Support \\
\hline lower & Lower parameter & \(-\infty<\) lower \(<\) upper \\
\hline upper & \begin{tabular}{l}
Upper \\
parameter
\end{tabular} & lower \(<\) upper \(<\infty\) \\
\hline
\end{tabular}

The probability density function (pdf) is
\[
f(x \mid \text { lower }, \text { upper })=\left(\frac{1}{\text { upper }- \text { lower }}\right) ; \quad \text { lower } \leq x \leq \text { upper }
\]

\section*{prob.UniformDistribution}
and 0 otherwise.

\section*{Examples Parameters \\ pd = makedist('Uniform') \\ pd \(=\) \\ UniformDistribution \\ Uniform distribution \\ Lower = 0 \\ Upper \(=1\)}

Create a Uniform Distribution Object Using Default

Create a uniform distribution object using the default parameter values.

\section*{Create a Uniform Distribution Object Using Specified Parameters}

Create a uniform distribution object by specifying parameter values.
```

pd = makedist('Uniform','Lower',-4,'Upper',2)
pd =

```

UniformDistribution
Uniform distribution
Lower = -4
Upper = 2
Compute the interquartile range of the distribution
\(r=i q r(p d)\)
\(r=\)

3

See Also makedist
Concepts - "Uniform Distribution (Continuous)" on page B-112
- Class Attributes
- Property Attributes

Purpose
Set union for dataset array observations
Syntax
\(C=u n i o n(A, B)\)
\(C=\) union(\(A, B\), vars)
C = union(A, B, vars, setOrder)
[C,iA,iB] = union(__)

Input
Arguments
\(C=\) union \((A, B)\) for dataset arrays \(A\) and \(B\) returns the combined set of observations from the two arrays, with repetitions removed. The observations in the dataset array C are sorted.
\(C=\) union(\(A, B\), vars) returns the combined set of observations from the two arrays, with repetitions of unique combinations of the variables specified in vars removed. The observations in the dataset array C are sorted by those variables.

The values for variables not specified in vars for each observation in \(C\) are taken from the corresponding observation in \(A\) or \(B\), or from \(A\) if there are common observations in both \(A\) and \(B\). If there are multiple observations in \(A\) or \(B\) that correspond to an observation in \(C\), those values are taken from the first occurrence.
\(C=\) union(A, B, vars, setOrder) returns the observations in \(C\) in the order specified by setOrder.
[C,iA, iB] = union(__) also returns index vectors iA and iB such that \(C\) is a sorted combination of the values \(A(i A,:)\) and \(B(i B,:)\). If there are common observations in \(A\) and \(B\), then union returns only the index from \(A\), in iA. If there are repeated observations in \(A\) or \(B\), then the index of the first occurrence is returned. You can use any of the previous input arguments.

\section*{A,B}

Input dataset arrays.

\section*{vars}

Cell array of strings containing variable names or a vector of integers containing variable column numbers, indicating
the variables for which union removes repetitions of unique combinations of the variables.

Specify vars as [] to use its default value of all variables.

\section*{setOrder}

Flag indicating the sorting order for the observations in C. The possible values of setOrder are:
\begin{tabular}{ll}
'sorted' & \begin{tabular}{l}
Observations in C are in sorted order \\
(default).
\end{tabular} \\
'stable ' & \begin{tabular}{l}
Observations in C are in the same order that \\
they appear in A, then B.
\end{tabular}
\end{tabular}

\section*{Output}

Arguments

\section*{Examples Union of Two Dataset Arrays}

Load sample data.
```

A = dataset('XLSFile','hospitalSmall.xlsx');
B = dataset('XLSFile','hospitalSmall.xlsx','Sheet',2);

```

\section*{dataset.union}
[length(A) length(B)]
ans =

148

The first dataset array, A, has 14 observations. The second dataset array, \(B\), has 8 observations.

Return the union.
\(C=\) union \((A, B)\);
length(C)
ans =
21

The union of the two dataset arrays has 21 observations, indicating that there was one observation replicated in A and B.
\begin{tabular}{ll}
See Also & \begin{tabular}{l}
dataset | intersect | ismember | setdiff | setxor | sortrows | \\
unique |
\end{tabular} \\
Related & - "Create a Dataset Array from a File" on page 2-71 \\
Examples & - "Merge Dataset Arrays" on page 2-101 \\
Concepts & - "Dataset Arrays" on page 2-135
\end{tabular}

\section*{Purpose}

Unique observations in dataset array

Note In a future release, the behavior of dataset. unique will change to be consistent with the MATLAB function unique. This behavior change is optional in R2012a. For a demonstration of using the 'R2012a' flag to preview the future behavior, or the 'legacy' flag to preserve the current behavior in your existing code, see the documentation for unique.

Syntax
\(C=\) unique \((A)\)
[C,ia,ic] = unique(\(A\))
\(C=\) unique (\(A\), vars)
[C,ia,ic] = unique(A,vars)
[...] = unique(A,vars,occurrence)
[...] = unique(...,'R2012a')
[...] = unique(...,'legacy')
[...] = unique(A, vars,setOrder)
Description
\(C=\) unique (A) returns a copy of the dataset \(A\) that contains only the sorted unique observations. A must contain only variables whose class has a unique method, including:
- numeric
- character
- logical
- categorical
- cell arrays of strings

For a variable with multiple columns, its class's unique method must support the 'rows ' flag.
[C,ia,ic] = unique (A) also returns index vectors ia and ic such that \(C=A(i a,:)\) and \(A=C(i c,:)\).
\(C=\) unique (A, vars) returns a dataset that contains only one observation for each unique combination of values for the variables in \(A\) specified in vars. vars is a positive integer, a vector of positive integers, a variable name, a cell array containing one or more variable names, or a logical vector. C includes all variables from A. The values in C for the variables not specified in vars are taken from the last occurrence among observations in A with each unique combination of values for the variables specified in vars.
[C,ia,ic] = unique(A,vars) also returns index vectors ia and ic such that \(C=A(i a,:)\) and \(A(:, v a r s)=C(i c, v a r s)\).
[...] = unique(A, vars, occurrence) specifies which index is returned in ia in the case of repeated observations in \(A\). The default value is occurrence='last', which returns the index of the last occurrence of each repeated observation in A. occurrence='first' returns the index of the first occurrence of each repeated observation in \(A\). The values in \(C\) for variables not specified in vars are taken from the observations A(ia,:). Specify vars as [] to use the default value of all variables.
[...] = unique(...,'R2012a') adopts the future behavior of unique. You can specify the flag as the final argument with any previous syntax that accepts A, vars, or occurrence.
[...] = unique(...,'legacy') preserves the current behavior of unique. You can specify the flag as the final argument with any previous syntax that accepts A, vars, or occurrence.
[...] = unique(A, vars, setOrder) returns the observations of \(C\) in a specific order. setOrder='sorted' returns the values of C in sorted order. setOrder='stable' returns the values of \(C\) in the same order as A. If there are repeated observations in \(A\), then ia returns the index of the first occurrence of each repeated observation. Specify vars as [] to use the default value of all variables.

Purpose Units of variables in data set
Description A cell array of strings giving the units of the variables in the data set. This property may be empty, but if not empty, the number of strings must equal the number of variables. Any individual string may be empty for a variable that does not have units defined. The default is an empty cell array.

Purpose Discrete uniform cumulative distribution function

\section*{Syntax \(\quad P=\operatorname{unidcdf}(X, N)\)}

Description
\(P=u n i d c d f(X, N)\) computes the discrete uniform cdf at each of the values in \(X\) using the corresponding maximum observable value in \(N . X\) and \(N\) can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The maximum observable values in \(N\) must be positive integers.

The discrete uniform cdf is
\[
p=F(x \mid N)=\frac{\text { floor }(x)}{N} I_{(1, \ldots, N)}(x)
\]

The result, \(p\), is the probability that a single observation from the discrete uniform distribution with maximum \(N\) will be a positive integer less than or equal to \(x\). The values \(x\) do not need to be integers.

Examples What is the probability of drawing a number 20 or less from a hat with the numbers from 1 to 50 inside?
```

probability = unidcdf(20,50)
probability =
0.4000

```
See Also cdf \| unidpdf \| unidinv \| unidstat \| unidrnd | mle
How To . "Uniform Distribution (Discrete)" on page B-114
```

Purpose Discrete uniform inverse cumulative distribution function
Syntax $\quad X=\operatorname{unidinv}(P, N)$
Description $\quad X=$ unidinv $(P, N)$ returns the smallest positive integer $X$ such that the
discrete uniform cdf evaluated at $X$ is equal to or exceeds $P$. You can
think of $P$ as the probability of drawing a number as large as $X$ out of a
hat with the numbers 1 through $N$ inside.
P and $N$ can be vectors, matrices, or multidimensional arrays that have
the same size, which is also the size of X . A scalar input for N or P is
expanded to a constant array with the same dimensions as the other
input. The values in $P$ must lie on the interval [01] and the values in $N$
must be positive integers.
Examples $\quad x=\operatorname{unidinv}(0.7,20)$
$\mathrm{x}=$
14
$y=u n i d i n v(0.7+e p s, 20)$
y $=$
15

```

A small change in the first parameter produces a large jump in output. The cdf and its inverse are both step functions. The example shows what happens at a step.

\section*{See Also icdf | unidcdf | unidpdf | unidstat | unidrnd}

How To - "Uniform Distribution (Discrete)" on page B-114

\section*{unidpdf}

Purpose Discrete uniform probability density function

\section*{Syntax \(\quad Y=\operatorname{unidpdf}(X, N)\)}

Description
\(Y=u n i d p d f(X, N)\) computes the discrete uniform pdf at each of the values in \(X\) using the corresponding maximum observable value in \(N . X\) and \(N\) can be vectors, matrices, or multidimensional arrays that have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in \(N\) must be positive integers.

The discrete uniform pdf is
\[
y=f(x \mid N)=\frac{1}{N} I_{(1, \ldots, N)}(x)
\]

You can think of \(y\) as the probability of observing any one number between 1 and \(n\).

\section*{Examples For fixed n, the uniform discrete pdf is a constant.}
```

y = unidpdf(1:6,10)
y =
0.1000}00.1000 0.1000 0.1000 0.1000 0.1000

```

Now fix x , and vary n .
```

likelihood = unidpdf(5,4:9)
likelihood =

0	0.2000	0.1667	0.1429	0.1250	0.1111

```

\section*{See Also}
pdf | unidcdf | unidinv | unidstat | unidrnd
How To . "Uniform Distribution (Discrete)" on page B-114
\begin{tabular}{|c|c|}
\hline Purpose & Discrete uniform random numbers \\
\hline Syntax & \[
\begin{aligned}
& R=\operatorname{unidrnd}(N) \\
& R=\operatorname{unidrnd}(N, m, n, \ldots) \\
& R=\operatorname{unidrnd}(N,[m, n, \ldots])
\end{aligned}
\] \\
\hline Description & \begin{tabular}{l}
\(\mathrm{R}=\) unidrnd(N) generates random numbers for the discrete uniform distribution with maximum \(N\). The parameters in \(N\) must be positive integers. \(N\) can be a vector, a matrix, or a multidimensional array. The size of \(R\) is the size of \(N\). The discrete uniform distribution arises from experiments equivalent to drawing a number from one to \(N\) out of a hat. \\
\(R=\) unidrnd(\(N, m, n, \ldots\)) or \(R=\) unidrnd(\(N,[m, n, \ldots]\)) generates an m-by-n-by-... array. The \(N\) parameter can be a scalar or an array of the same size as R .
\end{tabular} \\
\hline Examples & In the Massachusetts lottery, a player chooses a four-digit number. Generate random numbers for Monday through Saturday.
```

numbers = unidrnd(10000, 1,6)-1
numbers =
4564}118

``` \\
\hline See Also & random | unidpdf | unidcdf | unidinv | unidstat \\
\hline How To & - "Uniform Distribution (Discrete)" on page B-114 \\
\hline
\end{tabular}

\section*{unidstat}

Purpose Discrete uniform mean and variance

\section*{Syntax \(\quad[M, V]=\) unidstat (\(N\))}

Description \([M, V]=\) unidstat \((N)\) returns the mean and variance of the discrete uniform distribution with minimum value 1 and maximum value \(N\).

The mean of the discrete uniform distribution with parameter \(N\) is \((N+1) / 2\). The variance is \(\left(N^{2}-1\right) / 12\).
```

Examples [m,v] = unidstat(1:6)
m =
1.0000 1.5000 2.0000 2.5000 3.0000 3.5000
v =

```

See Also unidpdf | unidcdf | unidinv | unidrnd
How To . "Uniform Distribution (Discrete)" on page B-114

\section*{Purpose}

Continuous uniform cumulative distribution function

\section*{Syntax \\ \(P=\operatorname{unifcdf}(X, A, B)\)}
\(P=\) unifcdf \((X, A, B)\) computes the uniform cdf at each of the values in \(X\) using the corresponding lower endpoint (minimum), A and upper endpoint (maximum), B. X, A, and B can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant matrix with the same dimensions as the other inputs.

The uniform cdf is
\[
p=F(x \mid a, b)=\frac{x-a}{b-a} I_{[a, b]}(x)
\]

The standard uniform distribution has \(\mathrm{A}=0\) and \(\mathrm{B}=1\).

\section*{Examples}

What is the probability that an observation from a standard uniform distribution will be less than 0.75 ?
```

probability = unifcdf(0.75)
probability =
0.7500

```

What is the probability that an observation from a uniform distribution with \(a=-1\) and \(b=1\) will be less than 0.75 ?
```

probability = unifcdf(0.75,-1,1)
probability =
0.8750

```
```

See Also
cdf | unifpdf | unifinv | unifstat | unifit | unifrnd

```
How To
- "Uniform Distribution (Continuous)" on page B-112

Purpose
Continuous uniform inverse cumulative distribution function

\section*{Syntax \\ \(X=\operatorname{unifinv}(P, A, B)\)}
\(X=\) unifinv \((P, A, B)\) computes the inverse of the uniform cdf with parameters \(A\) and \(B\) (the minimum and maximum values, respectively) at the corresponding probabilities in \(P . P, A\), and \(B\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs.

The inverse of the uniform cdf is
\[
x=F^{-1}(p \mid a, b)=a+p(a-b) I_{[0,1]}(p)
\]

The standard uniform distribution has \(\mathrm{A}=0\) and \(\mathrm{B}=1\).

\section*{Examples}

What is the median of the standard uniform distribution?
```

median_value = unifinv(0.5)
median_value =
0.5000

```

What is the 99 th percentile of the uniform distribution between -1 and 1 ?
```

percentile = unifinv(0.99,-1,1)
percentile =
0.9800

```

\section*{See Also icdf | unifcdf | unifpdf | unifstat | unifit | unifrnd}

How To . "Uniform Distribution (Continuous)" on page B-112
```

Purpose Continuous uniform parameter estimates
Syntax [ahat,bhat] = unifit(data)
[ahat,bhat,ACI,BCI] = unifit(data)
[ahat,bhat,ACI,BCI] = unifit(data,alpha)

```

\section*{Description}
```

Examples $\quad r=\operatorname{unifrnd}(10,12,100,2)$;
[ahat,bhat,aci,bci] = unifit(r)
ahat $=$
10.015410 .0060
bhat $=$
11.998911 .9743
aci =
$9.9551 \quad 9.9461$
$10.0154 \quad 10.0060$
bci $=$
11.998911 .9743
$12.0592 \quad 12.0341$

```
See Also mle | unifpdf | unifcdf | unifinv | unifstat | unifrnd
How To . "Uniform Distribution (Continuous)" on page B-112

\section*{unifpdf}

Purpose Continuous uniform probability density function

\section*{Syntax \(\quad Y=\operatorname{unifpdf}(X, A, B)\)}

Description
\(Y=\) unifpdf(\(X, A, B)\) computes the continuous uniform pdf at each of the values in \(X\) using the corresponding lower endpoint (minimum), \(A\) and upper endpoint (maximum), B. \(X, A\), and \(B\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array with the same dimensions as the other inputs. The parameters in B must be greater than those in A.

The continuous uniform distribution pdf is
\[
y=f(x \mid a, b)=\frac{1}{b-a} I_{[a, b]}(x)
\]

The standard uniform distribution has \(\mathrm{A}=0\) and \(\mathrm{B}=1\).
Examples For fixed \(a\) and \(b\), the uniform pdf is constant.
```

x = 0.1:0.1:0.6;
y = unifpdf(x)
y =
1

```

What if x is not between a and b ?
```

$y=u n i f p d f(-1,0,1)$
$y=$
0

```

\section*{See Also \\ pdf | unifcdf | unifinv | unifstat | unifit | unifrnd}

How To . "Uniform Distribution (Continuous)" on page B-112

\section*{Purpose \\ Continuous uniform random numbers}

Syntax
Description

\section*{Examples}
\(R=\) unifrnd \((A, B)\)
\(R=\) unifrnd \((A, B, m, n, \ldots)\)
\(R=\) unifrnd \((A, B,[m, n, \ldots])\) size of the other input. must be m-by-n-by-... .
\(R=\) unifrnd \((A, B)\) returns an array \(R\) of random numbers generated from the continuous uniform distributions with lower and upper endpoints specified by A and B, respectively. If A and B are arrays, \(R(i, j)\) is generated from the distribution specified by the corresponding elements of A and B. If either A or B is a scalar, it is expanded to the
\(R=\) unifrnd(\(A, B, m, n, \ldots)\) or \(R=\) unifrnd \((A, B,[m, n, \ldots])\) returns an m-by-n-by-... array. If \(A\) and \(B\) are scalars, all elements of \(R\) are generated from the same distribution. If either \(A\) or \(B\) is an array, they

Generate one random number each from the continuous uniform distributions on the intervals \((0,1),(0,2), \ldots,(0,5)\) :
```

a = 0; b = 1:5;
r1 = unifrnd(a,b)
r1 =
0.8147 1.8116 0.3810 3.6535 3.1618

```

Generate five random numbers each from the same distributions:
```

B = repmat(b,5,1);
R = unifrnd(a,B)
R =
0.0975 0.3152 0.4257 2.6230 3.7887
0.2785 1.9412 1.2653 0.1428 3.7157
0.5469 1.9143 2.7472 3.3965 1.9611
0.9575 0.9708 2.3766 3.7360 3.2774
0.9649 1.6006 2.8785 2.7149 0.8559

```

Generate five random numbers from the continuous uniform distribution on \((0,2)\) :
```

r2 = unifrnd(a,b(2),1,5)
r2 =
1.4121 0.0637 0.5538

```

\section*{See Also}
rand | random | unifpdf | unifcdf | unifinv | unifstat | unifit
- "Uniform Distribution (Continuous)" on page B-112

\section*{Purpose \\ Continuous uniform mean and variance}

\section*{Syntax \\ [M, V\(]=\) unifstat \((\mathrm{A}, \mathrm{B})\)}
\([M, V]=\) unifstat \((A, B)\) returns the mean of and variance for the continuous uniform distribution using the corresponding lower endpoint (minimum), A and upper endpoint (maximum), B. Vector or matrix inputs for \(A\) and \(B\) must have the same size, which is also the size of \(M\) and V. A scalar input for A or B is expanded to a constant matrix with the same dimensions as the other input.

The mean of the continuous uniform distribution with parameters \(a\) and \(b\) is \((a+b) / 2\), and the variance is \((a-b)^{2} / 12\).

\section*{Examples}
a = 1:6;
b = 2.*a;
[m,v] = unifstat(a,b)
\(\mathrm{m}=\)
\begin{tabular}{llllll}
1.5000 & 3.0000 & 4.5000 & 6.0000 & 7.5000 & 9.0000 \\
\(=\) & & & & & \\
0.0833 & 0.3333 & 0.7500 & 1.3333 & 2.0833 & 3.0000
\end{tabular}

See Also unifpdf | unifcdf | unifinv | unifit | unifrnd
How To . "Uniform Distribution (Continuous)" on page B-112

Purpose Set union for categorical arrays

Note In a future release, the behavior of categorical. union will change to be consistent with the MATLAB function union. This behavior change is optional in R2012a. For a demonstration of using the 'R2012a' flag to preview the future behavior, or the 'legacy' flag to preserve the current behavior in your existing code, see the documentation for union.

Syntax
\(C=\) union \((A, B)\)
[C,IA,IB] = union(A,B)
[...] \(=\) union(\(A, B\), 'rows')
[...] = union(...,'R2012a')
[...] = union(...,'legacy')
[...] = union(A,B,setOrder)
[...] = union(A, B,'rows',setOrder)

\section*{Description}
\(C=\) union (\(A, B\)) for categorical vectors \(A\) and \(B\), returns a categorical vector \(C\) containing the combined values from \(A\) and \(B\) with no repetitions. The result \(C\) is sorted. The set of categorical levels for \(C\) is the sorted union of the sets of levels of the inputs, as determined by their labels.
\([C, I A, I B]=\) union \((A, B)\) also returns index vectors IA and IB such that \(C\) is a sorted combination of the elements \(A(I A)\) and \(B(I B)\). If there are common values in \(A\) and \(B\), then the index is returned in IB. If there are repeated values in \(A\) or \(B\), then the index of the last occurrence of each repeated value is returned.
\([\ldots]=\) union(\(A, B\), 'rows') for categorical matrices \(A\) and \(B\) with the same number of columns, returns the combined rows from the two matrices with no repetitions. The rows of the matrix C are sorted. The set of categorical levels for \(C\) is the sorted union of the sets of levels of the inputs. The optional outputs IA and IB are index vectors such that \(C\) is the sorted combination of the rows \(C=A(I A,:)\) and \(C=B(I B,:)\).
[...] = union(...,'R2012a') adopts the future behavior of union. You can specify the flag as the final argument with any previous syntax that accepts A, B, or 'rows'.
[...] = union(...,'legacy') preserves the current behavior of union. You can specify the flag as the final argument with any previous syntax that accepts A, B, or 'rows '.
[...] = union(A,B,setOrder) and [...] =
union(\(\mathrm{A}, \mathrm{B}\), 'rows', setOrder) returns the observations of C in a specific order. setOrder='sorted' returns the values or rows of \(C\) in sorted order. setOrder='stable' returns the values or rows of C in the same order as \(A\), then \(B\). If A and B are row vectors, then \(C\) is also a row vector. Otherwise, \(C\) is a column vector. IA and IB are column vectors. If there are repeated common values in \(A\) or \(B\), then the index of the first occurrence of each repeated value is returned.

See Also
intersect | ismember | setdiff | setxor | unique

Purpose Unique values in categorical array

Note In a future release, the behavior of categorical. unique will change to be consistent with the MATLAB function unique. This behavior change is optional in R2012a. For a demonstration of using the 'R2012a' flag to preview the future behavior, or the 'legacy' flag to preserve the current behavior in your existing code, see the documentation for unique.

Syntax
\(C=\) unique \((A)\)
[C, IA, IC] = unique(A)
[...] = unique(A,'rows')
[...] = unique(A,occurrence)
[...] = unique(A, 'rows',occurrence)
[...] = unique(...,'R2012a')
[...] = unique(...,'legacy')
[...] = unique(A,setOrder)
[...] = unique(A, 'rows', setOrder)

\section*{Description}
\(C=\) unique (A) returns a categorical array containing the same values as in A but with no repetitions. C is sorted by the order of A's levels.
[C,IA, IC] = unique(A) also returns index vectors IA and IC such that \(C=A(I A)\) and \(A=C(I C)\).
[...] = unique (A, 'rows') for the categorical matrix A returns the unique rows of \(A\). The rows of the matrix \(C\) are sorted by the order of A's levels. The optional outputs IA and IC are index vectors such that \(C=A(I A,:)\) and \(A=C(I C,:)\).
[...] = unique(A,occurrence) and [...] = unique (\(A\), 'rows' , occurrence) specify which index is returned in IA in the case of repeated values or rows in A. The default value is occurrence='last', which returns the index of the last occurrence of each repeated value or row in \(A\). occurrence='first' returns the index of the first occurrence of each repeated value or row in \(A\).
[...] = unique(...,'R2012a') adopts the future behavior of unique. You can specify the flag as the final argument with any previous syntax that accepts A, 'rows', or occurrence.
[...] = unique(...,'legacy') preserves the current behavior of unique. You can specify the flag as the final argument with any previous syntax that accepts A, 'rows', or occurrence.
[...] = unique(A,setOrder) and [...] = unique (A, 'rows ', setOrder) returns the values or rows of C in a specific order. setOrder='sorted' returns the values or rows of \(C\) in sorted order. setOrder='stable' returns the values or rows of C in the same order as \(A\). If \(A\) is a row vector, then \(C\) is also a row vector. Otherwise, C is a column vector. IA and IC are column vectors. If there are repeated values in A, then IA returns the index of the first occurrence of each repeated value.

See Also
intersect | ismember | setdiff | setxor | union

Purpose
Unstack data from single variable into multiple variables
Syntax

\section*{Description}
wide = unstack(tall,datavar,indvar)
[wide,itall] = unstack(tall,datavar,indvar)
wide = unstack(tall,datavar,indvar,'Parameter',value)
wide \(=\) unstack(tall, datavar, indvar) converts a dataset array tall to an equivalent dataset array wide that is in wide format, by unstacking a single variable in tall into multiple variables in wide. In general wide contains more variables, but fewer observations, than tall.
datavar specifies the data variable in tall to unstack. indvar specifies an indicator variable in tall that determines which variable in wide each value in datavar is unstacked into. unstack treats the remaining variables in tall as grouping variables. Each unique combination of their values defines a group of observations in tall that will be unstacked into a single observation in wide.
unstack creates \(m\) data variables in wide, where \(m\) is the number of group levels in indvar. The values in indvar indicate which of those \(m\) variables receive which values from datavar. The \(j\)-th data variable in wide contains the values from datavar that correspond to observations whose indvar value was the \(j\)-th of the \(m\) possible levels. Elements of those m variables for which no corresponding data value in tall exists contain a default value.
datavar is a positive integer, a variable name, or a logical vector containing a single true value. indvar is a positive integer, a variable name, or a logical vector containing a single true value.
[wide,itall] = unstack(tall,datavar,indvar) returns an index vector itall indicating the correspondence between observations in wide and those in tall. For each observation in wide, itall contains the index of the first in the corresponding group of observations in tall.

For more information on grouping variables, see "Grouping Variables" on page 2-51.
wide = unstack(tall,datavar,indvar,'Parameter',value) uses the following parameter name/value pairs to control how unstack converts variables in tall to variables in wide:
\(\left.\begin{array}{l|l}\hline \text { 'GroupVars' } & \begin{array}{l}\text { Grouping variables in tall that define groups } \\ \text { of observations. groupvars is a positive } \\ \text { integer, a vector of positive integers, a variable } \\ \text { name, a cell array containing one or more } \\ \text { variable names, or a logical vector. The default } \\ \text { is all variables in tall not listed in datavar } \\ \text { or indvar. }\end{array} \\ \hline \text { 'NewDataVarNames ' } & \begin{array}{l}\text { A cell array of strings containing names for the } \\ \text { data variables unstack should create in wide. } \\ \text { Default is the group names of the grouping } \\ \text { variable specified in indvar. }\end{array} \\ \hline \text { 'AggregationFun' } & \begin{array}{l}\text { A function handle that accepts a subset of } \\ \text { values from datavar and returns a single value. } \\ \text { stack applies this function to observations from } \\ \text { the same group that have the same value of } \\ \text { indvar. The function must aggregate the data } \\ \text { values into a single value, and in such cases } \\ \text { it is not possible to recover tall from wide } \\ \text { using stack. The default is @sum for numeric } \\ \text { data variables. For non-numeric variables, } \\ \text { there is no default, and you must specify }\end{array} \\ \text { 'AggregationFun' if multiple observations } \\ \text { in the same group have the same values of } \\ \text { indvar. }\end{array}\right\}\)
\begin{tabular}{l|l}
& \begin{tabular}{l}
containing one or more variable names, or a \\
logical vector. The default is no variables.
\end{tabular} \\
\hline
\end{tabular}

You can also specify more than one data variable in tall, each of which becomes a set of \(m\) variables in wide. In this case, specify datavar as a vector of positive integers, a cell array containing variable names, or a logical vector. You may specify only one variable with indvar. The names of each set of data variables in wide are the name of the corresponding data variable in tall concatenated with the names specified in 'NewDataVarNames'. The function specified in 'AggregationFun' must return a value with a single row.

\section*{Examples}

Convert a "wide format" data set to "tall format", and then back to a different "wide format":
load flu
\% FLU has a 'Date' variable, and 10 variables for estimated \% influenza rates (in 9 different regions, estimated from \% Google searches, plus a nationwide extimate from the \% CDC). Combine those 10 variables into a "tall" array that
\% has a single data variable, 'FluRate', and an indicator
\% variable, 'Region', that says which region each estimate
\% is from.
[flu2,iflu] = stack(flu, 2:11, 'NewDataVarName','FluRate', ...
 'IndVarName', 'Region')
\% The second observation in FLU is for \(10 / 16 / 2005\). Find the
\% observations in FLU2 that correspond to that date.
flu(2,:)
flu2(iflu==2,:)
\% Use the 'Date' variable from that tall array to split
\% 'FluRate' into 52 separate variables, each containing the
\% estimated influenza rates for each unique date. The new
\% "wide" array has one observation for each region. In
\% effect, this is the original array FLU "on its side".
dateNames = cellstr(datestr(flu.Date,'mmm_DD_YYYY'));
```

[flu3,iflu2] = unstack(flu2, 'FluRate', 'Date', ...
'NewDataVarNames', dateNames)
% Since observations in FLU3 represent regions, IFLU2
% indicates the first occurrence in FLU2 of each region.
flu2(iflu2,:)

```
```

See Also
dataset.stack | dataset.join

```

How To . "Grouping Variables" on page 2-51
Purpose Upper Pareto tails parameters
Syntax params = upperparams(obj)
Description params \(=\) upperparams \((\mathrm{obj})\) returns the 2 -element vector params ofshape and scale parameters, respectively, of the upper tail of the Paretotails object obj. upperparams does not return a location parameter.
Examples Fit Pareto tails to a \(t\) distribution at cumulative probabilities 0.1 and 0.9:
```

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
lowerparams(obj)
ans =
-0.1901 1.1898
upperparams(obj)
ans =
0.3646 0.5103

```

\section*{See Also}
paretotails | lowerparams

\section*{dataset.UserData property}
\(\begin{array}{ll}\text { Purpose } & \text { Variable containing additional information associated with data set } \\ \text { Description } & \begin{array}{l}\text { Any variable containing additional information to be associated with } \\ \text { the data set. The default is an empty array. }\end{array}\end{array}\)

\section*{prob.KernelDistribution.var}

Purpose Variance of probability distribution object
Syntax \(\quad v=\operatorname{var}(p d)\)
Description \(\quad v=\operatorname{var}(\mathrm{pd})\) returns the variance v of the probability distribution pd .
Input
Arguments
pd - Probability distribution
probability distribution object
Probability distribution, specified as a probability distribution object. Fit a probability distribution object to data using fitdist or dfittool.

\section*{Output \\ Arguments}

\section*{v-Variance}
nonnegative scalar value
Variance of the probability distribution, returned as a nonnegative scalar value.

\section*{Examples Variance of a Fitted Distribution}

Load the sample data. Create a vector containing the first column of students' exam grade data.
```

load examgrades;
x = grades(:,1);

```

Fit a kernel distribution object to the data.
```

pd = fitdist(x,'Kernel')
pd =

```

KernelDistribution
Kernel = normal
Bandwidth = 3.61677
Support = unbounded

Compute the variance of the fitted distribution.
```

v = var(pd)
v =

```
88.4893

\section*{See Also \\ fitdist | dfittool}

\section*{ProbDistUnivParam.var}
Purpose Return variance of ProbDistUnivParam object
Syntax \(V=\operatorname{var}(P D)\)
Description \(V=\operatorname{var}(P D)\) returns \(V\), the variance of the ProbDistUnivParam object \(P D\).
Input \(P D\)
An object of the class ProbDistUnivParam. Arguments
Output V
Arguments
See Also var

\section*{Purpose Variance of probability distribution object}
Syntax
\(\mathrm{v}=\operatorname{var}(\mathrm{pd})\)

Description \(\quad \mathrm{v}=\operatorname{var}(\mathrm{pd})\) returns the variance v of the probability distribution pd .

\section*{Input pd - Probability distribution \\ Arguments \\ probability distribution object}

Probability distribution, specified as a probability distribution object. Create a probability distribution object with specified parameter values using makedist.

\section*{Output v-Variance \\ Arguments \\ nonnegative scalar value}

Variance of the probability distribution, returned as a nonnegative scalar value.

\section*{Examples Variance of a Triangular Distribution}

Create a triangular distribution object.
```

pd = makedist('Triangular','a',-3,'b',1,'c',3)

```
pd \(=\)

TriangularDistribution
\(A=-3, B=1, C=3\)
Compute the variance of the distribution.
\(v=\operatorname{var}(p d)\)
v =
1.5556

\author{
See Also makedist
}

\section*{prob.ToolboxFittableParametricDistribution.var}

\section*{Purpose Variance of probability distribution object}
\[
\text { Syntax } \quad v=\operatorname{var}(p d)
\]

Description
Input Arguments
\(\mathrm{v}=\operatorname{var}(\mathrm{pd})\) returns the variance v of the probability distribution pd .

\author{
pd - Probability distribution
}
probability distribution object
Probability distribution, specified as a probability distribution object. Create a probability distribution object with specified parameter values using makedist. Alternatively, create a probability distribution object by fitting it to data using fitdist or dfittool.

\section*{Output v-Variance \\ Arguments \\ nonnegative scalar value}

Variance of the probability distribution, returned as a nonnegative scalar value.

\section*{Examples Variance of a Fitted Distribution}

Load the sample data. Create a vector containing the first column of students' exam grade data.
load examgrades;
x = grades(:,1);
Fit a normal distribution object to the data.
pd = fitdist(x,'Normal')
pd \(=\)
NormalDistribution
Normal distribution

\section*{prob.ToolboxFittableParametricDistribution.var}
```

    mu = 75.0083 [73.4321, 76.5846]
    sigma = 8.7202 [7.7391, 9.98843]

```

Compute the variance of the fitted distribution.
\(v=\operatorname{var}(p d)\)
\(\mathrm{v}=\)
76.0419

For a normal distribution, the variance is equal to the square of the parameter sigma.

\section*{Variance of a Skewed Distribution}

Create a Weibull probability distribution object.
```

pd = makedist('Weibull','a',5,'b',2)

```
pd \(=\)
WeibullDistribution
Weibull distribution
\(\mathrm{A}=5\)
\(B=2\)

Compute the variance of the distribution.
\(v=\operatorname{var}(p d)\)
v =
5.3650

See Also makedist | fitdist | dfittool

Purpose
Description

Cell array of strings giving descriptions of variables in data set

A cell array of strings giving the descriptions of the variables in the data set. This property may be empty, but if not empty, the number of strings must equal the number of variables. Any individual string may be empty for a variable that does not have a description defined. The default is an empty cell array.

\section*{classregtree.varimportance}

Purpose Compute embedded estimates of input feature importance
```

Syntax imp = varimportance(t)

```

Description imp = varimportance(\(t\)) computes estimates of input feature importance for tree \(t\) by summing changes in the risk due to splits on every feature. The returned vector imp has one element for each input variable in the data used to train this tree. At each node, the risk is estimated as node impurity if impurity was used to split nodes and node error otherwise. This risk is weighted by the node probability. Variable importance associated with this split is computed as the difference between the risk for the parent node and the total risk for the two children.

\section*{See Also \\ risk}

Purpose Cell array giving names of variables in data set
Description A cell array of nonempty, distinct strings giving the names of the variables in the data set. The number of strings must equal the number of variables. The default is the cell array of string names for the variables used to create the data set.

\section*{TreeBagger.VarNames property}

Purpose Variable names
Description The VarNames property is a cell array containing the names of the predictor variables (features). TreeBagger takes these names from the optional 'names' parameter. The default names are 'x1', 'x2', etc.

\section*{Purpose}

Chi-square variance test
Syntax
\(h=\operatorname{vartest}(x, v)\)
h = vartest(x, v,Name, Value)
[h, p] = vartest(__)
[h,p,ci,stats] = vartest(__)

Description

\section*{Input Arguments}
\(h=\) vartest \((x, v)\) returns a test decision for the null hypothesis that the data in vector \(x\) comes from a normal distribution with variance \(v\), using the chi-square variance test. The alternative hypothesis is that \(x\) comes from a normal distribution with a different variance. The result h is 1 if the test rejects the null hypothesis at the \(5 \%\) significance level, and 0 otherwise.
\(h\) = vartest(x,v,Name, Value) performs the chi-square variance test with additional options specified by one or more name-value pair arguments. For example, you can change the significance level or conduct a one-sided test.
[h, p] = vartest(__) also returns the \(p\)-value of the test, p , using any of the input arguments in the previous syntaxes.
[h,p,ci, stats] = vartest(__) also returns the confidence interval for the true variance, ci , and the structure stats containing information about the test statistic.

\section*{x-Sample data}
vector | matrix | multidimensional array
Sample data, specified as a vector, matrix, or multidimensional array. For matrices, vartest performs separate tests along each column of x, and returns a row vector of results. For multidimensional arrays, vartest works along the first nonsingleton dimension of \(x\).
```

Data Types
single | double

```

\section*{v-Hypothesized variance \\ nonnegative scalar value}

Hypothesized variance, specified as a nonnegative scalar value.

\section*{Data Types \\ single | double}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

Example: 'Tail', 'right', 'Alpha', 0.01 specifies a right-tailed hypothesis test at the \(1 \%\) significance level.

\section*{'Alpha' - Significance level}
0.05 (default) | scalar value in the range \((0,1)\)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range \((0,1)\).

Example: 'Alpha',0.01

\section*{Data Types}
single | double

\section*{'Dim' - Dimension}
first nonsingleton dimension (default) | positive integer value
Dimension of the input matrix to test along, specified as the comma-separated pair consisting of 'Dim' and a positive integer value. For example, specifying 'Dim', 1 tests the data in each column for equality to the hypothesized variance, while 'Dim' , 2 tests the data in each row.

Example: 'Dim',2

\section*{Data Types \\ single | double \\ 'Tail' - Type of alternative hypothesis \\ 'both' (default) | 'right' | 'left'}

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of 'Tail' and one of the following.
\begin{tabular}{ll}
'both' & \begin{tabular}{l}
Test the alternative hypothesis that the population \\
variance is not \(v\).
\end{tabular} \\
'right ' & \begin{tabular}{l}
Test the alternative hypothesis that the population \\
variance is greater than \(v\).
\end{tabular} \\
'left' & \begin{tabular}{l}
Test the alternative hypothesis that the population \\
variance is less than \(v\).
\end{tabular}
\end{tabular}

Example: 'Tail','right'

\section*{Output \\ h - Hypothesis test result \\ Arguments \\ 1| 0 .}

Hypothesis test result, returned as a logical value.
- If \(\mathrm{h}=1\), this indicates the rejection of the null hypothesis at the Alpha significance level.
- If \(\mathrm{h}=0\), this indicates a failure to reject the null hypothesis at the Alpha significance level.

\section*{p-p-value}
scalar value in the range \((0,1)\)
\(p\)-value of the test, returned as a scalar value in the range \((0,1) . \mathrm{p}\) is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of \(p\) cast doubt on the validity of the null hypothesis.

\section*{ci - Confidence interval}

\section*{vector}

Confidence interval for the true variance, returned as a two-element vector containing the lower and upper boundaries of the \(100 \times(1-\) Alpha)\% confidence interval.

\section*{stats - Test statistics}

\section*{structure}

Test statistics for the chi-square variance test, returned as a structure containing:
- chisqstat - Value of the test statistic.
- df - Degrees of freedom of the test.

\section*{Examples \\ Test for a Specified Variance}

Load the sample data. Create a vector containing the first column of the students' exam grades matrix.
```

load examgrades;
x = grades(:,1);

```

Test the null hypothesis that the data comes from a distribution with a variance of 25 .
```

[h,p,ci,stats] = vartest(x,25)
h =
1
p =
0
ci =
59.8936
99.7688
stats =

```

The returned value \(\mathrm{h}=1\) indicates that vartest rejects the null hypothesis at the default \(5 \%\) significance level. ci shows the lower and upper boundaries of the \(95 \%\) confidence interval for the true variance, and suggests that the true variance is greater than 25.

\section*{One-Sided Hypothesis Test}

Load the sample data. Create a vector containing the first column of the students' exam grades matrix.
```

load examgrades;
x = grades(:,1);

```

Test the null hypothesis that the data comes from a distribution with a variance of 25 , against the alternative hypothesis that the variance is greater than 25.
```

[h,p] = vartest(x,25,'Tail','right')
h =
1
p =
2.4269e-26

```

The returned value of \(h=1\) indicates that vartest rejects the null hypothesis at the default \(5 \%\) significance level, in favor of the alternative hypothesis that the variance is greater than 25 .

\section*{Definitions Chi-Square Variance Test}

The chi-square variance test is used to test if the variance of a population is equal to a hypothesized value.

The test statistic is
\[
T=\frac{(N-1)}{\left(\frac{s}{\sigma_{0}}\right)^{2}}
\]
where \(N\) is the sample size, \(s\) is the sample standard deviation, and \(\sigma_{0}\) is the hypothesized standard deviation. The denominator is the ratio of the sample standard deviation to the hypothesized standard deviation. The further this ratio deviates from 1, the more likely you are to reject the null hypothesis. The test statistic \(T\) has a chi-square distribution with \(N-1\) degrees of freedom under the null hypothesis.

\section*{Multidimensional Array}

A multidimensional array has more than two dimensions. For example, if \(x\) is a 1-by-3-by-4 array, then \(x\) is a three-dimensional array.

\section*{First Nonsingleton Dimension}

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1 . For example, if x is a 1-by-2-by-3-by-4 array, then the second dimension is the first nonsingleton dimension of \(x\).

\section*{Purpose}

Two-sample \(F\)-test for equal variances
Syntax
h = vartest2(x,y)
h = vartest2(x,y,Name, Value)
[h, p] = vartest2(___)
[h,p,ci,stats] = vartest2(__)

Description

\section*{Input Arguments}
\(\mathrm{h}=\) vartest2 \((\mathrm{x}, \mathrm{y})\) returns a test decision for the null hypothesis that the data in vectors x and y comes from normal distributions with the same variance, using the two-sample \(F\)-test. The alternative hypothesis is that they come from normal distributions with different variances. The result \(h\) is 1 if the test rejects the null hypothesis at the \(5 \%\) significance level, and 0 otherwise.
\(\mathrm{h}=\) vartest2(\(\mathrm{x}, \mathrm{y}\), Name, Value) returns a test decision for the two-sample \(F\)-test with additional options specified by one or more name-value pair arguments. For example, you can change the significance level or conduct a one-sided test.
[h, p] = vartest2 (__) also returns the \(p\)-value of the test, p , using any of the input arguments in the previous syntaxes.
[h,p,ci,stats] = vartest2(__) also returns the confidence interval for the true variance ratio, ci , and the structure stats containing information about the test statistic.

\section*{x-Sample data}
vector | matrix | multidimensional array
Sample data, specified as a vector, matrix, or multidimensional array.
- If \(x\) and \(y\) are vectors, they do not need to be the same length.
- If \(x\) and \(y\) are matrices, they must have the same number of columns, but do not need to have the same number of rows. vartest2 performs separate tests along each column and returns a vector of the results.
- If \(x\) and \(y\) are multidimensional arrays, they must have the same number of dimensions, and the same size along all but the first nonsingleton dimension.

\section*{Data Types \\ single | double}

\section*{\(y\)-Sample data}
vector | matrix | multidimensional array
Sample data, specified as a vector, matrix, or multidimensional array.
- If \(x\) and \(y\) are vectors, they do not need to be the same length.
- If \(x\) and \(y\) are matrices, they must have the same number of columns, but do not need to have the same number of rows. vartest2 performs separate tests along each column and returns a vector of the results.
- If \(x\) and \(y\) are multidimensional arrays, they must have the same number of dimensions, and the same size along all but the first nonsingleton dimension.

\section*{Data Types \\ single | double}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'Tail', 'right','Alpha', 0.01 specifies a right-tailed hypothesis test at the \(1 \%\) significance level.

\section*{'Alpha' - Significance level}
0.05 (default) | scalar value in the range \((0,1)\)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range \((0,1)\).

Example: 'Alpha', 0.01

\section*{Data Types}
single | double

\section*{'Dim' - Dimension}
first nonsingleton dimension (default) | positive integer value
Dimension of the input matrix to test along, specified as the comma-separated pair consisting of 'Dim' and a positive integer value. For example, specifying 'Dim', 1 tests the data in each column for variance equality, while 'Dim' , 2 tests the data in each row.

Example: 'Dim',2

\section*{Data Types}
single | double

\section*{'Tail' - Type of alternative hypothesis \\ 'both' (default) | 'right' | 'left'}

Type of alternative hypothesis to evaluate using the \(F\)-test, specified as the comma-separated pair consisting of 'Tail' and one of the following.
\[
\begin{array}{ll}
\text { 'both' } & \begin{array}{l}
\text { Test the alternative hypothesis that the population } \\
\text { variances are not equal. }
\end{array} \\
\text { 'right' } & \begin{array}{l}
\text { Test the alternative hypothesis that the population } \\
\text { variance of } x \text { is greater than that of } y .
\end{array} \\
\text { 'left' } & \begin{array}{l}
\text { Test the alternative hypothesis that the population } \\
\text { variance of } x \text { is less than that of } y .
\end{array}
\end{array}
\]

\section*{Example: 'Tail','right'}

\section*{Output h-Hypothesis test result Arguments \\ 1|0}

Hypothesis test result, returned as a logical value.
- If \(\mathrm{h}=1\), this indicates the rejection of the null hypothesis at the Alpha significance level.
- If \(h=0\), this indicates a failure to reject the null hypothesis at the Alpha significance level.

\section*{p-p-value}
scalar value in the range \((0,1)\)
\(p\)-value of the test, returned as a scalar value in the range \((0,1) . \mathrm{p}\) is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of \(p\) cast doubt on the validity of the null hypothesis.

\section*{ci - Confidence interval}
vector
Confidence interval for the true ratio of the population variances, returned as a two-element vector containing the lower and upper boundaries of the \(100 \times(1-\) Alpha \() \%\) confidence interval.

\section*{stats - Test statistics}
structure
Test statistics for the hypothesis test, returned as a structure containing:
- fstat - Value of the test statistic.
- df1 - Numerator degrees of freedom of the test.
- df2 - Denominator degrees of freedom of the test.

\section*{Examples Test for Equal Variances}

Load the sample data. Create vectors containing the first and second columns of the data matrix to represent students' grades on two exams.
```

load examgrades;
x = grades(:,1);
y = grades(:,2);

```

Test the null hypothesis that the data in x and y comes from distributions with the same variance.
```

[h,p,ci,stats] = vartest2(x,y)
h =
1
p =
0.0019
ci =
1.2383
2.5494
stats =
fstat: 1.7768
df1: 119
df2: }11

```

The returned result \(\mathrm{h}=1\) indicates that vartest2 rejects the null hypothesis at the default \(5 \%\) significance level. ci contains the lower and upper boundaries of the \(95 \%\) confidence interval for the true variance ratio. stats contains the value of the test statistic for the \(F\)-test and the numerator and denominator degrees of freedom.

\section*{One-Sided Hypothesis Test}

Load the sample data. Create vectors containing the first and second columns of the data matrix to represent students' grades on two exams.
```

load examgrades;
x = grades(:,1);
y = grades(:,2);

```

Test the null hypothesis that the data in x and y comes from distributions with the same variance, against the alternative that the population variance of \(x\) is greater than that of \(y\).
```

vartest2(x,y,'Tail','right')
h =
1
p =
9.4364e-04

```

The returned result \(\mathrm{h}=1\) indicates that vartest2 rejects the null hypothesis at the default \(5 \%\) significance level, in favor of the alternative hypothesis that the population variance of \(x\) is greater than that of \(y\).

\section*{Definitions}

\section*{Two-Sample F-Test}

The two-sample \(F\)-test is used to test if the variances of two populations are equal. The test statistic is
\[
F=\frac{s_{1}^{2}}{s_{2}{ }^{2}},
\]
where \(s_{1}\) and \(s_{2}\) are the sample variances. The test statistic is a ratio of the two sample variances. The further this ratio deviates from 1, the more likely you are to reject the null hypothesis. Under the null hypothesis, the test statistic \(F\) has a \(F\)-distribution with numerator degrees of freedom equal to \(N_{1}-1\) and denominator degrees of freedom equal to \(N_{2}-1\), where \(N_{1}\) and \(N_{2}\) are the sample sizes of the two data sets.

\section*{Multidimensional Array}

A multidimensional array has more than two dimensions. For example, if \(x\) is a 1-by-3-by-4 array, then \(x\) is a three-dimensional array.

\section*{First Nonsingleton Dimension}

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1 . For example, if x is a 1 -by- 2 -by- 3 -by- 4 array, then the second dimension is the first nonsingleton dimension of \(x\).

\section*{See Also \\ vartest | vartestn}

Purpose Multiple-sample tests for equal variances

\author{
Syntax \\ \section*{Description}
}
vartestn(x)
vartestn(x,Name, Value)
vartestn(x,group)
vartestn(x, group, Name, Value)
\(\mathrm{p}=\) vartestn (__)
[p,stats] = vartestn(__)
vartestn(x) returns a summary table of statistics and a box plot for a Bartlett test of the null hypothesis that the columns of data vector \(x\) come from normal distributions with the same variance. The alternative hypothesis is that not all columns of data have the same variance.
vartestn (\(x\), Name, Value) returns a summary table of statistics and a box plot for a test of unequal variances with additional options specified by one or more name-value pair arguments. For example, you can specify a different type of hypothesis test or change the display settings for the test results.
vartestn (\(x\), group) returns a summary table of statistics and a box plot for a Bartlett test of the null hypothesis that the data in each categorical group comes from normal distributions with the same variance. The alternative hypothesis is that not all groups have the same variance.
vartestn(x, group, Name, Value) returns a summary table of statistics and a box plot for a test of unequal variances with additional options specified by one or more name-value pair arguments. For example, you can specify a different type of hypothesis test or change the display settings for the test results.
\(\mathrm{p}=\) vartestn (__) also returns the \(p\)-value of the test, p , using any of the input arguments in the previous syntaxes.
[p,stats] = vartestn(__) also returns the structure stats containing information about the test statistic.

\section*{Input Arguments}

\section*{x-Sample data}
matrix | vector
Sample data, specified as a matrix or vector. If a grouping variable group is specified, \(x\) must be a vector. If a grouping variable is not specified, \(x\) must be a matrix. In either case, vartestn treats NaN values as missing values and ignores them.

\section*{Data Types}
single | double

\section*{group-Grouping variable}
categorical array | logical or numeric vector | cell array of strings
Grouping variable, specified as a categorical array, logical or numeric vector, or cell array of strings with one row for each element of x. Each unique value in a grouping variable defines a group.
For example, if Gender is a cell array of strings with values 'Male' and 'Female', you can use Gender as a grouping variable to test your data by gender.

Example: Gender
Data Types
single | double | logical | cell | char

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example:
'TestType','BrownForsythe', 'Alpha',0.01,'Display', 'off'
specifies a Brown-Forsythe test at the \(1 \%\) significance level, and omits the plot of the results.

\section*{'Alpha' - Significance level}

\subsection*{0.05 (default) | scalar value in the range (0,1)}

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range \((0,1)\).

Example: 'Alpha',0.01

\section*{Data Types}
single | double

\section*{'Dim' - Dimension}
first nonsingleton dimension (default) | positive integer value
Dimension of the input matrix along which to test the variances, specified as the comma-separated pair consisting of 'Dim' and a positive integer value. For example, specifying 'Dim', 1 tests the column variances, while 'Dim', 2 tests the row variances.

Example: 'Dim',2

\section*{Data Types \\ single | double}

\section*{'Display' - Display settings for test results}
'on' (default) | 'off'
Display settings for test results, specified as the comma-separated pair consisting of 'Display' and one of the following.
\[
\begin{array}{ll}
\text { 'on ' } & \text { Display a box plot and table of summary statistics. } \\
\text { ' off' } & \begin{array}{l}
\text { Do not display a box plot and table of summary } \\
\text { statistics. }
\end{array}
\end{array}
\]

Example: 'display','off'
```

'TestType' - Type of hypothesis test
'Bartlett' (default)| 'LeveneQuadratic' | 'LeveneAbsolute' |
'BrownForsythe' | 'OBrien'

```

Type of hypothesis test to perform, specified as the comma-separated pair consisting of 'TestType' and one of the following.
'Bartlett' Bartlett's test.
'LeveneQuadratic ' Levene’s test computed by performing ANOVA on the squared deviations of the data values from their group means.
'LeveneAbsolute' Levene's test computed by performing ANOVA on the absolute deviations of the data values from their group means.
'BrownForsythe' Brown-Forsythe test computed by performing ANOVA on the absolute deviations of the data values from the group medians.
'OBrien' O'Brien's modification of Levene's test with \(W=\) 0.5.
```

Example: 'TestType','OBrien'

```

\section*{Output Arguments}

\section*{\(p\) - p-value}
scalar value in the range \((0,1)\)
\(p\)-value of the test, returned as a scalar value in the range \((0,1) . \mathrm{p}\) is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of \(p\) cast doubt on the validity of the null hypothesis.

\section*{stats - Test statistics}
structure
Test statistics for the hypothesis test, returned as a structure containing:
- chistat: Value of the test statistic.
- df: Degrees of freedom of the test.

\section*{Examples Test Data for Equal Variances}

Load the sample data.
load examgrades;

Test the null hypothesis that the variances are equal across the five columns of data in the students' exam grades matrix, grades.
vartestn(grades)
\begin{tabular}{lccc|c|}
\multicolumn{4}{c}{ Group Summary Table } \\
\hline Group & Count & Mean & Std Dev & \\
\hline 1 & 120 & 75.0083 & 8.7202 & \\
2 & 120 & 74.9917 & 6.54204 \\
3 & 120 & 74.9917 & 7.43091 \\
4 & 120 & 75.0333 & 8.60128 \\
5 & 120 & 74.9917 & 5.25884 \\
Pooled & 600 & 75.0033 & 7.42558 \\
& & & \\
Bartlett's statistic & 38.7332 & & \\
Degrees of freedom & 4 & & \\
p-value & 0 & & \\
& & &
\end{tabular}

The low \(p\)-value, \(\mathrm{p}=0\), indicates that vartestn rejects the null hypothesis that the variances are equal across all five columns, in favor of the alternative hypothesis that at least one column has a different variance.

\section*{Test Grouped Data for Equal Variances}

Load the sample data.
```

load carsmall;

```

Test the null hypothesis that the variances in miles per gallon (MPG) are equal across different model years.
vartestn(MPG,Model_Year)
\begin{tabular}{llll}
& \multicolumn{3}{c}{ Group Summary Table } \\
\hline Group & Count & Mean & Std Dev \\
\hdashline 70 & 29 & 17.6897 & 5.33923 \\
76 & 34 & 21.5735 & 5.8893 \\
82 & 31 & 31.7097 & 5.39255 \\
Pooled & 94 & 23.7181 & 5.562 \\
& & & \\
Bartlett's statistic & 0.36619 & & \\
Degrees of freedom & 2 & \\
p-value & 0.83269 & &
\end{tabular}

The high \(p\)-value, \(\mathrm{p}=0.83269\), indicates that vartestn does not reject the null hypothesis that the variances in miles per gallon (MPG) are equal across different model years.

\section*{Test for Equal Variances Using Levene's Test}

Load the sample data.
load carsmall;

Use Levene's test to test the null hypothesis that the variances in miles per gallon (MPG) are equal across different model years.
p = vartestn(MPG,Model_Year,'TestType','LeveneAbsolute')
\(p=\)
0.6320

\section*{Group Summary Table}
\begin{tabular}{|c|c|c|c|}
\hline Group & Count & Mean & Std Dev \\
\hline 70 & 29 & 17.6897 & 5.33923 \\
\hline 76 & 34 & 21.5735 & 5.8893 \\
\hline 82 & 31 & 31.7097 & 5.39255 \\
\hline Pooled & 94 & 23.7181 & 5. 562 \\
\hline Levene's statistic (absolute) & 0.46126 & & \\
\hline Degrees of freedom & 2, 91 & & \\
\hline & 0.63195 & & \\
\hline
\end{tabular}

The high \(p\)-value, \(\mathrm{p}=0.63195\), indicates that vartestn does not reject the null hypothesis that the variances in miles per gallon (MPG) are equal across different model years.

\section*{Test for Equal Variances Using the Brown-Forsythe Test}

Load the sample data.
load examgrades;

Test the null hypothesis that the variances are equal across the five columns of data in the students' exam grades matrix, grades, using the Brown-Forsythe test. Suppress the display of the summary table of statistics and the box plot.
```

[p,stats] = vartestn(grades,'TestType','BrownForsythe','Display','off')
p =
1.3121e-06

```
stats =
 fstat: 8.4160
 df: [4 595]

The low \(p\)-value, \(\mathrm{p}=1.3121 \mathrm{e}-06\), indicates that vartestn rejects the null hypothesis that the variances are equal across all five columns, in favor of the alternative hypothesis that at least one column has a different variance.

\section*{Definitions Bartlett's Test}

Bartlett's test is used to test whether multiple data samples have equal variances, against the alternative that at least two of the data samples do not have equal variances. The test statistic is
\[
T=\frac{(N-k) \ln s_{p}{ }^{2}-\sum_{i=1}^{k}\left(N_{i}-1\right) \ln s_{i}{ }^{2}}{1+(1 /(3(k-1)))\left(\left(\sum_{i=1}^{k} 1 /\left(N_{i}-1\right)\right)-1(N-k)\right)},
\]
where \(s_{i}{ }^{2}\) is the variance of the \(i\) th group, \(N\) is the total sample size, \(N_{i}\) is the sample size of the \(i\) th group, \(k\) is the number of groups, and \(s_{p}{ }^{2}\) is the pooled variance. The pooled variance is defined as
\[
s_{p}{ }^{2}=\sum_{i=1}^{k}\left(N_{i}-1\right) s_{i}^{2} /(N-k) .
\]

The test statistic has a chi-square distribution with \(k-1\) degrees of freedom under the null hypothesis.
Bartlett's test is sensitive to departures from normality. If your data comes from a nonnormal distribution, Levene's test could provide a more accurate result.

\section*{Levene, Brown-Forsythe, and O'Brien Tests}

The Levene, Brown-Forsythe, and O'Brien tests are used to test if multiple data samples have equal variances, against the alternative that at least two of the data samples do not have equal variances. The test statistic is
\[
W=\frac{(N-k) \sum_{i=1}^{k} N_{i}\left(\bar{Z}_{i .}-\bar{Z}_{. .}\right)^{2}}{(k-1) \sum_{i=1}^{k} \sum_{j=1}^{N_{i}}\left(Z_{i j}-\bar{Z}_{i .}\right)^{2}},
\]
where \(N_{i}\) is the sample size of the \(i\) th group, and \(k\) is the number of groups. Depending on the type of test specified with the TestType name-value pair arguments, \(Z_{i j}\) can have one of four definitions:
- If you specify LeveneAbsolute, vartestn uses \(Z_{i j}=\left|Y_{i j}-\bar{Y}_{i .}\right|\), where \(\bar{Y}_{i .}\) is the mean of the \(i\) th subgroup.
- If you specify LeveneQuadratic, vartestn uses \(Z_{i j}{ }^{2}=\left(Y_{i j}-\bar{Y}_{i .}\right)^{2}\), where \(\bar{Y}_{i}\). is the mean of the \(i\) th subgroup.
- If you specify BrownForsythe, vartestn uses \(Z_{i j}=\left|Y_{i j}-\tilde{Y}_{i .}\right|\), where \(\tilde{Y}_{i}\). is the median of the \(i\) th subgroup.
- If you specify OBrien, vartestn uses
\[
Z_{i j}=\frac{\left(0.5+n_{i}-2\right) n_{i}\left(y_{i j}-\bar{y}_{i}\right)^{2}-0.5\left(n_{i}-1\right) \sigma_{i}{ }^{2}}{\left(n_{i}-1\right)\left(n_{i}-2\right)},
\]
where \(n_{i}\) is the size of the \(i\) th group, \(\sigma_{i}^{2}\) is its sample variance.
In all cases, the test statistic has an \(F\)-distribution with \(k-1\) numerator degrees of freedom, and \(N-k\) denominator degrees of freedom.

The Levene, Brown-Forsythe, and O'Brien tests are less sensitive to departures from normality than Bartlett's test, so they are useful alternatives if you suspect the samples come from nonnormal distributions.

See Also
anova1 | vartest | vartest2

\section*{Purpose Vertical concatenation for categorical arrays}
Syntax
\(C=\operatorname{vertcat}(\operatorname{dim}, A, B, \ldots)\)
C = vertcat (A,B)

Description \(\quad C=\) vertcat (dim, \(A, B, \ldots\)) vertically concatenates the categorical arrays \(A, B, \ldots\). For matrices, all inputs must have the same number of rows. For n-D arrays, all inputs must have the same sizes except in the second dimension. The set of categorical levels for C is the sorted union of the sets of levels of the inputs, as determined by their labels. \(C=\operatorname{vertcat}(A, B)\) is called for the syntax \([A B]\).

\author{
See Also \\ cat | horzcat
}

\section*{dataset.vertcat}

Purpose Vertical concatenation for dataset arrays
```

Syntax
ds = vertcat(ds1, ds2, ...)

```

Description ds = vertcat(ds1, ds2, ...) vertically concatenates the dataset arrays ds1, ds2, Observation names, when present, must be unique across datasets. vertcat fills in default observation names for the output when some of the inputs have names and some do not.

Variable names for all dataset arrays must be identical except for order. vertcat concatenates by matching variable names. vertcat assigns values for the "per-variable" properties (e.g., Units and VarDescription) in ds from the corresponding property values in ds1.

\section*{See Also \\ cat | horzcat}

\section*{Purpose \\ Plot tree}

\section*{Syntax}
view(t)
view(t,param1,val1,param2,val2,...)
view(\(t\)) displays the decision tree \(t\) as computed by classregtree in a figure window. Each branch in the tree is labeled with its decision rule, and each terminal node is labeled with the predicted value for that node. Click any node to get more information about it. The information displayed is specified by the Click to display pop-up menu at the top of the figure.
view(t,param1,val1,param2,val2,...) specifies optional parameter name/value pairs:
- 'names ' - A cell array of names for the predictor variables, in the order in which they appear in the matrix \(X\) from which the tree was created. (See classregtree.)
- 'prunelevel' - Initial pruning level to display.

For each branch node, the left child node corresponds to the points that satisfy the condition, and the right child node corresponds to the points that do not satisfy the condition.

\section*{Examples \\ Create a classification tree for Fisher's iris data:}
```

load fisheriris;
t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2 class = setosa
3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
5 class = virginica

```

\section*{classregtree.view}
```

6 if PW<1.65 then node 8 elseif PW>=1.65 then node 9 else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica
view(t)

```
\begin{tabular}{|l|l|l|l|l|l|}
\hline Click to display: & Identity & \(\square\) & Magnification: \(100 \%\) & \(\rightarrow\) & Pruning level: 0 of 4 \\
\hline
\end{tabular}

References [1] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.

See Also classregtree | eval | prune | test

\section*{CompactClassificationTree.view}
\begin{tabular}{|c|c|}
\hline Purpose & View tree \\
\hline Syntax & \begin{tabular}{l}
view(tree) \\
view(tree,Name,Value)
\end{tabular} \\
\hline Description & \begin{tabular}{l}
view(tree) returns a text description of tree, a decision tree. \\
view(tree, Name, Value) describes tree with additional options specified by one or more Name, Value pair arguments.
\end{tabular} \\
\hline \multirow[t]{5}{*}{Input Arguments} & \begin{tabular}{l}
tree \\
A classification tree or compact classification tree created by ClassificationTree.fit or compact.
\end{tabular} \\
\hline & Name-Value Pair Arguments \\
\hline & \begin{tabular}{l}
Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN. \\
'mode'
\end{tabular} \\
\hline & String describing the display of tree, either 'graph' or 'text'. 'graph ' opens a GUI displaying tree, and containing controls for querying the tree. 'text' sends output to the Command Window describing tree. \\
\hline & Default: 'text' \\
\hline \multirow[t]{2}{*}{Examples} & View the classification tree for Fisher's iris model in both textual and graphical displays: \\
\hline & ```
load fisheriris
tree = ClassificationTree.fit(meas,species);
view(tree)
``` \\
\hline
\end{tabular}

\section*{CompactClassificationTree.view}
```

Decision tree for classification
1 if x3<2.45 then node 2 elseif x3>=2.45 then node 3 else setosa
2 class = setosa
3 if x4<1.75 then node 4 elseif x4>=1.75 then node 5 else versicolor
4 if x3<4.95 then node 6 elseif x3>=4.95 then node 7 else versicolor
5 class = virginica
6 if }x4<1.65\mathrm{ then node }8\mathrm{ elseif }x4>=1.65\mathrm{ then node }9\mathrm{ else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica
view(tree,'mode','graph')

```

\section*{CompactClassificationTree.view}


\section*{See Also}

ClassificationTree

\section*{CompactRegressionTree.view}
Purpose View tree
Syntax view(tree)view(tree,Name,Value)
Descriptionview(tree) returns a text description of tree, a decision tree.view(tree, Name, Value) describes tree with additional optionsspecified by one or more Name, Value pair arguments.
Input Arguments
Examples
View a regression tree for the carsmall data in both textual and graphical displays:
```

load carsmall
tree = RegressionTree.fit([Weight, Cylinders],MPG,...
categoricalpredictors',2,'MinParent',20,...
'PredictorNames',{'W', 'C'});

```

\section*{CompactRegressionTree.view}
```

view(tree)
Decision tree for regression
1 if W<3085.5 then node 2 elseif W>=3085.5 then node 3 else 23.7181
2 if W<2371 then node 4 elseif W>=2371 then node 5 else 28.7931
3 if C=8 then node 6 elseif C in {4 6} then node 7 else 15.5417
4 if W<2162 then node 8 elseif W>=2162 then node 9 else 32.0741
5 if C=6 then node 10 elseif C=4 then node 11 else 25.9355
6 if W<4381 then node 12 elseif W>=4381 then node 13 else 14.2963
7 fit = 19.2778
fit = 33.3056
fit = 29.6111
fit = 23.25
if W<2827.5 then node 14 elseif W>=2827.5 then node 15 else 27.2143
if W<3533.5 then node 16 elseif W>=3533.5 then node 17 else 14.8696
fit = 11
fit = 27.6389
fit = 24.6667
fit = 16.6
fit = 14.3889
view(tree,'mode','graph')

```


\title{
CompactRegressionTree.view
}

See Also RegressionTree

\section*{Purpose Weibull cumulative distribution function}
```

Syntax P = wblcdf(X,A,B)
[P,PLO,PUP] = wblcdf(X,A,B,PCOV,alpha)

```

\section*{Description \(\quad P=\operatorname{wblcdf}(X, A, B)\) computes the \(c d f\) of the Weibull distribution with} scale parameter \(A\) and shape parameter \(B\), at each of the values in \(X\). \(X\), \(A\), and \(B\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other inputs. The default values for A and B are both 1. The parameters A and B must be positive.
[P,PLO, PUP] = wblcdf(X,A,B,PCOV,alpha) returns confidence bounds for \(P\) when the input parameters \(A\) and \(B\) are estimates. PCOV is the 2 -by- 2 covariance matrix of the estimated parameters. alpha has a default value of 0.05 , and specifies \(100(1-\mathrm{alpha}) \%\) confidence bounds. PLO and PUP are arrays of the same size as P containing the lower and upper confidence bounds.

The function wblcdf computes confidence bounds for P using a normal approximation to the distribution of the estimate
\[
\hat{b}(\log x-\log \hat{a})
\]
and then transforms those bounds to the scale of the output P. The computed bounds give approximately the desired confidence level when you estimate mu, sigma, and PCOV from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The Weibull cdf is
\[
p=F(x \mid a, b)=\int_{0}^{x} b a^{-b} t^{b-1} e^{-\left(\frac{t}{a}\right)^{b}} d t=1-e^{-\left(\frac{x}{a}\right)^{b}} I_{(0, \infty)}(x)
\]

\section*{Examples}

What is the probability that a value from a Weibull distribution with parameters \(\mathrm{a}=0.15\) and \(\mathrm{b}=0.8\) is less than 0.5 ?
```

probability = wblcdf(0.5, 0.15, 0.8)
probability =
0.9272

```

How sensitive is this result to small changes in the parameters?
```

[A, B] = meshgrid(0.1:0.05:0.2,0.2:0.05:0.3);
probability = wblcdf(0.5, A, B)
probability =
0.7484}00.7198 0.6991
0.7758}00.7411 0.715
0.8022 0.7619 0.7319

```
See Also
cdf | wblpdf | wblinv | wblstat | wblfit | wbllike | wblrnd

How To . "Weibull Distribution" on page B-116

Purpose Weibull parameter estimates
```

Syntax parmhat = wblfit(data)
[parmhat,parmci] = wblfit(data)
[parmhat,parmci] = wblfit(data,alpha)
[...] = wblfit(data,alpha,censoring)
[...] = wblfit(data,alpha,censoring,freq)
[...] = wblfit(...,options)

```

\section*{Description}
parmhat = wblfit(data) returns the maximum likelihood estimates, parmhat, of the parameters of the Weibull distribution given the values in the vector data, which must be positive. parmhat is a two-element row vector: parmhat(1) estimates the Weibull parameter \(a\), and parmhat (2) estimates the Weibull parameter \(b\), in the pdf
\[
y=f(x \mid a, b)=b a^{-b} x^{b-1} e^{-\left(\frac{x}{a}\right)^{b}} I_{(0, \infty)}(x)
\]
[parmhat, parmci] = wblfit(data) returns \(95 \%\) confidence intervals for the estimates of \(a\) and \(b\) in the 2 -by- 2 matrix parmci. The first row contains the lower bounds of the confidence intervals for the parameters, and the second row contains the upper bounds of the confidence intervals.
[[parmhat,parmci] = wblfit(data,alpha) returns 100(1-alpha)\% confidence intervals for the parameter estimates.
[...] = wblfit(data, alpha, censoring) accepts a Boolean vector, censoring, of the same size as data, which is 1 for observations that are right-censored and 0 for observations that are observed exactly.
[...] = wblfit(data, alpha, censoring,freq) accepts a frequency vector, freq, of the same size as data. The vector freq typically contains integer frequencies for the corresponding elements in data, but can contain any non-negative values. Pass in [] for alpha, censoring, or freq to use their default values.
[...] = wblfit(...,options) accepts a structure, options, that specifies control parameters for the iterative algorithm the function uses to compute maximum likelihood estimates. The Weibull fit function accepts an options structure that can be created using the function statset. Enter statset ('wblfit') to see the names and default values of the parameters that lognfit accepts in the options structure. See the reference page for statset for more information about these options.
```

Examples data = wblrnd(0.5,0.8,100,1);
[parmhat, parmci] = wblfit(data)
parmhat =
0.5861 0.8567
parmci =
0.4606 0.7360
0.7459 0.9973

```
See Also
mle | wbllike | wblpdf | wblcdf | wblinv | wblstat | wblrnd

How To
- "Weibull Distribution" on page B-116

Purpose Weibull inverse cumulative distribution function
\(\begin{array}{ll}\text { Syntax } & X=\operatorname{wblinv}(P, A, B) \\ & {[X, X L O, X U P]=\operatorname{wblinv}(P, A, B, P C O V, \text { alpha })}\end{array}\)
Description
\(X=\) wblinv \((P, A, B)\) returns the inverse cumulative distribution function (cdf) for a Weibull distribution with scale parameter \(A\) and shape parameter B, evaluated at the values in P. P, A, and B can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other inputs. The default values for \(A\) and \(B\) are both 1 .
[X,XLO,XUP] = wblinv(P,A,B,PCOV,alpha) returns confidence bounds for \(X\) when the input parameters \(A\) and \(B\) are estimates. PCOV is a 2 -by- 2 matrix containing the covariance matrix of the estimated parameters. alpha has a default value of 0.05 , and specifies 100(1-alpha) \(\%\) confidence bounds. XLO and XUP are arrays of the same size as X containing the lower and upper confidence bounds.

The function wblinv computes confidence bounds for X using a normal approximation to the distribution of the estimate
\[
\log a+\frac{\log q}{b}
\]
where \(q\) is the Pth quantile from a Weibull distribution with scale and shape parameters both equal to 1 . The computed bounds give approximately the desired confidence level when you estimate mu, sigma, and PCOV from large samples, but in smaller samples other methods of computing the confidence bounds might be more accurate.

The inverse of the Weibull cdf is
\[
x=F^{-1}(p \mid a, b)=-a[\ln (1-p)]^{1 / b} I_{[0,1]}(p)
\]

\section*{Examples}

The lifetimes (in hours) of a batch of light bulbs has a Weibull distribution with parameters \(\mathrm{a}=200\) and \(\mathrm{b}=6\).

Find the median lifetime of the bulbs:
```

life = wblinv(0.5, 200, 6)
life =
188.1486

```

Generate 100 random values from this distribution, and estimate the 90th percentile (with confidence bounds) from the random sample
```

x = wblrnd(200,6,100,1);

```
p = wblfit(x)
[nlogl,pcov] = wbllike(p,x)
[q90,q9010,q90up] = wblinv(0.9,p(1),p(2),pcov)
\(\mathrm{p}=\)
    \(204.8918 \quad 6.3920\)
nlogl =
    496.8915
pcov \(=\)
    11.33920 .5233
        \(0.5233 \quad 0.2573\)
q90 =
    233.4489
q9010 =
```

226.0092
q90up =
241.1335

```
See Also icdf | wblcdf | wblpdf | wblstat | wblfit | wbllike | wblrnd
How To - "Weibull Distribution" on page B-116

\section*{Purpose Weibull negative log-likelihood}

Syntax nlogL = wbllike(params, data)
[logL,AVAR] = wbllike(params,data)
[...] = wbllike(params,data,censoring)
[...] = wbllike(params,data,censoring,freq)
Description

\section*{Examples}

This example continues the example from wblfit.
```

r = wblrnd(0.5,0.8,100,1);

```
```

[logL, AVAR] = wbllike(wblfit(r),r)
logL =
47.3349
AVAR =
0.0048 0.0014
0.0014 0.0040

```
References [1] Patel, J. K., C. H. Kapadia, and D. B. Owen. Handbook of Statistical Distributions. New York: Marcel Dekker, 1976.
See Also wblfit | wblpdf | wblcdf | wblinv | wblstat | wblrnd
How To - "Weibull Distribution" on page B-116

\section*{Purpose}

\section*{Syntax}

Description

\section*{Examples}

\section*{References}

See Also

Weibull probability density function

Y = wblpdf(X,A,B)
\(Y=\operatorname{wblpdf}(X, A, B)\) computes the Weibull pdf at each of the values in \(X\) using the corresponding scale parameter, \(A\) and shape parameter, \(B\). \(X\), \(A\), and \(B\) can be vectors, matrices, or multidimensional arrays that all have the same size. A scalar input is expanded to a constant array of the same size as the other inputs. The parameters in A and B must be positive.

The Weibull pdf is
\[
f(x \mid a, b)=\frac{b}{a}\left(\frac{x}{a}\right)^{b-1} e^{-(x / a)^{b}} .
\]

Some references refer to the Weibull distribution with a single parameter. This corresponds to wblpdf with \(A=1\).

The exponential distribution is a special case of the Weibull distribution.
```

lambda = 1:6;
y = wblpdf(0.1:0.1:0.6,lambda,1)
y =
0.9048}00.4524 0.3016 0.2262 0.1810 0.1508
y1 = exppdf(0.1:0.1:0.6,lambda)
y1 =
0.9048

```
[1] Devroye, L. Non-Uniform Random Variate Generation. New York: Springer-Verlag, 1986.

\section*{How To}
- wblfit
- wblinv
- wbllike
- wblplot
- wblrnd
- wblstat
- "Weibull Distribution" on page B-116

Purpose
Syntax

Description

Examples \(\quad r=\) wbirnd \((1.2,1.5,50,1)\);
wblplot(r)

\section*{wblplot}

\begin{tabular}{ll} 
See Also & probplot | normplot | wblcdf \\
How To & - wblfit \\
& • wblinv \\
& - wbllike \\
& - wblpdf \\
& - wblrnd
\end{tabular}
- wblstat
- "Weibull Distribution" on page B-116

Purpose Weibull random numbers
Syntax \(\quad\)\begin{tabular}{rl}
\(R\) & \(=\operatorname{wblrnd}(A, B)\) \\
\(R\) & \(=\operatorname{wblrnd}(A, B, m, n, \ldots)\) \\
\(R\) & \(=\operatorname{wblrnd}(A, B,[m, n, \ldots])\)
\end{tabular}

Description

\section*{Examples}

\section*{References}

\section*{See Also}

How To . "Weibull Distribution" on page B-116

\section*{Purpose Weibull mean and variance}

\section*{Syntax \\ \([M, V]=\) wblstat \((A, B)\)}

Description
\([M, V]=\operatorname{wblstat}(A, B)\) returns the mean of and variance for the Weibull distribution with scale parameter, A and shape parameter, B. Vector or matrix inputs for \(A\) and \(B\) must have the same size, which is also the size of \(M\) and \(V\). A scalar input for \(A\) or \(B\) is expanded to a constant matrix with the same dimensions as the other input.
The mean of the Weibull distribution with parameters \(a\) and \(b\) is
\[
a\left[\Gamma\left(1+b^{-1}\right)\right]
\]
and the variance is
\[
a^{2}\left[\Gamma\left(1+2 b^{-1}\right)-\Gamma\left(1+b^{-1}\right)^{2}\right]
\]
Examples
[m,v] = wblstat(1:4,1:4)
[m,v] = wblstat(1:4,1:4)
m =
m =
    1.0000}1.7725\mp@code{2.6789 3.6256
    1.0000}1.7725\mp@code{2.6789 3.6256
v =
v =
    1.0000}00.8584 0.9480 1.0346 
    1.0000}00.8584 0.9480 1.0346 
wblstat(0.5, 0.7)
ans =
    0.6329
See Also wblpdf | wblcdf \| wblinv \| wblfit | wbllike | wblrnd
How To
- "Weibull Distribution" on page B-116

\section*{prob.WeibullDistribution}

Superclasses ToolboxFittableParametricDistribution
Purpose Weibull probability distribution object
Description prob.WeibullDistribution is an object consisting of parameters, a model description, and sample data for a Weibull probability distribution.

Create a probability distribution object with specified parameter values using makedist. Alternatively, fit a distribution to data using fitdist or dfittool.

\section*{Construction}
pd = makedist('Weibull') creates a Weibull probability distribution object using the default parameter values.
pd = makedist('Weibull','a', a, 'b', b) creates a Weibull probability distribution object using the specified parameter values.

\section*{Input Arguments}

\section*{a-Scale parameter}

1 (default) | positive scalar value
Scale parameter of the Weibull distribution, specified as a positive scalar value.

\section*{Data Types}
single | double

\section*{b-Shape parameter}

\section*{1 (default) | positive scalar value \\ Shape parameter of the Weibull distribution, specified as a positive scalar value.}

\author{
Data Types \\ single | double
}

\section*{Properties}

Scale parameter of the Weibull distribution, stored as a positive scalar value.

\section*{Data Types}
single | double
b
Shape parameter of the Weibull distribution, stored as a positive scalar value.

\section*{Data Types}
single | double

\section*{DistributionName}

Name of the probability distribution, stored as a valid probability distribution name string. This property is read-only.

\section*{Data Types}
char

\section*{InputData}

Data used for distribution fitting, stored as a structure containing the following:
- data: Data vector used for distribution fitting.
- cens: Censoring vector, or empty if none.
- freq: Frequency vector, or empty if none.

This property is read-only.
Data Types
single | double

\section*{IsTruncated}

Logical flag for truncated distribution, stored as a logical value. If IsTruncated equals 0 , the distribution is not truncated.

\section*{prob.WeibullDistribution}

If IsTruncated equals 1 , the distribution is truncated. This property is read-only.

\section*{Data Types}
logical

\section*{NumParameters}

Number of parameters for the probability distribution, stored as a positive integer value. This property is read-only.

\section*{Data Types \\ single | double}

\section*{ParameterCovariance}

Covariance matrix of the parameter estimates, stored as a \(p\)-by- \(p\) matrix, where \(p\) is the number of parameters in the distribution. The ( \(\mathrm{i}, \mathrm{j}\) ) element is the covariance between the estimates of the \(i\) th parameter and the \(j\) th parameter. The ( \(i, i\) ) element is the estimated variance of the ith parameter. If parameter \(i\) is fixed rather than estimated by fitting the distribution to data, then the (i,i) elements of the covariance matrix are 0 . This property is read-only.

\section*{Data Types}
single | double

\section*{ParameterDescription}

Descriptions of distribution parameters, stored as a cell array of strings. Each cell contains a short description of one distribution parameter. This property is read-only.

\section*{Data Types \\ char}

\section*{Parameterlsfixed}

Logical flag for fixed parameters, stored as an array of logical values. If 0 , the corresponding parameter in the ParameterNames array is not fixed. If 1 , the corresponding parameter in the ParameterNames array is fixed. This property is read-only.

\section*{Data Types}
logical

\section*{ParameterNames}

Names of distribution parameters, stored as a cell array of strings. This property is read-only.

\section*{Data Types}
char

\section*{ParameterValues}

Values of distribution parameters, stored as a vector. This property is read-only.

\section*{Data Types}
single | double

\section*{Truncation}

Truncation interval for the probability distribution, stored as a vector containing the lower and upper truncation boundaries. This property is read-only.

\section*{Data Types}
single | double

\section*{Methods Inherited Methods}
\begin{tabular}{ll} 
cdf & \begin{tabular}{l} 
Cumulative distribution function \\
of probability distribution object
\end{tabular} \\
icdf & \begin{tabular}{l} 
Inverse cumulative distribution \\
function of probability \\
distribution object
\end{tabular} \\
iqr & \begin{tabular}{l} 
Interquartile range of probability \\
distribution object
\end{tabular} \\
median & \begin{tabular}{l} 
Median of probability distribution \\
object
\end{tabular}
\end{tabular}

\section*{prob.WeibullDistribution}
\(\left.\left.\begin{array}{ll}\text { pdf } & \begin{array}{l}\text { Probability density function of } \\ \text { probability distribution object }\end{array} \\ \text { random } & \begin{array}{l}\text { Generate random numbers from } \\ \text { probability distribution object }\end{array} \\ \text { truncate } & \begin{array}{l}\text { Truncate probability distribution } \\ \text { object }\end{array} \\ \text { mean } & \begin{array}{l}\text { Mean of probability distribution } \\ \text { object }\end{array} \\ \text { negloglik } & \begin{array}{l}\text { Negative loglikelihood of } \\ \text { probability distribution object } \\ \text { Confidence intervals for } \\ \text { probability distribution }\end{array} \\ \text { parameters }\end{array} \quad \begin{array}{l}\text { parafile likelihood function for } \\ \text { proflik }\end{array} \quad \begin{array}{l}\text { probability distribution object }\end{array}\right\} \begin{array}{l}\text { Standard deviation of probability } \\ \text { distribution object }\end{array}\right\}\)

\section*{Definitions Weibull Distribution}

The Weibull distribution is used in reliability and lifetime modeling, and to model the breaking strength of materials.

The Weibull distribution uses the following parameters.
\begin{tabular}{l|l|l}
\hline Parameter & Description & Support \\
\hline a & Scale parameter & \(a>0\) \\
\hline b & Shape parameter & \(b>0\) \\
\hline
\end{tabular}

The probability density function (pdf) is
\[
f(x \mid a, b)=\frac{b}{a}\left(\frac{x}{a}\right)^{b-1} \exp \left\{-\left(\frac{x}{a}\right)^{b}\right\} ; \quad x \geq 0 .
\]

\section*{Examples}

\section*{Create a Weibull Distribution Object Using Default Parameters}

Create a Weibull distribution object using the default parameter values.
```

pd = makedist('Weibull')

```
pd =

WeibullDistribution

Weibull distribution
\(A=1\)
\(B=1\)

\section*{Create a Weibull Distribution Object Using Specified Parameter Values}

Create a Weibull distribution object by specifying the parameter values.
```

pd = makedist('Weibull','a',2,'b',5)
pd =

```

\section*{prob.WeibullDistribution}

WeibullDistribution
```

Weibull distribution
A = 2
B = 5

```

Compute the mean of the distribution.
\(\mathrm{m}=\mathrm{mean}(\mathrm{pd})\)
\(\mathrm{m}=\)
1.8363

See Also makedist | fitdist | dfittool
Concepts
- "Weibull Distribution" on page B-116
- Class Attributes
- Property Attributes
Purpose Wishart random numbers
Syntax W = wishrnd(Sigma,df)
W = wishrnd(Sigma,df, D)
[W,D] = wishrnd(Sigma,df)
Description\(\mathrm{W}=\) wishrnd(Sigma, df ) generates a random matrix W having theWishart distribution with covariance matrix Sigma and with df degreesof freedom. The inverse of \(W\) has the Inverse Wishart distribution withparameters Tau \(=\) inv(Sigma) and df degrees of freedom.
W = wishrnd(Sigma, df, D) expects D to be the Cholesky factor of Sigma.
If you call wishrnd multiple times using the same value of Sigma, it'smore efficient to supply D instead of computing it each time.
[W,D] = wishrnd(Sigma,df) returns D so you can provide it as input in future calls to wishrnd.
This function defines the parameter Sigma so that the mean of the output matrix is Sigma*df
See Also iwishrnd
How To . "Wishart Distribution" on page B-119

\section*{TreeBagger.X property}

Purpose \(\quad \mathrm{X}\) data used to create ensemble
Description The \(X\) property is a numeric matrix of size Nobs-by-Nvars, where Nobs is the number of observations (rows) and Nvars is the number of variables (columns) in the training data. This matrix contains the predictor (or feature) values.

\section*{Purpose}

Create dataset array from data stored in SAS XPORT format file

\author{
Syntax \\ Description
}
data \(=\) xptread
data \(=\) xptread(filename)
[data,missing] = xptread(filename)
xptread(...,'ReadObsNames', true)

Examples Read in a SAS XPORT format dataset:

See Also dataset | dataset.export XPORT format. specifying a second output. missing values. file as observation names. The default value is false. support compressed files.
```

data = xptread('sample.xpt')

```
```

data = xptread('sample.xpt')

```
```

dataset | dataset.export

```
data = xptread displays a dialog box for selecting a file, then reads data from the file into a dataset array. The file must be in the SAS
data \(=\) xptread(filename) retrieves data from a SAS XPORT format file filename. The XPORT format allows for 28 missing data types, represented in the file by an upper case letter, '. ' or '_'. xptread converts All missing data to NaN values in data. However, if you need the specific missing types then you can recover this information by
[data,missing] = xptread(filename) returns a nominal array, missing, of the same size as data containing the missing data type information from the xport format file. The entries are undefined for values that are not present and are one of '.', '_', 'A',...,'Z' for
xptread (..., 'ReadObsNames', true) treats the first variable in the
xptread only supports single data sets per file. xptread does not

\section*{Purpose Convert predictor matrix to design matrix}
Syntax \(\quad\)\begin{tabular}{rl} 
D & \(=x 2 f x(X\), model \()\) \\
\(D\) & \(=x 2 f x(X\), model, categ \()\) \\
\(D\) & \(=x 2 f x(X\), model, categ, catlevels \()\)
\end{tabular}

Description
\(D=x 2 f x(X\), model \()\) converts a matrix of predictors \(X\) to a design matrix D for regression analysis. Distinct predictor variables should appear in different columns of X .

The optional input model controls the regression model. By default, x2fx returns the design matrix for a linear additive model with a constant term. model is one of the following strings:
- 'linear' - Constant and linear terms. This is the default.
- 'interaction' - Constant, linear, and interaction terms
- 'quadratic' - Constant, linear, interaction, and squared terms
- 'purequadratic' - Constant, linear, and squared terms

If \(X\) has \(n\) columns, the order of the columns of \(D\) for a full quadratic model is:

1 The constant term
2 The linear terms (the columns of X , in order \(1,2, \ldots, n\) )
3 The interaction terms (pairwise products of the columns of X, in order \((1,2),(1,3), \ldots,(1, n),(2,3), \ldots,(n-1, n))\)

4 The squared terms (in order \(1,2, \ldots, n\) )
Other models use a subset of these terms, in the same order.
Alternatively, model can be a matrix specifying polynomial terms of arbitrary order. In this case, model should have one column for each column in \(X\) and one row for each term in the model. The entries in any row of model are powers for the corresponding columns of \(X\). For example, if X has columns \(\mathrm{X} 1, \mathrm{X} 2\), and X 3 , then a row [ \(\left.\begin{array}{lll}0 & 1 & 2\end{array}\right]\) in model
specifies the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros in model specifies a constant term, which can be omitted.

D = x2fx(X,model, categ) treats columns with numbers listed in the vector categ as categorical variables. Terms involving categorical variables produce dummy variable columns in D. Dummy variables are computed under the assumption that possible categorical levels are completely enumerated by the unique values that appear in the corresponding column of \(X\).

D = x2fx(X,model, categ, catlevels) accepts a vector catlevels the same length as categ, specifying the number of levels in each categorical variable. In this case, values in the corresponding column of \(X\) must be integers in the range from 1 to the specified number of levels. Not all of the levels need to appear in X .

\section*{Examples \\ Example 1}

The following converts 2 predictors X1 and X2 (the columns of X ) into a design matrix for a full quadratic model with terms constant, \(\mathrm{X} 1, \mathrm{X} 2\), X1.*X2, X1.^2, and X2.^2.
\(\mathrm{X}=\left[\begin{array}{ll}1 & 10\end{array}\right.\)
220
310
420
515
6 15];
```

D = x2fx(X,'quadratic')
D =

```
\begin{tabular}{rrrrrr}
1 & 1 & 10 & 10 & 1 & 100 \\
1 & 2 & 20 & 40 & 4 & 400 \\
1 & 3 & 10 & 30 & 9 & 100 \\
1 & 4 & 20 & 80 & 16 & 400 \\
1 & 5 & 15 & 75 & 25 & 225 \\
1 & 6 & 15 & 90 & 36 & 225
\end{tabular}

\section*{Example 2}

The following converts 2 predictors X1 and X2 (the columns of \(X\) ) into a design matrix for a quadratic model with terms constant, \(\mathrm{X} 1, \mathrm{x} 2\), X1.*X2, and X1. \({ }^{\wedge} 2\).
\(\mathrm{X}=\left[\begin{array}{ll}1 & 10\end{array}\right.\)
220
310
420
515
6 15];
model = [0 0
10
01
11
\(20]\);
D \(=x 2 f x(X\), model \()\)
D \(=\)
\begin{tabular}{rrrrr}
1 & 1 & 10 & 10 & 1 \\
1 & 2 & 20 & 40 & 4 \\
1 & 3 & 10 & 30 & 9 \\
1 & 4 & 20 & 80 & 16 \\
1 & 5 & 15 & 75 & 25 \\
1 & 6 & 15 & 90 & 36
\end{tabular}

See Also
regstats | rstool | candexch | candgen | cordexch | rowexch

Purpose Y data used to create ensemble
Description The \(Y\) property is an array of true class labels for classification, or response values for regression. \(Y\) can be a numeric column vector, a character matrix, or a cell array of strings.

\section*{Purpose \(\quad\) Standardized \(z\)-scores}

\section*{Syntax}
\(Z=z s c o r e(X)\)
Z = zscore(X,flag)
\(Z=z s c o r e(X, f l a g, d i m)\)
[Z,mu,sigma] = zscore( __ )

\section*{Description}
\(Z=z s c o r e(X)\) returns the \(z\)-score for each element of \(X\) such that columns of \(X\) are centered to have mean 0 and scaled to have standard deviation \(1 . Z\) is the same size as \(X\).
- If \(X\) is a vector, then \(Z\) is a vector of \(z\)-scores.
- If \(X\) is a matrix, then \(Z\) is a matrix of the same size as \(X\), and each column of \(Z\) has mean 0 and standard deviation 1 .
- For multidimensional arrays, \(z\)-scores in \(Z\) are computed along the first nonsingleton dimension of \(X\).

Z = zscore (X,flag) scales X using the standard deviation indicated by flag.
- If flag is 0 (default), then zscore scales X using the sample standard deviation, with \(n-1\) in the denominator of the standard deviation formula. zscore \((X, 0)\) is the same as \(z \operatorname{ccore}(X)\).
- If flag is 1 , then zscore scales \(X\) using the population standard deviation, with \(n\) in the denominator of standard deviation formula.

Z = zscore(X,flag,dim) standardizes X along dimension dim. For example, for a matrix \(X\), if \(\operatorname{dim}=1\), then zscore uses the means and standard deviations along the columns of \(X\), if dim \(=2\), then zscore uses the means and standard deviations along the rows of \(X\).
[Z,mu,sigma] = zscore( __ ) also returns the means and standard deviations used for centering and scaling, mu and sigma, respectively. You can use any of the input arguments in the previous syntaxes.

\section*{Input Arguments}

\section*{Output Arguments}

\section*{X - Input data}
vector | matrix | multidimensional array
Input data, specified as a vector, matrix, or multidimensional array.

\section*{Data Types}
double | single

\section*{flag - Indicator for the standard deviation}

0 (default) | 1
Indicator for the standard deviation used to compute the \(z\)-scores, specified as 0 or 1 .
- If flag is 0 (default), then zscore scales \(X\) using the sample standard deviation. zscore ( \(X, 0\) ) is the same as \(z \operatorname{score}(X)\).
- If flag is 1 , then zscore scales \(X\) using the population standard deviation.

\section*{dim - Dimension}

1 (default) | positive integer
Dimension along which to calculate the \(z\)-scores of X , specified as a positive integer. For example, for a matrix \(X\), if \(\operatorname{dim}=1\), then zscore uses the means and standard deviations along the columns of \(X\), if dim \(=2\), then zscore uses the means and standard deviations along the rows of \(X\).

\section*{Z-z-scores}
vector | matrix | multidimensional array
\(z\)-scores, returned as a vector, matrix, or multidimensional array. A vector of \(z\)-scores has mean 0 and variance 1 .
- If \(X\) is a vector, then \(Z\) is a vector of \(z\)-scores.
- If \(X\) is an array, then zscore is an array, with each column or row standardized to have mean 0 and variance 1 (depending on dim). If dim is not specified, zscore standardizes along the first nonsingleton dimension of \(X\).

\section*{mu - Mean}
scalar | vector
Mean of X used to compute the \(z\)-scores, returned as a scalar or vector.
- If \(X\) is a vector, then mu is a scalar.
- If \(X\) is a matrix, then mu is a row vector if zscore calculates the means along the columns of \(X(\operatorname{dim}=1)\), and a column vector if zscore calculates the means along the rows of \(X(\operatorname{dim}=2)\).

\section*{sigma-Standard deviation}

\section*{scalar | vector}

Standard deviation of X used to compute the \(z\)-scores, returned as a scalar or vector.
- If \(X\) is a vector, then sigma is a scalar.
- If \(X\) is a matrix, then sigma is a row vector if zscore calculates the standard deviations along the columns of \(\mathrm{X}(\operatorname{dim}=1)\), and a column vector if zscore calculates the standard deviations along the rows of \(X(\operatorname{dim}=2)\).

\section*{Examples}

\section*{Z-Scores of Two Data Vectors}

Compute and plot the \(z\)-scores of two data vectors, and then compare the results.

Load the sample data.
load('lawdata.mat')
Two variables load into the workspace: gpa and lsat.
Plot both variables on the same axes.
```

plot([gpa,lsat])
legend('gpa','lsat','Location','East')

```


It is difficult to compare these two measures because they are on a very different scale.

Plot the \(z\)-scores of gpa and lsat on the same axes.
```

Zgpa = zscore(gpa);
Zlsat = zscore(lsat);
plot([Zgpa, Zlsat])
legend('gpa z-scores','lsat z-scores','Location','Northeast')

```


Now, you can see the relative performance of individuals with respect to both their gpa and lsat results. For example, the third individual's gpa and lsat results are both one standard deviation below the sample mean. The eleventh individual's gpa is around the sample mean but has an lsat score almost 1.25 standard deviations above the sample average.

Check the mean and standard deviation of the \(z\)-scores you created.
```

mean([Zgpa,Zlsat])

```
```

ans =
1.0e-14*
-0.1088 0.0357
std([Zgpa,Zlsat])
ans =
1

```

By definition, \(z\)-scores of gpa and lsat have mean 0 and standard deviation 1.

\section*{Z-Scores for a Population vs. Sample}

Load the sample data.
load('lawdata.mat')
Two variables load into the workspace: gpa and lsat.
Compute the \(z\)-scores of gpa using the population formula for standard deviation.
```

Z1 = zscore(gpa,1); % population formula
ZO = zscore(gpa,0); % sample formula
disp([Z1 Z0])

1.2554	1.2128
0.8728	0.8432
-1.2100	-1.1690
-0.2749	-0.2656
1.4679	1.4181
-0.1049	-0.1013
-0.4024	-0.3888
1.4254	1.3771
1.1279	1.0896

```
\begin{tabular}{rr}
0.1502 & 0.1451 \\
0.1077 & 0.1040 \\
-1.5076 & -1.4565 \\
-1.4226 & -1.3743 \\
-0.9125 & -0.8815 \\
-0.5724 & -0.5530
\end{tabular}

For a sample from a population, the population standard deviation formula with \(n\) in the denominator corresponds to the maximum likelihood estimate of the population standard deviation, and might be biased. The sample standard deviation formula, on the other hand, is the unbiased estimator of the population standard deviation for a sample.

\section*{Z-Scores of a Data Matrix}

Compute \(z\)-scores using the mean and standard deviation computed along the columns or rows of a data matrix.

Load the sample data.
load('flu.mat')
The dataset array flu is loaded in the workplace. flu has 52 observations on 11 variables. The first variable contains dates (in weeks). The other variables contain the flu estimates for different regions in the U.S.

Convert the dataset array to a data matrix.
flu2 = double(flu(:,2:end));
The new data matrix, flu2, is a 52 -by- 10 double data matrix. The rows correspond to the weeks and the columns correspond to the U.S. regions in the data set array flu.

Standardize the flu estimate for each region (the columns of flu2).
Z1 = zscore(flu2,[ ],1);

You can see the \(z\)-scores in the variable editor by double-clicking on the matrix Z1 created in the workspace.

Standardize the flu estimate for each week (the rows of flu2).
Z2 = zscore(flu2,[ ],2);

\section*{Z-Scores, Mean, and Standard Deviation}

Return the mean and standard deviation used to compute the \(z\)-scores.
Load the sample data.
load('lawdata.mat')
Two variables load into the workspace: gpa and lsat.
Return the \(z\)-scores, mean, and standard deviation of gpa.
```

[Z,gpamean,gpastdev] = zscore(gpa)

```

Z =
1.2128
0.8432
-1.1690
\(-0.2656\)
1.4181
-0.1013
-0.3888
1.3771
1.0896
0.1451
0.1040
\(-1.4565\)
-1.3743
-0.8815
-0.5530

\section*{Definitions}

\section*{Z-Score}

For a random variable \(X\) with mean \(\mu\) and standard deviation \(\sigma\), the \(z\)-score of a value \(x\) is
\[
z=\frac{(x-\mu)}{\sigma} .
\]

For sample data with mean \(\bar{X}\) and standard deviation \(S\), the \(z\)-score of a data point \(x\) is
\[
z=\frac{(x-\bar{X})}{S}
\]
\(z\)-scores measure the distance of a data point from the mean in terms of the standard deviation. This is also called standardization of data. The standardized data set has mean 0 and standard deviation 1, and retains the shape properties of the original data set (same skewness and kurtosis).

You can use \(z\)-scores to put data on the same scale before further analysis. This lets you to compare two or more data sets with different units.

\section*{Multidimensional Array}

A multidimensional array is an array with more than two dimensions. For example, if X is a 1-by-3-by-4 array, then X is a three-dimensional array.

\section*{First Nonsingleton Dimension}

A first nonsingleton dimension is the first dimension of an array whose size is not equal to 1 . For example, if X is a 1 -by- 2 -by- 3 -by- 4 array, then the second dimension is the first nonsingleton dimension of \(X\).

\section*{Sample Standard Deviation}

The sample standard deviation, \(S\), is given by
\[
S=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}}{n-1}} .
\]
\(S\) is the square root of an unbiased estimator of the variance of the population from which X is drawn, as long as X consists of independent, identically distributed samples.

Notice that the denominator in this variance formula is \(n-1\).

\section*{Population Standard Deviation}

If the data is the entire population of values, then you can use the population standard deviation,
\[
\sigma=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}}{n}}
\]

If \(X\) is a random sample from a population, then \(\mu\) is estimated by the sample mean, and \(\sigma\) is the biased maximum likelihood estimator of the population standard deviation.

Notice that the denominator in this variance formula is \(n\).

\section*{Algorithms}
zscore returns NaNs for any sample containing NaNs.
zscore returns 0s for any sample that is constant (all values are the same). For example, if \(X\) is a vector of the same numeric value, then \(Z\) is a vector of 0 s . If \(X\) is a matrix with a column of consisting of the same value, then that column of \(Z\) consists of 0 s .
See Also ..... mean | std

\section*{Purpose \(\quad z\)-test}

Syntax
```

h = ztest(x,m,sigma)
h= ztest(x,m,sigma,Name,Value)
[h,p] = ztest(___)
[h,p,ci,zval] = ztest(___)

```

\section*{Input Arguments}
\(h=z t e s t(x, m\), sigma) returns a test decision for the null hypothesis that the data in the vector \(x\) comes from a normal distribution with mean m and a standard deviation sigma, using the \(z\)-test. The alternative hypothesis is that the mean is not m . The result h is 1 if the test rejects the null hypothesis at the \(5 \%\) significance level, and 0 otherwise.
\(h=\) ztest( \(x, m\), sigma, Name, Value) returns a test decision for the \(z\)-test with additional options specified by one or more name-value pair arguments. For example, you can change the significance level or conduct a one-sided test.
[h, p] = ztest (__ ) also returns the p-value of the test, using any of the input arguments from previous syntaxes.
[h, p,ci, zval] = ztest( __ ) also returns the confidence interval of the population mean, ci, and the value of the test statistic, zval.

\section*{x-Sample data}
vector | matrix | multidimensional array
Sample data, specified as a vector, matrix, or multidimensional array.
- If \(x\) is specified as a vector, ztest returns a single value for each output argument.
- If x is specified as a matrix, ztest performs a separate \(z\)-test along each column of \(x\) and returns a vector of results.
- If \(x\) is specified as a multidimensional array, ztest works along the first nonsingleton dimension of \(x\).

In all cases, ztest treats \(N a N\) values as missing data and ignores them.

\section*{Data Types \\ single | double}

\section*{m-Hypothesized mean}
scalar value
Hypothesized mean, specified as a scalar value.

\section*{Data Types}
single | double

\section*{sigma - Population standard deviation}

\section*{scalar value}

Population standard deviation, specified as a scalar value.
```

Data Types
single | double

```

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

Example: 'Tail', 'right', 'Alpha', 0.01 specifies a right-tailed hypothesis test at the \(1 \%\) significance level.

\section*{'Alpha' - Significance level}
0.05 (default) | scalar value in the range \((0,1)\)

Significance level of the hypothesis test, specified as the comma-separated pair consisting of 'Alpha' and a scalar value in the range \((0,1)\).

\section*{Example: 'Alpha',0.01}

\section*{Data Types}
single | double

\section*{'Dim' - Dimension}
first nonsingleton dimension (default) | positive integer value
Dimension of the input matrix along which to test the means, specified as the comma-separated pair consisting of 'Dim' and a positive integer value. For example, specifying 'Dim', 1 tests the column means, while 'Dim', 2 tests the row means.

Example: 'Dim',2
Data Types
single | double

\section*{'Tail' - Type of alternative hypothesis \\ 'both' (default) | 'right' | 'left'}

Type of alternative hypothesis to evaluate, specified as the comma-separated pair consisting of 'Tail' and one of the following.
\[
\begin{array}{ll}
\text { 'both' } & \begin{array}{l}
\text { Test the alternative hypothesis that the population } \\
\text { mean is not equal to m. }
\end{array} \\
\text { 'right' } & \begin{array}{l}
\text { Test the alternative hypothesis that the population } \\
\text { mean is greater than } m .
\end{array} \\
\text { 'left' } & \begin{array}{l}
\text { Test the alternative hypothesis that the population } \\
\text { mean is less than } m .
\end{array}
\end{array}
\]

\section*{Example: 'Tail','right'}

\section*{Output Arguments}
```

h - Hypothesis test result
1|0

```

Hypothesis test result, returned as a logical value.
- If \(\mathrm{h}=1\), this indicates the rejection of the null hypothesis at the Alpha significance level.
- If \(h=0\), this indicates a failure to reject the null hypothesis at the Alpha significance level.

\section*{p-p-value}
scalar value in the range \((0,1)\)
\(p\)-value of the test, returned as a scalar value in the range \((0,1) . \mathrm{p}\) is the probability of observing a test statistic as extreme as, or more extreme than, the observed value under the null hypothesis. Small values of \(p\) cast doubt on the validity of the null hypothesis.

\section*{ci - Confidence interval}
vector
Confidence interval for the true population mean, returned as a two-element vector containing the lower and upper boundaries of the \(100 \times(1-A l p h a) \%\) confidence interval.

\section*{zval - Test statistic}
nonnegative scalar value
Test statistic, returned as a nonnegative scalar value.

\section*{Examples Test for a Hypothesized Mean}

Load the sample data. Create a vector containing the first column of the students' exam grades data.
load examgrades;
x = grades(:,1);
Test the null hypothesis that the data comes from a normal distribution with mean \(m=75\) and standard deviation sigma \(=10\).
[h,p,ci,zval] = ztest(x,75,10)
\(\mathrm{h}=\)
```

 0
 p =
0.9927
Ci =
73.2191
76.7975
zval =
0.0091

```

The returned value of \(h=0\) indicates that ztest does not reject the null hypothesis at the default \(5 \%\) significance level.

\section*{One-Sided Hypothesis Test}

Load the sample data. Create a vector containing the first column of the students' exam grades data.
```

load examgrades;
x = grades(:,1);

```

Test the null hypothesis that the data comes from a normal distribution with mean \(m=65\) and standard deviation sigma \(=10\), against the alternative that the mean is greater than 65.
```

[h,p] = ztest(x,65,10,'Tail','right')
h =
1
p =
2.8596e-28

```

The returned value of \(h=1\) indicates that ztest rejects the null hypothesis at the default \(5 \%\) significance level, in favor of the alternative hypothesis that the population mean is greater than 65 .

\section*{Definitions}
z-Test
The \(z\)-test is a parametric hypothesis test used to determine whether a sample data set comes from a population with a particular mean. The test assumes the sample data comes from a population with a normal distribution and a known standard deviation.

The test statistic is
\[
z=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}},
\]
where \(\bar{x}\) is the sample mean, is the population mean, \(\sigma\) is the population standard deviation, and \(n\) is the sample size. Under the null hypothesis, the test statistic has a standard normal distribution.

\section*{Multidimensional Array}

A multidimensional array has more than two dimensions. For example, if \(x\) is a 1-by-3-by-4 array, then \(x\) is a three-dimensional array.

\section*{First Nonsingleton Dimension}

The first nonsingleton dimension is the first dimension of an array whose size is not equal to 1 . For example, if \(x\) is a 1 -by- 2 -by- 3 -by- 4 array, then the second dimension is the first nonsingleton dimension of \(x\).

See Also ttest | ttest2

\section*{Sample Data Sets}

Statistics Toolbox software includes the sample data sets in the following table.

To load a data set into the MATLAB workspace, type:
load filename
where filename is one of the files listed in the table.
Data sets contain individual data variables, description variables with references, and dataset arrays encapsulating the data set and its description, as appropriate.
\begin{tabular}{l|l}
\hline File & Description of Data Set \\
\hline acetylene.mat & Chemical reaction data with correlated predictors \\
\hline arrhythmia.mat & \begin{tabular}{l} 
Cardiac arrhythmia data from the UCI machine \\
learning repository
\end{tabular} \\
\hline carbig.mat & Measurements of cars, 1970-1982 \\
\hline carsmall.mat & \begin{tabular}{l} 
Subset of carbig.mat. Measurements of cars, 1970, \\
1976,1982
\end{tabular} \\
\hline cereal.mat & Breakfast cereal ingredients \\
\hline cities.mat & Quality of life ratings for U.S. metropolitan areas \\
\hline discrim.mat & \begin{tabular}{l} 
A version of cities.mat used for discriminant \\
analysis
\end{tabular} \\
\hline examgrades.mat & Exam grades on a scale of 0-100 \\
\hline fisheriris.mat & Fisher's 1936 iris data \\
\hline flu.mat & \begin{tabular}{l} 
Google Flu Trends estimated ILI (influenza-like \\
illness) percentage for various regions of the US, \\
and CDC weighted ILI percentage based on sentinel \\
provider reports
\end{tabular} \\
\hline gas.mat & \begin{tabular}{l} 
Gasoline prices around the state of Massachusetts \\
in 1993
\end{tabular} \\
\hline hald.mat & Heat of cement vs. mix of ingredients \\
\hline hogg.mat & Bacteria counts in different shipments of milk \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline File & Description of Data Set \\
\hline hospital.mat & Simulated hospital data \\
\hline imports-85.mat & \begin{tabular}{l} 
1985 Auto Imports Database from the UCI \\
repository
\end{tabular} \\
\hline ionosphere.mat & \begin{tabular}{l} 
Ionosphere dataset from the UCI machine learning \\
repository
\end{tabular} \\
\hline kmeansdata.mat & Four-dimensional clustered data \\
\hline lawdata.mat & \begin{tabular}{l} 
Grade point average and LSAT scores from 15 law \\
schools
\end{tabular} \\
\hline mileage.mat & Mileage data for three car models from two factories \\
\hline moore.mat & Biochemical oxygen demand on five predictors \\
\hline morse.mat & Recognition of Morse code distinctions by non-coders \\
\hline ovariancancer.mat & Grouped observations on 4000 predictors \\
\hline parts.mat & Dimensional run-out on 36 circular parts \\
\hline polydata.mat & Sample data for polynomial fitting \\
\hline popcorn.mat & Popcorn yield by popper type and brand \\
\hline reaction.mat & Reaction kinetics for Hougen-Watson model \\
\hline sat.dat & \begin{tabular}{l} 
Scholastic Aptitude Test averages by gender and \\
test (table)
\end{tabular} \\
\hline sat2.dat & \begin{tabular}{l} 
Scholastic Aptitude Test averages by gender and \\
test (csv)
\end{tabular} \\
\hline spectra.mat & \begin{tabular}{l} 
NIR spectra and octane numbers of 60 gasoline \\
samples
\end{tabular} \\
\hline stockreturns.mat & Simulated stock returns \\
\hline & \\
\hline
\end{tabular}

\section*{A-4}

\section*{Distribution Reference}
- "Bernoulli Distribution" on page B-3
- "Beta Distribution" on page B-4
- "Binomial Distribution" on page B-7
- "Birnbaum-Saunders Distribution" on page B-10
- "Burr Type XII Distribution" on page B-12
- "Chi-Square Distribution" on page B-25
- "Copulas" on page B-27
- "Custom Distributions" on page B-28
- "Exponential Distribution" on page B-29
- "Extreme Value Distribution" on page B-32
- "F Distribution" on page B-38
- "Gamma Distribution" on page B-40
- "Gaussian Distribution" on page B-43
- "Gaussian Mixture Distributions" on page B-44
- "Generalized Extreme Value Distribution" on page B-45
- "Generalized Pareto Distribution" on page B-50
- "Geometric Distribution" on page B-54
- "Hypergeometric Distribution" on page B-56
- "Inverse Gaussian Distribution" on page B-58
- "Inverse Wishart Distribution" on page B-59
- "Johnson System" on page B-61
- "Logistic Distribution" on page B-62
- "Loglogistic Distribution" on page B-63
- "Lognormal Distribution" on page B-64
- "Multinomial Distribution" on page B-67
- "Multivariate Gaussian Distribution" on page B-70
- "Multivariate Normal Distribution" on page B-71
- "Multivariate t Distribution" on page B-77
- "Nakagami Distribution" on page B- 83
- "Negative Binomial Distribution" on page B-85
- "Noncentral Chi-Square Distribution" on page B-89
- "Noncentral F Distribution" on page B-91
- "Noncentral t Distribution" on page B-93
- "Nonparametric Distributions" on page B-95
- "Normal Distribution" on page B-96
- "Pareto Distribution" on page B-99
- "Pearson System" on page B-100
- "Piecewise Distributions" on page B-101
- "Poisson Distribution" on page B-102
- "Rayleigh Distribution" on page B-104
- "Rician Distribution" on page B-106
- "Student's t Distribution" on page B-108
- "t Location-Scale Distribution" on page B-110
- "Uniform Distribution (Continuous)" on page B-112
- "Uniform Distribution (Discrete)" on page B-114
- "Weibull Distribution" on page B-116
- "Wishart Distribution" on page B-119

\section*{Bernoulli Distribution}

\section*{Definition of the Bernoulli Distribution}

The Bernoulli distribution is a special case of the binomial distribution, with \(n=1\).

\section*{See Also}
"Discrete Distributions" on page 5-8

\section*{Beta Distribution}

\author{
In this section... \\ "Definition" on page B-4 \\ "Background" on page B-4 \\ "Parameters" on page B-5 \\ "Example" on page B-6 \\ "See Also" on page B-6
}

\section*{Definition}

The beta pdf is
\[
y=f(x \mid a, b)=\frac{1}{B(a, b)} x^{a-1}(1-x)^{b-1} I_{(0,1)}(x)
\]
where \(B(\cdot)\) is the Beta function. The indicator function \(I_{(0,1)}(x)\) ensures that only values of \(x\) in the range ( 01 ) have nonzero probability.

\section*{Background}

The beta distribution describes a family of curves that are unique in that they are nonzero only on the interval (01). A more general version of the function assigns parameters to the endpoints of the interval.

The beta cdf is the same as the incomplete beta function.
The beta distribution has a functional relationship with the \(t\) distribution. If \(Y\) is an observation from Student's \(t\) distribution with \(v\) degrees of freedom, then the following transformation generates \(X\), which is beta distributed.
\[
X=\frac{1}{2}+\frac{1}{2} \frac{Y}{\sqrt{v+Y^{2}}}
\]

If \(Y \sim t(v)\), then \(X \square \beta\left(\frac{v}{2}, \frac{v}{2}\right)\)
This relationship is used to compute values of the \(t \mathrm{cdf}\) and inverse function as well as generating \(t\) distributed random numbers.

\section*{Parameters}

Suppose you are collecting data that has hard lower and upper bounds of zero and one respectively. Parameter estimation is the process of determining the parameters of the beta distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the beta pdf. But for the pdf, the parameters are known constants and the variable is \(x\). The likelihood function reverses the roles of the variables. Here, the sample values (the \(x\) 's) are already observed. So they are the fixed constants. The variables are the unknown parameters. Maximum likelihood estimation (MLE) involves calculating the values of the parameters that give the highest likelihood given the particular set of data.

The function betafit returns the MLEs and confidence intervals for the parameters of the beta distribution. Here is an example using random numbers from the beta distribution with \(a=5\) and \(b=0.2\).
```

r = betarnd(5,0.2,100,1);
[phat, pci] = betafit(r)
phat =
4.5330 0.2301
pci =
2.8051 0.1771
6.2610 0.2832

```

The MLE for parameter \(a\) is 4.5330, compared to the true value of 5 . The \(95 \%\) confidence interval for \(a\) goes from 2.8051 to 6.2610 , which includes the true value.

Similarly the MLE for parameter \(b\) is 0.2301 , compared to the true value of 0.2 . The \(95 \%\) confidence interval for \(b\) goes from 0.1771 to 0.2832 , which
also includes the true value. In this made-up example you know the "true value." In experimentation you do not.

\section*{Example}

The shape of the beta distribution is quite variable depending on the values of the parameters, as illustrated by the plot below.


The constant pdf (the flat line) shows that the standard uniform distribution is a special case of the beta distribution.

\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Binomial Distribution}

\section*{In this section...}
"Definition" on page B-7
"Background" on page B-7
"Parameters" on page B-8
"Example" on page B-9
"See Also" on page B-9

\section*{Definition}

The binomial pdf is
\[
f(k \mid n, p)=\binom{n}{k} p^{k}(1-p)^{n-k}
\]
where \(k\) is the number of successes in \(n\) trials of a Bernoulli process with probability of success \(p\).

The binomial distribution is discrete, defined for integers \(k=0,1,2, \ldots n\), where it is nonzero.

\section*{Background}

The binomial distribution models the total number of successes in repeated trials from an infinite population under the following conditions:
- Only two outcomes are possible on each of \(n\) trials.
- The probability of success for each trial is constant.
- All trials are independent of each other.

The binomial distribution is a generalization of the Bernoulli distribution; it generalizes to the multinomial distribution.

\section*{Parameters}

Suppose you are collecting data from a widget manufacturing process, and you record the number of widgets within specification in each batch of 100 . You might be interested in the probability that an individual widget is within specification. Parameter estimation is the process of determining the parameter, \(p\), of the binomial distribution that fits this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the binomial pdf above. But for the pdf, the parameters ( \(n\) and \(p\) ) are known constants and the variable is \(x\). The likelihood function reverses the roles of the variables. Here, the sample values (the \(x\) 's) are already observed. So they are the fixed constants. The variables are the unknown parameters. MLE involves calculating the value of \(p\) that give the highest likelihood given the particular set of data.

The function binofit returns the MLEs and confidence intervals for the parameters of the binomial distribution. Here is an example using random numbers from the binomial distribution with \(n=100\) and \(p=0.9\).
```

r = binornd(100,0.9)
r =
88
[phat, pci] = binofit(r,100)
phat =
0.8800
pci =
0.7998
0.9364

```

The MLE for parameter \(p\) is 0.8800 , compared to the true value of 0.9 . The \(95 \%\) confidence interval for \(p\) goes from 0.7998 to 0.9364 , which includes the true value. In this made-up example you know the "true value" of \(p\). In experimentation you do not.

\section*{Example}

The following commands generate a plot of the binomial pdf for \(n=10\) and \(p=1 / 2\).
x = 0:10;
\(y=\) binopdf(x,10,0.5);
plot(x,y,'+')


\section*{See Also}
"Discrete Distributions" on page 5-8

\section*{Birnbaum-Saunders Distribution}

\section*{In this section...}
"Definition" on page B-10
"Background" on page B-10
"Parameters" on page B-11
"See Also" on page B-11

\section*{Definition}

The Birnbaum-Saunders distribution has the density function
\[
\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{(\sqrt{x / \beta}-\sqrt{\beta / x})^{2}}{2 \gamma^{2}}\right\}\left(\frac{(\sqrt{x / \beta}+\sqrt{\beta / x})}{2 \gamma x}\right)
\]
with scale parameter \(B>0\) and shape parameter \(\gamma>0\), for \(x>0\).
If \(x\) has a Birnbaum-Saunders distribution with parameters \(B\) and \(\gamma\), then
\[
\frac{(\sqrt{x / \beta}-\sqrt{\beta / x})}{\gamma}
\]
has a standard normal distribution.

\section*{Background}

The Birnbaum-Saunders distribution was originally proposed as a lifetime model for materials subject to cyclic patterns of stress and strain, where the ultimate failure of the material comes from the growth of a prominent flaw. In materials science, Miner's Rule suggests that the damage occurring after \(n\) cycles, at a stress level with an expected lifetime of \(N\) cycles, is proportional
to \(n / N\). Whenever Miner's Rule applies, the Birnbaum-Saunders model is a reasonable choice for a lifetime distribution model.

\section*{Parameters}

See mle, dfittool.

\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Burr Type XII Distribution}

\section*{In this section...}
"Definition" on page B-12
"Background" on page B-13
"Parameters" on page B-14
"Fit a Burr Distribution and Draw the cdf" on page B-15
"Compare Lognormal and Burr pdfs" on page B-17
"Burr pdf for Various Parameters" on page B-19
"Survival and Hazard Functions of Burr Distribution" on page B-20
"Divergence of Parameter Estimates" on page B-22
"See Also" on page B-24

\section*{Definition}

The Burr type XII distribution is a three-parameter family of distributions on the positive real line. The cumulative distribution function (cdf) of the Burr distribution is
\[
F(x \mid \alpha, c, k)=1-\frac{1}{\left(1+\left(\frac{x}{\alpha}\right)^{c}\right)^{k}}, \quad x>0, \alpha>0, c>0, k>0,
\]
where \(c\) and \(k\) are the shape parameters and \(\alpha\) is the scale parameter. The probability density function (pdf) is
\[
f(x \mid \alpha, c, k)=\frac{\frac{k c}{\alpha}\left(\frac{x}{\alpha}\right)^{c-1}}{\left(1+\left(\frac{x}{\alpha}\right)^{c}\right)^{k+1}}, \quad x>0, \alpha>0, c>0, k>0 .
\]

The density of the Burr type XII distribution is L-shaped if \(c \leq 1\) and unimodal, otherwise.

\section*{Background}

Burr distribution was first discussed by Burr (1942) as a two-parameter family. An additional scale parameter was introduced by Tadikamalla (1980). It is a very flexible distribution family that can express a wide range of distribution shapes. The Burr distribution includes, overlaps, or has as a limiting case, many commonly used distributions such as gamma, lognormal, loglogistic, bell-shaped, and J-shaped beta distributions (but not U-shaped). Some compound distributions also correspond to the Burr distribution. For example, compounding a Weibull distribution with a gamma distribution for its scale parameter results in a Burr distribution. Similarly, compounding an exponential distribution with a gamma distribution for its rate parameter, \(1 / \mu\), also yields a Burr distribution. The Burr distribution also has two asymptotic limiting cases: Weibull and Pareto Type I.

The Burr distribution can fit a wide range of empirical data. Different values of its parameters cover a broad set of skewness and kurtosis. Hence, it is used in various fields such as finance, hydrology, and reliability to model a variety of data types. Examples of data modeled by the Burr distribution are household income, crop prices, insurance risk, travel time, flood levels, and failure data.

The survival and hazard functions of Burr type XII distribution are, respectively,
\[
S(x \mid \alpha, c, k)=\frac{1}{\left[1+\left(\frac{x}{\alpha}\right)^{c}\right]^{k}}
\]
and
\[
h(x \mid \alpha, c, k)=\frac{\frac{k c}{\alpha}\left(\frac{x}{\alpha}\right)^{c-1}}{1+\left(\frac{x}{\alpha}\right)^{c}}
\]

If \(c>1\), the hazard function \(\mathrm{h}(x)\) is non-monotonic with a mode at \(x=\alpha(c-1)^{1 / c}\).

\section*{Parameters}

The three-parameter Burr distribution is defined by its scale parameter a and shape parameters \(c\) and \(k\). You can estimate the parameters using mle or fitdist. Both functions support censored data for Burr distribution.

Generate sample data from a Burr distribution with scale parameter 0.5 and shape parameters 2 and 5 .
rng('default')
\(R=\) random('burr', \(0.5,2,5,1000,1\) );
Estimate the parameters and the confidence intervals.
```

[phat,pci] = mle(R,'distribution','burr')
phat =
0.4154 2.1217 4.0550
pci =
0.2985 1.9560 2.4079
0.5782 2.3014 6.8288

```

The default \(95 \%\) confidence intervals for the parameters include the true parameter values.

The three-parameter Burr distribution converges asymptotically to one of the two limiting forms as its parameters diverge:
- If \(k \rightarrow 0, c \rightarrow \infty, c k=\lambda\), then the Burr distribution reduces to a two-parameter Pareto distribution with the cdf
\[
F_{P}=1-\left(\frac{x}{\alpha}\right)^{-\lambda}, x \geq \alpha
\]
- If \(k \rightarrow \infty, \alpha \rightarrow \infty, \alpha / k^{1 / c}=\theta\), then the Burr distribution reduces to a two-parameter Weibull distribution with the cdf
\[
F_{W}(x \mid c, \theta)=1-\exp \left[\left(\frac{x}{\alpha}\right)^{-c}\right]
\]

If mle or fitdist detects such divergence, it returns an error message, but informs you of the limiting distribution and corresponding parameter estimates for that distribution.

\section*{Fit a Burr Distribution and Draw the cdf}

This example shows how to fit a Burr distribution to data, draw the cdf, and construct a histogram with a Burr distribution fit.
1. Load the sample data.
load('arrhythmia.mat')
The fifth column in \(X\) contains a measurement obtained from electrocardiograms, called QRS duration.
2. Fit a Burr distribution to the QRS duration data, and get the parameter estimates.

PD = fitdist(X(:,5),'burr');
PD has the maximum likelihood estimates of the Burr distribution parameters in the property Param. The estimates are \(\alpha=80.4515, c=18.9251, k=0.4492\).
3. Plot the cdf of the QRS duration data.
```

QRScdf=cdf('burr',sortrows(X(:,5)), 80.4515,18.9251,0.4492);
plot(sortrows(X(:,5)),QRScdf)
xlabel('QRS Duration')

```

cdf of QRS duration data
4. Draw the histogram of QRS duration data with 15 bins and the pdf of the Burr distribution fit.
histfit(X(:,5),15,'burr')
xlabel('QRS Duration')


Histogram of QRS data with a Burr distribution fit

\section*{Compare Lognormal and Burr pdfs}

This example compares the lognormal pdf to the Burr pdf using income data generated from a lognormal distribution.
1. Generate the income data.
```

rng('default') % for reproducibility
y = random('logn',log(25000),0.65,500,1);

```
2. Fit a Burr distribution.
```

pd = fitdist(y,'burr');

```
3. Plot both the Burr and lognormal pdfs of income data on the same axis.
p = pdf('burr', sortrows(y),26007,2.6374,1.0966);
p2 = pdf('logn',sortrows(y),log(25000), 0.65);
plot(sortrows(y), p,'g',sortrows(y), p2,'r','LineWidth', 2)
legend('burr','lognormal')


\section*{Burr and Lognormal pdfs fitted to income data}

\section*{Burr pdf for Various Parameters}

This example shows how to create a variety of shapes for probability density functions of the Burr distribution.
```

X = 0:0.01:5;
c = [0.5 0.95 2 5];
k = [0.5 0.75 2 5];
alpha = [0.5 1 2 5];
colors = ['b';'g';'r';'k']'
figure
for i = 1:1:4
pdf1(i,:) = pdf('burr',X,1,c(i),0.5);
pdf2(i,:) = pdf('burr',X,1,2,k(i));
pdf3(i,:) = pdf('burr',X,alpha(i),2,0.5);
axC = subplot(3,1,1);
pC(i) = plot(X,pdf1(i,:),colors(i),'LineWidth',2);
title('Effect of c, \alpha = 1, k = 0.5'),xlabel('x')
hold on
axK = subplot(3,1,2);
pK(i) = plot(X,pdf2(i,:),colors(i),'LineWidth',2);
title('Effect of k, \alpha = 1, c = 2'),xlabel('x')
hold on
axAlpha = subplot(3,1,3);
pAlpha(i) = plot(X,pdf3(i,:),colors(i),'LineWidth',2);
title('Effect of \alpha, c = 2, k = 0.5'),xlabel('x')
hold on
end
set(axC,'XLim',[0 3],'YLim',[0 1.2]);
set(axK,'XLim',[0 3],'YLim',[0 2.1]);
set(axAlpha,'XLim',[0 5],'YLim',[0 1]);
legend(axc,'c=0.5','c=0.95','c=2','c=5');
legend(axK,'k=0.5','k=0.75','k=2','k=5');
legend(axAlpha,'\alpha=0.5','\alpha=1','\alpha=2','\alpha=5');

```


This figure illustrates how the shape and scale of the Burr distribution changes for different values of its parameters.

\section*{Survival and Hazard Functions of Burr Distribution}

This example shows how to find and plot the survival and hazard functions for a sample coming from a Burr distribution.
1. Generate the data.
\[
x=0: 0.015: 2.5
\]
2. Evaluate the pdf and cdf of data in \(X\).
```

Xpdf = pdf('burr',X,0.2,5,0.5);
Xcdf = cdf('burr',X,0.2,5,0.5);

```
3. Evaluate and plot the survival function of data in \(X\).
\(S=1 .-X c d f ; ~ \% ~ s u r v i v a l ~ f u n c t i o n ~\) plot(X,S,'LineWidth', 2)
xlabel('x')


\section*{Survival function}
4. Evaluate and plot the hazard function of data in X.
```

H = Xpdf./S; % hazard function
plot(X,H,'r','LineWidth',2)
xlabel('x')

```


\section*{Hazard function}

\section*{Divergence of Parameter Estimates}

This example shows how to interpret the display when the parameter estimates diverge when fitting a Burr distribution to input data.
1. Generate sample data from the Weibull distribution with parameters 0.5 and 2.
```

rng('default') % for reproducibility
X = wblrnd(0.5,2,100,1);

```
2. Fit a Burr distribution.
```

PD = fitdist(X,'burr');
Error using addburr>burrfit (line 566)
The data are not fit by a Burr distribution with finite
parameters. The maximum likelihood fit is provided by the
k->Inf, alpha->Inf limiting form of the Burr distribution: a
Weibull distribution with the parameters below.
a (scale): 0.476817
b (shape): 1.96219
Error in fitdata (line 24)
p = F(x,fixedparams{:},0.05,opts{:});
Error in ProbDistUnivParam.fit (line 94)
pd = fitdata(pd,spec,x,cens,freq,fixedparams,options);
Error in fitdist (line 124)
pd =
ProbDistUnivParam.fit(x,distname,'cens',cens,'freq',freq,args{:});

```

The error message tells you that the Weibull family seems to fit the data better and gives you the parameter estimates from a Weibull fit. You can use those estimates directly. If you need covariance estimates for the parameters or other information about the fit, you can refit a Weibull distribution to the data.
3. Fit a Weibull distribution to the data and find the confidence intervals for the parameter estimates.
```

PD = fitdist(X,'weibull');
paramci(PD)
ans =

```
```

0.4291 1.6821
0.5298 2.2890

```

These are the \(95 \%\) confidence intervals of the parameter estimates for the Weibull distribution fit.

\section*{References}
[1] Burr, Irving W. "Cumulative frequency functions." The Annals of Mathematical Statistics, Vol. 13, Number 2, 1942, pp. 215-232.
[2] Tadikamalla, Pandu R. "A look at the Burr and related distributions." International Statistical Review, Vol. 48, Number 3, 1980, pp. 337-344.
[3] Rodriguez, Robert N. "A guide to the Burr type XII distributions." Biometrika, Vol. 64, Number 1, 1977, pp. 129-134.
[4] AL-Hussaini, Essam K. "A characterization of the Burr type XII distribution". Appl. Math. Lett. Vol. 4, Number 1, 1991, pp. 59-61.
[5] Grammig, Joachim and Kai-Oliver Maurer. "Non-monotonic hazard functions and the autoregressive conditional duration model." Econometrics Journal, Vol. 3, 2000, pp. 16-38.

\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Chi-Square Distribution}

\section*{In this section...}
"Definition" on page B-25
"Background" on page B-25
"Example" on page B-26
"See Also" on page B-26

\section*{Definition}

The \(X^{2}\) pdf is
\[
y=f(x \mid v)=\frac{x^{(v-2) / 2} e^{-x / 2}}{2^{\frac{v}{2}} \Gamma(v / 2)}
\]
where \(\Gamma(\cdot)\) is the Gamma function, and \(v\) is the degrees of freedom.

\section*{Background}

The \(x^{2}\) distribution is a special case of the gamma distribution where \(b=2\) in the equation for gamma distribution below.
\[
y=f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{\frac{x}{b}}
\]

The \(x^{2}\) distribution gets special attention because of its importance in normal sampling theory. If a set of \(n\) observations is normally distributed with variance \(\sigma^{2}\), and \(s^{2}\) is the sample standard deviation, then
\[
\frac{(n-1) s^{2}}{\sigma^{2}} \square \chi^{2}(n-1)
\]

This relationship is used to calculate confidence intervals for the estimate of the normal parameter \(\sigma^{2}\) in the function normfit.

\section*{Example}

The \(x^{2}\) distribution is skewed to the right especially for few degrees of freedom \((v)\). The plot shows the \(X^{2}\) distribution with four degrees of freedom.
```

x = 0:0.2:15;
y = chi2pdf(x,4);
plot(x,y)

```


\section*{See Also}
"Continuous Distributions (Statistics)" on page 5-7

\section*{Copulas}

See "Copulas: Generate Correlated Samples" on page 5-108.

\section*{Custom Distributions}

User-defined custom distributions, created using files and function handles, are supported by the Statistics Toolbox functions pdf, cdf, icdf, and mle, and the Statistics Toolbox GUI dfittool.

\section*{Exponential Distribution}

\section*{In this section...}
"Definition" on page B-29
"Background" on page B-29
"Parameters" on page B-29
"Example" on page B-30
"See Also" on page B-31

\section*{Definition}

The exponential pdf is
\[
y=f(x \mid \mu)=\frac{1}{\mu} e^{\frac{-x}{\mu}}
\]

\section*{Background}

Like the chi-square distribution, the exponential distribution is a special case of the gamma distribution (obtained by setting \(a=1\) )
\[
y=f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{\frac{x}{b}}
\]
where \(\Gamma(\cdot)\) is the Gamma function.
The exponential distribution is special because of its utility in modeling events that occur randomly over time. The main application area is in studies of lifetimes.

\section*{Parameters}

Suppose you are stress testing light bulbs and collecting data on their lifetimes. You assume that these lifetimes follow an exponential distribution.

You want to know how long you can expect the average light bulb to last. Parameter estimation is the process of determining the parameters of the exponential distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the exponential pdf above. But for the pdf, the parameters are known constants and the variable is \(x\). The likelihood function reverses the roles of the variables. Here, the sample values (the \(x\) 's) are already observed. So they are the fixed constants. The variables are the unknown parameters. MLE involves calculating the values of the parameters that give the highest likelihood given the particular set of data.

The function expfit returns the MLEs and confidence intervals for the parameters of the exponential distribution. Here is an example using random numbers from the exponential distribution with \(\mu=700\).
```

lifetimes = exprnd(700,100,1);
[muhat, muci] = expfit(lifetimes)
muhat =
672.8207
muci =

```
    547.4338
    810.9437

The MLE for parameter \(\mu\) is 672 , compared to the true value of 700 . The \(95 \%\) confidence interval for \(\mu\) goes from 547 to 811, which includes the true value.

In the life tests you do not know the true value of \(\mu\) so it is nice to have a confidence interval on the parameter to give a range of likely values.

\section*{Example}

For exponentially distributed lifetimes, the probability that an item will survive an extra unit of time is independent of the current age of the item. The example shows a specific case of this special property.
```

l = 10:10:60;

```
```

lpd = l+0.1;
deltap = (expcdf(lpd,50)-\operatorname{expcdf(1,50))./(1-\operatorname{expcdf}(1,50))}
deltap =
0.0020 0.0020 0.0020 0.0020 0.0020 0.0020

```

The following commands generate a plot of the exponential pdf with its parameter (and mean), \(\mu\), set to 2 .
\(x=0: 0.1: 10 ;\)
\(y=\operatorname{exppdf}(x, 2)\);
plot(x,y)


\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Extreme Value Distribution}

\section*{In this section...}
"Definition" on page B-32
"Background" on page B-32
"Parameters" on page B-34
"Example" on page B-35
"See Also" on page B-37

\section*{Definition}

The probability density function for the extreme value distribution with location parameter \(\mu\) and scale parameter \(\sigma\) is
\[
y=f(x \mid \mu, \sigma)=\sigma^{-1} \exp \left(\frac{x-\mu}{\sigma}\right) \exp \left(-\exp \left(\frac{x-\mu}{\sigma}\right)\right)
\]

This form of the probability density function is suitable for modeling the minimum value. To model the maximum value, use the negative of the original values.

If \(T\) has a Weibull distribution with parameters \(a\) and \(b\), then \(\log T\) has an extreme value distribution with parameters \(\mu=\log a\) and \(\sigma=1 / b\).

\section*{Background}

Extreme value distributions are often used to model the smallest or largest value among a large set of independent, identically distributed random values representing measurements or observations. The extreme value distribution is appropriate for modeling the smallest value from a distribution whose tails decay exponentially fast, for example, the normal distribution. It can also model the largest value from a distribution, such as the normal or exponential distributions, by using the negative of the original values.

For example, the following fits an extreme value distribution to minimum values taken over 1000 sets of 500 observations from a normal distribution:
```

xMinima = min(randn(1000,500), [], 2);
paramEstsMinima = evfit(xMinima);
y = linspace(-5,-1.5,1001);
hist(xMinima,-4.75:.25:-1.75);
p = evpdf(y,paramEstsMinima(1),paramEstsMinima(2));
line(y,.25*length(xMinima)*p,'color','r')

```


The following fits an extreme value distribution to the maximum values in each set of observations:
```

xMaxima = max(randn(1000,500), [], 2);
paramEstsMaxima = evfit(-xMaxima);
y = linspace(1.5,5,1001);
hist(xMaxima,1.75:.25:4.75);
p = evpdf(-y,paramEstsMaxima(1),paramEstsMaxima(2));
line(y,.25*length(xMaxima)*p,'color','r')

```


Although the extreme value distribution is most often used as a model for extreme values, you can also use it as a model for other types of continuous data. For example, extreme value distributions are closely related to the Weibull distribution. If T has a Weibull distribution, then \(\log (T)\) has a type 1 extreme value distribution.

\section*{Parameters}

The function evfit returns the maximum likelihood estimates (MLEs) and confidence intervals for the parameters of the extreme value distribution. The following example shows how to fit some sample data using evfit, including estimates of the mean and variance from the fitted distribution.

Suppose you want to model the size of the smallest washer in each batch of 1000 from a manufacturing process. If you believe that the sizes are
independent within and between each batch, you can fit an extreme value distribution to measurements of the minimum diameter from a series of eight experimental batches. The following code returns the MLEs of the distribution parameters as parmhat and the confidence intervals as the columns of parmci.
```

x = [ll9.774 20.141 19.44 20.511 21.377 19.003 19.66 18.83];
[parmhat, parmci] = evfit(x)
parmhat =
20.2506 0.8223
parmci =
19.644 0.49861
20.857 1.3562

```

You can find mean and variance of the extreme value distribution with these parameters using the function evstat.
```

[meanfit, varfit] = evstat(parmhat(1),parmhat(2))
meanfit =
19.776
varfit =
1.1123

```

\section*{Example}

The following code generates a plot of the pdf for the extreme value distribution.
```

t = [-5:.01:2];
y = evpdf(t);
plot(t,y)

```


The extreme value distribution is skewed to the left, and its general shape remains the same for all parameter values. The location parameter, mu, shifts the distribution along the real line, and the scale parameter, sigma, expands or contracts the distribution. This example plots the probability function for different combinations of mu and sigma.
```

x = -15:.01:5;
plot(x,evpdf(x,2,1),'-', ...
x,evpdf(x,0,2),':', ...
x,evpdf(x,-2,4),'-.');
legend({'mu = 2, sigma = 1', ...
'mu = 0, sigma = 2', ...
'mu = -2, sigma = 4'}, ...
'Location','NW')
xlabel('x')
ylabel('f(x|mu,sigma)')

```


\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{F Distribution}

\section*{In this section...}
"Definition" on page B-38
"Background" on page B-38
"Example" on page B-39
"See Also" on page B-39

\section*{Definition}

The pdf for the \(F\) distribution is
\[
y=f\left(x \mid v_{1}, v_{2}\right)=\frac{\Gamma\left[\frac{\left(v_{1}+v_{2}\right)}{2}\right]}{\Gamma\left(\frac{v_{1}}{2}\right) \Gamma\left(\frac{v_{2}}{2}\right)}\left(\frac{v_{1}}{v_{2}}\right)^{\frac{v_{1}}{2}} \frac{x^{\frac{v_{1}-2}{2}}}{\left[1+\left(\frac{v_{1}}{v_{2}}\right) x\right]^{\frac{v_{1}+v_{2}}{2}}}
\]
where \(\Gamma(\cdot)\) is the Gamma function.

\section*{Background}

The \(F\) distribution has a natural relationship with the chi-square distribution. If \(X_{1}\) and \(x_{2}\) are both chi-square with \(v_{1}\) and \(v_{2}\) degrees of freedom respectively, then the statistic \(F\) below is \(F\)-distributed.
\[
F\left(v_{1}, v_{2}\right)=\frac{\chi_{1} / v_{1}}{\chi_{2} / v_{2}}
\]

The two parameters, \(v_{1}\) and \(v_{2}\), are the numerator and denominator degrees of freedom. That is, \(v_{1}\) and \(v_{2}\) are the number of independent pieces of information used to calculate \(x_{1}\) and \(x_{2}\), respectively.

\section*{Example}

The most common application of the \(F\) distribution is in standard tests of hypotheses in analysis of variance and regression.

The plot shows that the \(F\) distribution exists on the positive real numbers and is skewed to the right.
\[
\begin{aligned}
& x=0: 0.01: 10 ; \\
& y=f p d f(x, 5,3) ; \\
& \operatorname{plot}(x, y)
\end{aligned}
\]


\section*{See Also}
"Continuous Distributions (Statistics)" on page 5-7

\section*{Gamma Distribution}

\author{
In this section... \\ "Definition" on page B-40 \\ "Background" on page B-40 \\ "Parameters" on page B-41 \\ "Example" on page B-42 \\ "See Also" on page B-42
}

\section*{Definition}

The gamma pdf is
\[
y=f(x \mid a, b)=\frac{1}{b^{a} \Gamma(a)} x^{a-1} e^{\frac{-x}{b}}
\]
where \(\Gamma(\cdot)\) is the Gamma function.

\section*{Background}

The gamma distribution models sums of exponentially distributed random variables.

The gamma distribution family is based on two parameters. The chi-square and exponential distributions, which are children of the gamma distribution, are one-parameter distributions that fix one of the two gamma parameters.

The gamma distribution has the following relationship with the incomplete Gamma function.
\[
f(x \mid a, b)=\text { gammainc }\left(\frac{x}{b}, a\right)
\]

When \(a\) is large, the gamma distribution closely approximates a normal distribution with the advantage that the gamma distribution has density only for positive real numbers.

\section*{Parameters}

Suppose you are stress testing computer memory chips and collecting data on their lifetimes. You assume that these lifetimes follow a gamma distribution. You want to know how long you can expect the average computer memory chip to last. Parameter estimation is the process of determining the parameters of the gamma distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The likelihood has the same form as the gamma pdf above. But for the pdf, the parameters are known constants and the variable is \(x\). The likelihood function reverses the roles of the variables. Here, the sample values (the \(x\) 's) are already observed. So they are the fixed constants. The variables are the unknown parameters. MLE involves calculating the values of the parameters that give the highest likelihood given the particular set of data.

The function gamfit returns the MLEs and confidence intervals for the parameters of the gamma distribution. Here is an example using random numbers from the gamma distribution with \(a=10\) and \(b=5\).
```

lifetimes = gamrnd(10,5,100,1);

```
[phat, pci] = gamfit(lifetimes)
phat =
    10.98214 .7258
pci \(=\)
    \(7.4001 \quad 3.1543\)
    \(14.5640 \quad 6.2974\)

Note phat (1) \(=\hat{a}\) and phat (2) \(=\hat{b}\). The MLE for parameter \(a\) is 10.98 , compared to the true value of 10 . The \(95 \%\) confidence interval for \(a\) goes from 7.4 to 14.6 , which includes the true value.

Similarly the MLE for parameter \(b\) is 4.7, compared to the true value of 5 . The \(95 \%\) confidence interval for \(b\) goes from 3.2 to 6.3 , which also includes the true value.

In the life tests you do not know the true value of \(a\) and \(b\) so it is nice to have a confidence interval on the parameters to give a range of likely values.

\section*{Example}

In the example the gamma pdf is plotted with the solid line. The normal pdf has a dashed line type.
```

x = gaminv((0.005:0.01:0.995),100,10);
y = gampdf(x,100,10);
y1 = normpdf(x,1000,100);
plot(x,y,'-',x,y1,'-.')

```


\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Gaussian Distribution}

See "Normal Distribution" on page B-96.

\section*{Gaussian Mixture Distributions}

See the discussion of the gmdistribution class in "Gaussian Mixture Models" on page 5-100.

\section*{Generalized Extreme Value Distribution}

\section*{In this section...}
"Definition" on page B-45
"Background" on page B-45
"Parameters" on page B-46
"Example" on page B-47
"See Also" on page B-49

\section*{Definition}

The probability density function for the generalized extreme value distribution with location parameter \(\mu\), scale parameter \(\sigma\), and shape parameter \(k \neq 0\) is
\[
y=f(x \mid \mathrm{k}, \mu, \sigma)=\left(\frac{1}{\sigma}\right) \exp \left(-\left(1+\mathrm{k} \frac{(x-\mu)}{\sigma}\right)^{-\frac{1}{k}}\right)\left(1+\mathrm{k} \frac{(x-\mu)}{\sigma}\right)^{-1-\frac{1}{\mathrm{k}}}
\]
for
\[
1+k \frac{(x-\mu)}{\sigma}>0
\]
k > 0 corresponds to the Type II case, while k < 0 corresponds to the Type III case. For k = 0, corresponding to the Type I case, the density is
\[
y=f(x \mid 0, \mu, \sigma)=\left(\frac{1}{\sigma}\right) \exp \left(-\exp \left(-\frac{(x-\mu)}{\sigma}\right)-\frac{(x-\mu)}{\sigma}\right)
\]

\section*{Background}

Like the extreme value distribution, the generalized extreme value distribution is often used to model the smallest or largest value among a large set of independent, identically distributed random values representing measurements or observations. For example, you might have batches of 1000
washers from a manufacturing process. If you record the size of the largest washer in each batch, the data are known as block maxima (or minima if you record the smallest). You can use the generalized extreme value distribution as a model for those block maxima.

The generalized extreme value combines three simpler distributions into a single form, allowing a continuous range of possible shapes that includes all three of the simpler distributions. You can use any one of those distributions to model a particular dataset of block maxima. The generalized extreme value distribution allows you to "let the data decide" which distribution is appropriate.

The three cases covered by the generalized extreme value distribution are often referred to as the Types I, II, and III. Each type corresponds to the limiting distribution of block maxima from a different class of underlying distributions. Distributions whose tails decrease exponentially, such as the normal, lead to the Type I. Distributions whose tails decrease as a polynomial, such as Student's \(t\), lead to the Type II. Distributions whose tails are finite, such as the beta, lead to the Type III.

Types I, II, and III are sometimes also referred to as the Gumbel, Frechet, and Weibull types, though this terminology can be slightly confusing. The Type I (Gumbel) and Type III (Weibull) cases actually correspond to the mirror images of the usual Gumbel and Weibull distributions, for example, as computed by the functions evcdf and evfit, or wblcdf and wblfit, respectively. Finally, the Type II (Frechet) case is equivalent to taking the reciprocal of values from a standard Weibull distribution.

\section*{Parameters}

If you generate 250 blocks of 1000 random values drawn from Student's \(t\) distribution with 5 degrees of freedom, and take their maxima, you can fit a generalized extreme value distribution to those maxima.
```

blocksize = 1000;
nblocks = 250;
t = trnd(5,blocksize,nblocks);
x = max(t); % 250 column maxima
paramEsts = gevfit(x)
paramEsts =

```
```

0.2438 1.1760
5.8045

```

Notice that the shape parameter estimate (the first element) is positive, which is what you would expect based on block maxima from a Student's \(t\) distribution.
```

hist(x,2:20);
set(get(gca,'child'),'FaceColor',[.8 . 8 1])
xgrid = linspace(2,20,1000);
line(xgrid,nblocks*...
gevpdf(xgrid,paramEsts(1),paramEsts(2),paramEsts(3)));

```


\section*{Example}

The following code generates examples of probability density functions for the three basic forms of the generalized extreme value distribution.
```

x = linspace(-3,6,1000);
y1 = gevpdf(x,-.5,1,0);
y2 = gevpdf(x,0,1,0);
y3 = gevpdf(x,.5,1,0)
plot(x,y1,'-', x,y2,'-', x,y3,'-')
legend({'K<0, Type III' 'K=0, Type I' 'K>0, Type II'});

```


Notice that for \(\mathrm{k}>0\), the distribution has zero probability density for x such that
\[
x<-\frac{\sigma}{\mathrm{k}}+\mu
\]

For k < 0, the distribution has zero probability density for
\[
x>-\frac{\sigma}{\mathrm{k}}+\mu
\]

For \(\mathrm{k}=0\), there is no upper or lower bound.

\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Generalized Pareto Distribution}

\section*{In this section...}
"Definition" on page B-50
"Background" on page B-50
"Parameters" on page B-51
"Example" on page B-52
"See Also" on page B-53

\section*{Definition}

The probability density function for the generalized Pareto distribution with shape parameter \(k \neq 0\), scale parameter \(\sigma\), and threshold parameter \(\theta\), is
\[
y=f(x \mid k, \sigma, \theta)=\left(\frac{1}{\sigma}\right)\left(1+k \frac{(x-\theta)}{\sigma}\right)^{-1-\frac{1}{k}}
\]
for \(\theta<x\), when \(k>0\), or for \(\theta<x<-\sigma / k\) when \(k<0\).
For \(k=0\), the density is
\[
y=f(x \mid 0, \sigma, \theta)=\left(\frac{1}{\sigma}\right) \mathrm{e}^{-\frac{(x-\theta)}{\sigma}}
\]
for \(\theta<x\).
If \(k=0\) and \(\theta=0\), the generalized Pareto distribution is equivalent to the exponential distribution. If \(k>0\) and \(\theta=\sigma / k\), the generalized Pareto distribution is equivalent to the Pareto distribution.

\section*{Background}

Like the exponential distribution, the generalized Pareto distribution is often used to model the tails of another distribution. For example, you might have washers from a manufacturing process. If random influences in the process lead to differences in the sizes of the washers, a standard probability
distribution, such as the normal, could be used to model those sizes. However, while the normal distribution might be a good model near its mode, it might not be a good fit to real data in the tails and a more complex model might be needed to describe the full range of the data. On the other hand, only recording the sizes of washers larger (or smaller) than a certain threshold means you can fit a separate model to those tail data, which are known as exceedences. You can use the generalized Pareto distribution in this way, to provide a good fit to extremes of complicated data.

The generalized Pareto distribution allows a continuous range of possible shapes that includes both the exponential and Pareto distributions as special cases. You can use either of those distributions to model a particular dataset of exceedences. The generalized Pareto distribution allows you to "let the data decide" which distribution is appropriate.

The generalized Pareto distribution has three basic forms, each corresponding to a limiting distribution of exceedence data from a different class of underlying distributions.
- Distributions whose tails decrease exponentially, such as the normal, lead to a generalized Pareto shape parameter of zero.
- Distributions whose tails decrease as a polynomial, such as Student's \(t\), lead to a positive shape parameter.
- Distributions whose tails are finite, such as the beta, lead to a negative shape parameter.

The generalized Pareto distribution is used in the tails of distribution fit objects of the paretotails class.

\section*{Parameters}

If you generate a large number of random values from a Student's \(t\) distribution with 5 degrees of freedom, and then discard everything less than 2 , you can fit a generalized Pareto distribution to those exceedences.
```

t = trnd(5,5000,1);
y = t(t > 2) - 2;
paramEsts = gpfit(y)
paramEsts =

```
\[
0.1267 \quad 0.8134
\]

Notice that the shape parameter estimate (the first element) is positive, which is what you would expect based on exceedences from a Student's \(t\) distribution.
```

hist(y+2,2.25:.5:11.75);
set(get(gca,'child'),'FaceColor',[.8 . 8 1])
xgrid = linspace(2,12,1000);
line(xgrid,.5*length(y)*...
gppdf(xgrid,paramEsts(1),paramEsts(2),2));

```


\section*{Example}

The following code generates examples of the probability density functions for the three basic forms of the generalized Pareto distribution.
x = linspace(0,10,1000);
```

y1 = gppdf(x,-.25,1,0);
y2 = gppdf(x,0,1,0);
y3 = gppdf(x,1,1,0)
plot(x,y1,'-', x,y2,'-', x,y3,'-')
legend({'K<0' 'K=O' 'K>0'});

```


Notice that for \(\mathrm{k}<0\), the distribution has zero probability density for \(x>-\frac{\sigma}{\mathrm{k}}\), while for \(k \geq 0\), there is no upper bound.

\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Geometric Distribution}

\author{
In this section... \\ "Definition" on page B-54 \\ "Background" on page B-54 \\ "Example" on page B-54 \\ "See Also" on page B-55
}

\section*{Definition}

The geometric pdf is
\[
y=f(x \mid p)=p q^{x} I_{(0,1, \ldots)}(x)
\]
where \(q=1-p\). The geometric distribution is a special case of the negative binomial distribution, with \(r=1\).

\section*{Background}

The geometric distribution is discrete, existing only on the nonnegative integers. It is useful for modeling the runs of consecutive successes (or failures) in repeated independent trials of a system.

The geometric distribution models the number of successes before one failure in an independent succession of tests where each test results in success or failure.

\section*{Example}

Suppose the probability of a five-year-old battery failing in cold weather is 0.03. What is the probability of starting 25 consecutive days during a long cold snap?

1 - geocdf(25,0.03)
ans =
\[
0.4530
\]

The plot shows the cdf for this scenario.
\(x=0: 25 ;\)
\(y=\operatorname{geocdf}(x, 0.03)\);
stairs(x,y)


\section*{See Also}
"Discrete Distributions" on page 5-8

\section*{Hypergeometric Distribution}

\section*{In this section...}
"Definition" on page B-56
"Background" on page B-56
"Example" on page B-57
"See Also" on page B-57

\section*{Definition}

The hypergeometric pdf is
\[
y=f(x \mid M, K, n)=\frac{\binom{K}{x}\binom{M-K}{n-x}}{\binom{M}{n}}
\]

\section*{Background}

The hypergeometric distribution models the total number of successes in a fixed-size sample drawn without replacement from a finite population.

The distribution is discrete, existing only for nonnegative integers less than the number of samples or the number of possible successes, whichever is greater. The hypergeometric distribution differs from the binomial only in that the population is finite and the sampling from the population is without replacement.

The hypergeometric distribution has three parameters that have direct physical interpretations.
- \(M\) is the size of the population.
- \(K\) is the number of items with the desired characteristic in the population.
- \(n\) is the number of samples drawn.

Sampling "without replacement" means that once a particular sample is chosen, it is removed from the relevant population for all subsequent selections.

\section*{Example}

The plot shows the cdf of an experiment taking 20 samples from a group of 1000 where there are 50 items of the desired type.
```

x = 0:10;
y = hygecdf(x,1000,50,20);
stairs(x,y)

```


\section*{See Also}
"Discrete Distributions" on page 5-8

\section*{Inverse Gaussian Distribution}

\section*{In this section...}
"Definition" on page B-58
"Background" on page B-58
"Parameters" on page B-58
"See Also" on page B-58

\section*{Definition}

The inverse Gaussian distribution has the density function
\[
\sqrt{\frac{\lambda}{2 \pi x^{3}}} \exp \left\{-\frac{\lambda}{2 \mu^{2} x}(x-\mu)^{2}\right\}
\]

\section*{Background}

Also known as the Wald distribution, the inverse Gaussian is used to model nonnegative positively skewed data. The distribution originated in the theory of Brownian motion, but has been used to model diverse phenomena. Inverse Gaussian distributions have many similarities to standard Gaussian (normal) distributions, which lead to applications in inferential statistics.

\section*{Parameters}

See mle, dfittool.

\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Inverse Wishart Distribution}

\section*{Definition}

The probability density function of the \(d\)-dimensional Inverse Wishart distribution is given by
\[
y=f(\mathrm{X}, \Sigma, v)=\frac{|T|^{(v / 2)} e^{\left(-\frac{1}{2} \operatorname{trace}\left(T X^{-1}\right)\right)}}{2^{(v d) / 2} \pi^{(d(d-1)) / 4}|X|^{(v+d+1) / 2} \Gamma(v / 2) \ldots \Gamma(v-(d-1)) / 2}
\]
where \(X\) and \(T\) are \(d\)-by- \(d\) symmetric positive definite matrices, and \(v\) is a scalar greater than or equal to \(d\). While it is possible to define the Inverse Wishart for singular \(T\), the density cannot be written as above.

If a random matrix has a Wishart distribution with parameters \(T^{-1}\) and \(v\), then the inverse of that random matrix has an inverse Wishart distribution with parameters \(T\) and \(v\). The mean of the distribution is given by
\[
\frac{1}{v-d-1} T
\]
where \(d\) is the number of rows and columns in \(T\).
Only random matrix generation is supported for the inverse Wishart, including both singular and nonsingular \(T\).

\section*{Background}

The inverse Wishart distribution is based on the Wishart distribution. In Bayesian statistics it is used as the conjugate prior for the covariance matrix of a multivariate normal distribution.

\section*{Example}

Notice that the sampling variability is quite large when the degrees of freedom is small.
```

Tau = [1 .5; .5 2];
df = 10; S1 = iwishrnd(Tau,df)*(df-2-1)

```
```

S1 =
1.7959 0.64107
0.64107 1.5496
df = 1000; S2 = iwishrnd(Tau,df)*(df-2-1)
S2 =

0.9842	0.50158
0.50158	2.1682

```

\section*{See Also}
"Wishart Distribution" on page B-119, "Multivariate Distributions" on page 5-9

\section*{Johnson System}

See "Pearson and Johnson Systems" on page 6-25.

\section*{Logistic Distribution}

\author{
In this section... \\ "Definition" on page B-62 \\ "Background" on page B-62 \\ "Parameters" on page B-62 \\ "See Also" on page B-62
}

\section*{Definition}

The logistic distribution has the density function
\[
\frac{e^{\frac{x-\mu}{\sigma}}}{\sigma\left(1+e^{\frac{x-\mu}{\sigma}}\right)^{2}}
\]
with location parameter \(\mu\) and scale parameter \(\sigma>0\), for all real \(x\).

\section*{Background}

The logistic distribution originated with Verhulst's work on demography in the early 1800s. The distribution has been used for various growth models, and is used in logistic regression. It has longer tails and a higher kurtosis than the normal distribution.

\section*{Parameters}

See mle, dfittool.

\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Loglogistic Distribution}

\author{
In this section... \\ "Definition" on page B-63 \\ "Parameters" on page B-63 \\ "See Also" on page B-63
}

\section*{Definition}

The variable \(x\) has a loglogistic distribution with location parameter \(\mu\) and scale parameter \(\sigma>0\) if \(\ln x\) has a logistic distribution with parameters \(\mu\) and \(\sigma\). The relationship is similar to that between the lognormal and normal distribution.

\section*{Parameters}

See mle, dfittool.

\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Lognormal Distribution}

\section*{In this section...}
"Definition" on page B-64
"Background" on page B-64
"Example" on page B-65
"See Also" on page B-66

\section*{Definition}

The lognormal pdf is
\[
y=f(x \mid \mu, \sigma)=\frac{1}{x \sigma \sqrt{2 \pi}} e^{\frac{-(\ln x-\mu)^{2}}{2 \sigma^{2}}}
\]

\section*{Background}

The normal and lognormal distributions are closely related. If \(X\) is distributed \(\operatorname{lognormally}\) with parameters \(\mu\) and \(\sigma\), then \(\log (X)\) is distributed normally with mean \(\mu\) and standard deviation \(\sigma\).

The mean \(m\) and variance \(v\) of a lognormal random variable are functions of \(\mu\) and \(\sigma\) that can be calculated with the lognstat function. They are:
\[
\begin{aligned}
& m=\exp \left(\mu+\sigma^{2} / 2\right) \\
& v=\exp \left(2 \mu+\sigma^{2}\right)\left(\exp \left(\sigma^{2}\right)-1\right)
\end{aligned}
\]

A lognormal distribution with mean \(m\) and variance \(v\) has parameters
\[
\begin{aligned}
& \mu=\log \left(m^{2} / \sqrt{v+m^{2}}\right) \\
& \sigma=\sqrt{\log \left(v / m^{2}+1\right)}
\end{aligned}
\]

The lognormal distribution is applicable when the quantity of interest must be positive, since \(\log (X)\) exists only when \(X\) is positive.

\section*{Example}

Suppose the income of a family of four in the United States follows a lognormal distribution with \(\mu=\log (20,000)\) and \(\sigma^{2}=1.0\). Plot the income density.
```

x = (10:1000:125010)';
y = lognpdf(x,log(20000),1.0);
plot(x,y)
set(gca,'xtick',[0 30000 60000 90000 120000])
set(gca,'xticklabel',{'0','\$30,000','\$60,000',...
'\$90,000','\$120,000'})

```


\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Multinomial Distribution}

\section*{In this section...}
"Definition" on page B-67
"Background" on page B-67
"Example" on page B-67
"See Also" on page B-69

\section*{Definition}

The multinomial pdf is
\[
f(x \mid n, p)=\frac{n!}{x_{1}!\cdots x_{k}!} p_{1}^{x_{1}} \cdots p_{k}^{x_{k}}
\]
where \(x=\left(x_{1}, \ldots, x_{k}\right)\) gives the number of each of \(k\) outcomes in \(n\) trials of a process with fixed probabilities \(p=\left(p_{1}, \ldots, p_{k}\right)\) of individual outcomes in any one trial. The vector \(x\) has non-negative integer components that sum to \(n\). The vector \(p\) has non-negative integer components that sum to 1 .

\section*{Background}

The multinomial distribution is a generalization of the binomial distribution. The binomial distribution gives the probability of the number of "successes" and "failures" in \(n\) independent trials of a two-outcome process. The probability of "success" and "failure" in any one trial is given by the fixed probabilities \(p\) and \(q=1-p\). The multinomial distribution gives the probability of each combination of outcomes in \(n\) independent trials of a \(k\)-outcome process. The probability of each outcome in any one trial is given by the fixed probabilities \(p_{1}, \ldots, p_{\mathrm{k}}\).

The expected value of outcome \(i\) is \(n p_{i}\). The variance of outcome \(i\) is \(n p_{i}\left(1-p_{i}\right)\). The covariance of outcomes \(i\) and \(j\) is \(-n p_{i} p_{j}\) for distinct \(i\) and \(j\).

\section*{Example}

The following uses mnpdf to produce a visualization of a trinomial distribution:
```

% Compute the distribution
p = [1/2 1/3 1/6]; % Outcome probabilities
n = 10; % Sample size
x1 = 0:n;
x2 = 0:n;
[X1,X2] = meshgrid(x1,x2);
X3 = n-(X1+X2);
Y = mnpdf([X1(:),X2(:),X3(:)],repmat(p,(n+1)^2,1));
% Plot the distribution
Y = reshape(Y, n+1,n+1);
bar3(Y)
set(gca,'XTickLabel',0:n)
set(gca,'YTickLabel',0:n)
xlabel('x_1')
ylabel('x_2')
zlabel('Probability Mass')

```

Trinomial Distribution


Note that the visualization does not show \(x_{3}\), which is determined by the constraint \(x_{1}+x_{2}+x_{3}=n\).

\section*{See Also}
"Discrete Distributions" on page 5-8

\title{
Multivariate Gaussian Distribution
}

\author{
See "Multivariate Normal Distribution" on page B-71.
}

\section*{Multivariate Normal Distribution}

\section*{In this section...}
"Definition" on page B-71
"Background" on page B-71
"Example" on page B-72
"See Also" on page B-76

\section*{Definition}

The probability density function of the \(d\)-dimensional multivariate normal distribution is given by
\[
y=f(x, \mu, \Sigma)=\frac{1}{\sqrt{|\Sigma|(2 \pi)^{d}}} e^{-\frac{1}{2}(x-\mu) \Sigma^{-1}(x-\mu)^{\prime}}
\]
where \(x\) and \(\mu\) are 1-by- \(d\) vectors and \(\Sigma\) is a \(d\)-by- \(d\) symmetric positive definite matrix. While it is possible to define the multivariate normal for singular \(\Sigma\), the density cannot be written as above. Only random vector generation is supported for the singular case. Note that while most textbooks define the multivariate normal with \(x\) and \(\mu\) oriented as column vectors, for the purposes of data analysis software, it is more convenient to orient them as row vectors, and Statistics Toolbox software uses that orientation.

\section*{Background}

The multivariate normal distribution is a generalization of the univariate normal to two or more variables. It is a distribution for random vectors of correlated variables, each element of which has a univariate normal distribution. In the simplest case, there is no correlation among variables, and elements of the vectors are independent univariate normal random variables.

The multivariate normal distribution is parameterized with a mean vector, \(\mu\), and a covariance matrix, \(\Sigma\). These are analogous to the mean \(\mu\) and variance \(\sigma^{2}\) parameters of a univariate normal distribution. The diagonal elements of \(\Sigma\)
contain the variances for each variable, while the off-diagonal elements of \(\Sigma\) contain the covariances between variables.

The multivariate normal distribution is often used as a model for multivariate data, primarily because it is one of the few multivariate distributions that is tractable to work with.

\section*{Example}

This example shows the probability density function (pdf) and cumulative distribution function (cdf) for a bivariate normal distribution with unequal standard deviations. You can use the multivariate normal distribution in a higher number of dimensions as well, although visualization is not easy.
```

mu = [0 0];
Sigma = [.25 .3; . 3 1];
x1 = -3:.2:3; x2 = -3:.2:3;
[X1,X2] = meshgrid(x1,x2);
F = mvnpdf([X1(:) X2(:)],mu,Sigma);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
axis([-3 3 -3 3 0 .4])
xlabel('x1'); ylabel('x2'); zlabel('Probability Density');

```

```

F = mvncdf([X1(:) X2(:)],mu,Sigma);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
axis([-3 3 -3 3 0 1])
xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability');

```


Since the bivariate normal distribution is defined on the plane, you can also compute cumulative probabilities over rectangular regions. For example, this contour plot illustrates the computation that follows, of the probability contained within the unit square.
```

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]);
xlabel('x'); ylabel('y');
line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k');

```


Computing a multivariate cumulative probability requires significantly more work than computing a univariate probability. By default, the mvncdf function computes values to less than full machine precision, and returns an estimate of the error as an optional second output:
```

[F,err] = mvncdf([0 0],[1 1],mu,Sigma)
F =
0.20974
err =
1e-008

```

\section*{See Also}
"Multivariate Distributions" on page 5-9

\section*{Multivariate \(\dagger\) Distribution}

\section*{In this section...}
"Definition" on page B-77
"Background" on page B-77
"Example" on page B-78
"See Also" on page B-82

\section*{Definition}

The probability density function of the \(d\)-dimensional multivariate Student's \(t\) distribution is given by
\[
f(x, \Sigma, v)=\frac{1}{|\Sigma|^{1 / 2}} \frac{1}{\sqrt{(v \pi)^{d}}} \frac{\Gamma((v+d) / 2)}{\Gamma(v / 2)}\left(1+\frac{x^{\prime} \Sigma^{-1} x}{v}\right)^{-(v+d) / 2}
\]
where \(x\) is a 1 -by- \(d\) vector, \(\Sigma\) is a \(d\)-by- \(d\) symmetric, positive definite matrix, and \(v\) is a positive scalar. While it is possible to define the multivariate Student's \(t\) for singular \(\Sigma\), the density cannot be written as above. For the singular case, only random number generation is supported. Note that while most textbooks define the multivariate Student's \(t\) with \(x\) oriented as a column vector, for the purposes of data analysis software, it is more convenient to orient \(x\) as a row vector, and Statistics Toolbox software uses that orientation.

\section*{Background}

The multivariate Student's \(t\) distribution is a generalization of the univariate Student's \(t\) to two or more variables. It is a distribution for random vectors of correlated variables, each element of which has a univariate Student's \(t\) distribution. In the same way as the univariate Student's \(t\) distribution can be constructed by dividing a standard univariate normal random variable by the square root of a univariate chi-square random variable, the multivariate Student's \(t\) distribution can be constructed by dividing a multivariate normal random vector having zero mean and unit variances by a univariate chi-square random variable.

The multivariate Student's \(t\) distribution is parameterized with a correlation matrix, \(\Sigma\), and a positive scalar degrees of freedom parameter, \(v . v\) is analogous to the degrees of freedom parameter of a univariate Student's \(t\) distribution. The off-diagonal elements of \(\Sigma\) contain the correlations between variables. Note that when \(\Sigma\) is the identity matrix, variables are uncorrelated; however, they are not independent.

The multivariate Student's \(t\) distribution is often used as a substitute for the multivariate normal distribution in situations where it is known that the marginal distributions of the individual variables have fatter tails than the normal.

\section*{Example}

This example shows the probability density function (pdf) and cumulative distribution function (cdf) for a bivariate Student's \(t\) distribution. You can use the multivariate Student's \(t\) distribution in a higher number of dimensions as well, although visualization is not easy.
```

Rho = [1 .6; .6 1];
nu = 5;
x1 = -3:.2:3; x2 = -3:.2:3;
[X1,X2] = meshgrid(x1,x2);
F = mvtpdf([X1(:) X2(:)],Rho,nu);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
axis([-3 3 -3 3 0 .2])
xlabel('x1'); ylabel('x2'); zlabel('Probability Density');

```

```

F = mvtcdf([X1(:) X2(:)],Rho,nu);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
axis([[-3 3 -3 3 0 1])
xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability');

```


Since the bivariate Student's \(t\) distribution is defined on the plane, you can also compute cumulative probabilities over rectangular regions. For example, this contour plot illustrates the computation that follows, of the probability contained within the unit square.
```

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]);
xlabel('x'); ylabel('y');
line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k');

```

```

mvtcdf([00 0],[$$
\begin{array}{ll}{1}&{1}\end{array}
$$],Rho,nu)

```
ans =
0.14013

Computing a multivariate cumulative probability requires significantly more work than computing a univariate probability. By default, the mvtcdf function computes values to less than full machine precision, and returns an estimate of the error as an optional second output:
```

[F,err] = mvtcdf([0 0],[1 1],Rho,nu)
F =
0.14013
err =
1e-008

```

\section*{See Also}
"Multivariate Distributions" on page 5-9

\section*{Nakagami Distribution}

\section*{In this section...}
"Definition" on page B-83
"Background" on page B-83
"Parameters" on page B-83
"See Also" on page B-84

\section*{Definition}

The Nakagami distribution has the density function
\[
2\left(\frac{\mu}{\omega}\right)^{\mu} \frac{1}{\Gamma(\mu)} x^{(2 \mu-1)} e^{\frac{-\mu}{\omega} x^{2}}
\]
with shape parameter \(\mu\) and scale parameter \(\omega>0\), for \(x>0\). If \(x\) has a Nakagami distribution with parameters \(\mu\) and \(\omega\), then \(x^{2}\) has a gamma distribution with shape parameter \(\mu\) and scale parameter \(\omega / \mu\).

\section*{Background}

In communications theory, Nakagami distributions, Rician distributions, and Rayleigh distributions are used to model scattered signals that reach a receiver by multiple paths. Depending on the density of the scatter, the signal will display different fading characteristics. Rayleigh and Nakagami distributions are used to model dense scatters, while Rician distributions model fading with a stronger line-of-sight. Nakagami distributions can be reduced to Rayleigh distributions, but give more control over the extent of the fading.

\section*{Parameters}

See mle, dfittool.

\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Negative Binomial Distribution}

\section*{In this section...}
"Definition" on page B-85
"Background" on page B-85
"Parameters" on page B-86
"Example" on page B-87
"See Also" on page B-88

\section*{Definition}

When the \(r\) parameter is an integer, the negative binomial pdf is
\[
y=f(x \mid r, p)=\binom{r+x-1}{x} p^{r} q^{x} I_{(0,1, \ldots)}(x)
\]
where \(q=1-p\). When \(r\) is not an integer, the binomial coefficient in the definition of the pdf is replaced by the equivalent expression
\[
\frac{\Gamma(r+x)}{\Gamma(r) \Gamma(x+1)}
\]

\section*{Background}

In its simplest form (when \(r\) is an integer), the negative binomial distribution models the number of failures \(x\) before a specified number of successes is reached in a series of independent, identical trials. Its parameters are the probability of success in a single trial, \(p\), and the number of successes, \(r\). A special case of the negative binomial distribution, when \(r=1\), is the geometric distribution, which models the number of failures before the first success.

More generally, \(r\) can take on non-integer values. This form of the negative binomial distribution has no interpretation in terms of repeated trials, but, like the Poisson distribution, it is useful in modeling count data. The negative binomial distribution is more general than the Poisson distribution because it has a variance that is greater than its mean, making it suitable for count data
that do not meet the assumptions of the Poisson distribution. In the limit, as \(r\) increases to infinity, the negative binomial distribution approaches the Poisson distribution.

\section*{Parameters}

Suppose you are collecting data on the number of auto accidents on a busy highway, and would like to be able to model the number of accidents per day. Because these are count data, and because there are a very large number of cars and a small probability of an accident for any specific car, you might think to use the Poisson distribution. However, the probability of having an accident is likely to vary from day to day as the weather and amount of traffic change, and so the assumptions needed for the Poisson distribution are not met. In particular, the variance of this type of count data sometimes exceeds the mean by a large amount. The data below exhibit this effect: most days have few or no accidents, and a few days have a large number.
```

accident = [2 [14 4
mean(accident)
ans =
8.0667
var(accident)
ans =
79.352

```

The negative binomial distribution is more general than the Poisson, and is often suitable for count data when the Poisson is not. The function nbinfit returns the maximum likelihood estimates (MLEs) and confidence intervals for the parameters of the negative binomial distribution. Here are the results from fitting the accident data:
```

[phat,pci] = nbinfit(accident)
phat =
1.0060 0.1109
pci =
0.2152 0.0171
1.7968 0.2046

```

It is difficult to give a physical interpretation in this case to the individual parameters. However, the estimated parameters can be used in a model
for the number of daily accidents. For example, a plot of the estimated cumulative probability function shows that while there is an estimated \(10 \%\) chance of no accidents on a given day, there is also about a \(10 \%\) chance that there will be 20 or more accidents.
```

plot(0:50,nbincdf(0:50,phat(1), phat(2)),'.-');
xlabel('Accidents per Day')
ylabel('Cumulative Probability')

```


\section*{Example}

The negative binomial distribution can take on a variety of shapes ranging from very skewed to nearly symmetric. This example plots the probability function for different values of \(r\), the desired number of successes: . 1, 1, 3, 6 . \(x=0: 10 ;\)
```

plot(x,nbinpdf(x,.1,.5),'s-', ...
x,nbinpdf(x,1,.5),'o-', ...
x,nbinpdf(x,3,.5),'d-', ...
x,nbinpdf(x,6,.5),'^-');
legend({'r = .1' 'r = 1' 'r = 3' 'r = 6'})
xlabel('x')
ylabel('f(x|r,p)')

```


\section*{See Also}
"Discrete Distributions" on page 5-8

\section*{Noncentral Chi-Square Distribution}

\section*{In this section...}
"Definition" on page B-89
"Background" on page B-89
"Example" on page B-90
"See Also" on page B-90

\section*{Definition}

There are many equivalent formulas for the noncentral chi-square distribution function. One formulation uses a modified Bessel function of the first kind. Another uses the generalized Laguerre polynomials. The cumulative distribution function is computed using a weighted sum of \(x^{2}\) probabilities with the weights equal to the probabilities of a Poisson distribution. The Poisson parameter is one-half of the noncentrality parameter of the noncentral chi-square
\[
F(x \mid v, \delta)=\sum_{j=0}^{\infty}\left(\frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{\frac{-\delta}{2}}\right) \operatorname{Pr}\left[\chi_{v+2 j}^{2} \leq x\right]
\]
where \(\delta\) is the noncentrality parameter.

\section*{Background}

The \(x^{2}\) distribution is actually a simple special case of the noncentral chi-square distribution. One way to generate random numbers with a \(x^{2}\) distribution (with \(v\) degrees of freedom) is to sum the squares of \(v\) standard normal random numbers (mean equal to zero.)

What if the normally distributed quantities have a mean other than zero? The sum of squares of these numbers yields the noncentral chi-square distribution. The noncentral chi-square distribution requires two parameters: the degrees
of freedom and the noncentrality parameter. The noncentrality parameter is the sum of the squared means of the normally distributed quantities.

The noncentral chi-square has scientific application in thermodynamics and signal processing. The literature in these areas may refer to it as the "Rician Distribution" on page B-106 or generalized "Rayleigh Distribution" on page B-104.

\section*{Example}

The following commands generate a plot of the noncentral chi-square pdf.
```

x = (0:0.1:10)';
p1 = ncx2pdf(x,4,2);
p = chi2pdf(x,4);
plot(x,p,'-',x,p1,'-')

```


\section*{See Also}
"Continuous Distributions (Statistics)" on page 5-7

\section*{Noncentral F Distribution}

\section*{In this section...}
"Definition" on page B-91
"Background" on page B-91
"Example" on page B-92
"See Also" on page B-92

\section*{Definition}

Similar to the noncentral \(x^{2}\) distribution, the toolbox calculates noncentral \(F\) distribution probabilities as a weighted sum of incomplete beta functions using Poisson probabilities as the weights.
\[
F\left(x \mid v_{1}, v_{2}, \delta\right)=\sum_{j=0}^{\infty}\left(\frac{\left(\frac{1}{2} \delta\right)^{j}}{j!} e^{\frac{-\delta}{2}}\right)\left\{\left(\left.\frac{v_{1} \cdot x}{v_{2}+v_{1} \cdot x} \right\rvert\, \frac{v_{1}}{2}+j, \frac{v_{2}}{2}\right)\right.
\]
\(I(x \mid a, b)\) is the incomplete beta function with parameters \(a\) and \(b\), and \(\delta\) is the noncentrality parameter.

\section*{Background}

As with the \(X^{2}\) distribution, the \(F\) distribution is a special case of the noncentral \(F\) distribution. The \(F\) distribution is the result of taking the ratio of \(x^{2}\) random variables each divided by its degrees of freedom.

If the numerator of the ratio is a noncentral chi-square random variable divided by its degrees of freedom, the resulting distribution is the noncentral \(F\) distribution.

The main application of the noncentral \(F\) distribution is to calculate the power of a hypothesis test relative to a particular alternative.

\section*{Example}

The following commands generate a plot of the noncentral \(F \mathrm{pdf}\).
```

x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
plot(x,p,'-',x,p1,'-')

```


\section*{See Also}
"Continuous Distributions (Statistics)" on page 5-7

\section*{Noncentral † Distribution}

\section*{In this section...}
"Definition" on page B-93
"Background" on page B-93
"Example" on page B-94
"See Also" on page B-94

\section*{Definition}

The most general representation of the noncentral \(t\) distribution is quite complicated. Johnson and Kotz [60] give a formula for the probability that a noncentral \(t\) variate falls in the range \([-u, u]\).
\[
P(-u<x<u \mid v, \delta)=\sum_{j=0}^{\infty}\left(\frac{\left(\frac{1}{2} \delta^{2}\right)^{j}}{j!} e^{\frac{-\delta^{2}}{2}}\right) I\left(\left.\frac{u^{2}}{v+u^{2}} \right\rvert\, \frac{1}{2}+j, \frac{v}{2}\right)
\]
\(I(x \mid v, \delta)\) is the incomplete beta function with parameters \(v\) and \(\delta . \delta\) is the noncentrality parameter, and \(v\) is the number of degrees of freedom.

\section*{Background}

The noncentral \(t\) distribution is a generalization of Student's \(t\) distribution.
Student's \(t\) distribution with \(n-1\) degrees of freedom models the \(t\)-statistic
\[
t=\frac{\bar{x}-\mu}{s / \sqrt{n}}
\]
where \(\bar{x}\) is the sample mean and \(s\) is the sample standard deviation of a random sample of size \(n\) from a normal population with mean \(\mu\). If the population mean is actually \(\mu_{0}\), then the \(t\)-statistic has a noncentral \(t\) distribution with noncentrality parameter
\[
\delta=\frac{\mu_{0}-\mu}{\sigma / \sqrt{n}}
\]

The noncentrality parameter is the normalized difference between \(\mu_{0}\) and \(\mu\).
The noncentral \(t\) distribution gives the probability that a \(t\) test will correctly reject a false null hypothesis of mean \(\mu\) when the population mean is actually \(\mu_{0}\); that is, it gives the power of the \(t\) test. The power increases as the difference \(\mu_{0}-\mu\) increases, and also as the sample size \(n\) increases.

\section*{Example}

The following commands generate a plot of the noncentral \(t \mathrm{pdf}\).
```

x = (-5:0.1:5)';
p1 = nctcdf(x,10,1);
p = tcdf(x,10);
plot(x,p,'-',x,p1,'-')

```


\section*{See Also}
"Continuous Distributions (Statistics)" on page 5-7

\section*{Nonparametric Distributions}

See the discussion of ksdensity in "Estimating PDFs without Parameters" on page 5-56.

\section*{Normal Distribution}

\section*{In this section...}
"Definition" on page B-96
"Background" on page B-96
"Parameters" on page B-97
"Example" on page B-98
"See Also" on page B-98

\section*{Definition}

The normal pdf is
\[
y=f(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
\]

\section*{Background}

The normal distribution is a two-parameter family of curves. The first parameter, \(\mu\), is the mean. The second, \(\sigma\), is the standard deviation. The standard normal distribution (written \(\Phi(x)\) ) sets \(\mu\) to 0 and \(\sigma\) to 1 .
\(\Phi(x)\) is functionally related to the error function, erf.
\[
\operatorname{erf}(x)=2 \Phi(x \sqrt{2})-1
\]

The first use of the normal distribution was as a continuous approximation to the binomial.

The usual justification for using the normal distribution for modeling is the Central Limit Theorem, which states (roughly) that the sum of independent samples from any distribution with finite mean and variance converges to the normal distribution as the sample size goes to infinity.

\section*{Parameters}

To use statistical parameters such as mean and standard deviation reliably, you need to have a good estimator for them. The maximum likelihood estimates (MLEs) provide one such estimator. However, an MLE might be biased, which means that its expected value of the parameter might not equal the parameter being estimated. For example, an MLE is biased for estimating the variance of a normal distribution. An unbiased estimator that is commonly used to estimate the parameters of the normal distribution is the minimum variance unbiased estimator (MVUE). The MVUE has the minimum variance of all unbiased estimators of a parameter.

The MVUEs of parameters \(\mu\) and \(\sigma^{2}\) for the normal distribution are the sample mean and variance. The sample mean is also the MLE for \(\mu\). The following are two common formulas for the variance.
\[
\begin{align*}
& s^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}  \tag{B-1}\\
& s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \tag{B-2}
\end{align*}
\]
where
\[
\bar{x}=\sum_{i=1}^{n} \frac{x_{i}}{n}
\]

Equation 1 is the maximum likelihood estimator for \(\sigma^{2}\), and equation 2 is the MVUE.

As an example, suppose you want to estimate the mean, \(\mu\), and the variance, \(\sigma^{2}\), of the heights of all fourth grade children in the United States. The function normfit returns the MVUE for \(\mu\), the square root of the MVUE for \(\sigma^{2}\), and confidence intervals for \(\mu\) and \(\sigma^{2}\). Here is a playful example modeling the heights in inches of a randomly chosen fourth grade class.
```

height = normrnd(50,2,30,1); % Simulate heights.
[mu,s,muci,sci] = normfit(height)

```
```

mu =
50.2025
S =
1.7946
muci =
49.5210
50.8841
sci =
1.4292
2.4125

```

Note that \(s^{\wedge} 2\) is the MVUE of the variance.
s^2
ans =
3.2206

\section*{Example}

The plot shows the bell curve of the standard normal pdf, with \(\mu=0\) and \(\sigma=1\).


\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Pareto Distribution}

See "Generalized Pareto Distribution" on page B-50.

\section*{Pearson System}

See "Pearson and Johnson Systems" on page 6-25.

\section*{Piecewise Distributions}

See the discussion of the @piecewisedistribution class in "Fitting Piecewise Distributions" on page 5-73.

\section*{Poisson Distribution}

\section*{In this section...}
"Definition" on page B-102
"Background" on page B-102
"Parameters" on page B-103
"Example" on page B-103
"See Also" on page B-103

\section*{Definition}

The Poisson pdf is
\[
y=f(x \mid \lambda)=\frac{\lambda^{x}}{x!} e^{-\lambda} I_{(0,1, \ldots)}(x)
\]

\section*{Background}

The Poisson distribution is appropriate for applications that involve counting the number of times a random event occurs in a given amount of time, distance, area, etc. Sample applications that involve Poisson distributions include the number of Geiger counter clicks per second, the number of people walking into a store in an hour, and the number of flaws per 1000 feet of video tape.

The Poisson distribution is a one-parameter discrete distribution that takes nonnegative integer values. The parameter, \(\lambda\), is both the mean and the variance of the distribution. Thus, as the size of the numbers in a particular sample of Poisson random numbers gets larger, so does the variability of the numbers.

The Poisson distribution is the limiting case of a binomial distribution where \(N\) approaches infinity and \(p\) goes to zero while \(N p=\lambda\).

The Poisson and exponential distributions are related. If the number of counts follows the Poisson distribution, then the interval between individual counts follows the exponential distribution.

\section*{Parameters}

The MLE and the MVUE of the Poisson parameter, \(\lambda\), is the sample mean. The sum of independent Poisson random variables is also Poisson distributed with the parameter equal to the sum of the individual parameters. This is used to calculate confidence intervals \(\lambda\). As \(\lambda\) gets large the Poisson distribution can be approximated by a normal distribution with \(\mu=\lambda\) and \(\sigma^{2}\) \(=\lambda\). This approximation is used to calculate confidence intervals for values of \(\lambda\) greater than 100 .

\section*{Example}

The plot shows the probability for each nonnegative integer when \(\lambda=5\).


\section*{See Also}
"Discrete Distributions" on page 5-8

\section*{Rayleigh Distribution}

\section*{In this section...}
"Definition" on page B-104
"Background" on page B-104
"Parameters" on page B-105
"Example" on page B-105
"See Also" on page B-105

\section*{Definition}

The Rayleigh pdf is
\[
y=f(x \mid b)=\frac{x}{b^{2}} e^{\left(\frac{-x^{2}}{2 b^{2}}\right)}
\]

\section*{Background}

The Rayleigh distribution is a special case of the Weibull distribution. If \(A\) and \(B\) are the parameters of the Weibull distribution, then the Rayleigh distribution with parameter \(b\) is equivalent to the Weibull distribution with parameters \(A=\sqrt{2} b\) and \(B=2\).

If the component velocities of a particle in the \(x\) and \(y\) directions are two independent normal random variables with zero means and equal variances, then the distance the particle travels per unit time is distributed Rayleigh.

In communications theory, Nakagami distributions, Rician distributions, and Rayleigh distributions are used to model scattered signals that reach a receiver by multiple paths. Depending on the density of the scatter, the signal will display different fading characteristics. Rayleigh and Nakagami distributions are used to model dense scatters, while Rician distributions model fading with a stronger line-of-sight. Nakagami distributions can be reduced to Rayleigh distributions, but give more control over the extent of the fading.

\section*{Parameters}

The raylfit function returns the MLE of the Rayleigh parameter. This estimate is
\[
b=\sqrt{\frac{1}{2 n} \sum_{i=1}^{n} x_{i}^{2}}
\]

\section*{Example}

The following commands generate a plot of the Rayleigh pdf.
```

x = [0:0.01:2];
p = raylpdf(x,0.5);
plot(x,p)

```


\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Rician Distribution}

\section*{In this section...}
"Definition" on page B-106
"Background" on page B-106
"Parameters" on page B-106
"See Also" on page B-107

\section*{Definition}

The Rician distribution has the density function
\[
I_{0}\left(\frac{x s}{\sigma^{2}}\right) \frac{x}{\sigma^{2}} e^{-\left(\frac{x^{2}+s^{2}}{2 \sigma^{2}}\right)}
\]
with noncentrality parameter \(s \geq 0\) and scale parameter \(\sigma>0\), for \(x>0 . I_{0}\) is the zero-order modified Bessel function of the first kind. If \(x\) has a Rician distribution with parameters \(s\) and \(\sigma\), then \((x / \sigma)^{2}\) has a noncentral chi-square distribution with two degrees of freedom and noncentrality parameter \((s / \sigma)^{2}\).

\section*{Background}

In communications theory, Nakagami distributions, Rician distributions, and Rayleigh distributions are used to model scattered signals that reach a receiver by multiple paths. Depending on the density of the scatter, the signal will display different fading characteristics. Rayleigh and Nakagami distributions are used to model dense scatters, while Rician distributions model fading with a stronger line-of-sight. Nakagami distributions can be reduced to Rayleigh distributions, but give more control over the extent of the fading.

\section*{Parameters}

See mle, dfittool.

\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Student's † Distribution}

\section*{In this section...}
"Definition" on page B-108
"Background" on page B-108
"Example" on page B-109
"See Also" on page B-109

\section*{Definition}

Student's \(t\) pdf is
\[
y=f(x \mid v)=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{x^{2}}{v}\right)^{\frac{v+1}{2}}}
\]
where \(\Gamma(\cdot)\) is the Gamma function.

\section*{Background}

The \(t\) distribution is a family of curves depending on a single parameter \(v\) (the degrees of freedom). As \(v\) goes to infinity, the \(t\) distribution approaches the standard normal distribution.
W. S. Gossett discovered the distribution through his work at the Guinness brewery. At the time, Guinness did not allow its staff to publish, so Gossett used the pseudonym "Student."

If \(x\) is a random sample of size \(n\) from a normal distribution with mean \(\mu\), then the statistic
\[
t=\frac{\bar{x}-\mu}{s / \sqrt{n}}
\]
where \(\bar{x}\) is the sample mean and \(s\) is the sample standard deviation, has Student's \(t\) distribution with \(n-1\) degrees of freedom.

\section*{Example}

The plot compares the \(t\) distribution with \(v=5\) (solid line) to the shorter tailed, standard normal distribution (dashed line).
```

x = -5:0.1:5;
y = tpdf(x,5);
z = normpdf(x,0,1);
plot(x,y,'-',x,z,'-.')

```


\section*{See Also}
"Continuous Distributions (Statistics)" on page 5-7

\section*{t Location-Scale Distribution}

\section*{In this section...}
"Definition" on page B-110
"Background" on page B-110
"Parameters" on page B-110
"See Also" on page B-111

\section*{Definition}

The \(t\) location-scale distribution has the density function
\[
\frac{\Gamma\left(\frac{v+1}{2}\right)}{\sigma \sqrt{v \pi} \Gamma\left(\frac{v}{2}\right)}\left[\frac{v+\left(\frac{x-\mu}{\sigma}\right)^{2}}{v}\right]^{-\left(\frac{v+1}{2}\right)}
\]
with location parameter \(\mu\), scale parameter \(\sigma>0\), and shape parameter \(v>0\). If \(x\) has a \(t\) location-scale distribution, with parameters \(\mu, \sigma\), and \(v\), then
\[
\frac{x-\mu}{\sigma}
\]
has a Student's \(t\) distribution with \(v\) degrees of freedom.

\section*{Background}

The \(t\) location-scale distribution is useful for modeling data distributions with heavier tails (more prone to outliers) than the normal distribution. It approaches the normal distribution as \(v\) approaches infinity, and smaller values of \(v\) yield heavier tails.

\section*{Parameters}

See mle, dfittool.

\section*{See Also}
"Continuous Distributions (Statistics)" on page 5-7

\section*{Uniform Distribution (Continuous)}

\section*{In this section...}
"Definition" on page B-112
"Background" on page B-112
"Parameters" on page B-112
"Example" on page B-112
"See Also" on page B-113

\section*{Definition}

The uniform cdf is
\[
p=F(x \mid a, b)=\frac{x-a}{b-a} I_{[a, b]}(x)
\]

\section*{Background}

The uniform distribution (also called rectangular) has a constant pdf between its two parameters \(a\) (the minimum) and \(b\) (the maximum). The standard uniform distribution ( \(a=0\) and \(b=1\) ) is a special case of the beta distribution, obtained by setting both of its parameters to 1 .

The uniform distribution is appropriate for representing the distribution of round-off errors in values tabulated to a particular number of decimal places.

\section*{Parameters}

The sample minimum and maximum are the MLEs of \(a\) and \(b\) respectively.

\section*{Example}

The example illustrates the inversion method for generating normal random numbers using rand and norminv. Note that the MATLAB function, randn, does not use inversion since it is not efficient for this case.
```

u = rand(1000,1);

```


\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Uniform Distribution (Discrete)}

\author{
In this section... \\ "Definition" on page B-114 \\ "Background" on page B-114 \\ "Example" on page B-114 \\ "See Also" on page B-115
}

\section*{Definition}

The discrete uniform pdf is
\[
y=f(x \mid N)=\frac{1}{N} I_{(1, \ldots, N)}(x)
\]

\section*{Background}

The discrete uniform distribution is a simple distribution that puts equal weight on the integers from one to \(N\).

\section*{Example}

As for all discrete distributions, the cdf is a step function. The plot shows the discrete uniform cdf for \(N=10\).
```

x = 0:10;
y = unidcdf(x,10);
stairs(x,y)
set(gca,'Xlim',[0 11])

```


Pick a random sample of 10 from a list of 553 items:
```

numbers = unidrnd(553,1,10)
numbers =
293

```

\section*{See Also}
"Discrete Distributions" on page 5-8

\section*{Weibull Distribution}

\section*{In this section...}
"Definition" on page B-116
"Background" on page B-116
"Parameters" on page B-117
"Example" on page B-117
"See Also" on page B-118

\section*{Definition}

The Weibull pdf is positive only for positive values of \(x\), and is zero otherwise. For strictly positive values of the shape parameter \(b\) and scale parameter \(a\), the density is
\[
f(x \mid a, b)=\frac{b}{a}\left(\frac{x}{a}\right)^{b-1} e^{-(x / a)^{b}} .
\]

\section*{Background}

Waloddi Weibull offered the distribution that bears his name as an appropriate analytical tool for modeling the breaking strength of materials. Current usage also includes reliability and lifetime modeling. The Weibull distribution is more flexible than the exponential for these purposes.

To see why, consider the hazard rate function (instantaneous failure rate). If \(f(t)\) and \(F(t)\) are the pdf and cdf of a distribution, then the hazard rate is
\[
h(t)=\frac{f(t)}{1-F(t)}
\]

Substituting the pdf and cdf of the exponential distribution for \(f(t)\) and \(F(t)\) above yields a constant. The example below shows that the hazard rate for the Weibull distribution can vary.

\section*{Parameters}

Suppose you want to model the tensile strength of a thin filament using the Weibull distribution. The function wblfit gives maximum likelihood estimates and confidence intervals for the Weibull parameters.
```

strength = wblrnd(0.5,2,100,1); % Simulated strengths.
[p,ci] = wblfit(strength)
p =
0.4715 1.9811
Ci =
0.4248 1.7067
0.5233 2.2996

```

The default \(95 \%\) confidence interval for each parameter contains the true value.

\section*{Example}

The exponential distribution has a constant hazard function, which is not generally the case for the Weibull distribution.

The plot shows the hazard functions for exponential (dashed line) and Weibull (solid line) distributions having the same mean life. The Weibull hazard rate here increases with age (a reasonable assumption).
```

t = 0:0.1:4.5;
h1 = exppdf(t,0.6267) ./ (1-expcdf(t,0.6267));
h2 = wblpdf(t,2,2) ./ (1-wblcdf(t,2,2));
plot(t,h1,'--',t,h2,'-')

```


\section*{See Also}
"Continuous Distributions (Data)" on page 5-4

\section*{Wishart Distribution}

\section*{In this section...}
"Definition" on page B-119
"Background" on page B-119
"Example" on page B-120
"See Also" on page B-120

\section*{Definition}

The probability density function of the \(d\)-dimensional Wishart distribution is given by
\[
\mathrm{y}=\mathrm{f}(\mathrm{X}, \Sigma, \mathrm{v})=\frac{|\mathrm{X}|^{((\mathrm{v}-\mathrm{d}-1) / 2)} e^{\left(-\frac{1}{2} \operatorname{trace}\left(\Sigma^{-1} \mathrm{X}\right)\right)}}{2^{(\mathrm{vd}) / 2} \pi^{(\mathrm{d}(\mathrm{~d}-1)) / 4}|\Sigma|^{\mathrm{v} / 2} \Gamma(\mathrm{v} / 2) \ldots \Gamma(\mathrm{v}-(\mathrm{d}-1)) / 2}
\]
where \(X\) and \(\Sigma\) are \(d\)-by- \(d\) symmetric positive definite matrices, and \(v\) is a scalar greater than \(d-1\). While it is possible to define the Wishart for singular \(\Sigma\), the density cannot be written as above.

Only random matrix generation is supported for the Wishart distribution, including both singular and nonsingular \(\Sigma\).

\section*{Background}

The Wishart distribution is a generalization of the univariate chi-square distribution to two or more variables. It is a distribution for symmetric positive semidefinite matrices, typically covariance matrices, the diagonal elements of which are each chi-square random variables. In the same way as the chi-square distribution can be constructed by summing the squares of independent, identically distributed, zero-mean univariate normal random variables, the Wishart distribution can be constructed by summing the inner products of independent, identically distributed, zero-mean multivariate normal random vectors.

The Wishart distribution is parameterized with a symmetric, positive semidefinite matrix, \(\Sigma\), and a positive scalar degrees of freedom parameter, \(v\). \(v\) is analogous to the degrees of freedom parameter of a univariate chi-square distribution, and \(\Sigma \mathrm{v}\) is the mean of the distribution.

The Wishart distribution is often used as a model for the distribution of the sample covariance matrix for multivariate normal random data, after scaling by the sample size.

\section*{Example}

If \(x\) is a bivariate normal random vector with mean zero and covariance matrix
\[
\Sigma=\left(\begin{array}{ll}
1 & .5 \\
.5 & 2
\end{array}\right)
\]
then you can use the Wishart distribution to generate a sample covariance matrix without explicitly generating \(x\) itself. Notice how the sampling variability is quite large when the degrees of freedom is small.
```

Sigma = [1 .5; .5 2];
df = 10; S1 = wishrnd(Sigma,df)/df
S1 =
1.7959 0.64107
0.64107 1.5496
df = 1000; S2 = wishrnd(Sigma,df)/df
S2 =
0.9842 0.50158
0.50158 2.1682

```

\section*{See Also}
"Inverse Wishart Distribution" on page B-59, "Multivariate Distributions" on page 5-9

\section*{\(c\)}

\section*{Bibliography}
[1] Atkinson, A. C., and A. N. Donev. Optimum Experimental Designs. New York: Oxford University Press, 1992.
[2] Bates, D. M., and D. G. Watts. Nonlinear Regression Analysis and Its Applications. Hoboken, NJ: John Wiley \& Sons, Inc., 1988.
[3] Belsley, D. A., E. Kuh, and R. E. Welsch. Regression Diagnostics. Hoboken, NJ: John Wiley \& Sons, Inc., 1980.
[4] Berry, M. W., et al. "Algorithms and Applications for Approximate Nonnegative Matrix Factorization." Computational Statistics and Data Analysis. Vol. 52, No. 1, 2007, pp. 155-173.
[5] Bookstein, Fred L. Morphometric Tools for Landmark Data. Cambridge, UK: Cambridge University Press, 1991.
[6] Bouye, E., V. Durrleman, A. Nikeghbali, G. Riboulet, and T. Roncalli. "Copulas for Finance: A Reading Guide and Some Applications." Working Paper. Groupe de Recherche Operationnelle, Credit Lyonnais, 2000.
[7] Bowman, A. W., and A. Azzalini. Applied Smoothing Techniques for Data Analysis. New York: Oxford University Press, 1997.
[8] Box, G. E. P., and N. R. Draper. Empirical Model-Building and Response Surfaces. Hoboken, NJ: John Wiley \& Sons, Inc., 1987.
[9] Box, G. E. P., W. G. Hunter, and J. S. Hunter. Statistics for Experimenters. Hoboken, NJ: Wiley-Interscience, 1978.
[10] Bratley, P., and B. L. Fox. "ALGORITHM 659 Implementing Sobol's Quasirandom Sequence Generator." ACM Transactions on Mathematical Software. Vol. 14, No. 1, 1988, pp. 88-100.
[11] Breiman, L., J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Boca Raton, FL: CRC Press, 1984.
[12] Breiman, L., et al., Classification and Regression Trees, Chapman \& Hall, Boca Raton, 1993.
[13] Bulmer, M. G. Principles of Statistics. Mineola, NY: Dover Publications, Inc., 1979.
[14] Bury, K.. Statistical Distributions in Engineering. Cambridge, UK: Cambridge University Press, 1999.
[15] Chatterjee, S., and A. S. Hadi. "Influential Observations, High Leverage Points, and Outliers in Linear Regression." Statistical Science. Vol. 1, 1986, pp. 379-416.
[16] Collett, D. Modeling Binary Data. New York: Chapman \& Hall, 2002.
[17] Conover, W. J. Practical Nonparametric Statistics. Hoboken, NJ: John Wiley \& Sons, Inc., 1980.
[18] Cook, R. D., and S. Weisberg. Residuals and Influence in Regression. New York: Chapman \& Hall/CRC Press, 1983.
[19] Cox, D. R., and D. Oakes. Analysis of Survival Data. London: Chapman \& Hall, 1984.
[20] Davidian, M., and D. M. Giltinan. Nonlinear Models for Repeated Measurements Data. New York: Chapman \& Hall, 1995.
[21] Deb, P., and M. Sefton. "The Distribution of a Lagrange Multiplier Test of Normality." Economics Letters. Vol. 51, 1996, pp. 123-130.
[22] de Jong, S. "SIMPLS: An Alternative Approach to Partial Least Squares Regression." Chemometrics and Intelligent Laboratory Systems. Vol. 18, 1993, pp. 251-263.
[23] Demidenko, E. Mixed Models: Theory and Applications. Hoboken, NJ: John Wiley \& Sons, Inc., 2004.
[24] Delyon, B., M. Lavielle, and E. Moulines, Convergence of a stochastic approximation version of the EM algorithm, Annals of Statistics, 27, 94-128, 1999.
[25] Dempster, A. P., N. M. Laird, and D. B. Rubin. "Maximum Likelihood from Incomplete Data via the EM Algorithm." Journal of the Royal Statistical Society. Series B, Vol. 39, No. 1, 1977, pp. 1-37.
[26] Devroye, L. Non-Uniform Random Variate Generation. New York: Springer-Verlag, 1986.
[27] Dobson, A. J. An Introduction to Generalized Linear Models. New York: Chapman \& Hall, 1990.
[28] Draper, N. R., and H. Smith. Applied Regression Analysis. Hoboken, NJ: Wiley-Interscience, 1998.
[29] Drezner, Z. "Computation of the Trivariate Normal Integral." Mathematics of Computation. Vol. 63, 1994, pp. 289-294.
[30] Drezner, Z., and G. O. Wesolowsky. "On the Computation of the Bivariate Normal Integral." Journal of Statistical Computation and Simulation. Vol. 35, 1989, pp. 101-107.
[31] DuMouchel, W. H., and F. L. O’Brien. "Integrating a Robust Option into a Multiple Regression Computing Environment." Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface. Alexandria, VA: American Statistical Association, 1989.
[32] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis. Cambridge, UK: Cambridge University Press, 1998.
[33] Efron, B., and R. J. Tibshirani. An Introduction to the Bootstrap. New York: Chapman \& Hall, 1993.
[34] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance. New York: Springer, 1997.
[35] Evans, M., N. Hastings, and B. Peacock. Statistical Distributions. 2nd ed., Hoboken, NJ: John Wiley \& Sons, Inc., 1993, pp. 50-52, 73-74, 102-105, 147, 148.
[36] Genz, A. "Numerical Computation of Rectangular Bivariate and Trivariate Normal and t Probabilities." Statistics and Computing. Vol. 14, No. 3, 2004, pp. 251-260.
[37] Genz, A., and F. Bretz. "Comparison of Methods for the Computation of Multivariate t Probabilities." Journal of Computational and Graphical Statistics. Vol. 11, No. 4, 2002, pp. 950-971.
[38] Genz, A., and F. Bretz. "Numerical Computation of Multivariate t Probabilities with Application to Power Calculation of Multiple Contrasts." Journal of Statistical Computation and Simulation. Vol. 63, 1999, pp. 361-378.
[39] Gibbons, J. D. Nonparametric Statistical Inference. New York: Marcel Dekker, 1985.
[40] Goodall, C. R. "Computation Using the QR Decomposition." Handbook in Statistics. Vol. 9, Amsterdam: Elsevier/North-Holland, 1993.
[41] Hahn, Gerald J., and S. S. Shapiro. Statistical Models in Engineering. Hoboken, NJ: John Wiley \& Sons, Inc., 1994, p. 95.
[42] Hald, A. Statistical Theory with Engineering Applications. Hoboken, NJ: John Wiley \& Sons, Inc., 1960.
[43] Harman, H. H. Modern Factor Analysis. 3rd Ed. Chicago: University of Chicago Press, 1976.
[44] Hastie, T., R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. New York: Springer, 2001.
[45] Hochberg, Y., and A. C. Tamhane. Multiple Comparison Procedures. Hoboken, NJ: John Wiley \& Sons, 1987.
[46] Hoerl, A. E., and R. W. Kennard. "Ridge Regression: Applications to Nonorthogonal Problems." Technometrics. Vol. 12, No. 1, 1970, pp. 69-82.
[47] Hoerl, A. E., and R. W. Kennard. "Ridge Regression: Biased Estimation for Nonorthogonal Problems." Technometrics. Vol. 12, No. 1, 1970, pp. 55-67.
[48] Hogg, R. V., and J. Ledolter. Engineering Statistics. New York: MacMillan, 1987.
[49] Holland, P. W., and R. E. Welsch. "Robust Regression Using Iteratively Reweighted Least-Squares." Communications in Statistics: Theory and Methods, A6, 1977, pp. 813-827.
[50] Hollander, M., and D. A. Wolfe. Nonparametric Statistical Methods. Hoboken, NJ: John Wiley \& Sons, Inc., 1999.
[51] Hong, H. S., and F. J. Hickernell. "ALGORITHM 823: Implementing Scrambled Digital Sequences." ACM Transactions on Mathematical Software. Vol. 29, No. 2, 2003, pp. 95-109.
[52] Huber, P. J. Robust Statistics. Hoboken, NJ: John Wiley \& Sons, Inc., 1981.
[53] Jackson, J. E. A User's Guide to Principal Components. Hoboken, NJ: John Wiley and Sons, 1991.
[54] Jain, A., and R. Dubes. Algorithms for Clustering Data. Upper Saddle River, NJ: Prentice-Hall, 1988.
[55] Jarque, C. M., and A. K. Bera. "A test for normality of observations and regression residuals." International Statistical Review. Vol. 55, No. 2, 1987, pp. 163-172.
[56] Joe, S., and F. Y. Kuo. "Remark on Algorithm 659: Implementing Sobol's Quasirandom Sequence Generator." ACM Transactions on Mathematical Software. Vol. 29, No. 1, 2003, pp. 49-57.
[57] Johnson, N., and S. Kotz. Distributions in Statistics: Continuous Univariate Distributions-2. Hoboken, NJ: John Wiley \& Sons, Inc., 1970, pp. 130-148, 189-200, 201-219.
[58] Johnson, N. L., N. Balakrishnan, and S. Kotz. Continuous Multivariate Distributions. Vol. 1. Hoboken, NJ: Wiley-Interscience, 2000.
[59] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol. 1, Hoboken, NJ: Wiley-Interscience, 1993.
[60] Johnson, N. L., S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Vol. 2, Hoboken, NJ: Wiley-Interscience, 1994.
[61] Johnson, N. L., S. Kotz, and N. Balakrishnan. Discrete Multivariate Distributions. Hoboken, NJ: Wiley-Interscience, 1997.
[62] Johnson, N. L., S. Kotz, and A. W. Kemp. Univariate Discrete Distributions. Hoboken, NJ: Wiley-Interscience, 1993.
[63] Jolliffe, I. T. Principal Component Analysis. 2nd ed., New York: Springer-Verlag, 2002.
[64] Jöreskog, K. G. "Some Contributions to Maximum Likelihood Factor Analysis." Psychometrika. Vol. 32, 1967, pp. 443-482.
[65] Kaufman L., and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. Hoboken, NJ: John Wiley \& Sons, Inc., 1990.
[66] Kendall, David G. "A Survey of the Statistical Theory of Shape." Statistical Science. Vol. 4, No. 2, 1989, pp. 87-99.
[67] Kocis, L., and W. J. Whiten. "Computational Investigations of Low-Discrepancy Sequences." ACM Transactions on Mathematical Software. Vol. 23, No. 2, 1997, pp. 266-294.
[68] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London: Imperial College Press, 2000.
[69] Krzanowski, W. J. Principles of Multivariate Analysis: A User's Perspective. New York: Oxford University Press, 1988.
[70] Lawless, J. F. Statistical Models and Methods for Lifetime Data. Hoboken, NJ: Wiley-Interscience, 2002.
[71] Lawley, D. N., and A. E. Maxwell. Factor Analysis as a Statistical Method. 2nd ed. New York: American Elsevier Publishing, 1971.
[72] Lilliefors, H. W. "On the Kolmogorov-Smirnov test for normality with mean and variance unknown." Journal of the American Statistical Association. Vol. 62, 1967, pp. 399-402.
[73] Lilliefors, H. W. "On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown." Journal of the American Statistical Association. Vol. 64, 1969, pp. 387-389.
[74] Lindstrom, M. J., and D. M. Bates. "Nonlinear mixed-effects models for repeated measures data." Biometrics. Vol. 46, 1990, pp. 673-687.
[75] Little, Roderick J. A., and Donald B. Rubin. Statistical Analysis with Missing Data. 2nd ed., Hoboken, NJ: John Wiley \& Sons, Inc., 2002.
[76] Mardia, K. V., J. T. Kent, and J. M. Bibby. Multivariate Analysis. Burlington, MA: Academic Press, 1980.
[77] Marquardt, D.W. "Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation." Technometrics. Vol. 12, No. 3, 1970, pp. 591-612.
[78] Marquardt, D. W., and R.D. Snee. "Ridge Regression in Practice." The American Statistician. Vol. 29, No. 1, 1975, pp. 3-20.
[79] Marsaglia, G., and W. W. Tsang. "A Simple Method for Generating Gamma Variables." ACM Transactions on Mathematical Software. Vol. 26, 2000, pp. 363-372.
[80] Marsaglia, G., W. Tsang, and J. Wang. "Evaluating Kolmogorov's Distribution." Journal of Statistical Software. Vol. 8, Issue 18, 2003.
[81] Martinez, W. L., and A. R. Martinez. Computational Statistics with MATLAB. New York: Chapman \& Hall/CRC Press, 2002.
[82] Massey, F. J. "The Kolmogorov-Smirnov Test for Goodness of Fit." Journal of the American Statistical Association. Vol. 46, No. 253, 1951, pp. 68-78.
[83] Matousek, J. "On the L2-Discrepancy for Anchored Boxes." Journal of Complexity. Vol. 14, No. 4, 1998, pp. 527-556.
[84] McLachlan, G., and D. Peel. Finite Mixture Models. Hoboken, NJ: John Wiley \& Sons, Inc., 2000.
[85] McCullagh, P., and J. A. Nelder. Generalized Linear Models. New York: Chapman \& Hall, 1990.
[86] McGill, R., J. W. Tukey, and W. A. Larsen. "Variations of Boxplots." The American Statistician. Vol. 32, No. 1, 1978, pp. 12-16.
[87] Meeker, W. Q., and L. A. Escobar. Statistical Methods for Reliability Data. Hoboken, NJ: John Wiley \& Sons, Inc., 1998.
[88] Meng, Xiao-Li, and Donald B. Rubin. "Maximum Likelihood Estimation via the ECM Algorithm." Biometrika. Vol. 80, No. 2, 1993, pp. 267-278.
[89] Meyers, R. H., and D.C. Montgomery. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Hoboken, NJ: John Wiley \& Sons, Inc., 1995.
[90] Miller, L. H. "Table of Percentage Points of Kolmogorov Statistics." Journal of the American Statistical Association. Vol. 51, No. 273, 1956, pp. 111-121.
[91] Milliken, G. A., and D. E. Johnson. Analysis of Messy Data, Volume 1: Designed Experiments. Boca Raton, FL: Chapman \& Hall/CRC Press, 1992.
[92] Montgomery, D. Introduction to Statistical Quality Control. Hoboken, NJ: John Wiley \& Sons, 1991, pp. 369-374.
[93] Montgomery, D. C. Design and Analysis of Experiments. Hoboken, NJ: John Wiley \& Sons, Inc., 2001.
[94] Mood, A. M., F. A. Graybill, and D. C. Boes. Introduction to the Theory of Statistics. 3rd ed., New York: McGraw-Hill, 1974. pp. 540-541.
[95] Moore, J. Total Biochemical Oxygen Demand of Dairy Manures. Ph.D. thesis. University of Minnesota, Department of Agricultural Engineering, 1975.
[96] Mosteller, F., and J. Tukey. Data Analysis and Regression. Upper Saddle River, NJ: Addison-Wesley, 1977.
[97] Nelson, L. S. "Evaluating Overlapping Confidence Intervals." Journal of Quality Technology. Vol. 21, 1989, pp. 140-141.
[98] Patel, J. K., C. H. Kapadia, and D. B. Owen. Handbook of Statistical Distributions. New York: Marcel Dekker, 1976.
[99] Pinheiro, J. C., and D. M. Bates. "Approximations to the log-likelihood function in the nonlinear mixed-effects model." Journal of Computational and Graphical Statistics. Vol. 4, 1995, pp. 12-35.
[100] Rice, J. A. Mathematical Statistics and Data Analysis. Pacific Grove, CA: Duxbury Press, 1994.
[101] Rosipal, R., and N. Kramer. "Overview and Recent Advances in Partial Least Squares." Subspace, Latent Structure and Feature Selection: Statistical and Optimization Perspectives Workshop (SLSFS 2005), Revised Selected Papers (Lecture Notes in Computer Science 3940). Berlin, Germany: Springer-Verlag, 2006, pp. 34-51.
[102] Sachs, L. Applied Statistics: A Handbook of Techniques. New York: Springer-Verlag, 1984, p. 253.
[103] Searle, S. R., F. M. Speed, and G. A. Milliken. "Population marginal means in the linear model: an alternative to least-squares means." American Statistician. 1980, pp. 216-221.
[104] Seber, G. A. F. Linear Regression Analysis. Hoboken, NJ: Wiley-Interscience, 2003.
[105] Seber, G. A. F. Multivariate Observations. Hoboken, NJ: John Wiley \& Sons, Inc., 1984.
[106] Seber, G. A. F., and C. J. Wild. Nonlinear Regression. Hoboken, NJ:
Wiley-Interscience, 2003.
[107] Sexton, Joe, and A. R. Swensen. "ECM Algorithms that Converge at the Rate of EM." Biometrika. Vol. 87, No. 3, 2000, pp. 651-662.
[108] Snedecor, G. W., and W. G. Cochran. Statistical Methods. Ames, IA: Iowa State Press, 1989.
[109] Spath, H. Cluster Dissection and Analysis: Theory, FORTRAN Programs, Examples. Translated by J. Goldschmidt. New York: Halsted Press, 1985.
[110] Stein, M. "Large sample properties of simulations using latin hypercube sampling." Technometrics. Vol. 29, No. 2, 1987, pp. 143-151. Correction, Vol. 32, p. 367.
[111] Stephens, M. A. "Use of the Kolmogorov-Smirnov, Cramer-Von Mises and Related Statistics Without Extensive Tables." Journal of the Royal Statistical Society. Series B, Vol. 32, No. 1, 1970, pp. 115-122.
[112] Street, J. O., R. J. Carroll, and D. Ruppert. "A Note on Computing Robust Regression Estimates via Iteratively Reweighted Least Squares." The American Statistician. Vol. 42, 1988, pp. 152-154.
[113] Student. "On the Probable Error of the Mean." Biometrika. Vol. 6, No. 1, 1908, pp. 1-25.
[114] Vellemen, P. F., and D. C. Hoaglin. Application, Basics, and Computing of Exploratory Data Analysis. Pacific Grove, CA: Duxbury Press, 1981.
[115] Weibull, W. "A Statistical Theory of the Strength of Materials." Ingeniors Vetenskaps Akademiens Handlingar. Stockholm: Royal Swedish Institute for Engineering Research, No. 151, 1939.
[116] Zahn, C. T. "Graph-theoretical methods for detecting and describing Gestalt clusters." IEEE Transactions on Computers. Vol. C-20, Issue 1, 1971, pp. 68-86.

\section*{A}
absolute deviation 3-5
addedvarplot 20-2
additive effects 8-9
adjacent value 20-134
adjacent values 4-7
AIC. See Akaike Information Criterion
Akaike Information Criterion (AIC) 5-106 20-24
alternative hypotheses 7-3
analysis of variance
\(F\) distribution B-39
multivariate 8-39
N-way 8-12
one-way 8-3
two-way 8-9
andrewsplot 20-25
anova1 20-33
anova2 20-39
anovan 20-43
Ansari-Bradley test 7-13
aoctool 8-27 20-60
average linkage 20-1358

\section*{B}
bacteria counts 8-4
Bartlett multiple-sample test 7-15
Bartlett's test 7-13
barttest 20-66
batch updates 20-1220
Bayes Information Criterion (BIC) 5-106 20-89
bbdesign 20-67
Bernoulli distribution B-3
Bernoulli random variables 20-104
beta distribution B-4
betacdf 20-77
betafit 20-78
betainv 20-80
betalike 20-82
betapdf 20-84
betarnd 20-86
betastat 20-88
BIC. See Bayes Information Criterion
binocdf 20-97
binofit 20-99
binoinv 20-101
binomial distribution B-7
negative B-85
binopdf 20-102
binornd 20-104
binostat 20-106
biplot 20-107
Birnbaum-Saunders distribution B-10
bootci 20-117
bootstrapping 3-16
bootstrp 20-121
box plots 4-6
Box-Behnken designs 17-13
generating 20-67
Box-Wilson designs 17-9
boxplot 20-128
Burr Type XII distribution B-12

\section*{C}
candgen 20-154
candidate sets 17-17
canoncorr 20-158
Canonical Maximum Likelihood (CML) 20-416
capability 20-161
capability studies 18-6
capaplot 20-164
case names
reading from file \(20-166\)
writing to file 20-167
caseread 20-166
casewrite 20-167
CCD. See central composite designs
ccdesign 20-179
cdf 20-183
cdfplot 20-195
central composite designs (CCDs)
generating 20-179
types 17-9
Central Limit Theorem B-96
centroid linkage 20-1358
chi-square distribution B-25
chi-square goodness-of-fit test 7-13
chi-square variance test, one-sample 7-15
chi2cdf 20-205
chi2gof 20-206
chi2inv 20-211
chi2pdf 20-213
chi2rnd 20-215
chi2stat 20-216
cholcov 20-221
circuit boards 20-102
city block metric 15-10 20-2030 20-2037
classical multidimensional scaling
cmdscale function 20-325
overview 12-50
Classification
naive bayes \(14-36\)
performance curves 14-39
tree bagging 15-148
classification trees
example 15-48
classifiers 14-2
classify 20-290
cluster 20-310
cluster analysis
hierarchical clustering 13-3
K-means clustering 13-21
overview 13-2
cluster trees
constructing clusters from 20-310
creating 20-1352
creating, from data 20-317
inconsistency coefficient 20-1093
cmdscale 20-325
CML. See Canonical Maximum Likelihood combnk 20-349
common factors \(12-93\)
comparisons, multiple 8-6
complete linkage 20-1358
Computing, parallel 19-1
confidence intervals
communicating results of hypothesis tests 7-4
confounding effects 17-5
confounding patterns 17-7
confusionmat 20-397
continuous distributions
data 5-4
statistics 5-7
control charts 18-3
controlchart 20-400
controlrules 20-406
Cook's distance 20-2439
cophenet 20-411
cophenetic correlation coefficients 13-10 20-411
cophenetic distance 13-10
copulacdf 20-413
copulafit 20-415
copulaparam 20-421
copulapdf 20-423
copularnd 20-427
copulas 5-109 B-27
copulastat 20-425
cordexch 20-429
corr 20-434
corrcov 20-438
criterion function 12-70
crosstab 20-457
crossval 20-460
cumulative distribution function (cdf)
empirical 5-64
for parametric estimation 5-63
graphing an estimate 4-12
curse of dimensionality 12-2
cut variables 20-281 20-371 20-384 20-495
20-2431

\section*{D}

D-optimal designs
generating candidate set \(20-154\)
overview 17-15
data
landmark 12-61
data sets
normalizing 13-4
statistical examples A-2
daugment 20-546
dcovary 20-551
decision trees
computing error rate 20-2911
computing response values 20-2915
creating 20-2904
creating subtrees 20-2907
displaying 20-2901
fitting 20-2904
pruning 20-2907
design matrix 9-221
design of experiments
basic factors 17-6
confounding effects 17-5
D-optimal designs \(17-15\)
fractional factorial designs 17-5
full factorial designs 17-3
generators 17-6
levels 17-3
Plackett-Burman designs 17-5
resolution 17-6 20-884
response surface designs \(17-9\)
two-level designs 17-4
dfittool 20-575
dimension reduction
common factor analysis 20-711
multivariate statistical methods 12-2

PCA from covariance matrix 20-1995
PCA from raw data matrix 20-2245
PCA residuals 20-1997
discrete distributions 5-8
discrete uniform distribution B-114
discriminant analysis 14-3
dissimilarity matrices
creating 13-4
distance matrices
creating 13-4
distribution fitting
functions 5-71
tool 5-12
distribution statistics
functions 5-69
distributions
custom B-28
functions that support 5-53
disttool 20-604
dummyvar 20-609
Durbin-Watson test 7-13

\section*{E}
effects
fixed 9-219
random 9-219
statistical 9-219
efinv 20-665
emission matrices
estimating 16-9
empirical cumulative distribution function 5-64
equal variances
Bartlett multiple-sample test for 7-15
\(F\)-test for 7-15
erf B-96
error function B-96
Euclidean distance 15-9 20-2030 20-2036
evcdf 20-661
evfit 20-663
evlike 20-676
evpdf 20-677
evrnd 20-678
evstat 20-679
expcdf 20-686
expectation maximization (EM) algorithm cluster analysis 13-2
Gaussian mixture models 5-100 13-28
expfit 20-688
expinv 20-695
explike 20-697
exponential distribution B-29
exppdf 20-701
exprnd 20-702
expstat 20-703
extrapolated 20-2309
extreme value distribution B-32
extreme value fit 20-663

\section*{F}
\(F\) distribution B-38
\(F\)-test, one-sample 7-15
factor analysis
maximum likelihood 20-711
factoran 20-711
factorial designs
fractional 17-5
full 17-3
generating full 20-896
fcdf 20-726
feature selection
overview 12-70
sequential 12-70
feature transformation
overview 12-75
ff2n 20-737
filter methods
feature selection 20-2619
finv 20-741
folds
partition 20-508
fpdf 20-879
fracfactgen 20-884
fractional factorial designs
overview 17-5
friedman 20-887
Friedman's test 8-37
Friedman's test 7-13
frnd 20-891
fstat 20-892
fsurfht 20-893
full factorial designs
generating 20-896
overview 17-3
fullfact 20-896
furthest neighbor linkage 20-1358

\section*{G}
gagerr 20-897
gamcdf 20-902
gamfit 20-904
gaminv 20-913
gamlike 20-915
gamma distribution B-40
gampdf 20-917
gamrnd 20-919
gamstat 20-920
Gaussian distribution B-43
Gaussian mixture distributions B-44
generalized extreme value distribution \(\mathrm{B}-45\)
generalized Pareto distribution B-50
geocdf 20-957
geoinv 20-958
geomean 20-959
geometric distribution B-54
geopdf 20-960
geornd 20-961
geostat 20-962
gevcdf 20-967
gevfit 20-968
gevinv 20-970
gevlike 20-971
gevpdf 20-972
gevrnd 20-973
gevstat 20-975
gline 20-976
glmfit 20-978
glmval 20-983
glyphplot 20-986
gname 20-998
gpcdf 20-1000
gpfit 20-1001
gpinv 20-1003
gplike 20-1004
gplotmatrix 20-1006
gppdf 20-1005
gprnd 20-1009
gpstat 20-1010
group mean clusters, plot 8-44
grouped plot matrices 8-40
grp2idx 20-1013
gscatter 20-1036

\section*{H}
harmmean 20-1044
hidden Markov models
overview 16-5
hierarchical clustering
cluster analysis 13-3
computing inconsistency coefficient 20-1093
constructing clusters 20-310
cophenetic correlation coefficients 20-411
creating cluster trees 20-1352
creating clusters 13-16
creating clusters from data 20-317
determining proximity 20-2028 20-2034
evaluating cluster formation 20-411
grouping objects 13-6
inconsistency coefficient 20-1093
procedure 13-3
hist3 20-1045
HMM 16-5
HMM functions 16-7
hmmdecode 20-1062
hmmestimate 16-9 20-1064
hmmgenerate 20-1067
hmmtrain 16-10 20-1069
hmmviterbi 20-1072
holdout
partition 20-508
Hotelling's T-squared 12-89
hougen 20-1076
hygecdf 20-1077
hygeinv 20-1078
hygepdf 20-1079
hygernd 20-1080
hygestat 20-1081
hypergeometric distribution B-56
hypotheses B-39
hypothesis tests
assumptions 7-5
functions that support 7-13
power 7-4 20-2595

\section*{I}
icdf 20-1082
IFM. See Inference Functions for Margins method incomplete beta function B-4
incomplete gamma function B-40
inconsistency coefficient 20-1093
inconsistent 20-1093
Inference Functions for Margins (IFM)
method 20-416
initial state distribution
changing 16-12
interaction effects
designed experiments 17-2
two-way ANOVA 8-9
interactionplot 20-1101
interquartile range (iqr) 3-6
inverse cumulative distribution
functions 5-67
inverse Gaussian distribution B-58
inverse Wishart distribution B-59
invpred 20-1115
iqr 20-1118
iwishrnd 20-1146

\section*{J}
jackknife 20-1147
Jarque-Bera test 7-13 20-1149
jbtest 20-1149
Johnson system of distributions 6-25 B-61
johnsrnd 20-1152

\section*{K}

K-means clustering
cluster separation 13-22
local minima 13-26
number of clusters 13-23
overview 13-21
silhouette plot 20-2667
kernel bandwidth 5-58
kernel smoothing functions
specifying 5-60
kmeans 20-1215
Kolmogorov-Smirnov test
one-sample 7-13
two-sample 7-14
Kruskal-Wallis test 7-13 8-36
kruskalwallis 20-1240
kurtosis 20-1282

\section*{L}
landmark data 12-61
latin hypercube sample 20-1322
normal distribution 20-1323
least squares
iteratively reweighted 9-116
leverage 20-1320
lhsdesign 20-1322
lhsnorm 20-1323
likelihood function 20-84
Lilliefors test 7-14
example 7-7
linear hypothesis test 7-14
linear regression
ridge 9-119
linear transformations
Procrustes 20-2275
linhyptest 20-1350
link functions 9-144
linkage
average 20-1358
centroid 20-1358
complete 20-1358
furthest neighbor 20-1358
nearest neighbor 20-1358
single 20-1358
ward 20-1359
weighted average distance 20-1359
loadings 12-93
logistic distribution B-62
logistic models 9-157
loglogistic distribution B-63
logncdf 20-1378
lognfit 20-1380
logninv 20-1382
lognlike 20-1384
lognormal distribution B-64
lognormal fit 20-1380
lognpdf 20-1393
lognrnd 20-1395
lognstat 20-1397
loss
prediction 20-2616
lsline 20-1437

\section*{M}
mad 20-1439
mahal 20-1441
Mahalanobis distance
computing 20-1441 20-1445
in cluster analysis 15-10 20-2030 20-2037
main effects 17-2
maineffectsplot 20-1449
Mann-Whitney U-test 20-2373
MANOVA 8-39
manova1 20-1471
manovacluster 20-1475
Markov chains
emission matrix 16-4
emissions 16-4
initial state 16-4
Monte Carlo simulations 6-13
overview 16-3
transition matrices 16-4
Markov models
hidden
functions for 16-7
generating test sequences for \(16-8\) overview 16-5
state diagram 16-3
maximum likelihood
estimation 5-71
factor analysis 20-711
MCMC 6-13
MDS. See multidimensional scaling
mdscale 20-1499
mean
of probability distribution 5-69
mean absolute deviation 20-1439
mean squares (MS) 20-33
measures of
central tendency 3-3
dispersion 3-5
median absolute deviation 20-1439
metric multidimensional scaling 12-50
See also classical multidimensional scaling
mhsample 20-1536
Minkowski metric 15-10 20-2031 20-2037
missing data 3-21
mixed-effects models 9-220
MLE. See maximum likelihood - estimation
mnpdf 20-1571
mnrnd 20-1592
models
mixed-effects 9-220
moment 20-1612
MS. See mean squares
multcompare 20-1615
multicollinearity 20-2556
addressed by ridge regression 9-119
multidimensional arrays classical (metric) scaling 20-325
multidimensional scaling (MDS)
classical (metric) 12-50
multinomial distribution B-67
multiple comparison procedure 20-1615
multivariate analysis of variance example 8-39
multivariate distributions 5-9
multivariate Gaussian distribution B-70
multivariate normal distribution B-71
multivariate statistics
analysis of variance 8-39
principal component analysis 12-78
multivariate \(t\) distribution B-77
multivarichart 20-1632
mvncdf 20-1636
mvnpdf 20-1640
mvnrnd 20-1660
mvregresslike 20-1658
mvtcdf 20-1662
mvtpdf 20-1666
mvtrnd 20-1668

\section*{N}

Nakagami distribution B-83
nancov 20-1682
nanmax 20-1684
nanmean 20-1685
nanmedian 20-1686
nanmin 20-1687
NaNs
coding missing values as 3-21
nanstd 20-1688
nansum 20-1689
nanvar 20-1690
nbincdf 20-1692
nbinfit 20-1694
nbininv 20-1695
nbinpdf 20-1696
nbinrnd 20-1698
nbinstat 20-1699
ncfcdf 20-1701
ncfinv 20-1703
ncfpdf 20-1705
ncfrnd 20-1707
ncfstat 20-1709
nctcdf 20-1713
nctinv 20-1715
nctpdf 20-1716
nctrnd 20-1718
nctstat 20-1719
ncx2cdf 20-1721
ncx2inv 20-1723
ncx2pdf 20-1724
ncx2rnd 20-1726
ncx2stat 20-1727
nearest neighbor linkage 20-1358
negative binomial distribution
confidence intervals 20-1694
cumulative distribution function (cdf) 20-1692
definition B-85
inverse cumulative distribution function (cdf) 20-1695
mean and variance 20-1699
modeling number of auto accidents B-86
nbincdf function 20-1692
nbininv function 20-1695
nbinpdf function 20-1696
parameter estimates 20-1694
probability density function (pdf) 20-1696
random matrices 20-1698
negative binomial fit 20-1694
negative log-likelihood
functions 5-78
Newton's method 20-913
nlintool 20-1771
nlmefit 20-1773
nlparci 20-1807
nnmf 20-1824
noncentral \(F\) distribution B-91
nonlinear mixed effects 20-1773
nonnegative matrix factorization
dimension-reduction technique 12-76
nonparametric distributions 5-9 B-95
normal distribution B-96
normal fit 20-1874
normal probability plots 4-8
normalizing
data sets 13-4
normcdf 20-1872
normfit 20-1874
norminv 20-1876
normlike 20-1878
normpdf 20-1879
normplot 20-1881
normrnd 20-1883
normspec 20-1884
normstat 20-1886
null hypotheses 7-3

\section*{0}
one-sample Kolmogorov-Smirnov test 7-13 online updates 20-1220
outliers
measures resistant to 3-3

\section*{P}
\(p\) values 7-3
parallel regression 20-1575 20-1598
Parallel statistics 19-1
parallelcoords 20-1943
Pareto distribution B-99
partial least-squares regression 9-137
partialcorr 20-1968
PCA. See principal component analysis
pcacov 20-1995
pcares 20-1997
pdf 20-2012
pdist 20-2028
Pearson system of distributions 6-25 B-100
pearsrnd 20-2040
perms 20-2054
piecewise distributions B-101
Plackett-Burman designs 17-5
plsregress 20-2139
poisscdf 20-2147
poissfit 20-2149
poissinv 20-2150
Poisson distribution B-102
Poisson fit 20-2149
poisspdf 20-2157
poissrnd 20-2158
poisstat 20-2159
polyconf 20-2160
polytool 20-2166
posterior state probabilities estimating 16-11
power hypothesis tests 7-4
principal component analysis (PCA) component scores \(12-84\)
component variances \(12-87\)
Hotelling's T-squared 12-89
overview 12-78
principal components \(12-82\)
quality of life example \(12-80\)
scree plots 12-88
principal coordinates analysis \(12-51\)
princomp 20-2245
probabilities
posterior state, estimating 16-11
probability density
functions 5-53
probability density estimation
comparing estimates 5-61
kernel bandwidth 5-58
kernel smoothing functions 5-60
nonparametric estimation 5-56
Probability Distribution Function Tool 5-10
probability distributions
disttool 5-10
functions that support 5-3
mean and variance 5-69
piecewise 5-71
probability mass functions
pmf 5-53
probplot 20-2270
procrustes 20-2275
Procrustes analysis 12-61 20-2275
pseudorandom numbers
generating 6-2

\section*{Q}
qqplot 20-2309
\(Q R\) decomposition 20-2439
QRNG (quasi-random number generator) 6-15
quality assurance 20-102
quantile-quantile plots 4-10
quasi-random numbers
generating 6-15
sequences
leaping 6-17
point set 6-17
scrambling 6-17
skipping 6-17
streams 6-23
state 6-23

\section*{R}
randg 20-2322
random 20-2325
random number generation
acceptance-rejection methods 6-9
direct methods 6-5
inversion methods 6-7
methods 6-5
Random Number Generation Tool 5-50
random number generators (RNGs) 5-81 6-2
random samples
inverse Wishart 20-1146
latin hypercube 20-1322
latin hypercube with normal
distribution 20-1323
Wishart 20-3065
randsample 20-2350
randtool 20-2352
range 20-2355
raylcdf 20-2382
Rayleigh distribution B-104
Rayleigh fit 20-2389
raylfit 20-2389
raylinv 20-2390
raylpdf 20-2391
raylrnd 20-2392
raylstat 20-2393
rcoplot 20-2394
refcurve 20-2396
refline 20-2400
regress 20-2402
regression
adjusted \(R\)-square statistic 20-2439
change in covariance 20-2439
change in fitted values 20-2439
coefficient covariance 20-2439
coefficients 20-2439
delete-1 coefficients 20-2439
delete-1 variance 20-2439
\(F\) distribution B-39
\(F\) statistic 20-2439
fitted values 20-2439
hat matrix 20-2439
leverage 20-2439
mean squared error 20-2439
partial least squares 9-137
projection matrix 20-2439
\(R\)-square statistic \(20-2439\)
residuals 20-2439
scaled change in coefficients 20-2439
scaled change in fitted values 20-2439
\(t\) statistic 20-2439
regression trees
example 15-51
regstats 20-2439
relative efficiency 20-1118
resampling
statistics 3-16
residuals
standardized 20-2439
studentized 20-2439
response surfaces
designs

Box-Behnken 17-13
central composite 17-9
overview 17-9
resubstitution error 20-1831
Rician distribution B-106
ridge 20-2555
ridge parameters 9-119 20-2556
ridge regression 9-119 20-2555
ridge trace 20-2555
RNGs. See random number generators
robust linear fit 20-2309
robust linear regression 20-2567
robustdemo 20-2563
robustfit 20-2567
rotatable designs 17-11
rotatefactors 20-2574
rowexch 20-2578
rsmdemo 20-2583
rstool 20-2588
runs test 7-14
runstest 20-2592

\section*{s}
sampsizepwr 20-2595
SBS. See sequential backward selection scaling arrays
classical multidimensional 20-325
scatter plots
functions that produce 4 -3
grouped 8-40
scree plots \(12-88\)
sequential backward selection (SBS) 12-71
sequential feature selection
criterion 12-70
sequential forward selection (SFS) 12-71
sequentialfs 20-2616
SFS. See sequential forward selection
Shepard plots 12-58
sign tests 7-14
significance levels 7-3
silhouette 20-2667
similarity matrices
creating 13-4
single linkage 20-1358
skewness 20-2682
SPC. See statistical process control specific variance 12-93
squareform 20-2696
SS. See sum of squares
standard normal 20-1879
standardized Euclidean distance 15-9 20-2030 20-2036
state sequences estimating 16-8
statistical process control
capability studies 18-6
control charts 18-3
stepwise 20-2735
stepwisefit 20-2775
Student's \(t\) distribution B-108
noncentral B-93
sum of squares (SS) 20-33
surfht 20-2810

\section*{T}
\(t\) location-scale distribution B-110
\(t\)-tests
one-sample 7-14
paired-sample 7-14
two-sample 7-15
tab-delimited data
reading from file 20-2840
tabular data
reading from file 20-2834
tabulate 20-2833
tblread 20-2834
tblwrite 20-2836
tcdf 20-2838
tdfread 20-2840
test data 14-2
test sequences
generating, for hidden Markov model 16-8
test statistics 7-3
tiedrank 20-2870
tinv 20-2872
tpdf 20-2882
training data \(14-2\)
transition matrices
estimating 16-9
treatments
experimental 17-3
treedisp 20-2901
treefit 20-2904
treeprune 20-2907
trees 20-2904
See also decision trees
treetest 20-2911
treeval 20-2915
trimmean 20-2923
trnd 20-2927
tstat 20-2934
two-level designs 17-4
two-sample Kolmogorov-Smirnov test 7-14
two-way ANOVA 8-9
type I errors 7-3
type II errors 7-4

\section*{U}
unidcdf 20-2972
unidinv 20-2973
unidpdf 20-2974
unidrnd 20-2975
unidstat 20-2976
unifcdf 20-2977
unifinv 20-2978
unifit 20-2979
uniform distribution B-112
uniformly distributed fit 20-2979
unifpdf 20-2980
unifrnd 20-2981
unifstat 20-2983

\section*{V}
variances of probability distribution 5-69

\section*{w}

Wald distribution B-58
ward linkage 20-1359
wblcdf 20-3042
wblfit 20-3044
wblinv 20-3046
wbllike 20-3049
wblpdf 20-3051
wblplot 20-3053
wblrnd 20-3056
wblstat 20-3057
Weibull distribution B-116
Weibull fit 20-3044
Weibull, Waloddi B-116
weighted average distance linkage 20-1359
whiskers
on plots 4-7
Wilcoxon rank sum test 7-14
Wilcoxon signed rank tests 7-14
Wishart distribution B-119
Wishart random matrix 20-3065
inverse 20-1146
wishrnd 20-3065
wrapper methods
feature selection 20-2619

\section*{\(\mathbf{x}\)}
x2fx 20-3068
xptread 20-3067

\section*{\(\mathbf{Z}\)}
\(z\)-test, one-sample 7-15```


[^0]:    See Also
    dataset | double | replacedata | grpstats

[^1]:    Number of observations: 100, Error degrees of freedom: 95
    Root Mean Squared Error: 4.81

[^2]:    See Also
    delete | dynamicprops | event.listener | events | meta.property | notify | qrandstream | reset

[^3]:    See Also

[^4]:    $y=\operatorname{normrnd}(1,1,30,1) ; \quad$ \% Simulated process data

[^5]:    See Also

    LinearModel | predict | random

[^6]:    100 observations, 93 error degrees of freedom

[^7]:    ## See Also <br> fitdist | mlecov | statset

    Concepts

    - "What Is Survival Analysis?" on page 11-2

[^8]:    'off' (default) | 'on'

[^9]:    column vector

[^10]:    References

[^11]:    See Also
    fitensemble | kfoldLoss

[^12]:    References

    See Also regress | stepwise
    [1] Hoerl, A. E., and R. W. Kennard. "Ridge Regression: Biased Estimation for Nonorthogonal Problems." Technometrics. Vol. 12, No. 1, 1970, pp. 55-67.
    [2] Hoerl, A. E., and R. W. Kennard. "Ridge Regression: Applications to Nonorthogonal Problems." Technometrics. Vol. 12, No. 1, 1970, pp. 69-82.
    [3] Marquardt, D.W. "Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation." Technometrics. Vol. 12, No. 3, 1970, pp. 591-612.
    [4] Marquardt, D. W., and R.D. Snee. "Ridge Regression in Practice." The American Statistician. Vol. 29, No. 1, 1975, pp. 3-20.

